
Khalid Al-Mutib, Mansour AlSulaiman, Muhammad Emaduddin, Hedjar Ramdane, Ebrahim Mattar

/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.1414-1419

1414 | P a g e

D* Lite Based Real-Time Multi-Agent Path Planning in Dynamic

Environments

Khalid Al-Mutib, Mansour

AlSulaiman, Muhammad

Emaduddin, Hedjar Ramdane

Dept. of Computer Engineering

College of Computer Science and Information

King Saud University, Riyadh, Saudi Arabia

 Ebrahim Mattar

Electrical & Electronics Engineering Dept.

College of Engineering, University of Bahrain

Kingdom of Bahrain

Abstract
D* based navigation algorithms provide robust and real-

time means of achieving path planning in dynamic

environments. Author of this paper introduces a notion of

predictable time-based obstacles. The algorithm proposed in

the paper defines a centralized obstacle-map that is shared

among multiple agents (robots) performing path planning.

Each robot plans its path individually on an obstacle-map

using a slightly modified version of D* Lite and then shares

an updated version of the map, which includes its planned

path as a new obstacle, with its peers. The planned paths

appear as temporary time-based obstacles to peer robots.

Planned paths are divided into discrete temporal sections so

as to help peer robots optimize paths temporally. The

proposed algorithm also presents a priority measure which

helps us decide the optimized sequence of individual path-

planning order followed by cooperating robots. Since the

implemented algorithm is tested in simulation using Mobile

robot Programming Toolkit, the Real–time performance

analysis is done to confirm the real-time execution time of

the proposed algorithm.

Keywords- robotics; path-planning; D*; navigation; multi-

agent systems

1. INTRODUCTION
Multi-robot path planning has huge number of applications

especially whenever the problem requires teamwork from

robots. Extensive work has already been done [1][2][3][4][5]

on application of multi-robot path-planning in the application

areas such as cleaning robots, factory floor robots, area

reconnaissance, hospital transport robots, task reassignment

in multi-robot teams etc. Traditional path planning methods

such as Visibility graph, Free space method, Grid method,

Topological method and Potential-field method offer great

success in multi robot path planning but performance and

execution optimization have always been a problem to deal

with[6][7][9].

The original single robot dynamic path planning

algorithm D* Lite by Koenig [8] is a hardware tested and

proven real-time algorithm. The actual performance of D*

Lite is dependent upon the size of the grid, number of node

expansions and heap sorting as referred in [8]. Our proposed

algorithm is real time since path planning for an individual

robot is done by employing D* Lite algorithm. D* Lite

algorithm is better suited towards navigation in inaccurate

environment and also is free from the pitfalls like converging

to local minimums as is the case with Potential-field

algorithms. It may be noted here that since path planning

suggested by our algorithm is carried out sequentially by

participating robots, thus it will introduce a delay before each

robot is able to start travelling on a planned path. This delay

depends on the ranking of any robot in the prioritization done

by our proposed algorithm. In case of a change in the

obstacle-map, additional delay can occur for the robots for

which the path needs to be re-planned. This approach greatly

differs with the multi-level trajectory planning approach used

by Berg & Overmars [10]. Berg & Overmars approach uses a

grid based road-map where paths are discretized on the basis

of state and time.

Our approach uses the same model to define the problem

but path planning and path reconfiguration is more robust

since Berg & Overmars [10] require the motions of the

obstacles to be known before-hand. We use D-star Lite for

real-time path-planning of individual robots. In case path

reconfiguration is required due to a change in obstacle map,

we use D-star Lite for the affected paths. This approach

gives us ability to plan paths within inaccurate environments

such as SLAM problems and among obstacles that have

unpredictable motion and footprint. Frequent changes in

obstacle map can lead to computation intensive execution

but such an approach adds to the reliability of the algorithm

in environment crowded with obstacles.

2. PROBLEM DESCRIPTION
2.1 Obstacle Map

We assume that a single obstacle map is available for all

robots participating in the problem. The map is available in

shape of a graph 𝐺 = (𝑉, 𝐸) . This graph represents the

connectivity of both free and occupied space around multiple

Khalid Al-Mutib, Mansour AlSulaiman, Muhammad Emaduddin, Hedjar Ramdane, Ebrahim Mattar

/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.1414-1419

1415 | P a g e

robots involved in our problem definition. The dimensions of

the real world space represented by each vertex in the graph

is a tunable parameter as it factors-in the physical constraints

presented by real-world navigation problems.

2.2 Occupancy-life

We define a vertex within graph G as 𝑉𝑥,𝑦 =

 𝑟𝑜𝑏𝑜𝑡_𝑖𝑑, 𝑡 . Here x and y are the index of the vertex on

grid-like eight connected graph. Variable 𝑟𝑜𝑏𝑜𝑡_𝑖𝑑 is set to

null (∅) for some vertex 𝑣𝑥,𝑦 that is not part of a planned

path for any of the robots. But if for example, vertex 𝑣𝑥,𝑦

happens to be a part of the path for a robot, the

corresponding robot ID is added to the 𝑟𝑜𝑏𝑜𝑡_𝑖𝑑 variable.

We attach the notion of time to the already provided obstacle

map by defining t as the remaining time (in milliseconds) for

a vertex to be unoccupied (accessible) again. This concept of

occupancy life enables us to sample paths into discrete

space-time segments consequently allowing the time-sharing

of a single vertex for more than one robot path. Thus when

t=0, this condition switches the state of vertex v from

occupied to unoccupied.

2.3 Agents and Paths

We assume that a set consists of robot identities and is

defined by 𝑅 = 𝑟1 , … , 𝑟𝑘 represents k robots (agents)

which share the same obstacle map. We also assume that

collisions occur when a robot 𝑟𝑖 tries to enter a vertex which

has the value of its 𝑡 ≠ 0. Each robot should ideally follow a

sequence of vertices for example, 𝑐1 = 𝑣0,0, 𝑣1,0 , 𝑣2,1, 𝑣2,2 ,

in order to reach its pre-defined goal. We will refer to 𝑐𝑖 as a

collision-free path for a single robot with ID i. The obstacles

in the obstacle map can be sensed by all robots through a

Boolean function B (𝑣𝑥,𝑦) where 𝑣𝑥,𝑦 denotes the particular

node which was analyzed for an obstacle by a robot.

2.4 The Problem

The robots from set R have pre-defined set of goals

𝐷 = {𝑔1, … , 𝑔𝑘} where 𝑔1indicates goal for robot 𝑟1 and so

on. The robots also have their initial start positions defined

by set 𝑆 = 𝑠1 , … , 𝑠𝑘 . The predicate 𝑠𝑢 ≠ 𝑠𝑣 && 𝑔𝑢 ≠
𝑔𝑣 𝑔𝑖𝑣𝑒𝑛 𝑢 ≠𝑣 holds true for both sets D and S. We currently

confine ourselves to a 2D physical workspace for a purpose

of analysis in this paper. It is worthwhile to mention here that

the same algorithm is extensible to 3D physical workspace

for robots. The sets C, D and S are illustrated in Fig.1 via a

basic example.

Fig. 1. Basic example of physical space represented by

graph G

The obstacle-map G must indicate start (S) and goal (D)

positions where goal positions cannot be changed until all

robots reach their goal locations since this is a limitation put

forward by D* Lite algorithm. The algorithm accepts the

obstacle-map with or without indication of static or dynamic

obstacles. Static or dynamic obstacles can be added during

the algorithm execution as and when visible to the

participating robots. A vertex can be declared as a static

obstacle by a change to the value of occupancy-life t as

follows.

 𝑖𝑓 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑣𝑥,𝑦) ≠ ∞

… (1)

 𝑠𝑒𝑡 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑣𝑥,𝑦) = ∞ ;

 𝑐𝑜𝑠𝑡 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑣𝑥,𝑦 , 𝑣𝑥,𝑦 = ∞;

A vertex can be declared as unoccupied by executing the

following.

 𝑖𝑓 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑣𝑥,𝑦) > 0

…(2)

 𝑠𝑒𝑡 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑣𝑥,𝑦) = 0 ;

 𝑠𝑒𝑡 𝑟𝑜𝑏𝑜𝑡_𝑖𝑑(𝑣𝑥,𝑦) = ∅ ;

 𝑐𝑜𝑠𝑡 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑣𝑥,𝑦 , 𝑣𝑥,𝑦 = 1;

A vertex can be declared as a dynamic obstacle (for

which the occupancy-life is known) via the following

procedure.

 𝑖𝑓 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑣𝑥,𝑦) = 0

… (3)

 𝑠𝑒𝑡 𝑟𝑜𝑏𝑜𝑡_𝑖𝑑(𝑣𝑥,𝑦) = 𝑖 ;

 𝑠𝑒𝑡 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑙𝑖𝑓𝑒 𝑣𝑥,𝑦 = 𝑡 ;

𝑔3 𝑔2 𝑔1

Occupied vertex

𝑠1

𝑠2 𝑠3

𝑐2 𝑐1 𝑐3

Khalid Al-Mutib, Mansour AlSulaiman, Muhammad Emaduddin, Hedjar Ramdane, Ebrahim Mattar

/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.1414-1419

1416 | P a g e

 𝑐𝑜𝑠𝑡 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑣𝑥,𝑦 , 𝑣𝑥,𝑦 = ∞;

While declaring a vertex as a dynamic obstacle it must be

ensured that the vertex is unoccupied previously. Also

currently the algorithm only perceives a peer-robot’s path as

a dynamic obstacle. In future mechanisms can be

incorporated which allow us to predict the occupancy-life of

an obstacle thus making algorithm more sensitive towards

the spatiotemporal nature of obstacles. It must be noted in (3)

that a robot ID is assigned to the robot_id variable of

vertex 𝑣𝑥,𝑦 . This means that the vertex will be free after t

milliseconds as the robot with ID i passes through the vertex

while pursuing its path.

Now the algorithm is expected to compute feasible

collision-free paths for all the robots defined by set R. All

robot paths must start at start positions defined by set S and

end at goal positions defined by set D.

3. THE PATH PLANNER
3.1 Occupancy Grid and its relation with Graph

It must be highlighted that the obstacle-map is

dynamically updated by multiple cooperating robots and thus

needs to be placed on a central server as a shared memory.

This serves for the real-time efficiency that usual robotics

navigation applications demand. Whenever an obstacle is

detected, the algorithm measures the obstacle size and

orientation using parameterized mean shift clustering

algorithm using PCA based clustering techniques [13]. The

calculated obstacle blob is placed on an occupancy grid. The

resolution of the occupancy grid is kept to a suitable level so

as to facilitate the placement of the robot well within a single

grid location. Now the occupancy grid units that overlap with

the obstacle blobs are marked as occupied. A tuning

parameter d is attached to all obstacles which serve to dilate

the size of an originally detected obstacle. This tuning

parameter increases the size of the obstacle by a margin so

that robots can steer with a safety margin around the

obstacles without collisions. The units of occupancy grid are

mapped to nodes in the eight-connected obstacle-map graph

G, thus converting physical adjacency relationships to graph

connectivity.

3.2 Algorithm

Algorithm – Multi-Robot D* Lite

procedure initialize()

{2.1} set robot_list = R;

{2.2} G=initialize_obstacle_map (S,D);

 //update map with start positions, initial obstacles

and goal

 //positions

procedure multirobot_D*Lite (vector robot_list, graph G)

{3.1} prioritize_robot_list (heuristic, robot_list);

{3.2} for all 𝑟𝑖 ∈ robot_list // for all robots in

robot_list

{3.3} signal_adpated_D*Lite(𝑟𝑖);

procedure update_obstacles(graph G)

{5.1} for all 𝑣𝑥,𝑦 ∈ V where 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒 𝑣𝑥,𝑦 ≠
0
∞

{5.2} decrement(𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑦_𝑙𝑖𝑓𝑒 𝑣𝑥,𝑦);

{5.3} Scan for any vertices where

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑣𝑥,𝑦) = 0

{5.4} 𝑖𝑓 𝑓𝑜𝑢𝑛𝑑 { 𝑠𝑒𝑡 𝑟𝑜𝑏𝑜𝑡_𝑖𝑑(𝑣𝑥,𝑦) = ∅ ;

{5.5} 𝑐𝑜𝑠𝑡 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑣𝑥,𝑦 , 𝑣𝑥,𝑦 =

1; }

{5.6} Scan for any vertices where

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑣𝑥,𝑦) = ∞

{5.7} 𝑖𝑓 𝑓𝑜𝑢𝑛𝑑 { 𝑐𝑜𝑠𝑡 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑣𝑥,𝑦 , 𝑣𝑥,𝑦 =

∞; }

procedure update_robot_list (list robot_list, graph G)

{4.1} set robot_list={∅};

{4.2} update_obstacles(𝑣𝑥,𝑦); // as per section 2.4

{4.3} for all vertices 𝑣𝑥,𝑦 ∈ V affected by obstacle change

{4.4} robot_list.add(𝑟𝑜𝑏𝑜𝑡_𝑖𝑑(𝑣𝑥,𝑦));

procedure main()

{1.1} initialize();

{1.2} forever

{1.3} multirobot_D*Lite (robot_list, G);

{1.4} update_robot_list(robot_list, G);

{1.5} update(S); // update start positions to current

positions

 //a requirement of D*Lite

D* Lite Algorithm (Adapted for Multi-Robot D* Lite)

Complete D* Lite algorithm can be referred by consulting

[8]. This section only highlights the adapted part of the D*-

Lite algorithm.

Note: Each robot runs a separate instance of adapted D*

Lite algorithm and updates the centrally shared graph G

upon completing ComputeShortestPath() procedure.

procedure UpdateVertex(u)

{07’} 𝑖𝑓 (𝑢 ≠ 𝑠𝑔𝑜𝑎𝑙) 𝑟𝑕𝑠 𝑢 = 𝑚𝑖𝑛𝑠′∈𝑆𝑢𝑐𝑐 𝑢 𝑐 𝑢, 𝑠′ +

𝑔𝑠′;

{08’} 𝑖𝑓 𝑢 ∈ 𝑈 𝑈. 𝑅𝑒𝑚𝑜𝑣𝑒 𝑢 ;
{09’}

 𝑖𝑓 𝑔 𝑢 ≠ 𝑟𝑕𝑠 𝑢 𝐴𝑁𝐷 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑙𝑖𝑓𝑒(𝑢) = 0

{09’} 𝑈. 𝑖𝑛𝑠𝑒𝑟𝑡 𝑢, 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐾𝑒𝑦 𝑢 ;

Khalid Al-Mutib, Mansour AlSulaiman, Muhammad Emaduddin, Hedjar Ramdane, Ebrahim Mattar

/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.1414-1419

1417 | P a g e

procedure Main()

{21’} 𝑠𝑙𝑎𝑠𝑡 = 𝑠𝑠𝑡𝑎𝑟𝑡 ;
⋮

{36’} 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑡𝑕𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 𝑓𝑟𝑜𝑚 𝑚𝑢𝑙𝑡𝑖𝑟𝑜𝑏𝑜𝑡_𝐷 ∗
𝐿𝑖𝑡𝑒 𝑎𝑛𝑑

 𝑡𝑕𝑒𝑛 𝑠𝑐𝑎𝑛 𝑓𝑜𝑟 𝑐𝑕𝑎𝑛𝑔𝑒𝑑 𝑒𝑑𝑔𝑒 𝑐𝑜𝑠𝑡𝑠

⋮
{48’} 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑕𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡𝑕 ;
{49’} 𝑠 = 𝑠𝑠𝑡𝑎𝑟𝑡 ; 𝑡 = 1;

{50’} 𝑤𝑕𝑖𝑙𝑒 𝑠 ≠ 𝑠𝑔𝑜𝑎𝑙

{51’} 𝑢𝑝𝑑𝑎𝑡𝑒_𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 _𝑙𝑖𝑓𝑒(𝑠, 𝑡); //set occupancy-

life of

 //vertex s as t

{52’} 𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠′∈𝑆𝑢𝑐𝑐 𝑠 (𝑐 𝑠, 𝑠′ + 𝑔 𝑠′);

{53’} 𝑠𝑒𝑡 𝑟𝑜𝑏𝑜𝑡_𝑖𝑑 𝑠 = 𝑟𝑖 ;
{54’} t=t+1000;

As first step of the algorithm, each robot initially marks

obstacles over the occupancy grid on a central server (non-

mobile platform). The algorithm then chooses a priority

order for the robots based on a heuristic criterion. Based

upon this prioritization, the server applies the adapted D-star

Lite algorithm one by one to calculate shortest collision-free

path for each robot. In this sequential execution of D-star

Lite algorithm, a path is planned for each robot while taking

into account the paths that have already been generated for

previous robots. During this sequential execution, each time

a path is generated for any given robot, the algorithm treats

all the nodes involved in previously generated paths as

obstacles until the occupancy-life (t) decrements to value of

zero. After generation of shortest path, Adapted D*-Lite

algorithm also attaches robot ID information to each vertex

involved in robot path. The algorithm also attaches

occupancy-life values with each vertex in robot path with a

1000 millisecond increment to each vertex as we move from

start node 𝑠𝑖 to goal node 𝑔𝑖 along the robot path. This

increment is usually the time period that robot takes to travel

from one occupancy-grid location to another neighboring

location.

The proposed algorithm detects the vertices for which

corresponding 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑦_𝑙𝑖𝑓𝑒 𝑣𝑥,𝑦 values either reach

zero or infinity. The algorithm extracts robot ID information

from such vertices and builds a priority list of robot IDs. This

list is used by algorithm to selectively and sequentially run

adapted D* Lite algorithm for the purpose of finding

reconfigured paths due to obstacle appearance or

disappearance.

As evident from the algorithm, all other vertices which were

not disturbed by the obstacle change will retain their

occupancy-time and path information.

3.3 Prioritization Heuristic

The prioritization heuristic used in step {3.1} is simply a

prioritization criterion to sort the robot_list for sequential

execution of single robot D* Lite algorithm for robots

indexed in robot_list. Tested heuristics in our

implementation include (i) number of obstacles overlapping

straight line path from start to goal position. (ii) minimum

Euclidean distance between start and goal position. (iii)

custom-defined priority.

4. EXPERIMENTATION AND

PERFORMANCE ANALYSIS
The algorithm was implemented in MRPT (mobile robot

programming toolkit) for simulation purposes. A 15 x15

occupancy grid was generated for evaluating path planning

capability of the algorithm. Fig. 2 and Fig. 3 depict planned

paths by algorithms under different priority heuristic. The

vertices containing □ symbol denote that these particular

vertices were time-shared between multiple robots. Most

computationally expensive steps of the algorithm were {5.3}

and {5.6}. This is because virtually all vertices of the graph

need to be queried in order to ascertain the value of t

associated with each vertex. Since the execution time of D*

Lite is dependent upon the frequency of change in obstacles,

multi-robot D* Lite adds to the time complexity of D* Lite

by a polynomial factor. This factor is directly proportional to

the number of robots (k) involved in multi-robot path

planning. The factor is also dependent upon the probability

of path cross over 𝑝𝑐𝑟𝑜𝑠𝑠 −𝑜𝑣𝑒𝑟 and probability of obstacle

change 𝑝𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 −𝑐𝑕𝑎𝑛𝑔𝑒 . A useful relationship that can be

used to quantify this factor 𝑓 is

𝒔𝟏

𝒈𝟏

 𝒔𝟐

𝒈𝟐

𝒔𝟑

𝒈𝟑

𝒔𝟒

𝒈𝟒

Fig. 2. Path plan by multi-robot D*-Lite using

minimum Euclidean distance priority heuristic

Khalid Al-Mutib, Mansour AlSulaiman, Muhammad Emaduddin, Hedjar Ramdane, Ebrahim Mattar

/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.1414-1419

1418 | P a g e

𝒔𝟐

𝒔𝟑

𝒈𝟑

𝒔𝟒

𝒈𝟏

𝒔𝟏

𝒈𝟒

𝒈𝟐

Fig. 3. Path plan by multi-robot D*-Lite using min

number of obstacles overlapping straight line path

heuristic

𝑓 ∝ 𝑘. (𝑝𝑐𝑟𝑜𝑠𝑠 −𝑜𝑣𝑒𝑟 + 𝑝𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 −𝑐𝑕𝑎𝑛𝑔𝑒)

We were able to gather data for the number of node

expansions, and heap-sorts (for robot priority and key

sorting) performed for different priority criterion used to

sequentially execute adapted D*Lite over individual robots.

The data shown in Table. 1 involves a total of 225 nodes

(vertices) and no obstacle changes during execution (except

those caused by peer robots)

No. of

robots

Priority

heuristic

used

Total Node

Expansions
Heap Sorts

3

Minimum

Euclidean

distance

94 16

3

min number

of obstacles

overlapping

straight line

path

81 14

7

Minimum

Euclidean

distance

191 41

7

min number

of obstacles

overlapping

straight line

path

165 37

10

Minimum

Euclidean

distance

301 95

10 min number 317 113

of obstacles

overlapping

straight line

path

5. CONCLUSION
In this paper, we proposed a multi-robot version of famous

single robot D* Lite path-planning algorithm. The algorithm

is able to maintain the real-time performance of single robot

D* Lite path planning algorithm while maintaining the

capability to efficiently remove collisions due to multiple

robot path overlapping. The inherent robustness of D* Lite

algorithm makes its multi-robot version tolerant to

inaccuracies in map. The algorithm has shown degraded

results whenever number of robots is increased, yet for a

small group of robots, the algorithm contends to be a feasible

choice. The algorithm does not optimize the velocity and

sub-vertex level motion of robot to avoid collisions which

has already been achieved in single robot path-planning

algorithms [10]. Lastly only simulation based results were

presented in the paper as the algorithm builds on top of an

exhaustively implemented and tested, D* Lite algorithm.

The probabilities (𝑝𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 −𝑐𝑕𝑎𝑛𝑔𝑒 and 𝑝𝑐𝑟𝑜𝑠𝑠 −𝑜𝑣𝑒𝑟)

mentioned in last section need further experimental and

theoretical background to be accurately quantified. An

investigation into obstacle behavior (probability of changing

location) and probability of path cross-over (given the

dimensions of obstacles and cardinality of peer robots) will

certainly lead to more efficient multi-robot path planning

algorithms.

6. ACKNOWLEDGEMENT
This work is supported by NPST program by King Saud

University (Project No. : 08-ELE300-02).

7. REFERENCES
[1] De Carvalho, R.N., Vidal, H.A., Vieira, P., Ribeiro,

M.I., “Complete coverage path planning and guidance

for cleaning robots” in Proceedings of the IEEE

International Symposium on Industrial Electronics,

1997.

[2] E. K. Xidias, A. C. Nearchou, N. A. Aspragathos,

"Vehicle scheduling in 2D shop floor environments",

Industrial Robot: An International Journal, Vol. 36 Iss:

2, pp.176 – 183, 2009.

[3] R. Zlot, A. Stentz, “Market-based Multirobot

Coordination Using Task Abstraction” in Proceedings

of 4th International Conference on Field and Service

Robotics, July 14–16, 2003.

Table. 1. Performance data: multi-robot D*Lite

Algorithm

Khalid Al-Mutib, Mansour AlSulaiman, Muhammad Emaduddin, Hedjar Ramdane, Ebrahim Mattar

/ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.1414-1419

1419 | P a g e

[4] M. Takahashi, T. Suzuki, H. Shitamoto, T. Moriguchi,

K. Yoshida, “Developing a mobile robot for transport

applications in the hospital domain, Robotics and

Autonomous Systems”, Volume 58, Issue 7, Advances

in Autonomous Robots for Service and Entertainment,

31 July 2010, Pages 889-899.

[5] B. L. Brumitt, A. Stentz, “GRAMMPS: A Generalized

Mission Planner for Multiple Mobile Robots In

Unstructured Environments” in International

Conference on Robotics and Automation - ICRA , pp.

1564-1571, 1998.

[6] M. Ryan, “Exploiting Subgraph Structure in Multi-

Robot Path Planning” in Journal of Artificial

Intelligence Research Vol. 31 (2008) PP-497-542.

[7] P. Surynek, “Making Solutions of Multi-robot Path

Planning Problems Shorter Using Weak Transpositions

and Critical Path Parallelism” in Proceedings of the

2009 International Symposium on Combinatorial

Search, Lake Arrowhead, CA, 2009.

[8] S. Koenig and M. Likhachev. “D* Lite” in Proceedings

of the AAAI Conference of Artificial Intelligence

(AAAI), pages 476-483, 2002.

[9] I. Chattopadhyay, G. Mallapragada and A. Ray, “V-

star: a robot path planning algorithm based on

renormalised measure of probabilistic regular

languages” in International Journal of Control Vol. 82,

No. 5, May 2009, 849–867.

[10] J. Berg and M. H. Overmars, “Roadmap-Based Motion

Planning in Dynamic Environments” in IEEE

Transactions on Robotics, Vol. 21, No. 5, 2005.

[11] S. M. LaValle, “Planning Algorithms” Cambridge

University Press, 2006.

[12] Y. Koren, J. Borenstein, “Potential Field Methods and

their Inherent Limitations for Mobile Robot

Navigation” in Proceedings of the IEEE Conference on

Robotics and Automation, Sacramento, California.

April, 1991. 1398-1404.

[13] T. C. Sprenger, R. Brunella, M. H. Gross, “H-BLOB: a

hierarchical visual clustering method using implicit

surfaces” in VIS '00 Proceedings of the conference on

Visualization '00 IEEE Computer Society Press, Los

Alamitos, CA, 2000.

