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Abstract. In this paper, a novel approach involving the concepts from mathematical programming
and number theory is proposed to find the D-optimal designs. In specific, we will propose a math-
ematical formulation for the D-optimal design. In addition to that, we will present the use of cy-
clotomic cosets in the mathematical formulation, in order to reduce the total number of binary
variables. We will illustrate the validity of our proposed method by solving a difficult known in-
stance (N = 126) of the D-optimal design.
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1. Introduction

One of the widely known techniques from the theory of statistical design of experiments
(Fisher, 1935) is factorial design. Specifically, two-level factorial designs find their ap-
plication in numerous fields of science and technology (Mason et al., 2003). It is hard to
enumerate all the applications of the two-level factorial design. On the other hand, the
rationale behind two-level factorial design is simple to understand. In brief, a two-level
factorial design consists of finding the relationship among different input factors and out-
come. This relationship is studied by performing experiments with varying levels of the
factors. For example, consider a case where two factors are studied for the relationship.
In order to determine the relationship, factors are taken into two levels “High (+1)” and
“Low (−1)”. By observing all the possible combinations of the two factors, the relation-
ship can be studied.

Such a design, where all possible combinations are observed, is called a full factorial
design. Typically, a full factorial design can be represented by a design matrix, R. For
example, a two factor two level design matrix will be:

R =

⎡⎢⎢⎣
+1 +1
+1 −1
−1 +1
−1 −1

⎤⎥⎥⎦ , (1)
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where each column represents a factor, and each row represents an observation. In ad-
dition to that if there are N factors with two levels, then for a full factorial design there
will be 2N observations. Thus, as the total number of factors increases, a full factorial
design will be expensive. To overcome the exponential growth in the required number
of observations, various design methods have been proposed. The main objective of all
these methods is to reduce the total number of observations, while preserving the amount
of information. One such method is D-optimal design.

Let O be the number of observations required for the design. If O = 2N then the
design is full factored, on the other hand, if O = N the design is called saturated design.
The goal of D-optimal design is to maximize the information in the saturated design. Let
M̂ be the matrix defined as:

M̂ = RtR. (2)

Then the matrix M̂ is proportional to the information matrix. In order to maximize the
information, |M̂ | is maximized, which is equivalent to maximizing |R|2 or equivalently
maximizing |R|. Thus, in simple terms, D-optimal design means a saturated design matrix
with the maximum determinant.

These matrices are characterized by order which refers to the total number of factors
(or total number of observations, since O = N ) in an experiment. Moreover, let ε be such
that, N ≡ εmod 4. Based on different values of ε (i.e., ε = 0, . . ., 3), different construc-
tion methods of such matrices are proposed. For example, when ε = 0 these matrices
are similar to Hadamard matrices, and there are numerous results on their construction
methods (Hedayat and Wallis, 1978; Horadam, 2007). On the other hand, when ε �= 0
there is no concrete method to construct all the matrices (Chadjipantelis, 1987). Most
of the methods are heuristic search based methods (Koukouvinos et al., 1997; Djokovic
and Kotsireas, 2011; Kotsireas et al., 2010). In this paper, our focus will be to present the
problem of finding D-optimal matrices as an optimization problem. Before presenting the
approach, we will review some preliminary concepts.

This paper is dedicated to Professor Jonas Mockus 80th year anniversary.

2. Preliminaries

2.1. D-Optimal Design

Let M ∈ �N ×N be the set of square matrices defined as, M = {M : [M ]i,j ∈ { −1, +1}
∀i, j = 1, . . ., N }, where [M ]ij represents the ith row jth column element of matrix M .

DEFINITION 1. A matrix R ∈ M is called D-optimal design of order N , if |R| >=
|M |, ∀M ∈ M .

Some D-optimal designs have a specific structure, one of the widely known structure
is circulant type D-optimal design. The advantage of using circulant type design is re-
duction in the number of search variables in the D-optimal design (i.e., the total number
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of variables is reduced from N2 to N ). However, circulant type reduction can only be
achieved when N is even. Ehlich has proposed the following reduction for the circulant
type D-optimal designs.

DEFINITION 2. A circulant type D-optimal design is a D-optimal design (matrix) R that
can be decomposed into the following block structure

R =
[

A B

−Bt At

]
, (3)

where A, B are circulant commuting n × n matrices, with elements ±1, and satisfy:

AAt + BBt = (2n − 2)In + 2Jn, (4)

where n = N
2 , N ≡ 2 mod 4, and In, Jn ∈ �n×n are identity matrix and unit matrix (or

all-ones matrix) respectively.

COROLLARY 1. Since the matrices A, B are circulant, they can be completely defined
by one single row. Let a and b represent the first rows of A and B respectively. If we take
each element of (4), then we have the following two equations:

(i) For the non-diagonals elements in (4), we have:

n∑
i=1

aiai⊕s +
n∑

i=1

bibi⊕s = 2 ∀s = 1, . . .,

⌊
n

2

⌋
, (5)

where

i ⊕ s =
{

i + s, if i + s � n,

(i + s) mod n, otherwise.
(6)

The left hand side of (5) is also called periodic auto-correlation function.
(ii) In addition to (5), consider the following:(

n∑
i=1

ai

)2

+

(
n∑

i=1

bi

)2

= 2n +
∑
s,i

(aiai⊕s + bibi⊕s) (7)

= 2n + (n − 1)2 = 4n − 2, (8)

where s = 1, . . ., n − 1 and i = 1, . . ., n.

=⇒
(

n∑
i=1

ai

)2

+

(
n∑

i=1

bi

)2

= 4n − 2. (9)

Equation (9) is a Diophantine equation. These two equations (5) and (9) are the
basic equations, that will be used in constructing mathematical formulation.



580 M.N. Syed et al.

In addition to the above definition, there is another famous definition of D-optimal
design that will be presented in the following paragraph. In order to present this definition
of D-optimal design, we will introduce supplementary difference sets.

2.2. Supplementary Difference Sets

Let S1, S2, . . ., Sv be subsets of Zn
1 containing n1, n2, . . ., nv elements respectively. Let

Tk represent the totality of all the differences between elements of Sk with repetition, i.e.,

Tk =
{(

sk
i − sk

j

)
mod n

}
i,j=1,...,nk

, (10)

where sk
i is the ith element of subset Sk. Similarly, let T be the totality of all such Tk’s,

defined as, T = {Tk }k=1,...,v . If each non-zero element in T is repeated a fixed number of
times, say λ, then the sets will be called v − {n, n1, . . ., nv; λ} Supplementary Difference
Sets (SDS).

Let Sa− be the set containing indices of a, defined as:

Sa− = {i: ai = −1, ∀i = 1, . . ., n} (11)

Similarly, let Sb− be the set containing indices of b (analogously defined as Sa−).
Let na− and nb− be the total number of −1’s in a and b respectively.

DEFINITION 3. If Sa− and Sb− form a SDS with parameter, λ defined as:

λ = na− + nb− − 1
2
(n − 1), (12)

such that

(n − 2na−)2 + (n − 2nb−)2 = 4n − 2, (13)

then the circulant matrices formed by a and b correspond to the matrices A and B of the
D-optimal design (as defined in (3)).

It can be easily seen that Definitions 2 and 3 are equivalent. Moreover, SDS can be
obtained using the concept of cyclotomy cosets (Storer, 1967), which will be briefly de-
scribed in the following paragraph. For a detailed discussion refer (Wallis, 1973; Cusick
et al., 2004).

1Or any finite Abelian group of order n.
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2.3. Cyclotomy Cosets

Let F be a Galois field of order q, denoted as GF (q), let x be a primitive element of
field F . Let q = pα, where p is some prime number. Now, let us write q = ef + 1, for
some e, f ∈ Z.

Let G = F \ {0} be an Abelian group defined as G = 〈x〉. The cyclotomic cosets
(Ci) for such F are obtained as:

Ci =
{
xes+i: s = 0, . . ., f − 1

}
∀i = 0, . . ., e − 1. (14)

From the theory of cyclotomy, we know that the cosets (Ci’s) are pairwise disjoint and
their union is G.

Let [Ci] and ci be the incidence matrix and incidence vector of the cyclotomic coset
Ci, defined as:

[Ci]a,b = ci
ab, (15)

ci =
(
ci
11, c

i
12, . . ., c

i
1(f −1)

)t
, (16)

where

ci
ab =

{
1, if zb − za ∈ Ci,

0, otherwise.
(17)

Linear combinations of [Ci]’s are used to obtain the D-optimal design matrices (Hunt
and Wallis, 1972; Djokovic, 1991). However, this method of cyclotomic cosets using
primitive root is not helpful, when n is not prime. In order to obtain D-optimal design
matrices for any number n, Gysin proposed generalized cosets (Gysin and Seberry, 1998;
Gysin, 1997). This relaxes the criterion of n ∈ P to n ∈ Z. Moreover, the criterion of x

being primitive root is relaxed to any number coprime to n.

3. Proposed Mathematical Formulation

From the Definitions 2 and 3, we have the two main equations that define D-optimal
design. These equations are:

Constant periodic autocorrelation constraints:

n∑
i=1

aiai⊕s +
n∑

i=1

bibi⊕s = 2 ∀s = 1, . . .,

⌊
n

2

⌋
. (18)
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Diophantine equations:

n∑
i=1

ai = α1, (19)

n∑
i=1

bi = β1, (20)

such that:

α2
1 + β2

1 = 4n − 2. (21)

Now, for the case when n ≡ 0 mod 3 there are few more constraints called horizon-
tal and vertical constraints proposed in Kotsireas et al. (2009), Kotsireas and Pardalos
(2011):

3∑
j=1

Â2
j +

3∑
j=1

B̂2
j = 8m − 2, (22)

m∑
j=1

Ĉ2
j +

m∑
j=1

D̂2
j = 2n + 4, (23)

where m = n
3 , Âj =

∑m−1
i=0 a3i+j , B̂j =

∑m−1
i=0 b3i+j , Ĉj =

∑3
i=1 aj+(i−1)m

and D̂j =
∑3

i=1 bj+(i−1)m. Thus, a basic mathematical formulation that describes the
D-optimal design will be:

find:

{a,b}
subject to:

(18) − (23)

ai, bi ∈ { −1, +1} ∀i = 1, . . ., n. (24)

The above formulation can be easily transformed into a 0-1 nonlinear (quadratic)
formulation using the following transformation:

Let xi = (ai + 1)/2 and yi = (bi + 1)/2. Equation (18) can be transformed as:

n∑
i=1

xixi⊕s +
n∑

i=1

yiyi⊕s = δ1 ∀s = 1, . . .,

⌊
n

2

⌋
, (25)

where δ1 = n+1−α1−β1
2 . (Note that δ1 = λ as defined in (12), which is the proof of

equivalence of the D-optimal Definitions 2 and 3.)
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Similarly, all the other equations can be transformed into binary equations. However,
the formulation is non-linear (quadratic) in nature. One of the ways to solve such prob-
lems is to linearize the constraints. In the following part of this section, we will present
the transformed linearized constraints:

n∑
i=1

ui,(i⊕s) +
n∑

i=1

vi,(i⊕s) = δ1 ∀s = 1, . . .,

⌊
n

2

⌋
, (26)

n∑
i=1

ui,j � xi, (27)

n∑
i=1

ui,j � xj , (28)

n∑
i=1

ui,j � xi + xj − 1, (29)

n∑
i=1

vi,j � yi, (30)

n∑
i=1

vi,j � yj , (31)

n∑
i=1

vi,j � yi + yj − 1, (32)

n∑
i=1

xi = δ2, (33)

n∑
i=1

yi = δ3, (34)

n∑
i=1

ui,j = (δ2 − 1)xj , (35)

n∑
i=1

vi,j = (δ3 − 1)yj , (36)

2∑
r=0

∑
i,j
i<j

i,j∈rv

u(i⊕r),(j⊕r) +
2∑

r=0

∑
i,j
i<j

i,j∈rv

v(i⊕r),(j⊕r) = δ4, (37)

m−1∑
s=0

∑
i,j
i<j

i,j∈rh

u(i⊕s),(j⊕s) +
m−1∑
s=0

∑
i,j
i<j

i,j∈rh

v(i⊕s),(j⊕s) = δ5, (38)

where rh, rv are the set of indices, defined as rh = {i: i = 1 + rm, r = 0, . . ., 2} and
rv = {i: i = 1+3s, s = 0, . . ., (m − 1)}. Moreover, δ4 = 1

8 (8m − 2 − 6m2 +4(m − 1)
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(δ2 + δ3)), δ5 = 1
8 (2n+4 − 18m − 8(δ2 + δ3)), δ2 = n−α1

2 and δ3 = n−β1
2 . Notice that,

constraints (35), (36) are obtained by simple RLT technique (Sherali and Adams, 1999).
Thus, the new 0-1 linear formulation will be:

find:

{x,y}
subject to:

(26)–(38)

xi, yi ∈ {0, 1} ∀i = 1, . . ., n, (39)

with the above formulation, we can solve any D-optimal design problem. At this point
it is a feasibility problem, and can be easily converted into an optimality problem by
introducing slacks and/or by applying appropriate relaxations. However, as the value of
n increases the mathematical program will be computationally inefficient in solving the
D-optimal design problem. Nevertheless, in order to overcome this difficulty, we can use
the help from the theory of cyclotomy.

4. Proposed Method

In this paper, we propose an extension of generalized cyclotomy cosets in deriving the
D-optimal matrices. Our main hypothesis is that two different coprimes x’s, can be used
to construct the D-optimal design. This extension is a relaxation to the method proposed
by Gysin and Seberry (1998), Gysin(1997). Moreover, the crux of our method is that
we will use the knowledge of extended cyclotomic cosets in the proposed mathematical
formulation. This eliminates the use of random searches in finding the solution to the
D-optimal design matrices.

Let Φ be the matrix defined as:

Φ = [c1, . . ., cp1 ], (40)

where ci is the incidence vector of cyclotomic coset Ci with coprime w1. Similarly, let
Ψ be the matrix defined as:

Ψ = [d1, . . .,dp2 ], (41)

where di is the incidence vector of cyclotomic coset Di with coprime w2.
Now, if the sequences a,b (or the first rows of matrices A&B) can be generated by

the cyclotomic coset Ci and Di, then the following constraints must be satisfied:

x = Φh1, (42)

y = Ψh2, (43)
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for some h1 ∈ {0, 1}p1 and h2 ∈ {0, 1}p2 .
Therefore, the formulation using the generalized cyclotomic coset information will be

written as:

find:

{x,y}
subject to:

(26)–(38)

(42), (43)

xi, yi � 0 ∀i = 1, . . ., n

h1 ∈ {0, 1}p1 ,h2 ∈ {0, 1}p2 . (44)

Notice that, the resulting mathematical formulation has p1 + p2 binary variables only.

5. Results

We have used our proposed approach to find solutions of n = 63 known D-optimal
designs. The results are shown in Fig. 1. It can be seen from the figure that, for w1 = 61
and w2 = 2, two different cosets are generated for two sequences a,b. Obviously, when
w1 = w2 all the results of Gysin proposed in Gysin (1997), Gysin and Seberry (1998) can
be generated. However, our goal was to show that we can relax the restriction of w1 = w2

in finding the D-optimal designs.

n (α1, β1) (w1, w2) (a,b)
63 13 61 [− − ++ − + − − + − + − + − − − − + − − + − − +

− − − − − + + − + − + − − − − + + − + + − − + +
+ − − − − + − − − + + + − − +]

9 2 [− ++++++++ − + − + − + − ++ − − + − − −
+ − − + + − − − + + + + − − − − + − − − − + − −
+ + − − − − + − + − − − − − −]

63 13 61 [+ − + − − − + − + − ++ − − − + − − − − − − − −
+ − + − − − − − + + + − − − + − + + − + + − + +
− − + + − − − − − − + + + − +]

9 2 [− − − + − ++ − − − +++ − − − − + − − + − ++
+ + − + − + − − − + + − − + − − + − − + + + + −
+ − + − − + + − − − + − − − −]

Fig. 1. D-optimal design sequences.
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6. Conclusion

In the present paper, we have proposed a novel method to tackle the D-optimal design
problem. This method is a part of ongoing research, where concepts from mathematical
programming and number theory is being used to find the D-optimal design solutions. To
the best of our knowledge, the proposed approach in this paper has not been found in the
literature. By our proposed method, we have illustrated how the knowledge of optimiza-
tion used in conjunction with the topics of number theory can be used in a methodological
way for constructing the D-optimal designs.
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D-optimalus planavimas: matematinio programavimo taikymai
pasinaudojant ciklotomones ko-aibes

Mujahid N. SYED, Ilias S. KOTSIREAS, Panos M. PARDALOS

Pasiūlytas naujas būdas D-optimaliems planams surasti rtemiantis matematinio programavi-
mo ir skaiči ↪u teorijos koncepcijomis. Atskiru atveju matematiškai suformuluotas D-optimalaus
plano apibrėžimas. Parodyta, kaip pasinaudojant ciklotominėmis ko-aibėmis galima sumažinti bi-
nari ↪u kintam ↪uj ↪u skaiči ↪u. Pasiūlyto metodo taikymas pailiustruotas sprendžiant sunk ↪u (N = 126)
D-planavimo uždavin↪i.


