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Two enantiomers of lactic acid exist. While L-lactic acid is a common compound of human metabolism, D-lactic acid is produced
by some strains of microorganism or by some less relevant metabolic pathways. While L-lactic acid is an endogenous compound,
D-lactic acid is a harmful enantiomer. Exposure to D-lactic acid can happen by various ways including contaminated food and
beverages and by microbiota during some pathological states like short bowel syndrome. The exposure to D-lactic acid cannot
be diagnosed because the common analytical methods are not suitable for distinguishing between the two enantiomers. In this
review, pathways for D-lactic acid, pathological processes, and diagnostical and analytical methods are introduced followed by

figures and tables. The current literature is summarized and discussed.

1. Introduction

Toxicity of optical isomers is a specific issue that is not easy to
be studied. When a compound is existing in a form of optical
isomer (enantiomer), frequently one isomer is harmless or
even necessary for homeostasis (e.g., L-amino acids) while
the other isomer is toxic and able to interfere crucial path-
ways in the organism. On the other hand, some isomers do
not exert significant problems (e.g., sugars). The toxicity
depending on chirality is known from natural toxins, drugs,
and pesticides [1-5]. Production of enantiopure drugs is a
specific issue where high demands on quality of manufactur-
ing and control are given. The manufacturing processes
should be able to prefer or be fully selective to only one iso-
mer. It can be reached by biocatalysis [6], advanced organic
synthesis [7], and enantiospecific separation [8].

Though an unequal biological effect of optical isomers is
known for a relatively long time, it is frequently underesti-
mated because elaborative and expensive laboratory tests
are necessary to distinguish the isomers. This review is
focused on D-lactic acid which is, comparing to its L-
isomer counterpart, problematic for the humans, and exces-
sive intake can have fatal consequences. A survey of the

actual literature, discussion of known facts, and ongoing
research are provided in this work.

2. Comparison of the D- and L-Lactic Acids

Lactic acid exists in the form of two enantiomers: D-lactic
acid and L-lactic acid. In proper chemical terms, the L-
lactic acid should be entitled L(+) lactic acid or S(+) lactic
acid while the D variant is named D(-) lactic acid respective
R(-) lactic acid. The isomers are depicted in Figure 1.

Lactic acid exists as a conjugated base lactate (L-lactate in
the case of L-lactic acid and D-lactate in the case of D-lactic
acid) in physiological pH 7.4, but the occurrence of conju-
gated base has no effect on chirality that is kept in the basic
anion. L-Lactic acid is the natural enantiomer in humans
and other higher forms of life. A normal level of L-lactate
in human blood is in a range from 0.5 to 1 mmol/l, the
increased level above the normal physiological range is called
hyperlactatemia, and it can be initiated by some pathological
processes. The low level of L-lactate is entitled as hypolac-
tatemia [9]; however, hypolactatemia is quite a rare phe-
nomenon comparing to indication of pathological states
by hyperlactatemia which is a relevant finding in clinical
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FiGure 1: D- and L-lactic acids.

biochemistry. Lactic acidosis occurs when the L-lactate con-
centration exceeds 4mmol/l in plasma, and blood pH can
drop under 7.35 in this situation. Hyperlactatemia in a mild
form or a form of lactic acidosis can appear from several rea-
sons like sepsis, hemorrhagic shock, cardiac arrest, trauma,
poisonings, ischemia, burns, diabetic ketoacidosis, some
types of cancer, and intense muscle activity [10-18].

Standard metabolism of L-lactate in most organisms is
mediated by L-lactate dehydrogenase (EC 1.1.1.27) in the
presence of NAD™ as a cofactor. The reaction is in its princi-
ple the same like the oxidation of D-lactate by D-lactate
dehydrogenase (EC 1.1.1.28). The enzyme is quite evolution-
ary conserved because it can be found in eukaryotes, bacteria,
and even archaea. Pyruvate and NADH are products of the
reaction. The principle of L-lactate oxidation to pyruvate by
L-lactate dehydrogenase is shown in Figure 2. The L-lactate
dehydrogenase is involved in a basic metabolism tightly
linked to glycolysis and gluconeogenesis, and it is a crucial
part of the Cori cycle in humans and higher animals, but it
also participates in fermentation processes [19-23].

Comparing to L-lactic acid, the D-lactic acid is not
involved in basic metabolic processes of most life forms.
Enzymes responsible for lactate metabolism including L-
lactate dehydrogenase exert specificity to the L-isomer
only, and they are not able to convert D-lactic acid. Only
some exceptional L-lactate dehydrogenases like the enzyme
from Leuconostoc mesenteroides are able to be involved
in D-lactate conversion besides standard metabolism of
L-lactate [24].

3. Basic Biochemical Pathways for D-Lactic Acid

Various bacterial species are able to produce D-lactate or
both D- and L-lactates contemporarily. Many of them are
involved in fermentation processes including the processes
known from biotechnology industry. The genus of bacteria
Lactobacillus produces D, L, and racemic mixture, genus Ped-
iococcus produces either pure L or some strain racemic mix-
ture, Leuconostoc and Oenococcus are producers of D-isomer,
and genus Weissella produces either D-isomer or racemic
mixture [25]. Engineered strains of bacteria can serve for
optical isomer production. Aso and coworkers described Lac-
tococcus lactis-based biotechnology for D-lactic acid produc-
tion [26].

There are more pathways on how D-lactate is produced
by microorganisms, fungi, and others. D-Lactate dehydroge-
nase (EC 1.1.1.28) is one of them. Fungi Phytophthora undu-
lata, Pythium debaryanum, and Sapromyces elongatus [27]
and bacteria Lactobacillus delbrueckii [28], Lactobacillus
bulgaricus [29], Escherichia coli, Fusobacterium nucleatum,
and Pseudomonas aeruginosa [30] are organisms known for
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expression of D-lactate dehydrogenase. D-Lactate dehydro-
genase is an enzyme that converts D-lactate to pyruvate by
contemporary reduction of NAD™ to NADH.

D-Lactate dehydrogenase (cytochrome) is another enzyme
converting D-lactate. It is an enzyme known under code EC
1.1.2.4. It consumes D-lactate and needs two molecules of
ferricytochrome ¢, while pyruvate and two molecules of
ferrocytochrome ¢ are reaction products. Activity of this
enzyme was described for instance in plant Arabidopsis thali-
ana [31], yeast Hansenula polymorpha [32], and yeast
Saccharomyces cerevisiae [33]. Participation of D-lactate
dehydrogenase (cytochrome) in human metabolism has not
been extensively researched. In a study, activity of the
enzyme in human mitochondria and its deletion in individ-
uals with deficient enzyme was described and the relation
with appearance of D-lactate in urine of the individuals with
deficient enzyme was discussed [34].

D-Lactate dehydrogenase (cytochrome c¢-553) is an
enzyme similar to the D-lactate dehydrogenase (cytochrome)
or probably in some cases the same biological structure. It is
an enzyme oxidizing D-lactate to pyruvate with contempo-
rary reduction of two molecules of ferricytochrome c-553 to
two molecules of ferrocytochrome c-553 in a single step. This
enzyme was described in bacterium Desulfovibrio vulgaris
[35]. Detailed information about the enzyme are not reported
in the current literature.

Glyoxalase 3 is an enzyme accepting D-lactate as a sub-
strate and involved in its detoxification. The enzyme is also
known under the name D-lactate dehydratase and code EC
4.2.1.130. It catalyzes reaction where D-lactate produces
methylglyoxal (2-oxopropanal) and one molecule of water.
This enzyme was identified in humans [36]. Glyoxalases 1
and 2 are enzymes involved in D-lactate conversion respec-
tive production in humans as well [37, 38]. Just as the system
of glyoxalases makes a link between D-lactate and methyl-
glyoxal, the methylglyoxal is further involved in forming
advanced glycation end products, and in a wider look, it
has a role in oxidative stress neurodegenerative disorders
[39-42]. Enzymes involved in the lactate metabolism are
summarized in Table 1.

4. Poisoning by D-Lactate and D-Lactic Acidosis

Production of lactic acids is common in biotechnologies of
food processing, and manufacturing some types of food and
beverages is typically based on or involves lactic acid produc-
tion. Processes based on so-called lactic acid bacteria can be
exampled [43]. Milk and milk beverage production can be
complicated by D-lactic acid contamination depending on
the type of bacterial presence [44]. There is a questionable
effect of probiotics on the elevated level of D-lactate in blood
circulation. Though some works point out potential risks of
probiotics, the others show no evidence of increased D-
lactate due to the probiotics and the final conclusion has
not been done yet [45-48]. Moreover, production of D-
lactate by probiotics is not related to all strains and use of
D-lactic acid-producing strains is regulated, especially in
products for children [25, 49]. In other experiments, the
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FIGuURrE 2: Oxidation of L-lactate by L-lactate dehydrogenase and D-lactate by D-lactate dehydrogenase to pyruvate.
TaBLE 1: Enzymes involved in D-lactate metabolism.
EC . .
Name of enzyme Substrates Products Producing organisms References
number
Fungi Phytophthora undulata, Pythium
D-Lactate EC debaryanum, and Sapromyces elongatus, bacteria
D-Lactate + NAD*  Pyruvate + NADH  Lactobacillus delbrueckii, Lactobacillus bulgaricus, ~ [27-30]
dehydrogenase 1.1.1.28 S . .
Escherichia coli, Fusobacterium nucleatum, and
Pseudomonas aeruginosa
D-Lactate EC D-Lactate + 2 Pyruvate + 2 Plant Arabidopsis thaliana, yeast Hansenula
dehydrogenase 1.1.24  ferricytochrome ¢ ferrocytochrome olymorpha and Saccharomyces cerevisiae [(31-33]
(cytochrome) o h c+2H" polymorp 4
D-Lactate EC D-Lactate + 2 Pyruvate + 2
dehydrogenase 1125 ferricytochrome ferrocytochrome Bacterium Desulfovibrio vulgaris [35]
(cytochrome c-553) c-553 c-553 + 2H"
D-Lactate EC
dehydratase 42.1.130 D-Lactate Methylglyoxal + H,0O Homo sapiens [36]

(also glyoxalase 3)

protective effect of probiotics was proven and their applica-
tion was associated with reduction of D-lactate level [50].

Production of D-lactate by microbiota in the human
organism is in limited amount under normal circumstances.
D-Lactate can be overproduced by microbiota under specific
circumstances like short bowel syndrome and jejunoileal
bypass surgery further supported when a patient takes a meal
with high sugar content [51, 52]. Abdominal compartment
syndrome, a multiorgan failure associated with fluid accumu-
lation within the peritoneal and retroperitoneal spaces, is
another risk factor for increased D-lactate concentration in
blood [53]. The presence of D-lactate can follow poisoning
to heavy metals despite the exact mechanism remaining
unknown. It was precisely described in a model of Wistar rats
exposed to lead [54]. Infectious diseases and diseases with
following inflammation processes can also cause or be in
relation with increased D-lactate level [55-58]. D-Lactate
can also serve as a marker of some infections and sepsis
[59]. D-Lactic acidosis is formed due to overproduction of
D-lactate [60]. D-Lactic acid can be contained in food and
beverages prepared by biotechnology processes or contami-
nated by microorganisms or the other way; e.g., beer can be
contaminated by D-lactic acid [61-64].

D-Lactate initiates various pathological manifestations
depending on the dose and individual conditions and specific
metabolism. D-Lactate has a direct neurotoxic effect that is
independent to the drop of blood pH and not common to
L-lactate which was extensively scrutinized on Holstein

calves as an experimental model [65]. In a case of D-
lactate-poisoned lambs, acidosis, ataxic gait and preferred
recumbency, and possible somnolence were identified and
the symptoms can be suppressed by sodium bicarbonate
[66]. Encephalopathy is also a common syndrome of D-
lactate poisoning [67, 68]. The neurotoxic effect of D-
lactate can be manifested by episodic confusion and hyper-
pnea as well [69]. Overall confusion, dizziness, headache,
aggressive behavior, and memory loss are other symptoms
following D-lactic acid poisoning [70]. An overview of types
of D-lactic acid exposure and impact with manifestations is
depicted in Figure 3. Though D-lactate can cause health com-
plications, it is not a highly toxic compound because expected
median lethal doses are quite high. The LD, value level per
orally poisoned rats is around 4.5 g/kg.

Because of environmental issues, good biocompatibility,
and application in 3D printing, polylactic acid (synonym
polylactide) becomes a highly preferred polymer that can be
degraded in the nature [71-76]. The polylactic polymers in
the current market are typically prepared from cheap racemic
mixture of the D- and L-lactic acids, and it can be chemically
named poly-DL-lactide. Use of optically pure isomers, from
which poly-D-lactide and poly-L-lactide are formed, would
make the final plastic products more expensive. On the other
hand, the most commercially available lactic acid is the L
enantiomer coming from the fermentation process, and the
other significant source is a mixture fabricated chemically
from acetaldehyde [77]. Hydrolysis of cellulose is possible
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FIGURE 3: Overview of D-lactic acid exposures and impact on the organism.

as well [78, 79]; there are also protocols for production of D-
lactate from methane [80]. Polylactic acid can be degraded by
various processes, but hydrolysis of the ester bound is the
most common reaction from the chemical point of view
[81-83]; many organisms like bacterium Rhodopseudomonas
palustris [84] and fungi Aspergillus niger and Candida cylin-
dracea [85] are examples that have good ability to hydrolyze
polylactic acid. Not a single enzyme is involved in polylactic
acid hydrolysis. Lipases [85], carboxyl esterases [86], and ser-
ine proteases [87] were quoted as enzymes able to hydrolyze
polylactic acid. Toxicity of polymers in the current market is
generally low and hard to be measured. Some works however
identified risks of the materials available in the current mar-
ket, and the biodegradable materials like polylactic acid were
surprisingly more harmful in the in vitro model [88]. Regard-
ing polylactic acid, release of D-lactate due to metabolism
should be taken into consideration; hence, products prepared
from poly-DL-lactide and poly-D-lactide can be a certain risk
when ingested.

5. Diagnosis and Therapy

Exposure to D-lactic acid can be diagnosed by standard bio-
chemistry where some markers exert good dose-response
relation. Besides this, the residual level of D-lactate in blood
stream can be measured directly. The biochemical markers
can point to a type of poisoning by an organic acid, but it is
not easy to conclude that D-lactic acid is the causative agent
of poisoning until further analytical tests are done. The exact
assay of D-lactate in blood stream is not easy because L-
lactate and D-lactate have the same physical and chemical
properties, and most analytical methods are not able to dis-
tinguish them. At the same time, L-lactate will interfere in
an assay because physiological concentration in blood or
blood plasma is quite high; its concentration can reach
2.5mmol/], and it can even exceed 4 mmol/l under some con-
ditions [89]. In the case of mild hyperlactatemia, L-lactate
can reach 7mmol/l, and 12 mmol/l in a moderate case, and

patients with severe hyperlactatemia can have a concentra-
tion above 12 mmol/l [90].

Standard biochemical markers can help in the diagnosis
of D-lactic exposure and estimate the presence of D-lactate
in blood stream. D-Lactic acid quantitatively produces D-
lactate under physiological conditions which results in the
drop of blood pH with possible occurrence of high anion
gap and metabolic acidosis. The impact of D-lactate on bio-
chemical markers can be shown on a case of a 14-year-old
boy that suffered from short bowel syndrome [69]. The
patient had significantly higher concentration of D-lactate
than L-lactate in blood plasma. While L-lactate was pre-
sented in a concentration of 2.89 mmol/l, D-lactate reached
11.2mmol/l at the same time. Base excess was equal to
-19.1 mmol/l, anionic gap to 28.2mmol/l, and blood pH
dropping to 7.23. In another described short bowel syndrome
case, D-lactate reached a concentration of 8.9 mmol/l in
blood while L-lactate was equal to 1.4mmol/l and pH
dropped to 7.30 with concurrent base excess of -11.8 mmol/l
in a nine-year-old boy [91]. A five-year-old girl with short
bowel syndrome was described in a case report [92]. During
hospitalization, she had the following values for blood serum:
pH 7.16, bicarbonate 5.2 mmol/l, base excess -20.2 mmol/l, L-
lactate 0.92mmol/l, and D-lactate 8.19 mmol/l. In all the
three previous case reports, relapses happened and acidosis
appeared again despite medical supervision. A survey of bio-
chemical parameters from the introduced case reports is
given in Table 2.

The biochemical markers can be of course influenced by
other pathologies as presented in the case report by Heire-
man and coworkers for a patient contemporarily suffering
from urosepsis, uncontrolled type 2 diabetes mellitus, para-
cetamol overdosing, and gastric bypass surgery [93]. This
combination led to impaired renal function, lowered con-
sciousness, hyperventilation, diarrhea, vomiting, and devel-
opment of high anion gap metabolic acidosis. Acidosis and
the change of other biochemical markers can be initiated by
other chemical substances in a similar way as described here
for D-lactic acid. Ethylene glycol and methanol can be
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TaBLE 2: Biochemical parameters of blood in D-lactate exposure case reports.

Patient D-Lactate level L-Lactate level pH Base excess References

14-year-old boy suffering from short bowel syndrome 11.2 mmol/l 2.89 mmol/l 7.23 -19.1 mmol/l [69]

9-year-old boy suffering from short bowel syndrome 8.9 mmol/l 1.4 mmol/l 7.30 -11.8 mmol/l [91]

5-year-old girl suffering from short bowel syndrome 8.19 mmol/l 0.92 mmol/l 7.16 -20.2 mmol/l [92]
TaBLE 3: Biochemical parameters of blood in D-lactate exposure case reports.

Assay type Principle of selectivity to D-isomer over L-isomer References

Electrochemical biosensor Selectivity given by enzyme D-lactate dehydrogenase [97]

Electrochemical (amperometric) biosensor Selectivity given by enzyme D-lactate oxidoreductase (cytochrome) [98]

Optical (fluorimetry) test based on reduction S

of NAD" to NADH Selectivity given by enzyme D-lactate dehydrogenase [99]

GC MS D- and L-lactic acid derivatization by L-menthol [100]

L D- and L-lactic acid derivatization by
Ultraperformance liquid chromatography-MS (S)(+)-1-(2-pyrrolidinylmethyl)-pyrrolidine [101]
HPLC-MS Selectivity of a chiral column [102]

mentioned as organic compounds initiating development of
acidosis because organic acids are formed from them by
metabolism—glycolic acid, glyoxylic acid, and oxalic acid
from ethylene glycol and formic acid from methanol [94-96].

Recognizing of the exact type of poison is not possible
without further identification by a chemical analysis. There
are suitable enzymatic assays, bioassays, and biosensors that
take advantage of enzymes specific to only one isomer [33,
97-99]. An electrochemical biosensor with D-lactate dehy-
drogenase from archaea Candidatus caldiarchaeum subterra-
neum was constructed by Satomura and coworkers, and it
was suitable to determine D-lactate concentration in a range
0.03-2.5mmol/l [97]. D-Lactate oxidoreductase (cyto-
chrome) from yeast Saccharomyces cerevisiae served for a
construction of an amperometric biosensor with exerted full
selectivity to D-lactate [98]. D-Lactate can be easily measured
by a conventional spectral analysis when combined with rec-
ognition potency of a selective enzyme. D-Lactate dehydro-
genase was chosen as a tool for measurement of D-lactate
in plasma of laboratory rats [99]. In this work, the enzyme
oxidized D-lactate to pyruvate with simultaneous reduction
of NAD" to NADH. The created NADH provided a fluores-
cence signal with excitation at 340 nm and emission at 491 nm.

Standard analytical instrumental methods like chroma-
tography or mass spectrometry are not generally suitable to
distinguish optical isomers; however, some improvements
can be done to make them selective. Ding and coworkers
derivatized the D- and L-lactic acids by L-menthol, and the
following gas chromatography (GC) with mass spectrometry
(MS) was suitable for their selective analysis [100]. In another
work, (S)(+)-1-(2-pyrrolidinylmethyl)-pyrrolidine served for
D- and L-lactic acid derivatization and ultraperformance lig-
uid chromatography with mass spectrometry analyzed the
product of derivatization [101]. High-performance liquid
chromatography with a chiral column is another opportunity
for the assay purpose. It was for instance performed by Henry
and coworkers for determination of D-lactate in urine, and

they combined the high-performance liquid chromatography
(HPLC) with MS and employed the Astec Chirobiotic™ R
chiral column to achieve selectivity for the isomers [102]. A
survey of analytical methods for D-lactic acid is given in
Table 3.

Because the drop of pH is the direct consequence of D-
lactate poisoning, application of sodium bicarbonate or any
other drug for acidosis-resolving purposes is recommended
as first-choice therapy [103-106]. Alteration of microbiota
composition like suppression of D-lactic acid-producing Lac-
tobacillus strains by competitive probiotics is a prophylactic
way leading to prevention of D-lactate exposition [50]. Stan-
dard dialysis is effective in the cases of D-lactate poisoning
and can be considered at least in the cases of severe acidosis.
In a case report by Anderson and coworkers, reduction of D-
lactate serum level from 0.59 mmol/l to 0.22 mmol/l was
found when continuous ambulatory peritoneal dialysis was
applied overnight [107].

6. Conclusions

D-Lactic acid is not a highly toxic compound representing
serious threats to human life. On the other hand, it is a signif-
icant marker and toxic metabolite that can cause health prob-
lems and complicate other pathologies. Poisoning cannot be
easily diagnosed because elaborative analytical methods are
necessary to exactly distinguish the two isomers. Unfortu-
nately, research on the mechanism of how D-lactic acid is
produced, how to prevent complications, and how to diag-
nose poisoning is limited. Further research in this field is nec-
essary. Economic importance of D-lactic acid will grow
because of production of biodegradable materials where D-
lactic acid is also used.
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