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Abstract. If a K-contact manifold (M, g) and a D-homothetically de-
formed K-contact manifold (M, g) are both Ricci almost solitons with
the same associated vector field V, then we show (i) that (M,g) and
(M, g) are both D-homothetically fixed n-Einstein Ricci solitons, and (ii)
V preserves ¢. We also show that, if the associated vector field V of a
complete K-contact Ricci almost soliton (M, g, V) is a projective vector
field, then V is Killing and (M, g) is compact Sasakian and shrinking.
Finally, we show that the divergence of any vector field is invariant under
a D-homothetic deformation.
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1. Introduction

Modifying the Ricci soliton equation by allowing the dilation constant A\ to
become a variable function, Pigola et al. [8] defined a Ricci almost soliton as
a Riemannian manifold (M, g) satisfying the condition:

Ly g+ 2Ric = 2)g, (1.1)

where V is a vector field on M, g and Ric denote the metric tensor and its
Ricci tensor respectively, Ly denotes the Lie-derivative operator along V', and
A is a smooth function on M. A simple example is the canonical metric g
on a Euclidean sphere with V' a non-homothetic conformal vector field. For
A constant, (1.1) becomes the Ricci soliton [4]. The Ricci almost soliton is
said to be shrinking, steady, and expanding according as A is positive, zero,
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and negative respectively; otherwise is indefinite. If the vector field V is the
gradient of a smooth function f, up to the addition of a Killing vector field,
(M, g,V, ) is called a gradient Ricci almost soliton, in which case the Eq. (1.1)
assumes the form:

VVf + Ric = Ag. (1.2)

A compact Ricci soliton is necessarily gradient [7]. For a Ricci almost soliton
with V Killing, g is Einstein and hence A becomes constant and it becomes the
trivial Ricci soliton. We also note for a Ricci almost soliton that V' is conformal
if and only if ¢ is Einstein.

In [11] Sharma studied a gradient Ricci soliton as a complete K -contact
manifold and showed that it is isometric to a compact Einstein Sasakian
manifold. Later, Sharma and Ghosh [12] and Ghosh and Sharma [5] stud-
ied Sasakian metrics as Ricci solitons and showed that they are either Einstein
or n-Einstein D-homothetically fixed. In [13], Sharma showed that a complete
Ricci almost soliton whose metric is a K-contact metric and V' is an infinites-
imal contact transformation, reduces to a Ricci soliton with constant scalar
curvature. In this paper we study a K-contact metric ¢ whose D-homothetic
deformation to another K-contact metric g is a Ricci almost soliton. First, we
study the condition that (M,g,V,\) and (M,g,V,u) are both Ricci almost
solitons and obtain the following rigidity result.

Theorem 1.1. Let (M, g) be a K-contact manifold and (M, g) be obtained by a
non-identity D-homothetic deformation of (M, g). If (M, g,V, ) and (M, g,V, i)
are both Ricci almost solitons, then

(1) w = A, and both Ricci almost solitons reduce to D-homothetically fized
n-FEinstein expanding Ricci solitons,

(2) V preserves ¢ and transforms g, n and & according to the equations:
g=ag+ala—1nen, Lvé=4(n+1)§, Lyn=(A-2n).

Next, we study the case when (M, g,V,\) is a Ricci almost soliton such
that V is a projective vector field, and prove the following result.

Theorem 1.2. Let (M, g) be a complete K -contact manifold such that (M, g, V, \)
is a Ricci almost soliton and V' is projective. Then V is Killing and (M, g) is
compact Finstein Sasakian.

It is well known that a D-homothetic deformation preserves many basic proper-
ties like being K-contact (in particular, Sasakian). We obtain another invariant
under a D-homothetic deformation by proving the following result.

Proposition 1.1. The divergence of any smooth vector field is invariant under
a D-homothetic deformation of a contact metric structure.
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2. Review of K-contact Manifolds and a D-homothetic
Deformation

A (2n+1)-dimensional smooth manifold M is said to be a contact manifold if it
carries a global 1-form 7 such that nA (dn)™ # 0 everywhere on M. For a given
contact 1-form 7, there is a unique vector field ¢ called the Reeb vector field
such that dn(§,.) = 0 and n(§) = 1. Polarizing dn on the contact subbundle
n = 0, one obtains a Riemannian metric g and a (1, 1)-tensor field ¢ such that

dn(X7Y):g(X7¢Y)7 n(X):g(X7§)7 ¢2=—I+77®fa (21)

where X,Y denote arbitrary vector fields on M. Henceforth, X, Y, Z will de-
note arbitrary vector fields on M. g is called an associated metric of 1 and
(¢,m,&,g) a contact metric structure. If £ is Killing, then M is said to be a
K-contact manifold. The contact structure on M is said to be normal if the al-
most complex structure on M ® R defined by J(X, f%) = (¢X — f¢, n(X)%),
where f is a real function on M ® R, is integrable. A normal contact metric
manifold is called a Sasakian manifold. Sasakian manifolds are K-contact and
3-dimensional K-contact manifolds are Sasakian. For a K-contact manifold,

Vxé=—0X (2.2)
R(X,§)E =X —n(X)§ (2.3)
Q€ = 2ng, (2.4)

where V, R and @ denote the Levi—Civita connection, curvature tensor and
Ricci operator of g respectively. For details we refer to Blair [1].
A contact metric manifold M is said to be 7-Einstein in the wider sense,
if
Ric = ag+ Bn®n, (2.5)

for some smooth functions o and 5 on M. It is well-known [18] that « and 3 are
constants if M is K-contact, and has dimension greater than 3. Given a contact
metric structure (1,&, g, ), let 7 = an,& = é{,gﬁ =¢p,g=ag+ala—1)n®n
for a positive constant a. Then (7, £, , g) is again a contact metric structure.
Such a change of structure is called a D-homothetic deformation, and preserves
many basic properties like being K-contact (in particular, Sasakian). It is
straightforward to verify that, under a D-homothetic deformation, a K-contact
n-Einstein manifold transforms to a K-contact n-Einstein manifold such that
a = # and § = 2n — @. We remark here that the particular value:
« = —2 remains fixed under a D-homothetic deformation, and as a + 3 = 2n,
[ also remains fixed. This observation motivates us to state the following
definition [5].

Definition 2.1. A K-contact n-Einstein manifold with o = —2 is said to be
D-homothetically fixed.
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We also point out that a vector field V on a contact metric manifold
is said to be an infinitesimal contact transformation [14] if Lyn = on for a
smooth function o, and is strictly so when o = 0.

3. Proofs of the Results

Proof of Theorem 1.1. Let (M, g) be a K-contact manifold and (M, g) be ob-
tained by a D-homothetic deformation of (M, g). Suppose that (M,g,V,u)
and (M, g,V,\) are Ricci almost solitons, i.e.

Ly g+ 2Ric = 2ug, (3.1)

Ly g+ 2Ric = 2)\g. (3.2)
Taking the Lie derivative of g = ag + a(a — 1)n ® n along V, using Eq. (3.2)
and the following formula for the change of Ricci tensor under a D-homothetic
deformation [2,15]:

Ric = Ric — —(2a — lc)z(a — 1)g
+{2n(a’ —1)+W}n®n— (Q;U{g—n@m},

we obtain
2(1 = a)Ric(X,Y) + ala — D{(Lvn)(X)n(Y) +n(X)(Lyvn)(Y)}
= [2a(A = p) +4(a = D]g(X,Y)
+2(a —1)(Aa — 2na — 2n — 2))n(X)n(Y). (3.3)
Now substituting £ for Y in (3.3) and using (2.4), we have that
ala —1)(Lvn)(X) = [2a(X — p) + (a = 1)(2Xa — 4na — a(Lyn)§)|n(X). (3.4)

Further, substituting £ for X in the above equation, gives

(a=1)(Lvn)é = (A—p)+ (a—1)(A—2n). (3.5)
The above two equations lead to
(a=1)(Lyvn)X =[A=p+(a—1)(A—2n)n(X). (3.6)

At this point, Lie-differentiating g(£,€) = 1 along V' and using (1.1) we get

2Ric(§,€) = 2ug(8,€) + 29(Lv &, ).

The use of (2.4) in the preceding equation provides n(Ly§) = —u + 2n. Lie-
differentiating n(§) = 1 along V' we have (Lyn)(&) + n(Ly¢) = 0. Hence,
(Lyn)(&) = u — 2n. This, in conjunction with (3.5) shows

A= pu, (3.7)
because a > 0. Consequently, as a # 1 by hypothesis, (3.6) assumes the form
Lyn=(\—2n)n. (3.8)
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The use of this equation in (3.3) readily shows that

Ric=—-2g+2(n+1)n®@n. (3.9)
i.e. (M, g) is n-Einstein K-contact and is D-homothetically fixed by Definition
2.1. Hence it is also true for g. Now, tracing (3.9) gives the scalar curvature

r=—2n. (3.10)
From (3.8), it also follows from a result of Sharma “If the associated vector field
of a K-contact Ricci almost soliton is an infinitesimal contact transformation,
then the Ricci almost soliton becomes Ricci soliton and hence A is constant”
that A = p is constant, and hence both Ricci almost solitons reduce to Ricci
solitons. Let us now recall the following integrability formula [11] for a Ricci
soliton: -
Lv'f’ = —Ar + 2Rin” - 2)‘717

where Ar = div(Vr) and V denotes the gradient of a function. As r is a
constant from (3.10), the above formula yields

RijRY = \r = —2n)\. (3.11)
On the other hand, computing from (3.9), we get
Ri;RY = 4n(n +2),
which shows, in view of (3.11), that
A= —2(n+2), (3.12)
i.e. the soliton is expanding . The soliton Eq. (1.1) along with Egs. (3.9) and
(3.12) implies that
Lvg=—-4(n+1)(g+n®mn). (3.13)
Also, the Eq. (3.8) becomes
Lyn=—4(n+ 1)n. (3.14)
Lie-differentiating the first equation of (2.1) along V', and noting the fact that
Ly commutes with the exterior derivative operator d, we get

(d(Lyn)(X,Y) = (Lvg)(X,9Y) + g(X, (Lv¢)Y).
Using (3.13) and (3.14) in the above equation, we find
Ly¢ =0. (3.15)

Finally, Lie-differentiating the property ¢¢ = 0 along V, and using (3.15) we
have

o(Lv§) =0,
which, in turn, implies that
Lv§ =n(Lv§)s.
Asn(Ly€&) =2n— XA =2n+2(n+ 2) = 4n + 4, we obtain
Ly& =4(n+1)¢.
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This completes the proof.

Proof of Theorem 1.2. As V is a projective vector field, we have [16,17]
(LyV)(X,Y) =p(X)Y +p(Y)X (3.16)

where p is an exact 1-form. For p = 0, V is an affine vector field.
Using the Ricci almost soliton Eq. (1.1) in the commutation formula [17]

(LvVx9—=VxLvg—Vx19)(Y,Z2) = —g((LvV)(X,Y), Z)—g(LvV)(X, Z),Y),
and also using (3.16) we derive
—2(VxRic)(Y, Z) + 2(XA)g(Y, Z) = 2p(X)g(Y, Z)
+p(Y)g(X, Z) + p(Z2)g(X, Y )3.17)
Substituting £ for Y and Z in the above equation gives

XA = p(X) +p(&)n(X)
and subsequently, substituting £ for X we obtain

EX = 2p(§).

The above two equations yield the relation

dX = (EA)n = p. (3.18)
Taking its exterior derivative and then exterior product with 1 we get (EA)n A
dn = 0. Noting that nAdn is nowhere zero by the definition of contact structure,
we conclude that €A = 0 and therefore, p = dA. Consequently, Eq. (3.17)
reduces to

—2(VxQ)Y = (YN X +g(X,Y)VA

Substituting £ for X and Y in the above equation and using (2.4) we find that
VA = 0. Hence A is constant, and so Eq. (3.18) implies that p = 0, and Eq.
(3.17) reduces to VRic = 0. We know from [9] that a second order symmetric
parallel tensor on a K-contact manifold is a constant multiple of the metric
tensor. So, Ric = 2ng, in view of the Eq. (2.4). As p = 0, V is affine, and
so Ly g is parallel and therefore homothetic. But a homothetic vector field
on a K-contact manifold is Killing [10]. Hence V is Killing. Equation (1.1)
immediately shows that A\ = 2n. Since the K-contact manifold is complete
and Einstein (with Einstein constant 2n), it is compact by Myers’ theorem.
Applying the following result of Boyer and Galicki [3]: “A compact Einstein
K-contact manifold is Sasakian”, we conclude that ¢ is Sasakian, completing
the proof. O

Proof of Proposition 1.1. We know that
Q=nA(dn)" (3.19)

defines the volume form of a contact metric manifold. Under a D-homothetic
deformation it changes to

Q=nAdp" =a" Q. (3.20)



Vol. 75 (2020) D-homothetically Deformed. . . Page 7 of 8 124

Let us recall the formula Ly Q = (divV)S), where the divergence div of an
arbitrary smooth vector field V' is taken with respect to a Riemannian met-
ric associated with the contact structure n on M. Now Ly = (divV)Q, in
conjunction with (3.19) and (3.20) shows that divV = divV, completing the
proof. O
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