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Abstract 
D* based navigation algorithms provide robust and real-

time means of achieving path planning in dynamic 

environments. Author of this paper introduces a notion of 

predictable time-based obstacles. The algorithm proposed in 

the paper defines a centralized obstacle-map that is shared 

among multiple agents (robots) performing path planning. 

Each robot plans its path individually on an obstacle-map 

using a slightly modified version of D* Lite and then shares 

an updated version of the map, which includes its planned 

path as a new obstacle, with its peers. The planned paths 

appear as temporary time-based obstacles to peer robots. 

Planned paths are divided into discrete temporal sections so 

as to help peer robots optimize paths temporally. The 

proposed algorithm also presents a priority measure which 

helps us decide the optimized sequence of individual path-

planning order followed by cooperating robots. Since the 

implemented algorithm is tested in simulation using Mobile 

robot Programming Toolkit, the Real–time performance 

analysis is done to confirm the real-time execution time of 

the proposed algorithm. 

 

Keywords- robotics; path-planning; D*; navigation; multi-

agent systems 

 

1. INTRODUCTION 
Multi-robot path planning has huge number of applications 

especially whenever the problem requires teamwork from 

robots. Extensive work has already been done [1][2][3][4][5] 

on application of multi-robot path-planning in the application 

areas such as cleaning robots, factory floor robots, area 

reconnaissance, hospital transport robots, task reassignment 

in multi-robot teams etc. Traditional path planning methods 

such as Visibility graph, Free space method, Grid method, 

Topological method and Potential-field method offer great 

success in multi robot path planning but performance and 

execution optimization have always been a problem to deal 

with[6][7][9].  

 

The original single robot dynamic path planning 

algorithm D* Lite by Koenig [8] is a hardware tested and  

 

 

 

proven real-time algorithm. The actual performance of D* 

Lite is dependent upon the size of the grid, number of node 

expansions and heap sorting as referred in [8]. Our proposed 

algorithm is real time since path planning for an individual 

robot is done by employing D* Lite algorithm. D* Lite 

algorithm is better suited towards navigation in inaccurate 

environment and also is free from the pitfalls like converging 

to local minimums as is the case with Potential-field 

algorithms. It may be noted here that since path planning 

suggested by our algorithm is carried out sequentially by 

participating robots, thus it will introduce a delay before each 

robot is able to start travelling on a planned path. This delay 

depends on the ranking of any robot in the prioritization done 

by our proposed algorithm. In case of a change in the 

obstacle-map, additional delay can occur for the robots for 

which the path needs to be re-planned. This approach greatly 

differs with the multi-level trajectory planning approach used 

by Berg & Overmars [10]. Berg & Overmars approach uses a 

grid based road-map where paths are discretized on the basis 

of state and time.  

 

Our approach uses the same model to define the problem 

but path planning and path reconfiguration is more robust 

since Berg & Overmars [10] require the motions of the 

obstacles to be known before-hand. We use D-star Lite for 

real-time path-planning of individual robots. In case path 

reconfiguration is required due to a change in obstacle map, 

we use D-star Lite for the affected paths. This approach 

gives us ability to plan paths within inaccurate environments 

such as SLAM problems and among obstacles that have 

unpredictable motion and footprint. Frequent changes in 

obstacle map can lead to computation intensive execution 

but such an approach adds to the reliability of the algorithm 

in environment crowded with obstacles. 

  

2. PROBLEM DESCRIPTION 
2.1 Obstacle Map 

We assume that a single obstacle map is available for all 

robots participating in the problem. The map is available in 

shape of a graph 𝐺 = (𝑉, 𝐸) . This graph represents the 

connectivity of both free and occupied space around multiple 
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robots involved in our problem definition. The dimensions of 

the real world space represented by each vertex in the graph 

is a tunable parameter as it factors-in the physical constraints 

presented by real-world navigation problems.    

 

2.2 Occupancy-life 

We define a vertex within graph G as  𝑉𝑥,𝑦 =

 𝑟𝑜𝑏𝑜𝑡_𝑖𝑑, 𝑡 . Here x and y are the index of the vertex on 

grid-like eight connected graph. Variable 𝑟𝑜𝑏𝑜𝑡_𝑖𝑑 is set to 

null (∅) for some vertex 𝑣𝑥,𝑦  that is not part of a planned 

path for any of the robots. But if for example, vertex 𝑣𝑥,𝑦  

happens to be a part of the path for a robot, the 

corresponding robot ID is added to the 𝑟𝑜𝑏𝑜𝑡_𝑖𝑑 variable. 

We attach the notion of time to the already provided obstacle 

map by defining t as the remaining time (in milliseconds) for 

a vertex to be unoccupied (accessible) again. This concept of 

occupancy life enables us to sample paths into discrete 

space-time segments consequently allowing the time-sharing 

of a single vertex for more than one robot path. Thus when 

t=0, this condition switches the state of vertex v from 

occupied to unoccupied.   

 

2.3 Agents and Paths 

We assume that a set consists of robot identities and is 

defined by  𝑅 =  𝑟1 , … , 𝑟𝑘  represents k robots (agents) 

which share the same obstacle map. We also assume that 

collisions occur when a robot 𝑟𝑖  tries to enter a vertex which 

has the value of its 𝑡 ≠ 0. Each robot should ideally follow a 

sequence of vertices for example, 𝑐1 =  𝑣0,0, 𝑣1,0 , 𝑣2,1, 𝑣2,2 , 

in order to reach its pre-defined goal. We will refer to 𝑐𝑖  as a 

collision-free path for a single robot with ID i. The obstacles 

in the obstacle map can be sensed by all robots through a 

Boolean function B (𝑣𝑥,𝑦 ) where 𝑣𝑥,𝑦  denotes the particular 

node which was analyzed for an obstacle by a robot.   

 

2.4 The Problem 

The robots from set R have pre-defined set of goals 

𝐷 = {𝑔1, … , 𝑔𝑘} where 𝑔1indicates goal for robot 𝑟1  and so 

on. The robots also have their initial start positions defined 

by set 𝑆 =  𝑠1 , … , 𝑠𝑘 . The predicate  𝑠𝑢 ≠ 𝑠𝑣 && 𝑔𝑢 ≠
𝑔𝑣 𝑔𝑖𝑣𝑒𝑛 𝑢 ≠𝑣 holds true for both sets D and S. We currently 

confine ourselves to a 2D physical workspace for a purpose 

of analysis in this paper. It is worthwhile to mention here that 

the same algorithm is extensible to 3D physical workspace 

for robots. The sets C, D and S are illustrated in Fig.1 via a 

basic example.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Basic example of physical space represented by 

graph G 

The obstacle-map G must indicate start (S) and goal (D) 

positions where goal positions cannot be changed until all 

robots reach their goal locations since this is a limitation put 

forward by D* Lite algorithm. The algorithm accepts the 

obstacle-map with or without indication of static or dynamic 

obstacles. Static or dynamic obstacles can be added during 

the algorithm execution as and when visible to the 

participating robots. A vertex can be declared as a static 

obstacle by a change to the value of occupancy-life t as 

follows. 

 

  𝑖𝑓  𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑣𝑥,𝑦) ≠ ∞                                      

… (1) 

                 𝑠𝑒𝑡 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑣𝑥,𝑦) = ∞ ;                             

 𝑐𝑜𝑠𝑡 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑣𝑥,𝑦 , 𝑣𝑥,𝑦 = ∞; 

 

A vertex can be declared as unoccupied by executing the 

following. 

 

  𝑖𝑓  𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑣𝑥,𝑦) > 0                                        

…(2) 

                 𝑠𝑒𝑡 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑣𝑥,𝑦) = 0 ;   

  𝑠𝑒𝑡 𝑟𝑜𝑏𝑜𝑡_𝑖𝑑(𝑣𝑥,𝑦) = ∅ ;  

  𝑐𝑜𝑠𝑡 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑣𝑥,𝑦 , 𝑣𝑥,𝑦 = 1;                       

 

A vertex can be declared as a dynamic obstacle (for 

which the occupancy-life is known) via the following 

procedure. 

 

         𝑖𝑓  𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑣𝑥,𝑦) = 0                                       

… (3) 

    𝑠𝑒𝑡 𝑟𝑜𝑏𝑜𝑡_𝑖𝑑(𝑣𝑥,𝑦) = 𝑖 ;  

    𝑠𝑒𝑡 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑙𝑖𝑓𝑒  𝑣𝑥,𝑦  = 𝑡 ; 

𝑔3 𝑔2 𝑔1 

Occupied vertex 

𝑠1 

 
𝑠2 𝑠3 

𝑐2 𝑐1 𝑐3 
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   𝑐𝑜𝑠𝑡 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑣𝑥,𝑦 , 𝑣𝑥,𝑦 = ∞; 

 

While declaring a vertex as a dynamic obstacle it must be 

ensured that the vertex is unoccupied previously. Also 

currently the algorithm only perceives a peer-robot’s path as 

a dynamic obstacle. In future mechanisms can be 

incorporated which allow us to predict the occupancy-life of 

an obstacle thus making algorithm more sensitive towards 

the spatiotemporal nature of obstacles. It must be noted in (3) 

that a robot ID is assigned to the robot_id variable of 

vertex 𝑣𝑥,𝑦 . This means that the vertex will be free after t 

milliseconds as the robot with ID i passes through the vertex 

while pursuing its path.  

 

Now the algorithm is expected to compute feasible 

collision-free paths for all the robots defined by set R. All 

robot paths must start at start positions defined by set S and 

end at goal positions defined by set D.        

 

3. THE PATH PLANNER 
3.1 Occupancy Grid and its relation with Graph 

It must be highlighted that the obstacle-map is 

dynamically updated by multiple cooperating robots and thus 

needs to be placed on a central server as a shared memory. 

This serves for the real-time efficiency that usual robotics 

navigation applications demand. Whenever an obstacle is 

detected, the algorithm measures the obstacle size and 

orientation using parameterized mean shift clustering 

algorithm using PCA based clustering techniques [13]. The 

calculated obstacle blob is placed on an occupancy grid. The 

resolution of the occupancy grid is kept to a suitable level so 

as to facilitate the placement of the robot well within a single 

grid location. Now the occupancy grid units that overlap with 

the obstacle blobs are marked as occupied. A tuning 

parameter d is attached to all obstacles which serve to dilate 

the size of an originally detected obstacle. This tuning 

parameter increases the size of the obstacle by a margin so 

that robots can steer with a safety margin around the 

obstacles without collisions. The units of occupancy grid are 

mapped to nodes in the eight-connected obstacle-map graph 

G, thus converting physical adjacency relationships to graph 

connectivity.   

 

3.2 Algorithm 

 
Algorithm – Multi-Robot D* Lite     

procedure  initialize( ) 

{2.1}    set robot_list = R; 

{2.2}    G=initialize_obstacle_map (S,D);  

             //update map with start positions, initial obstacles 

and goal 

             //positions  

  

procedure  multirobot_D*Lite (vector robot_list, graph G)  

{3.1}    prioritize_robot_list (heuristic, robot_list); 

{3.2}    for all 𝑟𝑖  ∈ robot_list               // for all robots in 

robot_list 

{3.3}         signal_adpated_D*Lite(𝑟𝑖); 
 

procedure  update_obstacles(graph G) 

{5.1}    for all 𝑣𝑥,𝑦  ∈ V where 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒 𝑣𝑥,𝑦 ≠  
0
∞
   

{5.2}         decrement(𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑦_𝑙𝑖𝑓𝑒 𝑣𝑥,𝑦 ); 

{5.3}    Scan for any vertices where 

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑣𝑥,𝑦) = 0 

{5.4}         𝑖𝑓 𝑓𝑜𝑢𝑛𝑑 {   𝑠𝑒𝑡 𝑟𝑜𝑏𝑜𝑡_𝑖𝑑(𝑣𝑥,𝑦) = ∅ ; 

{5.5}                                 𝑐𝑜𝑠𝑡 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑣𝑥,𝑦 , 𝑣𝑥,𝑦 =

1; }  

{5.6}    Scan for any vertices where 

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑣𝑥,𝑦) = ∞      

{5.7}         𝑖𝑓 𝑓𝑜𝑢𝑛𝑑  {   𝑐𝑜𝑠𝑡 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑣𝑥,𝑦 , 𝑣𝑥,𝑦 =

∞; } 

 

procedure  update_robot_list (list robot_list, graph G)  

{4.1}    set robot_list={∅}; 

{4.2}    update_obstacles(𝑣𝑥,𝑦 ); // as per section 2.4          

{4.3}    for all vertices 𝑣𝑥,𝑦  ∈ V affected by obstacle change          

{4.4}         robot_list.add(𝑟𝑜𝑏𝑜𝑡_𝑖𝑑(𝑣𝑥,𝑦)); 

 

procedure  main( ) 

{1.1}    initialize( ); 

{1.2}    forever 

{1.3}         multirobot_D*Lite (robot_list, G); 

{1.4}         update_robot_list(robot_list, G); 

{1.5}         update(S);    // update start positions to current 

positions 

                                       //a requirement of D*Lite 

 
D* Lite Algorithm (Adapted for Multi-Robot D* Lite)     

 

Complete D* Lite algorithm can be referred by consulting 

[8]. This section only highlights the adapted part of the D*-

Lite algorithm. 

 

Note: Each robot runs a separate instance of adapted D* 

Lite algorithm and updates the centrally shared graph G 

upon completing ComputeShortestPath( )  procedure.     

 

procedure  UpdateVertex(u) 

{07’}  𝑖𝑓 (𝑢 ≠ 𝑠𝑔𝑜𝑎𝑙 )  𝑟𝑕𝑠 𝑢 = 𝑚𝑖𝑛𝑠′∈𝑆𝑢𝑐𝑐  𝑢  𝑐 𝑢, 𝑠′ +

𝑔𝑠′; 

{08’}  𝑖𝑓  𝑢 ∈ 𝑈   𝑈. 𝑅𝑒𝑚𝑜𝑣𝑒 𝑢 ; 
{09’}  

   𝑖𝑓   𝑔 𝑢 ≠ 𝑟𝑕𝑠 𝑢   𝐴𝑁𝐷  𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑢) = 0     

{09’}           𝑈. 𝑖𝑛𝑠𝑒𝑟𝑡 𝑢, 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐾𝑒𝑦 𝑢  ;  
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procedure  Main( )  

{21’}   𝑠𝑙𝑎𝑠𝑡 = 𝑠𝑠𝑡𝑎𝑟𝑡 ;    
⋮ 

{36’}  𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑡𝑕𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 𝑓𝑟𝑜𝑚 𝑚𝑢𝑙𝑡𝑖𝑟𝑜𝑏𝑜𝑡_𝐷 ∗
𝐿𝑖𝑡𝑒 𝑎𝑛𝑑 

             𝑡𝑕𝑒𝑛 𝑠𝑐𝑎𝑛 𝑓𝑜𝑟 𝑐𝑕𝑎𝑛𝑔𝑒𝑑 𝑒𝑑𝑔𝑒 𝑐𝑜𝑠𝑡𝑠 

⋮ 
{48’}  𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑕𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡𝑕  ; 
{49’}  𝑠 = 𝑠𝑠𝑡𝑎𝑟𝑡 ; 𝑡 = 1; 

{50’}  𝑤𝑕𝑖𝑙𝑒  𝑠 ≠ 𝑠𝑔𝑜𝑎𝑙   

{51’}        𝑢𝑝𝑑𝑎𝑡𝑒_𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 _𝑙𝑖𝑓𝑒(𝑠, 𝑡);   //set occupancy-

life of 

                                                                 //vertex s as t 

{52’}        𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠′∈𝑆𝑢𝑐𝑐  𝑠 (𝑐 𝑠, 𝑠′ + 𝑔 𝑠′ ); 

{53’}       𝑠𝑒𝑡 𝑟𝑜𝑏𝑜𝑡_𝑖𝑑 𝑠 = 𝑟𝑖 ; 
{54’}       t=t+1000; 

 

   

As first step of the algorithm, each robot initially marks 

obstacles over the occupancy grid on a central server (non-

mobile platform). The algorithm then chooses a priority 

order for the robots based on a heuristic criterion. Based 

upon this prioritization, the server applies the adapted D-star 

Lite algorithm one by one to calculate shortest collision-free 

path for each robot. In this sequential execution of D-star 

Lite algorithm, a path is planned for each robot while taking 

into account the paths that have already been generated for 

previous robots. During this sequential execution, each time 

a path is generated for any given robot, the algorithm treats 

all the nodes involved in previously generated paths as 

obstacles until the occupancy-life (t) decrements to value of 

zero. After generation of shortest path, Adapted D*-Lite 

algorithm also attaches robot ID information to each vertex 

involved in robot path. The algorithm also attaches 

occupancy-life values with each vertex in robot path with a 

1000 millisecond increment to each vertex as we move from 

start node 𝑠𝑖  to goal node  𝑔𝑖  along the robot path. This 

increment is usually the time period that robot takes to travel 

from one occupancy-grid location to another neighboring 

location.     

 

The proposed algorithm detects the vertices for which 

corresponding 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑦_𝑙𝑖𝑓𝑒 𝑣𝑥,𝑦  values either reach 

zero or infinity. The algorithm extracts robot ID information 

from such vertices and builds a priority list of robot IDs. This 

list is used by algorithm to selectively and sequentially run 

adapted D* Lite algorithm for the purpose of finding 

reconfigured paths due to obstacle appearance or 

disappearance.  

 

 

 
As evident from the algorithm, all other vertices which were 

not disturbed by the obstacle change will retain their 

occupancy-time and path information.   

 

3.3 Prioritization Heuristic   

The prioritization heuristic used in step {3.1} is simply a 

prioritization criterion to sort the robot_list for sequential 

execution of single robot D* Lite algorithm for robots 

indexed in robot_list. Tested heuristics in our 

implementation include (i) number of obstacles overlapping 

straight line path from start to goal position. (ii) minimum 

Euclidean distance between start and goal position. (iii) 

custom-defined priority. 

 

4. EXPERIMENTATION AND 

PERFORMANCE ANALYSIS 
The algorithm was implemented in MRPT (mobile robot 

programming toolkit) for simulation purposes. A 15 x15 

occupancy grid was generated for evaluating path planning 

capability of the algorithm. Fig. 2 and Fig. 3 depict planned 

paths by algorithms under different priority heuristic. The 

vertices containing □  symbol denote that these particular 

vertices were time-shared between multiple robots. Most 

computationally expensive steps of the algorithm were {5.3} 

and {5.6}. This is because virtually all vertices of the graph 

need to be queried in order to ascertain the value of t 

associated with each vertex. Since the execution time of D* 

Lite is dependent upon the frequency of change in obstacles, 

multi-robot D* Lite adds to the time complexity of D* Lite 

by a polynomial factor. This factor is directly proportional to 

the number of robots (k) involved in multi-robot path 

planning. The factor is also dependent upon the probability 

of path cross over  𝑝𝑐𝑟𝑜𝑠𝑠 −𝑜𝑣𝑒𝑟 and probability of obstacle 

change 𝑝𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 −𝑐𝑕𝑎𝑛𝑔𝑒 . A useful relationship that can be 

used to quantify this factor 𝑓 is 
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Fig. 2. Path plan by multi-robot D*-Lite using 

minimum Euclidean distance priority heuristic   
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Fig. 3. Path plan by multi-robot D*-Lite using min 

number of obstacles overlapping straight line path 

heuristic  

𝑓 ∝ 𝑘. (𝑝𝑐𝑟𝑜𝑠𝑠 −𝑜𝑣𝑒𝑟 + 𝑝𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 −𝑐𝑕𝑎𝑛𝑔𝑒 ) 

 

We were able to gather data for the number of node 

expansions, and heap-sorts (for robot priority and key 

sorting)  performed for different priority criterion used to 

sequentially execute adapted D*Lite over individual robots. 

The data shown in Table. 1 involves a total of 225 nodes 

(vertices) and no obstacle changes during execution (except 

those caused by peer robots) 

 

No. of 

robots 

Priority 

heuristic 

used 

Total Node 

Expansions 
Heap Sorts 

3 

Minimum 

Euclidean 

distance 

94 16 

3 

min number 

of obstacles 

overlapping 

straight line 

path 

81 14 

7 

Minimum 

Euclidean 

distance 

191 41 

7 

min number 

of obstacles 

overlapping 

straight line 

path 

165 37 

10 

Minimum 

Euclidean 

distance 

301 95 

10 min number 317 113 

of obstacles 

overlapping 

straight line 

path 

    

 

 

5. CONCLUSION 
In this paper, we proposed a multi-robot version of famous 

single robot D* Lite path-planning algorithm. The algorithm 

is able to maintain the real-time performance of single robot 

D* Lite path planning algorithm while maintaining the 

capability to efficiently remove collisions due to multiple 

robot path overlapping. The inherent robustness of D* Lite 

algorithm makes its multi-robot version tolerant to 

inaccuracies in map. The algorithm has shown degraded 

results whenever number of robots is increased, yet for a 

small group of robots, the algorithm contends to be a feasible 

choice. The algorithm does not optimize the velocity and 

sub-vertex level motion of robot to avoid collisions which 

has already been achieved in single robot path-planning 

algorithms [10]. Lastly only simulation based results were 

presented in the paper as the algorithm builds on top of an 

exhaustively implemented and tested, D* Lite algorithm. 

 

The probabilities ( 𝑝𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 −𝑐𝑕𝑎𝑛𝑔𝑒 and 𝑝𝑐𝑟𝑜𝑠𝑠 −𝑜𝑣𝑒𝑟 ) 

mentioned in last section need further experimental and 

theoretical background to be accurately quantified. An 

investigation into obstacle behavior (probability of changing 

location) and probability of path cross-over (given the 

dimensions of obstacles and cardinality of peer robots) will 

certainly lead to more efficient multi-robot path planning 

algorithms.   
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