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D-homothetically Deformed K-contact
Ricci Almost Solitons
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Abstract. If a K-contact manifold (M, g) and a D-homothetically de-
formed K-contact manifold (M, ḡ) are both Ricci almost solitons with
the same associated vector field V , then we show (i) that (M, g) and
(M, ḡ) are both D-homothetically fixed η-Einstein Ricci solitons, and (ii)
V preserves φ. We also show that, if the associated vector field V of a
complete K-contact Ricci almost soliton (M, g, V ) is a projective vector
field, then V is Killing and (M, g) is compact Sasakian and shrinking.
Finally, we show that the divergence of any vector field is invariant under
a D-homothetic deformation.
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1. Introduction

Modifying the Ricci soliton equation by allowing the dilation constant λ to
become a variable function, Pigola et al. [8] defined a Ricci almost soliton as
a Riemannian manifold (M, g) satisfying the condition:

LV g + 2Ric = 2λg, (1.1)

where V is a vector field on M , g and Ric denote the metric tensor and its
Ricci tensor respectively, LV denotes the Lie-derivative operator along V , and
λ is a smooth function on M . A simple example is the canonical metric g
on a Euclidean sphere with V a non-homothetic conformal vector field. For
λ constant, (1.1) becomes the Ricci soliton [4]. The Ricci almost soliton is
said to be shrinking, steady, and expanding according as λ is positive, zero,
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and negative respectively; otherwise is indefinite. If the vector field V is the
gradient of a smooth function f , up to the addition of a Killing vector field,
(M, g, V, λ) is called a gradient Ricci almost soliton, in which case the Eq. (1.1)
assumes the form:

∇∇f + Ric = λg. (1.2)

A compact Ricci soliton is necessarily gradient [7]. For a Ricci almost soliton
with V Killing, g is Einstein and hence λ becomes constant and it becomes the
trivial Ricci soliton. We also note for a Ricci almost soliton that V is conformal
if and only if g is Einstein.

In [11] Sharma studied a gradient Ricci soliton as a complete K-contact
manifold and showed that it is isometric to a compact Einstein Sasakian
manifold. Later, Sharma and Ghosh [12] and Ghosh and Sharma [5] stud-
ied Sasakian metrics as Ricci solitons and showed that they are either Einstein
or η-Einstein D-homothetically fixed. In [13], Sharma showed that a complete
Ricci almost soliton whose metric is a K-contact metric and V is an infinites-
imal contact transformation, reduces to a Ricci soliton with constant scalar
curvature. In this paper we study a K-contact metric g whose D-homothetic
deformation to another K-contact metric ḡ is a Ricci almost soliton. First, we
study the condition that (M, g, V, λ) and (M, ḡ, V, μ) are both Ricci almost
solitons and obtain the following rigidity result.

Theorem 1.1. Let (M, g) be a K-contact manifold and (M, ḡ) be obtained by a
non-identity D-homothetic deformation of (M, g). If (M, g, V, λ) and (M, ḡ, V, μ)
are both Ricci almost solitons, then

(1) μ = λ, and both Ricci almost solitons reduce to D-homothetically fixed
η-Einstein expanding Ricci solitons,

(2) V preserves φ and transforms g, η and ξ according to the equations:
ḡ = ag + a(a − 1)η ⊗ η, LV ξ = 4(n + 1)ξ, LV η = (λ − 2n)η .

Next, we study the case when (M, ḡ, V, λ) is a Ricci almost soliton such
that V is a projective vector field, and prove the following result.

Theorem 1.2. Let (M, g) be a complete K-contact manifold such that (M, g, V, λ)
is a Ricci almost soliton and V is projective. Then V is Killing and (M, g) is
compact Einstein Sasakian.

It is well known that a D-homothetic deformation preserves many basic proper-
ties like being K-contact (in particular, Sasakian). We obtain another invariant
under a D-homothetic deformation by proving the following result.

Proposition 1.1. The divergence of any smooth vector field is invariant under
a D-homothetic deformation of a contact metric structure.
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2. Review of K-contact Manifolds and a D-homothetic
Deformation

A (2n+1)-dimensional smooth manifold M is said to be a contact manifold if it
carries a global 1-form η such that η∧(dη)n �= 0 everywhere on M . For a given
contact 1-form η, there is a unique vector field ξ called the Reeb vector field
such that dη(ξ, .) = 0 and η(ξ) = 1. Polarizing dη on the contact subbundle
η = 0, one obtains a Riemannian metric g and a (1, 1)-tensor field φ such that

dη(X,Y ) = g(X,φY ), η(X) = g(X, ξ), φ2 = −I + η ⊗ ξ, (2.1)

where X,Y denote arbitrary vector fields on M . Henceforth, X,Y,Z will de-
note arbitrary vector fields on M . g is called an associated metric of η and
(φ, η, ξ, g) a contact metric structure. If ξ is Killing, then M is said to be a
K-contact manifold. The contact structure on M is said to be normal if the al-
most complex structure on M ⊗R defined by J(X, f d

dt ) = (φX − fξ, η(X) d
dt ),

where f is a real function on M ⊗ R, is integrable. A normal contact metric
manifold is called a Sasakian manifold. Sasakian manifolds are K-contact and
3-dimensional K-contact manifolds are Sasakian. For a K-contact manifold,

∇Xξ = −φX (2.2)
R(X, ξ)ξ = X − η(X)ξ (2.3)

Qξ = 2nξ, (2.4)

where ∇, R and Q denote the Levi–Civita connection, curvature tensor and
Ricci operator of g respectively. For details we refer to Blair [1].

A contact metric manifold M is said to be η-Einstein in the wider sense,
if

Ric = αg + βη ⊗ η, (2.5)

for some smooth functions α and β on M . It is well-known [18] that α and β are
constants if M is K-contact, and has dimension greater than 3. Given a contact
metric structure (η, ξ, g, ϕ), let η̄ = aη, ξ̄ = 1

aξ, ϕ̄ = ϕ, ḡ = ag + a(a − 1)η ⊗ η

for a positive constant a. Then (η̄, ξ̄, ϕ̄, ḡ) is again a contact metric structure.
Such a change of structure is called a D-homothetic deformation, and preserves
many basic properties like being K-contact (in particular, Sasakian). It is
straightforward to verify that, under a D-homothetic deformation, a K-contact
η-Einstein manifold transforms to a K-contact η-Einstein manifold such that
ᾱ = α+2−2a

a and β̄ = 2n − ᾱ. We remark here that the particular value:
α = −2 remains fixed under a D-homothetic deformation, and as α + β = 2n,
β also remains fixed. This observation motivates us to state the following
definition [5].

Definition 2.1. A K-contact η-Einstein manifold with α = −2 is said to be
D-homothetically fixed.
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We also point out that a vector field V on a contact metric manifold
is said to be an infinitesimal contact transformation [14] if LV η = ση for a
smooth function σ, and is strictly so when σ = 0.

3. Proofs of the Results

Proof of Theorem 1.1. Let (M, g) be a K-contact manifold and (M, ḡ) be ob-
tained by a D-homothetic deformation of (M, g). Suppose that (M, g, V, μ)
and (M, ḡ, V, λ) are Ricci almost solitons, i.e.

LV g + 2Ric = 2μg, (3.1)
LV ḡ + 2R̄ic = 2λḡ. (3.2)

Taking the Lie derivative of ḡ = ag + a(a − 1)η ⊗ η along V , using Eq. (3.2)
and the following formula for the change of Ricci tensor under a D-homothetic
deformation [2,15]:

R̄ic = Ric − (2a − 1)(a − 1)
a

g

+{2n(a2 − 1) +
(2a − 1)(a − 1)

a
}η ⊗ η − (a − 1)

a
{g − η ⊗ η},

we obtain

2(1 − a)Ric(X,Y ) + a(a − 1){(LV η)(X)η(Y ) + η(X)(LV η)(Y )}
= [2a(λ − μ) + 4(a − 1)]g(X,Y )

+2(a − 1)(λa − 2na − 2n − 2))η(X)η(Y ). (3.3)

Now substituting ξ for Y in (3.3) and using (2.4), we have that

a(a − 1)(LV η)(X) = [2a(λ − μ) + (a − 1)(2λa − 4na − a(LV η)ξ)]η(X). (3.4)

Further, substituting ξ for X in the above equation, gives

(a − 1)(LV η)ξ = (λ − μ) + (a − 1)(λ − 2n). (3.5)

The above two equations lead to

(a − 1)(LV η)X = [λ − μ + (a − 1)(λ − 2n)]η(X). (3.6)

At this point, Lie-differentiating g(ξ, ξ) = 1 along V and using (1.1) we get

2Ric(ξ, ξ) = 2μg(ξ, ξ) + 2g(LV ξ, ξ).

The use of (2.4) in the preceding equation provides η(LV ξ) = −μ + 2n. Lie-
differentiating η(ξ) = 1 along V we have (LV η)(ξ) + η(LV ξ) = 0. Hence,
(LV η)(ξ) = μ − 2n. This, in conjunction with (3.5) shows

λ = μ, (3.7)

because a > 0. Consequently, as a �= 1 by hypothesis, (3.6) assumes the form

LV η = (λ − 2n)η. (3.8)
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The use of this equation in (3.3) readily shows that

Ric = −2g + 2(n + 1)η ⊗ η. (3.9)

i.e. (M, g) is η-Einstein K-contact and is D-homothetically fixed by Definition
2.1. Hence it is also true for ḡ. Now, tracing (3.9) gives the scalar curvature

r = −2n. (3.10)

From (3.8), it also follows from a result of Sharma “If the associated vector field
of a K-contact Ricci almost soliton is an infinitesimal contact transformation,
then the Ricci almost soliton becomes Ricci soliton and hence λ is constant”
that λ = μ is constant, and hence both Ricci almost solitons reduce to Ricci
solitons. Let us now recall the following integrability formula [11] for a Ricci
soliton:

LV r = −Δr + 2RijR
ij − 2λr,

where Δr = div(∇r) and ∇ denotes the gradient of a function. As r is a
constant from (3.10), the above formula yields

RijR
ij = λr = −2nλ. (3.11)

On the other hand, computing from (3.9), we get

RijR
ij = 4n(n + 2),

which shows, in view of (3.11), that

λ = −2(n + 2), (3.12)

i.e. the soliton is expanding . The soliton Eq. (1.1) along with Eqs. (3.9) and
(3.12) implies that

LV g = −4(n + 1)(g + η ⊗ η). (3.13)
Also, the Eq. (3.8) becomes

LV η = −4(n + 1)η. (3.14)

Lie-differentiating the first equation of (2.1) along V , and noting the fact that
LV commutes with the exterior derivative operator d, we get

(d(LV η))(X,Y ) = (LV g)(X,φY ) + g(X, (LV φ)Y ).

Using (3.13) and (3.14) in the above equation, we find

LV φ = 0. (3.15)

Finally, Lie-differentiating the property φξ = 0 along V , and using (3.15) we
have

φ(LV ξ) = 0,

which, in turn, implies that

LV ξ = η(LV ξ)ξ.

As η(LV ξ) = 2n − λ = 2n + 2(n + 2) = 4n + 4, we obtain

LV ξ = 4(n + 1)ξ.
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This completes the proof.

Proof of Theorem 1.2. As V is a projective vector field, we have [16,17]

(LV ∇)(X,Y ) = p(X)Y + p(Y )X (3.16)

where p is an exact 1-form. For p = 0, V is an affine vector field.
Using the Ricci almost soliton Eq. (1.1) in the commutation formula [17]

(LV ∇Xg−∇XLV g−∇[V,X]g)(Y,Z) = −g((LV ∇)(X,Y ), Z)−g((LV ∇)(X,Z), Y ),

and also using (3.16) we derive

− 2(∇XRic)(Y,Z) + 2(Xλ)g(Y,Z) = 2p(X)g(Y,Z)
+p(Y )g(X,Z) + p(Z)g(X,Y ).(3.17)

Substituting ξ for Y and Z in the above equation gives

Xλ = p(X) + p(ξ)η(X)

and subsequently, substituting ξ for X we obtain

ξλ = 2p(ξ).

The above two equations yield the relation

dλ − (ξλ)η = p. (3.18)

Taking its exterior derivative and then exterior product with η we get (ξλ)η ∧
dη = 0. Noting that η∧dη is nowhere zero by the definition of contact structure,
we conclude that ξλ = 0 and therefore, p = dλ. Consequently, Eq. (3.17)
reduces to

−2(∇XQ)Y = (Y λ)X + g(X,Y )∇λ.

Substituting ξ for X and Y in the above equation and using (2.4) we find that
∇λ = 0. Hence λ is constant, and so Eq. (3.18) implies that p = 0, and Eq.
(3.17) reduces to ∇Ric = 0. We know from [9] that a second order symmetric
parallel tensor on a K-contact manifold is a constant multiple of the metric
tensor. So, Ric = 2ng, in view of the Eq. (2.4). As p = 0, V is affine, and
so LV g is parallel and therefore homothetic. But a homothetic vector field
on a K-contact manifold is Killing [10]. Hence V is Killing. Equation (1.1)
immediately shows that λ = 2n. Since the K-contact manifold is complete
and Einstein (with Einstein constant 2n), it is compact by Myers’ theorem.
Applying the following result of Boyer and Galicki [3]: “A compact Einstein
K-contact manifold is Sasakian”, we conclude that g is Sasakian, completing
the proof. �

Proof of Proposition 1.1. We know that

Ω = η ∧ (dη)n (3.19)

defines the volume form of a contact metric manifold. Under a D-homothetic
deformation it changes to

Ω̄ = η̄ ∧ (dη̄)n = an+1Ω. (3.20)
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Let us recall the formula LV Ω = (divV )Ω, where the divergence div of an
arbitrary smooth vector field V is taken with respect to a Riemannian met-
ric associated with the contact structure η on M . Now LV Ω̄ = ( ¯divV )Ω̄, in
conjunction with (3.19) and (3.20) shows that ¯divV = divV , completing the
proof. �
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