

D_n-based architecture assessment of Java open source
software systems
Citation for published version (APA):
Serebrenik, A., Roubtsov, S., & Brand, van den, M. G. J. (2009). D_n-based architecture assessment of Java
open source software systems. In Proceedings of the 17th International Conference on Program Comprehension
(ICPC 2009, Vancouver BC, Canada, May 17-19, 2009) (pp. 198-207). Institute of Electrical and Electronics
Engineers. https://doi.org/10.1109/ICPC.2009.5090043

DOI:
10.1109/ICPC.2009.5090043

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://doi.org/10.1109/ICPC.2009.5090043
https://doi.org/10.1109/ICPC.2009.5090043
https://research.tue.nl/en/publications/69086d41-d838-45d4-bee1-165a152aa040

Dn-based Architecture Assessment of Java Open Source Software Systems

Alexander Serebrenik, Serguei Roubtsov, Mark van den Brand
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{a.serebrenik, s.roubtsov, m.g.j.v.d.brand}@tue.nl

Abstract

Since their introduction in 1994 the Martin’s metrics be-
came popular in assessing object-oriented software archi-
tectures. While one of the Martin metrics, normalised dis-

tance from the main sequence Dn, has been originally de-
signed with assessing individual packages, it has also been
applied to assess quality of entire software architectures.
The approach itself, however, has never been studied.

In this paper we take the first step to formalising the Dn-
based architecture assessment of Java Open Source soft-
ware. We present two aggregate measures: average nor-
malised distance from the main sequence D̄n, and parame-
ter of the fitted statistical model λ. Applying these measures
to a carefully selected collection of benchmarks we obtain a
set of reference values that can be used to assess quality of
a system architecture. Furthermore, we show that applying
the same measures to different versions of the same system
provides valuable insights in system architecture evolution.

1. Introduction

In 1994 Martin [11] has introduced a series of metrics

pertaining to quality of software architectures. The sum-

mary metrics, known as the normalised distance from the
main sequence, denoted Dn and ranging between 0 and 1,

measures balance between abstractness and stability of a

package. Imbalance between abstractness and stability is

considered to be undesirable as it impedes changeability of

the package or is indicative of its uselessness. Therefore,

Dn can be used to comprehend which packages of the sys-

tem are well-designed and which are not. Recently Dn has

been reported as being considered by experts as one of the

most important criteria in determining complexity of appli-

cations [1]. In depth analysis carried out in [6] showed that

the package with high Dn value is problematic from mod-

ifiability and reusability perspectives. Stability of the Dn

metrics has been recently assessed in [20].

While the original notion of Martin was intended as the

quality measure of an individual package, we address a

more common problem of assessing quality of the entire

system architecture. In fact, Martin [11] hinted at the possi-

bilities of such analysis by suggesting to calculate an aver-

age value of Dn. With respect to Dn analysis our contribu-

tions are threefold.

• To assess system architecture [9, 10] average Dn over

all packages of the system. Interpreting the value ob-

tained is, however, a challenging task as benchmarks

are missing. Our first contribution (Section 3.2) is thus,

creating the frame of reference for the average Dn by

calculating the average normalised distance from the

main sequence for a large number of systems.

• It is well-known that average values do not provide

sufficient insight in the actual distribution of values.

Indeed, the average value does not tell us anything

about presence of outliers. Therefore, more advanced

statistical techniques are necessary. Our second con-

tribution (Section 3.3) consists in presenting a statisti-

cal model for the distribution of Dn in real-world sys-

tems. Based on the model one can predict the percent-

age of packages with the Dn value exceeding a given

threshold. If the expected value is significantly lower

than the observed percentage of packages with the Dn

value exceeding the threshold, the assessor can con-

clude that the system architecture scores worse than

those of comparable systems.

• Finally (Section 4), we investigate how software evo-

lution is reflected by the average Dn and by the statis-

tical model developed. This study constitutes our third
contribution.

Furthermore, our paper contributes to the broad field of

metrics-based architecture assessment by suggesting to shift

the attention focus from calculating averages to studying

distributions. Indeed, the approach developed in Section 3.3

goes beyond the study of Dn, and can be advantageous for

978-1-4244-3997-3/09/$25.00 © 2009 IEEE ICPC 2009198

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 26,2010 at 11:41:50 EDT from IEEE Xplore. Restrictions apply.

any software metrics, e.g., the object-oriented software met-

rics introduced in [4].

To conduct our study we have chosen to focus on Java

Open Source systems. Availability of the source code

makes Open Source systems an ideal candidate for statisti-

cal analysis of metrics. A well-known Open Source soft-

ware repository sourceforge counts more than 7000

Java projects, and Java is anno 2009 still the highest-ranked

programming language according to the TIOBE Program-

ming Community Index [19].

Reminder of the paper is organised as follows. In Sec-

tion 2 we review different definitions of the metrics related

to Dn. Sections 3 and 4 are dedicated to architecture assess-

ment: we start by describing the Java Open Source systems

selected as the code base and then proceed with present-

ing the contributions mentioned above. Section 5 discusses

possible threats to validity of our results and the ways we

countered them. Finally, Section 6 reviews possible direc-

tions for future work and concludes.

2. Distance from the main sequence

In this section we recall the basic notions pertaining to

the quality of the architecture of software systems as in-

troduced by Martin in [11]. We start by recapitulating a

number of auxiliary metrics and then formally introduce the

normalised distance from the main sequence Dn.

Recall that Java systems consist of packages. The Mar-

tin Metrics are functions from the set of packages P to

Q. In their turn, packages consist of classes. Some of

the classes can be denoted as abstract. Abstractness of

a package p ∈ P is the ratio of the number of abstract

classes in p and the total number of classes in p. Formally,

A(p) = #{c|c∈Classes(p)∧abstract(c)}
#{c|c∈Classes(p)} , where #S denotes

the cardinality of a set S. If A(p) = 0 then p is completely

concrete, i.e., it does not contain any abstract classes. If

A(p) = 1 then p is completely abstract, i.e., all it classes

are abstract.

Example 1 (Abstractness) Let p1 and p2 be packages such
that Classes(p1) = {c11, c12, c13} and Classes(p2) =
{c21, c22, c23}. Let further abstract(c) be true if and only
if c is c11. Then, A(p1) = 1

3 ≈ 0.33 and A(p2) = 0
3 = 0.

Next, [11] introduces afferent coupling Ca(p) and ef-
ferent coupling Ce(p) as measures of dependence of other

packages on p and of dependence of p on other packages,

respectively. Since 1994 when the pioneering work of Mar-

tin [11] has appeared, the notions of afferent and efferent

coupling became popular, which, unfortunately, led to con-

flicting definitions:

(A) In the original paper [11] as well as in Chapter 28

of [13] afferent coupling Ca(p) is defined as the num-

Ca Ce Dn

(A)
Ca(p1) = 2 Ce(p1) = 1 Dn(p1) = 0.33
Ca(p2) = 1 Ce(p2) = 3 Dn(p2) = 0.25

(B)
Ca(p1) = 2 Ce(p1) = 1 Dn(p1) = 0.33
Ca(p2) = 1 Ce(p2) = 2 Dn(p2) = 0.33

(C)
Ca(p1) = 1 Ce(p1) = 1 Dn(p1) = 0.17
Ca(p2) = 1 Ce(p2) = 1 Dn(p2) = 0.50

Table 1. Afferent Ca, efferent Ce couplings
and normalised distance from the main se-
quence Dn according to (A), (B) and (C).

ber of classes outside p that depend upon classes within

p, and efferent coupling Ce(p) as the number of classes

in p that depend upon classes outside p. Assuming

c1 → c2 denotes that the class c1 depends on c2,

we write Ca(p) = #{c′|∃c(c ∈ Classes(p) ∧ ∃p′ ∈
P (p′ �= p ∧ c′ ∈ Classes(p′) ∧ c′ → c)} and Ce(p) =
#{c|c ∈ Classes(p) ∧ ∃p′ ∈ P, c′ ∈ Classes(p′)(p′ �=
p ∧ c → c′)}. This definition has been also applied

in [9, 10, 16].

(B) In [12] as well as in Chapter 30 of [13] Ce(p) is defined

as the number of classes in other components that the

classes in p depend on. Formally, Ce(p) = #{c′|∃c ∈
Classes(p) ∧ ∃p′ ∈ P (p′ �= p ∧ c′ ∈ Classes(p′) ∧ c →
c′)}. Afferent couplings Ca are defined as in [11].

This definition is also followed, e.g. in [3] and imple-

mented in such tools as STAN4J [15] and Dependency

Finder [18].

(C) Finally, JDepend [5] implements metrics based on

packages rather than classes: Ca(p) and Ce(p) are,

respectively, defined as the number of other pack-

ages that depend upon classes within p and the num-

ber of other packages that the classes within p de-

pend upon. Formally, Ca(p) = #{p′|p′ �= p ∧
∃c, c′, (c ∈ Classes(p)∧c′ ∈ Classes(p′)∧c′ → c)} and

Ce(p) = #{p′|p′ �= p ∧ ∃c, c′, (c ∈ Classes(p) ∧ c′ ∈
Classes(p′)∧c → c′)}. This view is shared, e.g., by [6].

Example 2 (Afferent and efferent coupling) Example 1,
continued. Let c12 → c11, c13 → c21, c21 → c11,
c22 → c11 and c23 → c12 (see Figure 1). The values of
afferent and efferent couplings are summarised in Table 1.

Instability I(p) is subsequently introduced as
Ce(p)

Ce(p)+Ca(p) . If I(p) = 0 then p does not depend on

any other package, i.e., it is completely stable. If I(p) = 1
then p is completely unstable.

Martin [12] introduces the notions of “zone of pain” and

“zone of uselessness” as areas close to A = 0, I = 0 and

199

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 26,2010 at 11:41:50 EDT from IEEE Xplore. Restrictions apply.

p1

p2

C11
{abstract}

C12 C13

C12 C13C12

Figure 1. Toy example architecture

A = 1, I = 1, respectively. The former case corresponds

to concrete packages with multiple incoming dependencies,

implying that these packages cannot be extended the way

abstract entities can and that changing them might have se-

vere impact on the large part of the system. On the other

hand, packages in “zone of uselessness” are highly abstract

and few other packages depend on them. Generalising these

insights he further states that instability and abstractness of

a package should be balanced, i.e., A(p) + I(p) = 1 should

hold. Inspired by a similar notion in astronomy he calls

the line A + I = 1 the main sequence and introduces the

measure of remoteness of a package from this ideal bal-

ance: D = |A+I−1|√
2

. The distance D ranges between 0

and
√

2
2 , and is often normalised to range between 0 and 1:

Dn = |A + I − 1|.

Example 3 (Distance from the main sequence)
Example 2, continued. Table 1 demonstrates that dif-
ferent definitions of afferent and efferent couplings lead to
different values obtained for Dn.

Keeping in mind the original goal of architecture assess-

ment as a whole as opposed to quality of individual pack-

ages, we tend to prefer the approaches (B) and (C) above

the approach (A). First of all, examples discussed in [13]

seem to suggest (B) rather than (A). Second, approaches (B)

and (C) make Ce to an object-oriented counterpart of the

traditional notion of fan-out for procedural languages [7].

Finally, these are, to the best of our knowledge, the only

approaches supported by readily available tools.

In this paper we have chosen to restrict our attention

solely to approach (C). Performing similar analyses based

on the approach (B) is considered as a future work.

3. Architecture assessment

In this paper we study the ways to assess quality of the

system architecture based on Dn. We start by presenting

the code base used for the evaluation and then proceed with

discussing different assessment techniques and their appli-

cations to the code base.

3.1. Code Base

Our evaluation has been based upon a set of

twenty-one Open Source Java systems. With

the notable exception of AProVE, available from

http://aprove.informatik.rwth-aachen.de/
all other systems we have analysed can be found on

http://sourceforge.net/projects/ followed

by the system name. For each one of the systems we have

considered its most recent version.

To ensure validity of the results we collected sys-

tems belonging to different software domains such as

J2EE (Hibernate, JAFFA, JBoss, Spring), entertainment

(blue, MegaMek, projectB, VASSAL, VRJuggler), web-

application development tools (Flexive, wicket, ZK), ma-

chine learning (RapidMiner, Weka), web-documentation

(XWiki), reporting (JasperReports), code analysis (RE-

CODER, AProVE), scientific computing (cdk), file shar-

ing (Azureus/Vuse) and a database management system

(dbXML). Moreover, we took special care to include sys-

tems of various age, size and development status:

• For the sourceforge projects we considered the

registration year as an indication of the project age, for

AProVE we have contacted the developers directly.

• Size is assessed by counting the number of packages

developed for the system, i.e., by subtracting the num-

ber of third-party packages from the total number of

packages. To ensure validity of the results we required

the systems in the code base to count at least thirty

packages not including third-party packages.

• Development status is provided by the system develop-

ers and can be one or more of: planning, pre-alpha, al-

pha, beta, production/stable, mature, inactive. As mul-

tiple development statuses can be indicated by the de-

velopers, we have taken the highest one. As we are

interested in assessing architecture, we focus on stable

and mature systems, assuming that the architecture of

these systems has converged. For the sake of complete-

ness, however, we also included systems with different

development status. We did not consider systems at the

planning or pre-alpha stage as such systems usually ei-

ther have yet to release files for download, or their ar-

chitecture is subject to significant amount of change in

the future.

200

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 26,2010 at 11:41:50 EDT from IEEE Xplore. Restrictions apply.

System name Version Registration year Number of packages Development status

AProVE 07 release 2001 344 Production/Stable

Azureus (Vuze) 4.0.0.4 2003 425 Production/Stable

blue 0.125.0 2003 67 Production/Stable

cdk 1.0.4 2001 87 Production/Stable

dbXML 2 2000 71 Inactive

flexive 3.0.1 2008 105 Production/Stable

Hibernate 3.3.1 2001 105 Mature

JAFFA 1.1.0 2001 139 Mature

JasperReports 3.1.2 2001 59 Mature

JBoss 5.0.0 GA 2001 1244 Production/Stable

MegaMek 0.5061 2002 33 Alpha

projectB 0.9.0 2000 40 Beta

RapidMiner 4.3 2004 144 Mature

RECODER 0.92 2001 38 Production/Stable

SpringFramework 2.5.6 2003 215 Production/Stable

VASSAL 3.1.0 beta 6 2003 40 Production/Stable

VRJuggler 2.2.1-1 2000 86 Mature

Weka 3.6.0 2000 88 Production/Stable

wicket 1.2.7 2004 86 Procution/Stable

XWiki 0.9.543 2004 32 Production/Stable

ZK 3.5.2 2005 134 Mature

Table 2. Code Base

System name D̄n System name D̄n

AProVE 0.251 projectB 0.203

Azureus (Vuze) 0.154 RapidMiner 0.188

blue 0.185 RECODER 0.208

cdk 0.245 SpringFramework 0.230

dbXML 0.201 VASSAL 0.219

flexive 0.178 VRJuggler 0.150

Hibernate 0.209 Weka 0.193

JAFFA 0.254 wicket 0.234

JasperReports 0.181 XWiki 0.181

Jboss 0.221 ZK 0.190

MegaMek 0.212

Table 3. D̄n distribution, μ ≈ 0.204, σ ≈ 0.028.

Table 2 summarises this information.

3.2. Average

Computing the average value of a collection of numbers

is, probably, one of the most commonly used methods to

evaluate the collection. Definition of Dn implies that in the

ideal case D̄n should be zero.

We have calculated the average value of Dn for all sys-

tems concerned. It turned out that D̄n ranges for our code

base from 0.150 to 0.251 (exact values can be found in Ta-

ble 3). The hypothesis that the values are normally dis-

tributed cannot be rejected (Shapiro-Wilk normality test W

= 0.9726, p-value = 0.7907).

Looking at the D̄n values obtained for our code base we

observe that the real-world systems are quite far from the

ideal case where D̄n = 0. We still can use the range we

have obtained for D̄n as means to assess quality of system

architecture. While relying solely on this value would be

foolhardy, D̄n significantly exceeding 0.25 still might be

considered as hinting at a problematic architecture. Clearly,

for this interpretation to be valid the system being analysed

should be comparable with the systems in the code base.

Example 4 (Dresden OCL Toolkit) As an example sys-
tem we consider the Dresden OCL Toolkit [17], collection
of tools supporting the Object Constraint Language. Devel-
opment of the toolkit started from 1999 and its newest ver-
sion is “Dresden OCL2 for Eclipse” based on the Eclipse
SDK. The developers indicate the system to be Produc-
tion/Stable. In “Dresden OCL2 for Eclipse” version 1.1 we
have counted 135 packages after excluding the third-party
code. Hence, “Dresden OCL2 for Eclipse” is comparable
with the systems in the code base and one would expect D̄n

not to exceed 0.25 significantly.
Surprisingly, D̄n ≈ 0.326. Closer inspection of the sys-

tem revealed that the Eclipse version has been released only
recently: version 1.0 was released in June 2008, version 1.1

201

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 26,2010 at 11:41:50 EDT from IEEE Xplore. Restrictions apply.

System name % System name %

AProVE 6.977 projectB 15

Azureus (Vuze) 9.647 RapidMiner 12.5

blue 2.985 RECODER 7.895

cdk 16.092 SpringFramework 7.907

dbXML 23.944 VASSAL 0

flexive 30.476 VRJuggler 11.628

Hibernate 3.81 Weka 7.955

JAFFA 33.813 wicket 4.651

JasperReports 5.085 XWiki 12.5

Jboss 15.595 ZK 25.373

MegaMek 12.121

Table 4. The A = 0, I = 1 packages.

in December 2008. Therefore, we believe that the system
has yet to mature, which will lead to decrease of D̄n. Ad-
ditional evidence of lack of system maturity is presented in
Section 3.3.

We stress that while D̄n significantly exceeding 0.25 can

be used as an alert, the opposite should not hold: D̄n can be

close to zero but the system still may contain problematic

packages. To gain better understanding of how the Dn val-

ues are distributed more advanced statistical techniques are

necessary.

3.3. Distribution of Dn

As mentioned above, average values do not provide suf-

ficient information about the actual distribution of the Dn

values across the packages. An alternative approach would

be to assess distribution by means of one of the statistical

deviation values, e.g., the standard deviation. One might,

however, expect the distribution of Dn to be highly asym-

metric making standard deviation ill-suited for the distri-

bution assessment: many packages can be expected to be

both completely concrete (A = 0) and completely instable

(I = 1). Our study, summarised in Table 4, confirmed this

expectation: the “A = 0, I = 1” case amounts on average,

for 12.6% of the packages.

Therefore, we have tried to estimate the probability den-

sity function for the distribution of Dn. To this end we first

had to conjecture to what family of distributions would our

distribution belong, and then to estimate the coefficients.

Strictly speaking it would have been possible that every sys-

tem in the code base gave rise to a distribution from a dif-
ferent family. However, we are going to see that this turned

out not to be the case. Investigating several projects from

the code base we have encountered essentially a similar pic-

ture: the distribution was close to exponential.

We base our conjecture on a histogram, constructed for

Dn

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Figure 2. Histogram for AProVE

the AProVE benchmark and presented in Figure 2. On the

x axis we have divided the values on [0; 1] in ten equidis-

tant classes also known as bins. The y axis represents the

statistical estimations of the density values, i.e., frequen-

cies normalised such that the total area under the histogram

equals to 1.

Looking at the histogram we conjecture that Dn is dis-

tributed almost exponentially, i.e., its probability density

function is similar to λe−λx. Observe, however, that our

distribution is not exactly exponential, as its support is [0; 1]
rather than [0;∞), i.e.,

∫ 1

0
f(x)dx = 1 should hold for

the probability density function f . Since
∫ 1

0
λe−λxdx =

1− e−λ we divide λe−λx by 1− e−λ and look for the value

of λ such that

f(x) =
λ

1 − e−λ
e−λx, (1)

fits the Dn values measured “best”.

In order to estimate the best fitting value of λ we use

the maximum-likelihood fitting. Log-likelihood is opti-

mised with the Nelder-Mead method [14]. Application

of maximum-likelihood fitting requires the user to provide

starting values for the distribution parameters, λ in our case.

To this end we find the best fitting value λ0 for the exponen-
tial distribution and then divide it by 1 − e−λ0 .

Summarising the previous discussion for each one of the

systems in the code base we

1. fit an exponential model and determine the value of λ0;

2. calculate λs = λ0
1−eλ0

;

202

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 26,2010 at 11:41:50 EDT from IEEE Xplore. Restrictions apply.

System name λ X2 p
AProVE 3.572 1.351 0.99

Azureus (Vuze) 6.420 0.287 1.00

blue 5.239 0.933 1.00

cdk 3.685 0.755 1.00

dbXML 4.768 1.047 1.00

Flexile 5.773 2.778 0.95

Hibernate 4.552 0.508 1.00

JAFFA 3.516 2.957 0.94

JasperReports 5.399 4.487 0.81

JBoss 4.243 0.268 1.00

MegaMek 4.463 2.567 0.96

projectB 4.730 0.555 1.00

RapidMiner 5.157 0.264 1.00

RECODER 4.569 1.715 0.99

SpringFramework 4.035 0.410 1.00

VASSAL 4.289 1.354 0.99

VRJuggler 6.618 1.451 0.99

Weka 5.018 0.369 1.00

wicket 3.940 1.042 1.00

XWiki 5.400 2.178 0.98

ZK 5.087 1.249 1.00

Table 5. Fitted models: λ estimates, good-
ness of fit

3. fit a model corresponding to (1) using λs as the starting

value for λ.

To estimate the goodness of the fit we apply Pearson’s

chi-square test, i.e., we first calculate X2 = Σn
i=1

(oi−ei)
2

ei
,

where oi and ei correspond to the observed values and ex-

pected values, respectively. To compute X2, we have di-

vided [0; 1] in ten bins and constructed histogram akin to

Figure 2. By substituting the class middles to the fitted

model we obtain the expected values, while as the observed

values we use the densities from the histogram. Second, we

compare X2 with the χ2 distribution for the corresponding

number of degrees of freedom. The number of degrees of

freedom in our case is 8: indeed, once the density values for

eight bins are known, the density values for the remaining

two can be calculated based on X2 and the fact that the total

area under the histogram equals 1.

Table 5 presents the fitted models: the estimated λ, X2

and the probability of the observations, i.e., p = P (X2 ≥
χ2). Conventional criteria for statistical significance de-

mand p to exceed 0.05, threshold easily topped by all sys-

tems in the code base.

The λ values presented in Table 5 are normally dis-

tributed (Shapiro-Wilk normality test W = 0.9628, p =
0.5752) with the mean μλ ≈ 4.784 and standard deviance

σλ ≈ 0.833.

Higher values of λ mean “sharper” peaks and “thinner”

tails. Hence, given a new system one can repeat the pro-

cedure above and compare the values obtained with μλ or

those in Table 5. However, ”sharper” peaks and “thinner”

tails will result in smaller averages, i.e., one can expect

strong disagreement between D̄n and λ.

Reminder 1 (Agreements and disagreements) Recall
that a disagreement (also known as negative correlation)
indicates that the increase of variable x corresponds to
decrease of variable y, and vice versa. If the relationship
between x and y is close to a decreasing linear rela-
tionship, i.e., to the relationship that can be described
as ax + by + c = 0 with a > 0, b > 0, the correlation
coefficients such as the Pearson correlation coefficient r or
Kendall’s τ will be close to -1. In the opposite situation,
when the increase of x corresponds to the increase of y
we talk about agreement (positive correlation). Should
the relation between two variables x and y be close to an
increasing linear relationship, i.e., to ax + by + c = 0 with
a < 0, b > 0, the correlation coefficients are close to 1.
If the correlation coefficient is close to 1 (-1) we say that
an agreement (a disagreement) is strong; if the correlation
coefficient is close to 0 we say that an agreement (a
disagreement) is weak. For instance, the disagreement
between D̄n and λ observed for our code base is strong,
since the Pearson correlation coefficient is r = −0.991.

Furthermore, we say that an agreement (a disagreement)
is significant if the corresponding p value is small, i.e., it is
unlikely that the relation has been observed just by chance.
For instance, the disagreement between D̄n and λ for out
code base is significant since p < 2.2 ∗ 10−16. Important
agreements and disagreements should be both strong and
significant.

Finally, we remark that in the remainder of this paper
two different correlation coefficients are used. The Pearson
correlation coefficient r is applicable if both variables are
normally distributed, e.g., D̄n and λ. Kendall’s τ is more
useful if (at least one of) the variables is not normally dis-
tributed, e.g., X2.

Instead of analysing the shape of the distribution curve

we propose to estimate excessively high Dn values. The

power of the approach developed consists of our ability to

predict the number of packages belonging to “zones of pain

and uselessness”. Let z be the threshold such that a package

belongs to one of the zones if Dn ≥ z. Then we need to

estimate P (Dn ≥ z).

P (Dn ≥ z) =
∫ 1

z

λ

1 − e−λ
e−λxdx =

=
1

e−λ − 1
(e−λ − e−λz) =

=
e−λ

e−λ − 1
− (e−λ)z

e−λ − 1

203

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 26,2010 at 11:41:50 EDT from IEEE Xplore. Restrictions apply.

Coeff. “Better” Formula
Thresholds

0.5 0.6 0.7 0.8 0.9

μλ + 3σλ 0.2 −0.0006872843 − 1.000687 ∗ (0.0006868122)z 2.554 1.197 0.542 0.226 0.074

μλ + 2σλ 2.3 −0.001582360 − 1.001582 ∗ (0.001579860)z 3.823 1.930 0.938 0.417 0.143

μλ + σλ 15.9 −0.003647376 − 1.003647 ∗ (0.003634121)z 5.686 3.085 1.603 0.757 0.275

μλ 50.0 −0.008429966 − 1.00843 ∗ (0.008359496)z 8.377 4.871 2.698 1.352 0.517

μλ − σλ 84.1 −0.01960619 − 1.019606 ∗ (0.01922918)z 12.178 7.563 4.455 2.361 0.95

μλ − 2σλ 97.7 −0.04627955 − 1.046280 ∗ (0.04423249)z 17.377 11.482 7.166 4.007 1.693

μλ − 3σλ 99.8 −0.1132722 − 1.113272 ∗ (0.1017471)z 24.184 16.929 11.156 6.563 2.908

Table 6. Expected percentage of packages in zones of pain and uselessness

Based on this calculation Table 6 summarises the expected

percentage of packages belonging to zones of pain or use-

lessness in function of the threshold value, on one hand, and

the λ value on the other. With “better” we indicate the per-

centage of systems with λ exceeding the one given in the

“Coeff.” column as follows from the normal distribution.

Example 5 (Dresden OCL2 for Eclipse) The “Dresden
OCL2 for Eclipse” system counts 135 packages in total.
It has 32 packages (23.7%) with Dn exceeding 0.6 and
28 packages (20.7%) with Dn exceeding 0.8. Consulting
Table 6 we observe that these values significantly exceed
those present in the table. Hence, we conclude that the
architecture of the “Dresden OCL2 for Eclipse” system is
significantly worse than expected.

4. Dn of evolving systems

In Section 3 we have applied Dn to assess architecture of

software systems. Architecture is, however, well-known to

be a dynamic object evolving along the time. In this section

we, therefore, change our code base and consider different
versions of the same system. To this end we have consid-

ered 12 versions of JBoss (versions 3.2.5, 3.2.6, 3.2.7, 4.0.0,
4.0.2, 4.0.4 GA, 4.0.5 GA, 4.2.0 GA, 4.2.1 GA, 4.2.2 GA,
4.2.3 GA, 5.0.0 GA) and 17 versions of Hibernate (versions

3.0, 3.0.5, 3.1, 3.1.1, 3.1.2, 3.1.3, 3.2.0 cr2, 3.2.0 cr3, 3.2.0
cr4, 3.2.4, 3.2.5, 3.2.6, 3.3.0 cr1, 3.3.0 cr2, 3.3.0 ga, 3.3.0
sp1, 3.3.1 ga). For each one of the versions we have calcu-

lated D̄n and λ as described in Sections 3.2 and 3.3, respec-

tively.

4.1. JBoss

Figure 3 presents the evolution of D̄n. We observe de-

crease in D̄n from version 3.2.5 till version 4.0.0, peak at

version 4.0.2, decrease till version 4.2.2 GA, slight increase

to 4.2.3 GA and an additional peak at version 5.0.0 GA (the

rightmost point on Figure 3). While decreases within one

major release can be explained as the ongoing process of

improving the system, peaks demand a more serious inspec-

tion. To this end we have consulted the change log of the

JBoss application server1 and counted the number of change

log entries per version. We observed that the two peaks cor-

respond to the two highest numbers of feature requests sub-

mitted: 28 for version 5.0.0 and 20 for version 4.0.2. To

explain this correspondence we conjecture that multiplic-

ity of feature requests in versions 5.0.0 and 4.0.2 focused

the developers’ attention on developing functionality at ex-

pense of quality assurance. Once the number of feature re-

quests dropped (version 4.0.4 GA) quality assurance got the

developers’ attention, resulting in the lower value of D̄n.

Verifying or rejecting this conjecture would demand a more

thorough statistical analysis.

0.
20

5
0.

21
0

0.
21

5
0.

22
0

Versions

D
n

3.2.5 3.2.7 4.0.2 4.0.5 GA 4.2.2 GA

Figure 3. D̄n for JBoss

We do not consider evolution of λ due to its strong dis-

agreement with D̄n.

1https://jira.jboss.org/jira/browse/JBAS?report=

com.atlassian.jira.plugin.system.project:changelog-panel

204

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 26,2010 at 11:41:50 EDT from IEEE Xplore. Restrictions apply.

Figure 4 shows the evolution of X2. In general, the

graph shows a clear decreasing trend: more recent versions

are closer to the fitted model than the older ones. This,

however, should be attributed to significant increase in the

number of packages: while JBoss version 3.2.5 contained

263 non-third party packages, version 5.0.0 GA contained

already 1244 non-third packages. We have also observed

very significant strong disagreement between the number

of packages and the X2 value: Kendall’s τ = −0.84
(p = 0.00016). No such disagreement was observed for

the code base of Section 3 consisting of different systems

(τ = −0.392, p = 0.013). We discuss the importance of

this observation in Section 4.3.

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Versions

C
hi

2

3.2.5 3.2.7 4.0.2 4.0.5 GA 4.2.2 GA

Figure 4. X2 for JBoss

Surprisingly enough we also observed statistically sig-

nificant agreement between the average number of classes

in a package and X2. We have used the Kendall’s method

since X2 is not normally distributed (Shapiro-Wilk’s test:

W = 0.8791, p = 0.08533): τ = 0.657, p = 0.003. No

such agreement was observed for Hibernate (p = 0.2012)

or for the code base from Section 3.1 (p = 0.8815).

4.2. Hibernate

Figure 5 represents the evolution of D̄n for Hibernate.

Similarly to JBoss we observe that D̄n usually increases

immediately before (e.g., from 3.1.3 to 3.2.0 cr2) or after

(e.g., from 3.0 to 3.0.5) the major release. As above de-

creases in D̄n can be explained as resulting from the ar-

chitecture improvement. Unlike JBoss the number of fea-

ture requests per version was limited and never exceeded 4.

Still, the peaks at versions 3.0.5 and 3.2.0 cr3 correspond

to relatively high numbers of feature requests (3 and 4, re-

spectively) as recorded in the change log 2.

0.
20

0
0.

20
5

0.
21

0
0.

21
5

Versions

D
n

3.0 3.1 3.1.2 3.2.0 cr3 3.2.5 3.3.0 cr2 3.3.1 ga

Figure 5. D̄n for Hibernate

Unlike Figure 4 the evolution of X2 for Hibernate,

shown in Figure 6, does not demonstrate strong decrease

for the entire duration of the project. This is, however, the

case if only more recent versions are considered, starting

from 3.2.0 cr4. In this case one can establish significant

strong disagreement between the number of packages and

X2 (τ = −0.8975275, p = 0.001522).

4.3. Summary

In this section we have seen that the approaches devel-

oped in Section 3 can also be applied for study of software

architecture evolution. For both benchmarks considered

D̄n exhibited a typical “decrease-peak-decrease” pattern

with decreases corresponding to software improvement, and

peaks—to incorporation of new functionality as the conse-

quence of multiple feature requests. Recall that while D̄n

may be imprecise for assessing a specific version of the soft-

ware architecture (and therefore the approach of Section 3.3

should be preferred), it still provides useful insights in evo-

lution of the architecture.

We did not apply λ for evolution assessment due to its

strong disagreement with D̄n. In other words, any conclu-

sions based on λ can also be made based on D̄n, which is

much easier to compute.

Unlike λ the second characteristics of the fitted model,

X2 is of interest for study of evolving systems. We have

2http://opensource.atlassian.com/projects/hibernate/secure/

BrowseProject.jspa?id=10031&subset=-1

205

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 26,2010 at 11:41:50 EDT from IEEE Xplore. Restrictions apply.

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Versions

D
n

3.0 3.1 3.1.2 3.2.0 cr3 3.2.5 3.3.0 cr2 3.3.1 ga

Figure 6. X2 for Hibernate

observed significant string disagreement between X2 and

the number of packages in both cases. We conjecture that

presence of this disagreement may be indicative of the sys-

tem convergent to a stable state.

5. Validity of the results

Validity of statistical results can be threatened in many

ways. External validity concerns the degree to which we

are able to generalise the results obtained to other software

systems. To ensure external validity we have paid special

attention to selection of the code base, described in Sec-

tion 3.1. The resulting code base included software sys-

tems of different domains, ages and sizes. While our focus

was on stable or mature software we also included systems

labelled by different developments status. We further re-

stricted our attention to Java Open Source software systems,

and required the systems in the code base to count at least

thirty packages not including third-party packages. There-

fore, we expect our results to be valid for Java Open Source

software systems as a whole. We conjecture that Dn val-

ues will be distributed exponentially also for proprietary or

non-Java object oriented software, but verification of this

conjecture goes beyond our current research.

Internal validity imposes demands on the experiment it-

self and concerns the degree to which the dependent vari-

able was influenced by the independent variable and not by

some extraneous variable. Often time (or history) become

such an extraneous variable. To eliminate potential depen-

dence on time we have chosen only one version from each

system in Section 3, while in Section 4 we have considered

history explicitly.

6. Conclusions

In this paper we have studied architecture assessment of

Java Open Source software systems by means of the nor-

malised distance from the main sequence Dn and related

metrics. Our contributions with respect to Dn are three-

fold. First, we have created a frame of reference for D̄n.

We stress that while D̄n significantly exceeding the 0.25

can be considered as hinting at the problematic architec-

ture, it would be foolhardy to take D̄n ≤ 0.25 as an in-

dication of good design. Therefore, we have developed a

statistical model providing for a more precise architectural

assessment, that constituted our second contribution. Based

on this model we can predict the percentage of packages

with Dn exceeding a given threshold value. Comparing the

values expected with those observed allows the assessor to

conclude whether the system under assessment scores bet-

ter or worse than a given percentage of comparable systems.

We have successfully applied both methods to assess qual-

ity of the architecture of a test system (“Dresden OCL2 for

Eclipse”). Our third contribution consists in applying the

same approaches to two evolutionary benchmarks. We have

seen that while D̄n may be imprecise for assessing a spe-

cific version of the software architecture (and therefore the

approach of Section 3.3 should be preferred), it still pro-

vides useful insights in evolution of the architecture. In

some cases we have also observed statistically significant

strong disagreement between the number of packages and

X2. We conjecture that presence of such disagreement can

be indicative of the system architecture converging to a sta-

ble state.

Going beyond the specifics of Dn we stress that study-

ing distribution of a software metrics rather than their aver-

ages can be advantageous for any software metrics. Indeed,

average values do not provide sufficient information about

the actual distribution of the metrics values across the arte-

facts. Assessing distribution by means of one of the statisti-

cal deviation values, e.g., the standard deviation, should be

considered as one of the alternatives. However, the metrics

are usually distributed in a highly asymmetric way [2, 8]

making standard deviation ill-suited for the distribution as-

sessment. Therefore, one should estimate the probability

density function for the distribution of the metrics being

studied. To this end approaches similar to one taken in Sec-

tion 3.3 can be beneficial.

We consider a number of possibilities as the future work.

Three major directions one would like to pursue are con-

sidering different interpretations of D, evaluating the met-

rics proposed in a broader context, and evaluating the distri-

bution estimation methodology by applying it to additional

metrics.

As already suggested in Section 2 the experiments

should be repeated for the (B) interpretation of efferent

206

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 26,2010 at 11:41:50 EDT from IEEE Xplore. Restrictions apply.

and afferent couplings. Moreover, rather than considering

Dn = |A + I − 1| one might consider D′ = A + I − 1.

Using D′ makes one capable of distinguishing between the

“zone of pain” and the “zone of uselessness”. Since D′

ranges over [−1; 1] a different statistical model will be re-

quired to predict the percentage of packages in each one of

the zones.

Further, we plan to extend our work on Dn-based ap-

proaches to software evolution by considering additional

software systems. A related topic consists in investigat-

ing possible correlation between D̄n, λ or X2, and the ver-

sion number or the number of change log entries of differ-

ent types (e.g., feature requests, bugs and improvements)

or importance (crucial, major, minor, trivial). This line of

work is, however, inherently challenged by the subjectivity

of version numbering policy and log entree classification,

respectively. One should also conduct a similar study of

commercial software and compare the results obtained with

those presented in this paper.

Finally, evaluating distributions of additional classes of

metrics, e.g., the Chidamber-Kemerer’s metrics [4], simi-

larly to our approach in Section 3.3 should provide addi-

tional insights both in the metrics being evaluated and in

the approach used for the evaluation.

7. Acknowledgement

The authors are grateful to Emiel van Berkum for his

assistance during preparation of this paper.

References

[1] N. Ahmad and P. A. Laplante. Reasoning about software

using metrics and expert opinion. ISSE, 3(4):229–235, 2007.

[2] B. W. Boehm. Industrial software metrics. IEEE Software,

4(5):84–85, 1984.

[3] A. Capiluppi and C. Boldyreff. Identifying and improving

reusability based on coupling patterns. In H. Mei, editor,

ICSR, volume 5030 of Lecture Notes in Computer Science,

pages 282–293. Springer, 2008.

[4] S. R. Chidamber and C. F. Kemerer. A metrics suite for ob-

ject oriented design. IEEE Trans. Software Eng., 20(6):476–

493, 1994.

[5] M. Clark. JDepend homepage, 2005. Available at

http://clarkware.com/software/JDepend.html
Consulted on January 11, 2009.

[6] I. Gorton and L. Zhu. Tool support for just-in-time archi-

tecture reconstruction and evaluation: an experience report.

In G.-C. Roman, W. G. Griswold, and B. Nuseibeh, editors,

ICSE, pages 514–523. ACM, 2005.

[7] S. M. Henry and D. G. Kafura. Software structure met-

rics based on information flow. IEEE Trans. Software Eng.,
7(5):510–518, 1981.

[8] B. A. Kitchenham, L. M. Pickard, and S. J. Linkman. An

evaluation of some design metrics. Software Engineering
Journal, 5(1):50–58, 1990.

[9] K. G. Kouskouras, A. Chatzigeorgiou, and G. Stephanides.

Facilitating software extension with design patterns and

aspect-oriented programming. Journal of Systems and Soft-
ware, 81(10):1725–1737, 2008.

[10] L. Madeyski. The impact of pair programming and test-

driven development on package dependencies in object-

oriented design - an experiment. In J. Münch and M. Vier-

imaa, editors, PROFES, volume 4034 of Lecture Notes in
Computer Science, pages 278–289. Springer, 2006.

[11] R. Martin. OO design quality metrics: An

analysis of dependencies, 1994. Available at

http://condor.depaul.edu/˜dmumaugh/OOT/
Design-Principles/oodmetrc.pdf Consulted on

January 11, 2009.
[12] R. Martin. Design principles and de-

sign patterns, 2000. Available at

http://www.objectmentor.com/resources/
articles/Principles_and_Patterns.pdf
Consulted on January 11, 2009.

[13] R. Martin and M. Martin. Agile Principles, Patterns, and
Practices in C#. Prentice Hall, 2006.

[14] J. A. Nelder and R. Mead. A simplex method for function

minimization. The Computer Journal, 7(4):308–313, 1965.
[15] Odysseus Software. STAN4J White Paper, 2008. Avail-

able at http://stan4j.com/ Consulted on January 11,

2009.
[16] M. Siniaalto and P. Abrahamsson. Does test-driven devel-

opment improve the program code? alarming results from a

comparative case study. In B. Meyer, J. R. Nawrocki, and

B. Walter, editors, CEE-SET, volume 5082 of Lecture Notes
in Computer Science, pages 143–156. Springer, 2007.

[17] Technische Universität Dresden, Department of

Computer Science, Software Engineering Group.

Dresden OCL2 Toolkit for Eclipse. Available at

http://dresden-ocl.sourceforge.net/
4eclipse_intro.html Consulted on January 16,

2009.
[18] J. Tessier. Dependency Finder, 2008. Available

at http://depfind.sourceforge.net/ Consulted

on January 11, 2009.
[19] TIOBE. Tiobe programming commu-

nity index for january 2009. Available at

http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html Consulted on January

16, 2009.
[20] M. Vinnikov and N. Panekin. Opredelenie informa-

tivnosti metrik ob”ektno-orientirovannogo programmnogo

koda. VISNYK Donbas’koı̈ derzhavnoı̈ mashynobudivnoı̈
akademiı̈, 1E(6):13–18, 2006. In Russian.

207

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 26,2010 at 11:41:50 EDT from IEEE Xplore. Restrictions apply.

