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Abstract A fast new algorithm is proposed for numeri-
cal computation of (approximate) D-optimal designs. This
cocktail algorithm extends the well-known vertex direction
method (VDM; Fedorov in Theory of Optimal Experiments,
1972) and the multiplicative algorithm (Silvey et al. in
Commun. Stat. Theory Methods 14:1379–1389, 1978), and
shares their simplicity and monotonic convergence proper-
ties. Numerical examples show that the cocktail algorithm
can lead to dramatically improved speed, sometimes by or-
ders of magnitude, relative to either the multiplicative algo-
rithm or the vertex exchange method (a variant of VDM).
Key to the improved speed is a new nearest neighbor ex-
change strategy, which acts locally and complements the
global effect of the multiplicative algorithm. Possible exten-
sions to related problems such as nonparametric maximum
likelihood estimation are mentioned.

Keywords D-optimality · Experimental design · Hybrid
algorithm

1 Introduction

This paper studies numerical methods for computing
D-optimal designs (approximate theory; see Kiefer 1974;
Pukelsheim 1993, and Atkinson et al. 2007). Given a para-
metric model, the problem is to find an allocation of weights
to the design points x1, . . . , xn (which encode the explana-
tory variables at specific values) so that the determinant
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of the Fisher information matrix of the parameter is max-
imized. We focus on the linear model and discuss possible
extensions in Sect. 5. Two strategies for this classical prob-
lem are the vertex direction method (VDM; see Fedorov
1972 and Wynn 1972) and the multiplicative algorithm (Sil-
vey et al. 1978). Both VDM and the multiplicative algorithm
are simple iterative strategies that converge monotonically,
i.e., the determinant criterion never decreases along the iter-
ations. Though easy to implement, VDM or the multiplica-
tive algorithm can be slow, and various strategies have been
devised to remedy this. In particular, Böhning (1986) pro-
poses the vertex exchange method (VEM) as a more effec-
tive variant of VDM. Variants of the multiplicative algorithm
are considered by, for example, Titterington (1978), Mandal
and Torsney (2006), and Dette et al. (2008).

In this work we propose a cocktail algorithm for efficient
computation of D-optimal designs. As the name suggests,
this is based on a combination of several strategies, includ-
ing VDM and the multiplicative algorithm. A new ingredient
that contributes significantly to its effectiveness, however, is
a nearest neighbor exchange strategy, which is intended to
complement the multiplicative algorithm. Two desirable ef-
fects of nearest neighbor exchanges are (i) elimination of
multiple bad support points, and (ii) quick apportionment
between very similar support points. Both compensate for
the potentially slow convergence rate of the multiplicative
algorithm, while the former also reduces its computing time
per iteration. Operationally, the nearest neighbor exchanges
are as simple to implement as VDM, VEM, or the multi-
plicative algorithm. The speedup brought in by such a sim-
ple modification, however, can be dramatic.

In Sect. 2, after a brief review of the D-optimal design
problem on finite design spaces, we describe the multiplica-
tive algorithm, VDM, and VEM. Then we introduce the
nearest neighbor exchange strategy and formally define the
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cocktail algorithm. Section 3 establishes that the cocktail
algorithm is monotonically convergent. Section 4 presents
numerical illustrations with several regression models. The
cocktail algorithm compares favorably with the multiplica-
tive algorithm, VEM, and general optimization methods
such as conjugate gradient and quasi-Newton. Section 5
concludes with a discussion on possible extensions.

2 Algorithms for D-optimal designs

We focus on the important case of a finite design space X =
{x1, . . . , xn} ⊂ Rm, which may be the result of discretiz-
ing an underlying continuous space. An approximate design
(Kiefer 1974) is any probability vector w = (w1, . . . ,wn) ∈
�̄, where �̄ denotes the closure of � = {w : ∑n

i=1 wi =
1,wi > 0}. The value wi represents the proportion of units
an experimenter assigns to xi . Approximate designs allow
wi to be real numbers; some rounding is usually used to
convert w to a design with a finite sample size. Suppose the
response from a unit assigned to xi is modeled as

y|(xi, θ) ∼ N(x�
i θ, σ 2),

where θ (m × 1) is the parameter of interest, and suppose
responses from different units are independent. Then the
Fisher information matrix for θ is proportional to

M(w) =
n∑

i=1

wixix
�
i .

A design w∗ is D-optimal if it maximizes

φ(w) ≡ log detM(w), w ∈ �̄.

Equivalently, a D-optimal design minimizes the determinant
of the variance matrix of the best linear unbiased estimator
of θ . The D-criterion is among the most widely used optimal
design criteria.

We shall describe several iterative algorithms for finding
D-optimal designs. These differ in the choice of the start-
ing value w(0) and the updating rule w(t) → w(t+1). The
following common convergence criterion, however, will be
used throughout. Define

d(i, j,w) ≡ x�
i M−1(w)xj , d(i,w) ≡ d(i, i,w).

Note that d(i,w) = ∂φ(w)/∂wi . Alternatively, d(i,w) −
m is a directional derivative ∂φ((1 − δ)w + δei)/∂δ|δ=0+
where the probability vector ei puts all the mass on xi .

Convergence criterion:

m−1 max
1≤i≤n

d
(
i,w(t)

)
≤ 1 + ε, (1)

where ε is a small positive constant.

This convergence criterion can be motivated from the
general equivalence theorem (Kiefer and Wolfowitz 1960),
part of which states that w is D-optimal if and only if

m−1 max
1≤i≤n

d(i,w) = 1.

The general equivalence theorem thus allows us to check
whether a given weight allocation w = (w1, . . . ,wn) is D-
optimal; it is crucial to both analytic and numerical ap-
proaches to the problem.

2.1 The multiplicative algorithm

The multiplicative algorithm (MA) refers to a well-known
proposal of Silvey et al. (1978).

Algorithm I (The multiplicative algorithm)
Starting value. Choose w(0) ∈ �, i.e., w

(0)
i > 0 for all i.

Updating rule.

w
(t+1)
i = w

(t)
i m−1d

(
i,w(t)

)
, i = 1, . . . , n. (2)

Let us denote the mapping (2) as w(t+1) = MA(w(t)).
Equivalently, (2) can be written as

w
(t+1)
i = w

(t)
i

∂φ(w(t))/∂wi
∑n

j=1 w
(t)
j ∂φ(w(t))/∂wj

, (3)

which highlights
∑

i w
(t+1)
i = 1, that is, w(t+1) is correctly

normalized. Heuristically, (3) simply adjusts the weights w

so that proportionally more weight is put on xi if the gain
in the objective function φ by a slight increase in wi (i.e.,
∂φ(w)/∂wi ) is larger.

Algorithm I has generated considerable interest; see, for
example, Titterington (1976, 1978), Silvey et al. (1978),
Mandal and Torsney (2006), Harman and Pronzato (2007),
and Dette et al. (2008). The latter three papers are concerned
with improving the multiplicative algorithm based on prin-
ciples different from the exchange strategies reported here.
Mandal and Torsney (2006) consider applying a class of
multiplicative algorithms to clusters of design points for bet-
ter efficiency. Harman and Pronzato (2007) study methods to
exclude nonoptimal design points so that the dimension of
the problem is reduced. Dette et al. (2008) propose a modifi-
cation of Algorithm I which takes larger steps at each itera-
tion but still maintains monotonic convergence (see also Yu
2010b). Another relevant work is Yu (2010a), which formu-
lates Algorithm I as an iterative conditional minimization
procedure and is mainly concerned with theoretical proper-
ties. Algorithm I is an important ingredient in our proposed
cocktail algorithm.
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2.2 VDM and VEM

The vertex direction method (VDM) is defined by the fol-
lowing iteration w → wnew .

VDM: Select 1 ≤ imax ≤ n such that

d(imax,w) = max
1≤i≤n

d(i,w), (4)

and set wnew = VDM(w) as

wnew
i =

{
(1 − δ)wi, i 
= imax,

(1 − δ)wi + δ, i = imax,

where δ ∈ [0,1] is such that detM(wnew) is maximized. The
maximizing δ is available in closed form:

δ = d (imax,w)/m − 1

d (imax,w) − 1
.

See Fedorov (1972) for the underlying rationale. Plainly, we
move w in the direction of a design point toward which the
directional derivative of φ is the greatest. VDM is a steepest
ascent strategy in this sense. With a slight abuse of notation,
we shall occasionally write wnew = VDM(imax,w) instead
of wnew = VDM(w) to emphasize the index imax.

Closely related to VDM is a general exchange step
w → wnew for any two design points xj , xk, j 
= k.

VE(j,k): Set wnew as

wnew
i =

⎧
⎪⎨

⎪⎩

wi, i /∈ {j, k},
wi − δ, i = j,

wi + δ, i = k,

where δ ∈ [−wk,wj ] is chosen such that detM(wnew) is
maximized. Following Böhning (1986), it can be shown that
the maximizing δ is

δ = min
{
wj ,max{−wk, δ

∗(j, k)}} ,

where

δ∗(j, k) = d(k,w) − d(j,w)

2(d(j,w)d(k,w) − d2(j, k,w))
. (5)

Plainly, VE(j, k) performs an optimal exchange of mass
between xj and xk . The exchange is optimal in the sense of
maximal increase in the determinant of the information ma-
trix. When δ = wj , all the mass assigned to xj (which has a
smaller d(j,w), indicating that it should carry less weight)
is transferred to xk ; similarly when δ = −wk . We shall de-
note this mapping w → wnew by wnew = VE(j, k,w).

Remark The denominator in (5) is nonnegative by Cauchy-
Schwarz. It becomes zero only when one of xj , xk is a con-
stant multiple of the other, in which case we define δ∗(j, k)

as +∞ or −∞ according as d(k,w) > d(j,w) or d(k,w) <

d(j,w). If xj + xk = 0, then both the numerator and the de-
nominator in (5) become zero, and detM(wnew) is constant
as a function of δ ∈ [−wk,wj ]; we set δ∗(j, k) as an arbi-
trary constant (say zero) in this case. These contingencies
rarely arise in practice.

The vertex exchange method (VEM) of Böhning (1986)
performs an optimal exchange between two special design
points.

Algorithm II (The vertex exchange method)
Starting value. Choose w(0) ∈ �̄ such that detM(w(0))

> 0.
Updating rule. Select imin and imax such that

d
(
imin,w

(t)
)

= min
{
d(i,w(t)) : w

(t)
i > 0

}
, (6)

d
(
imax,w

(t)
)

= max
1≤i≤n

d
(
i,w(t)

)
. (7)

Set

w(t+1) = VE
(
imax, imin,w

(t)
)

.

That is, VEM finds imin (resp. imax) such that d(i,w) is
minimized (resp. maximized), and then performs an opti-
mal transfer of mass from ximin to ximax (it is also required
that imin have nonzero mass to supply to imax). Hence we
may view VEM as a steepest ascent strategy in its choice of
the two indices imin and imax. We shall numerically compare
VEM with our proposed algorithm in Sect. 4.

2.3 Nearest neighbor exchanges

A key ingredient in our proposed algorithm is a nearest
neighbor exchange strategy, which can be motivated as fol-
lows. Intuitively, Algorithm I (the multiplicative algorithm)
may have difficulty apportioning the mass between adjacent
design points. Consider two design points xi and xj that are
close together as measured by some distance metric in Rm.
Then d(i,w) ≈ d(j,w), and according to (2), we have

w
(t+1)
i

w
(t+1)
j

= w
(t)
i

w
(t)
j

d(i,w(t))

d(j,w(t))
≈ w

(t)
i

w
(t)
j

.

That is, the relative proportions between xi and xj barely
change from iteration to iteration. Another way of putting it
is that, if xi is a support point of the optimal design, then it
would take many iterations before Algorithm I can signifi-
cantly reduce the mass on those xj which are adjacent to xi

but are not support points.
A simple remedy is to add nearest neighbor exchanges

(NNEs) to Algorithm I. NNEs are easy to define when there
exists a natural ordering in the design space. An example is

X =
{
xi = (1, f (i/n))�, i = 1, . . . , n

}
, (8)
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where f is a continuous function on [0,1] representing a
single quantitative predictor. In such a case xi and xj are
close whenever |i − j | is small. Given the current iter-
ate w(t), let i1 < · · · < ip+1 denote the indices of the sup-
port points of w(t). We may consider performing vertex ex-
changes between xij and xij+1 for j = 1, . . . , p in turn, i.e.,

w(t+j/p) = VE
(
ij , ij+1,w

(t+(j−1)/p)
)

, j = 1, . . . , p,

where fractional superscripts denote intermediate output.
We refer to the mapping w(t) → w(t+1), which consists of
p sub-steps, as the set of nearest neighbor exchanges. Note
that non-support points of w(t) are excluded, i.e., xij+1 is a
“nearest neighbor” of xij in the support of w(t) only.

This intuitively appealing prescription depends on a nat-
ural ordering of xi . Sometimes there is no single natural or-
dering, e.g., when the design space encodes two or more
factors. Selecting an ordering that best captures the neigh-
borhood structure is therefore an interesting problem. In our
numerical examples (Sect. 4), we explore another approach,
which dynamically determines the nearest neighbors at each
iteration. Specifically, let ‖xj − xk‖ denote the distance be-
tween design points xj and xk , as measured by the L1 norm.
The choice of the metric does not make much difference in
our experience.

NNE: Let i1, . . . , ip+1 be the elements of {i : w
(t)
i > 0}

where p+1 is the number of support points of w(t). For each
ij , j = 1, . . . , p, let i∗j be any index i ∈ {ij+1, . . . , ip+1}
such that ‖xi −xij ‖ is minimized. Perform vertex exchanges
between xij and xi∗j for j = 1, . . . , p in turn, i.e.,

w(t+j/p) = VE
(
ij , i

∗
j ,w(t+(j−1)/p)

)
.

Again, non-support points of w(t) are excluded. We shall
denote the composite mapping w(t) → w(t+1) as w(t+1) =
NNE(w(t)).

Remark The index i∗j is defined as a minimizer of
‖xi − xij ‖ over i ∈ {ij+1, . . . , ip+1}, rather than over i ∈
{i1, . . . , ij−1, ij+1, . . . , ip+1}, to avoid possible redundan-
cies. If we adopt the latter definition, then for two points
that are nearest neighbors of each other, we would have two
exchange steps in one iteration between these same points.

2.4 The cocktail algorithm

NNE has a serious problem as a stand-alone algorithm. By
definition, we have w

(t+1)
i = 0 once w

(t)
i = 0, i.e., the point

xi remains outside of the support set. Algorithm I, which
suffers from the same problem, circumvents it by assigning
positive initial mass to each design point. NNE may result
in w

(t+1)
i = 0 even if w

(t)
i > 0. The problem persists when

we combine NNE and Algorithm I.

An easy solution is to add in the updating rule of VDM.
By definition, a VDM step can put some mass on a design
point that was assigned zero mass previously. We define the
cocktail algorithm as a combination of VDM, NNE, and Al-
gorithm I.

Algorithm III (The cocktail algorithm)
Starting value. Choose w(0) ∈ �̄ such that detM(w(0))

> 0.
Updating rule. Perform an iteration of VDM, the nearest

neighbor exchanges, and then an iteration of Algorithm I.
That is, let

w(t+1/3) = VDM(w(t)), w(t+2/3) = NNE(w(t+1/3)),

w(t+1) = MA(w(t+2/3)),
(9)

where again fractional superscripts indicate intermediate
output.

An added benefit of (9) is that NNE helps keep the num-
ber of support points of w(t+2/3) small, so that each iteration
of w(t+1) = MA(w(t+2/3)) costs little time, as we need not
update the coordinates of w(t+2/3) that are zero at the multi-
plicative step.

We may consider using a VEM step instead of the VDM
step above. The resulting algorithm is similarly effective
(numerical comparison omitted), although the convergence
proof of Sect. 3 does not seem to extend easily to this alter-
native cocktail algorithm.

3 Monotonic convergence

Several algorithms considered here have an appealing mono-
tonic convergence property, i.e., as t ↑ ∞,detM(w(t)) in-
creases to supw∈� detM(w). Monotonic convergence of
Algorithm I is well-established (see Titterington 1976;
Pázman 1986; Dette et al. 2008; Yu 2010a). Böhning (1986)
has given a proof of the monotonic convergence of Algo-
rithm II, i.e., VEM. Theoretical results concerning algo-
rithms related to VEM and VDM can be found in Atwood
(1976) and Wu (1978), for example.

The monotonicity of Algorithm III is immediate since
VDM, the nearest neighbor exchanges, and Algorithm I are
all monotonic. That Algorithm III converges is a conse-
quence of this monotonicity and the global convergence na-
ture of VDM.

Theorem 1 Assume the n × m matrix X = (x1, . . . , xn)
�

has full rank m. Then Algorithm III converges monotoni-
cally starting from any w(0) ∈ �+ where �+ = {w ∈ �̄ :
detM(w) > 0}.

Proof See the Appendix. �
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4 Numerical examples

We illustrate the effectiveness of the cocktail algorithm
by comparing it with Algorithms I and II for a few re-
gression models. VDM by itself is very slow and is ex-
cluded from the comparisons. All algorithms are imple-
mented in R, and the source code is available upon request
from the author. The main program contains fewer than
150 lines of code, showing that Algorithms I–III are indeed
easy to implement. We also consider general-purpose algo-
rithms such as Nelder-Mead, conjugate gradient (CG), and
quasi-Newton (specifically, the Broyden-Fletcher-Goldfarb-
Shanno, or BFGS method). These are known to be power-
ful for solving various high-dimensional optimization prob-
lems. However, they are not the most effective for the D-
optimal design problem considered here.

For Algorithms I–III, both the number of iterations and
the computer time (as measured by the R function sys-
tem.time()) are reported. An iteration of the cocktail algo-
rithm is counted as one iteration each of VDM, NNE and
MA. It may seem that the iteration count comparison would
favor the cocktail algorithm unfairly. Careful inspection,
however, shows that the computing time per iteration for the
cocktail algorithm is spent mainly by the VDM step, be-
cause the NNE and MA steps only work with design points
that receive positive mass in the current iteration, and this
set of support points is typically much fewer than n. Conse-
quently the computing costs per iteration are often compara-
ble for VEM (i.e., Algorithm II) and the cocktail algorithm.
At any rate, the reader is reminded to focus on the comput-
ing time comparisons.

For VEM and the cocktail algorithm, the starting design
w(0) is the uniform design over a set of approximately 2m

randomly sampled support points. This is intended to ensure
that detM(w(0)) > 0 while keeping the number of support
points small. VEM tends to take more iterations if the initial
design has more support points, since it can remove at most
one bad support point per iteration. It is observed that the
cocktail algorithm is relatively insensitive to the initial num-
ber of support points. The multiplicative algorithm is always
started at the uniform design over all n points, as it cannot

afford to exclude any design point a priori (see, however,
Harman and Pronzato 2007).

We consider the design spaces

X1(n) = {
xi = (e−si , sie

−si , e−2si , sie
−2si )�,1 ≤ i ≤ n

}
,

X2(n) = {
xi = (1, si , s2

i , s3
i , s4

i )�,1 ≤ i ≤ n
}
,

X3(n) = {
xi = (e−si , sie

−si , e−2si , sie
−2si , e−3si , sie

−3si ,

e−4si , sie
−4si )�,1 ≤ i ≤ n

}
,

where si = 3i/n, i = 1, . . . , n. The space X1(n) represents
the linearization of a compartmental model (see, e.g., Atkin-
son et al. 1993, and Dette et al. 2006)

y|(s, θ) ∼ θ1e
−θ2s + θ3e

−θ4s + N(0, σ 2)

at θ2 = 1 and θ4 = 2 (the underlying design variable is s ∈
[0,3] on a grid of n evenly spaced points). The space X3(n)

is similar to X1(n) but has a parameter of higher dimen-
sion. We include polynomial regression as represented by
X2(n), although analytic results are well known in this case
(see, e.g., Pukelsheim 1993). For si = i/k, ri = 2i/k − 1,
i = 1, . . . , k, we also consider

X4(k
2) = {

x(i−1)k+j = (1, ri , r2
i , sj , risj )

�,1 ≤ i, j ≤ k
}
.

This last example represents a response surface with a non-
linear effect and an interaction.

Each algorithm is stopped when either the convergence
criterion (1) is met with ε = 10−6, or the number of itera-
tions exceeds 10,000. For large design spaces, some of the
experiments are aborted because the algorithm under con-
sideration takes too much time, especially compared with
the cocktail algorithm. We have also considered less strin-
gent convergence criteria such as ε = 10−5, and the results
(omitted) are similar.

As is evident from Tables 1–4, the cocktail algorithm is
a substantial improvement over both the multiplicative al-
gorithm and VEM. Because of the random starting values,
results for VEM and the cocktail algorithm vary from repli-
cation to replication; the qualitative comparison, however,

Table 1 Computing time (in seconds) and number of iterations
(in parentheses) for the multiplicative algorithm (MA), the vertex
exchange method (VEM), and the cocktail algorithm, for design

space X1(n). Also included is the computing time for conjugate gra-
dient (CG) and quasi-Newton (BFGS) methods

n = 20 n = 50 n = 100 n = 200 n = 500

CG 14.5 111.3 1328.4

BFGS 8.82 39.8 293.4

MA 14.3 (4239) 63.7 (8015) 147+ (10000+) 307+ (10000+) 762+ (10000+)

VEM 0.17 (58) 1.43 (241) 23.1 (2113) 206+ (10000+) 555+ (10000+)

Cocktail 0.07 (8) 0.11 (9) 0.25 (13) 0.36 (13) 0.96 (16)
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Table 2 Computing time (in seconds) and number of iterations
(in parentheses) for design space X2(n)

n = 20 n = 50 n = 100 n = 200

CG 4.61 164.5 220.3

BFGS 1.83 14.7 116.1

MA 3.38 (947) 10.1 (1292) 76.3 (4105) 427+ (10000+)

VEM 6.32 (1371) 30.3 (4747) 4.04 (302) 252+ (10000+)

Cocktail 0.31 (24) 0.65 (25) 0.21 (10) 0.63 (21)

Table 3 Computing time (in seconds) and number of iterations
(in parentheses) for design space X3(n)

n = 20 n = 50 n = 100 n = 200

MA 3.94 (609) 24.2 (2371) 44.7 (3016) 382+ (10000+)

VEM 0.80 (182) 10.7 (1291) 37.6 (3242) 127.2 (5324)

Cocktail 0.72 (22) 1.56 (32) 1.34 (42) 1.21 (29)

Table 4 Computing time (in seconds) and number of iterations
(in parentheses) for design space X4(n)

n = 202 n = 502 n = 1002 n = 2002

CG 1545.9

BFGS 657.3

MA 25.2 (430) 993.8 (2302)

VEM 8.01 (159) 195.8 (702) 94.6 (98)

Cocktail 0.63 (13) 3.94 (14) 17.6 (14) 74.1 (16)

remains the same. The tables report the median computing
time (iteration count) over three replications for VEM and
the cocktail algorithm. For X1(n) and X3(n), VEM is much
faster than the multiplicative algorithm; the situation is less
clear for X2(n). The cocktail algorithm improves upon the
better of the two, often by large factors. MA and VEM tend
to take more iterations for larger n, i.e., when the design
space becomes finer, although peculiar exceptions do exist
(e.g., VEM in Table 2). The cocktail algorithm seems insen-
sitive to n concerning the number of iterations, at least for
the design spaces considered.

We also consider Nelder-Mead, conjugate gradient (CG),
and quasi-Newton algorithms, which are readily avail-
able via the R function optim(). Quasi-Newton here refers
to the popular Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method, while conjugate gradient uses Fletcher-Reeves up-
dates. These are tested on the same design spaces and
compared with Algorithms I–III. To make the optimiza-
tion problem unconstrained, we use the substitution wi =
z2
i /

∑n
j=1 z2

j , i = 1, . . . , n, and operate on z rather than w

(see Atkinson et al. 2007). The starting value is zi ≡ 1. We
use numerical derivatives for BFGS and conjugate gradi-
ent. It should be noted that these general purpose algorithms

are not guaranteed to find a global maximum. In several
cases, despite extensive tuning, we have been unable to ob-
tain an output that satisfies our convergence criterion (1)
with ε = 10−6. Nelder-Mead, for example, often stops at
sub-optimal solutions; so do BFGS and conjugate gradient
for X3(n). In other cases, and with moderate n, we record
the computing time of BFGS and conjugate gradient in Ta-
bles 1, 2 and 4. BFGS seems faster than conjugate gradient
in these cases and is sometimes competitive with the better
of VEM and MA (e.g., for X2(20) or X2(50)). However, it
definitely takes more time than the cocktail algorithm. We
note that one must be cautious when making such quanti-
tative comparisons between algorithms with very different
structures, because details of implementation may affect the
relative performance considerably. Nevertheless, this lim-
ited experience makes us more confident in recommending
the cocktail algorithm, which is simple and fast, and has a
global convergence guarantee.

5 Discussion

Although we focus on D-optimal designs for linear models,
the basic idea is not limited to either D-optimality or linear
models. The multiplicative algorithm can be more general
and is known to be monotonic for a large class of optimality
criteria (Silvey et al. 1978; Yu 2010a). For vertex exchange
strategies with optimality criteria other than D-optimality,
we may not have a closed form solution for the maximizing
step-length similar to (5). But such one-dimensional maxi-
mization problems presumably can be handled by standard
tools such as Newton’s method. The idea of nearest neighbor
exchanges is generic. Overall, although the implementation
may not be as simple, there is no conceptual problem ex-
tending the cocktail algorithm to other optimality criteria or
to nonlinear problems.

The optimal design problem is closely related to several
other statistical problems (Haines 1998) such as mixture es-
timation (Lindsay 1983) and nonparametric estimation with
censored data. There exists a large literature on efficient
computation of the nonparametric MLE of the distribution
function with censored data; see, for example, Wellner and
Zhan (1997), Jongbloed (1998) and Wang (2008). The cock-
tail algorithm can be extended to this case and is quite com-
petitive; see Yu (2010c).
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Appendix: Proof of Theorem 1

Let w(t) be a sequence generated by Algorithm III, and
let w(tj ) be a convergent subsequence tending to some w∗.
Monotonicity and w(0) ∈ �+ show that w(t) ∈ �+ for all t .
Hence w∗ ∈ �+. Let w(t+1/3) be defined as in (9). By pass-
ing through another subsequence if necessary, we may as-
sume w(tj +1/3) converges to some w̃ ∈ �+. Moreover, we
may assume that the VDM steps

w(tj +1/3) = VDM(w(tj ))

are all performed with the same index k = imax as in (4),
since at least one of the n indices will occur infinitely often.

The mapping wnew = VDM(k,w) is continuous on

{w ∈ �+ : d(k,w) ≥ d(i,w),1 ≤ i ≤ n}.
By letting j → ∞ in w(tj +1/3) = VDM(w(tj )), we get w̃ =
VDM(k,w∗). Because each step of VDM, NNE, or MA is
monotonic, and tj + 1 ≤ tj+1, we have

detM(w(tj )) ≤ detM(w(tj +1/3)) ≤ detM(w(tj +1))

≤ detM(w(tj+1)).

Letting j → ∞ yields detM(w∗) = detM(w̃). However,
inspection shows that the mapping VDM(k,w) strictly
increases detM(w), unless d(k,w) = m, in which case
w = VDM(k,w). Hence w̃ = w∗ and d(k,w∗) = m. Since
k = imax, the general equivalence theorem implies that w∗
is a global maximizer of detM(w) on �+. That is, all limit
points of w(t) are D-optimal.
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