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Abstract

This paper considers the design performance of orthogonal arrays in which one or more runs are
missing at random. We focus on orthogonal arrays of index unity and on the 18 run ternary arrays.
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1 Introduction

Orthogonal arrays (OAs) are a class of fractional factorial designs (FFDs), and are optimal according to a
range of optimality criteria. We investigate whether all OAs with the same parameters are equally good if
there is a possibility that one or more runs will be missing at random from the OA. We summarise earlier
work on this problem below.

A design which performs well in the absence of one or more runs is said to be robust to missing runs.
Herzberg (1982) gives Box (1953) the credit for the introduction of the term robust generally into statistics.
In the context of designs she says that robustness can focus either on investigating how well a design optimal
under one criterion performs under another, or on the construction of designs which guard against particular
short-comings, say the consequences of missing runs when fitting a model. It is this second context which
we will investigate in this paper.

Ghosh (1982b) developed four equivalent conditions, all based on properties of the model matrix, which
allow one to determine whether or not a design would be robust to the loss of any t runs. Let tmax denote
the largest t such that any t runs can be missing but the model is still estimable while there is at least one set
of t+ 1 runs for which the model is not estimable. The ideas in Ghosh (1982b) are extended in MacEachern
et al. (1995) to give an upper bound for tmax and this bound is easily calculated from the model matrix.
Ghosh (1982a) defined the information contained in run a of a fractional factorial design to be a′(X ′X)−1a,
where X is the model matrix for the model of interest. He shows that in a 2m factorial design all runs with
the same Hamming weight (the number of non-zero entries) contain the same amount of information, for
instance. The information that Ghosh associates with each run is the leverage of that run in a regression
setting.

Tanco et al. (2013) considered the robustness performance for estimating the full second-order model when
runs are dropped from the 9 designs with m ternary factors that they have chosen to focus on. These
designs have been specifically developed for estimating the second-order model and vary greatly in terms of
robustness (summarised in their Table 2) and also in terms of the number of runs, N , required (for example,
when m = 3, N varies from 14 to 18; when m = 7, N varies from 40 to 82).

Akhtar and Prescott (1986) developed a minimax loss criterion (a criterion which minimises the maximum
loss), based on D-efficiency, in the context of central composite designs. This work was adapted and extended
by Ahmad and Gilmour (2010) in the context of subset designs. In the ternary context, for example, subset
designs (Gilmour (2006)) have all runs with Hamming weight r appearing equally often. Ahmad et al. (2012)
construct augmented pairs minimax loss designs from Plackett-Burman plans where the design construction
is based on the minimax loss criterion given by Akhtar and Prescott (1986).
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da Silva a et al. (2016) use a compound criterion to decide which designs are robust to missing runs when
fitting a second order model. They discuss the consequences of missing runs which contain high leverage,
but also observe that designs which only contain points of low leverage “will perform poorly in terms of
estimation precision”. They therefore extend their compound measure to include an indicator of “leverage
uniformity”. They develop an exchange algorithm to construct designs which satisfy the compound criteria
that they have developed.

In this paper we investigate design performance when a small subset of runs is missing from an orthogonal
array, and we want to estimate a main effects only model. A run may be missing because no response is
observed for that run, or the response observed may be considered suspect in some sense (e.g., be considered
to be an outlier) due to unforeseen circumstances, or the results may be being collected sequentially and
time delays mean that not all runs can be completed. D-optimality and model estimation performance is
closely linked to the number of positions in which the missing runs have different levels, that is, the Hamming
distance properties of the missing runs, just as it is when runs are adjoined (Bird and Street (2016)). Thus
we will first focus on these distance properties for runs within OAs of index unity, extending the results
in Srivastava et al. (1991). Then we investigate all 18 run combinatorially non-isomorphic ternary OAs of
strength 2 and determine which are the best to use when up to 4 runs might be lost during the course of
the experiment. We also determine tmax for these designs.

In the following section we define the notation that we will use in this paper. In Section 3 we define the
matrix to be optimised and we then give some theoretical results for D-optimal OA minus t runs designs. In
Section 4 we consider missing runs in OAs of index unity, and in Section 5 we determine when the theoretical
results can be applied in practice in the context of 18 run ternary OAs of strength 2 missing t run designs.
We finish with a brief discussion in Section 6.

2 Notation

An asymmetric orthogonal array OA[N ; s1, s2, . . . , sm;S] is a N × k array with elements from Zsi =
{0, 1, . . . , si − 1} in column i such that any N × S subarray has each S-tuple appearing as a row an equal
number of times. Such an array is said to have strength S. In this paper we assume that there are k distinct
si, that there are mi factors with si levels, 1 ≤ i ≤ k so m =

∑k
i=1mi and that all OAs are of strength 2.

We denote an OA with N runs by writing OA[N, sm1
1 × sm2

2 × . . .× smk

k ]. When k = 1 and N = s2 the OA
is said to be of index unity.

We will let ri, 1 ≤ i ≤ t, be the runs that are missing by chance from the OA.

We let Is be the identity matrix of order s and 1s be the s× 1 vector with all elements equal to 1. Since we
want to estimate the main effects only model, we replace each level of each factor with appropriate entries
from a set of orthogonal polynomials, as this will be appropriate for quantitative factors. The results on
optimality that we obtain are independent of the representation that we use, and so for qualitative factors
other sets of orthogonal contrasts, which may be more natural, can be used instead. (In Section 5 we only
discuss qualitative factors.) For the orthogonal polynomial coding we follow the approach of Chatzopoulos
et al. (2011) and define Ps to be a contrast matrix of order (s − 1) × s that satisfies PsP

′
s = sIs−1 and

Ps1s = 0. Then for each run r of the complete factorial we associate a row vector with first entry 1 and
in which each level of each factor in r is replaced by the transpose of the corresponding column of the
matrix Psi . We denote this extended row vector by q and we observe that each extended row vector has
α = 1 +

∑
i(si − 1)mi entries in it. The following example illustrates these ideas.

Example 2.1 Let s1 = 3 and m = m1 = 4. Then P3 =
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2
) which has 1+(3-1)4=9=α entries

in it.

We use Q for the N ×α matrix of the extended row vectors associated with the runs in the orthogonal array.
So Q is the model matrix for the main effects only model. Thus M = Q′Q is the information matrix of the
orthogonal array and hence we know that M = NIα.
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3 The information matrix of the altered design

Suppose that t runs are missing from an OA[N, sm1
1 × sm2

2 × . . .× smk

k ]. Then we can partition the runs of Q

as

[
QB
B

]
where B is a t×α matrix that contains the t row vectors associated with the missing runs. Thus

we can write the information matrix as Q′Q = Q′BQB +B′B. Since Q′Q = NIα, the information matrix for
the design with t runs missing is MB = Q′BQB = NIα −B′B.

As we are interested in D-optimality, we seek to maximise the determinant of MB , |MB |. Applying Theorem
18.1.1 from Harville (1997) we have that

|MB | = |NIα|| − It||(−It)−1 +B (NIα)
−1
B′|

= (−1)tNα−t|BB′ −NIt|.
(3.1)

As (−1)tNα−t is constant for all designs in the class of competing designs, that is, all OA[N, sm1
1 × sm2

2 ×
. . .× smk

k ] with t runs missing, we will use ΩB to denote BB′ −NIt, the matrix whose determinant is to be
maximised. As it is the inner product of the pairs of missing rows of Q that gives rise to the off-diagonal
entries of ΩB , we now focus on these values.

When t = 1, |MB | = −Nα−1(α − N) = Nα − αNα−1, and so the absence of any single run of the design,
equivalently row of Q, results in designs which are equally good. This has been shown before, and so, at least
in terms of D-optimality, the initial OA is immaterial in the case of a single missing run. For larger values
of t, design performance can be different for different OAs with the same parameter values. We discuss this
in detail in Sections 4 and 5.

3.1 A bound on the determinant

Let bx be the xth row in B, the matrix of the row vectors of the missing runs. As bx.b
′
x = α for all runs in

the complete factorial, all the diagonal entries of ΩB are α−N , and hence the trace of ΩB is (α−N)t. Let
(λ1, λ2, . . . , λt) be the eigenvalues of ΩB . Then we have

∑t
i=1 λi = (α−N)t. Using the arithmetic-geometric

mean inequality we see that
∏t
i=1 λi ≤ (α−N)t and hence |ΩB | ≤ (α−N)t. This upper bound on |ΩB | is

realised when all the eigenvalues are the same. Thus the design with t runs missing is D-optimal if the inner
product of the row vectors associated with any pair of missing runs is 0.

We will begin by considering the case when t = 2 runs are missing from the OA. Let these two runs be r1

and r2 with corresponding rows in B of b1 and b2. Rather than calculate the Hamming distance between r1

and r2, we instead calculate the Hamming distance within each of the sets of mi factors with the the same
value of si. Hence we let di be the Hamming distance between the mi factors with si levels in r1 and r2,
1 ≤ i ≤ k, and we write dH(r1, r2) = (d1, d2, . . . , dk). Then, as in Equation (3.1) of Bird and Street (2016),

b1.b
′
2 = 1+

∑k
i=1 [(si − 1)mi − sidi] and so |ΩB | will equal its theoretical upper bound for any set of di such

that b1.b
′
2 is equal to 0. When no set of di exists which satisfies this condition, |ΩB | will be maximised by

minimising abs(b1.b
′
2), the absolute value of b1.b

′
2.

In the following section, we consider what happens when sets of t runs are missing from an OA[s2, sm], as
these arrays have no repeated pairs of levels between any pairs of factors, and this allows us to say a lot
about the possible form of BB′. In Section 5, we study all OA[18, 3m], to determine the best realisable
values of abs(b1.b

′
2) for each OA, and the 18 run OAs give an idea of the wide range of behaviour that can

be seen.

4 Missing runs from an OA[s2, sm]

In an OA[s2, sm] any two runs are of Hamming distance m or m− 1, since any ordered pair of levels appears
exactly once when any sub-array of two distinct columns is considered. The number of runs at Hamming
distance m − 1 from any given run is m(s − 1) and hence the number of runs at Hamming distance m is
s2 − 1−m(s− 1) = (s− 1)(s+ 1−m). Thus when m = s+ 1 all pairs are at Hamming distance m− 1 = s.
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If one run is missing from an OA[s2, sm] then the resulting array has an information matrix with determinant
equal to (−1)Nα−1(α−N) = s2(α−1)(s2−α) and so all designs perform equally well according to the criterion
of D-optimality, as we saw above. Of course if m = s+ 1, then α = s2 and the model cannot be estimated
if any runs are missing from an OA[s2, sm].

Consider what happens when t = 2 runs are missing from an OA[s2, sm]. We denote the missing runs by rx
and ry, with bx and by as the corresponding rows of B. We know that

|MB | = (−1)2s2(α−2)|BB′ − s2I2| = s2(α−2)((α− s2)2 − (byb
′
x)2),

and so the design performance depends on abs(byb′x). The only two possibilities for abs(byb′x) are m − 1,
when dH(rx, ry) = m, and abs(s + 1−m), when dH(rx, ry) = m− 1. Thus we have that

|MB | =
{
s2(α−2)s(m− s)(2 + sm− s2 − 2m) when dH(rx, ry) = m,
s2(α−2)s(m− s− 1)(2 + sm+ s− s2 − 2m) when dH(rx, ry) = m− 1.

Comparing the determinants, we see that it is better if a pair of runs with Hamming distance m − 1 is
missing when 2m > s+ 2, and a pair of runs at Hamming distance m when 2m < s+ 2. When 2m = s+ 2
it makes no difference to the determinant of the information matrix which pair of runs are missing.

When three runs are missing, again it is only the actual distances that matter, since the location of the
off-diagonal entries in a matrix of order 3 is immaterial when evaluating the deteminant. When four or more
runs are missing then the structure of the runs, as well as the actual Hamming distances, both impact on
the determinant of the design. For instance, consider the OA[16,43] given in Table 4.1. The runs 1, 2, 10
and 16 have pairwise Hamming distances {2, 2, 2, 3, 3, 3}, the same as the runs 1, 3, 9 and 16, yet if the first
set of four runs are missing then the main effects model can still be estimated but if the second set of four
runs are missing then the main effects model can not be estimated. For the OA in Table 4.1, the omission of
any set of three runs results in a set of 13 runs from which the main effects model can be estimated. If four
runs are missing then 60 of these sets result in a set of 12 runs from which the model can not be estimated,
and hence for this design tmax = 3. It is interesting that there are also 80 sets of four runs which if missing
result in sets of 12 runs which are equi-information. One such set is runs 1, 2, 9 and 10.

Table 4.1: Transpose of OA[16, 43]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 1 0 3 2 2 3 1 0 3 2 0 1

The results in this section also apply directly to designs in which the levels of one, or more, factors are
replaced by the rows of a saturated, symmetric OA (e.g., a factor with 4 levels is replaced by the runs of
an OA[4, 23] resulting in an OA[16, 23 × 4m−1]). If, however, any of the factors with the smaller number of
levels are removed from the OA then the number of possibilities for the Hamming distances, and hence for
the values of |MB |, increase.

5 Symmetric OAs of larger index

When an OA does not have index unity then there can be a wide range of Hamming distances between the
runs of the OA, from 0, if there are repeated runs, to m, if there are no levels in common. As we have seen
above, the properties of an OA with missing runs depends on the Hamming distance between the missing
runs. Thus we need to know the distance structure of the runs within an OA to be able to make comments
about its performance when runs are missing. This structure does not depend only on the parameters of the
OA, and so we need to identify all non-isomorphic designs for a given set of parameter values, and determine
the distance structure of the runs within each isomorphism class, before we can make recommendations
about the best design to use. Hence in this section we will assume that all factors are qualitative so that we
can limit ourselves to combinatorial isomorphism, where the designs have been completely enumerated for
the design parameters that we are interested in, rather than geometric isomorphism.
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There are 23,275 different parameter values for OAs with at most 100 runs (Bird and Street (2016)) and
many of these have a very large number of isomorphism classes. For instance there are 1,470,157 classes of
OA[24,28] ( Eendebak and Schoen (2010)). Thus we have chosen to illustrate the issues involved by focusing
on the symmetric 18 run ternary OAs. These designs are much used in practice as they are fairly small
designs that allow factors to have more than two levels. Schoen (2009) has enumerated all combinatorially
non-isomorphic OA[18, 3m], and found that there are 4, 12, 10, 8 and 3 isomorphism classes for m = 3, 4,
5, 6 and 7, respectively. We will investigate all OA[18, 3m], 3 ≤ m ≤ 7, for their performance when runs are
missing. The designs can be found in Bird and Street (2017).

We have enumerated the Hamming distance between all
(

18
2

)
= 153 pairs of runs for a representative design

from each class. The distributions of these Hamming distances for m = 3 and m = 4, along with the
associated b1.b

′
2, are given in Tables 5.1 and 5.2 respectively. Analogous results for m = 5, 6 and 7 can be

found in Tables 5.3, 5.4 and 5.5. The D-efficiency of each OA with two runs missing is given in the column
headed EffB . The D-efficiency of each OA is calculated relative to the largest determinant that could be
realised if the pair of missing runs had inner product 0. This is called the theoretical bound.

Table 5.1: Distribution of Hamming distances between all pairs of runs for each of the 4 OA[18, 33] combi-
natorial isomorphism classes

Hamming Count by Class

b1.b′
2 Distance EffB

† 1 2 3 4
1 2 99.88% 90 84 81 108
−2 3 99.52% 42 44 45 36

4 1 97.99% 18 24 27 −
7 0 92.85% 3 1 − 9

†Efficiency of OA minus two run design compared to theoretical bound

Table 5.2: Distribution of Hamming distances between all pairs of runs for each of the 12 OA[18, 34] combi-
natorial isomorphism classes

Hamming Count by Class

b1.b′
2 Distance EffB

† 1 2 3 4 5 6
0 3 100% 92 104 99 87 81 114
3 2 98.70% 36 24 27 39 45 18
−3 4 98.70% 20 16 18 22 24 12

6 1 93.68% 4 8 9 5 3 6
9 0 NA§ 1 1 − − − 3

Hamming Count by Class

b1.b′
2 Distance EffB

† 7 8 9 10 11 12
0 3 100% 80 81 78 99 72 144
3 2 98.70% 48 45 48 27 54 −
−3 4 98.70% 24 24 25 18 27 −

6 1 93.68% − 3 2 9 − −
9 0 NA§ 1 − − − − 9

†Efficiency of OA minus two run design compared to theoretical bound

§ΩB is singular

The choice of OA will depend on the objectives of the experimenter. For example, when m = 3, class 4 has
the most pairs of runs with the best realisable b1.b

′
2, so if we intend to maximise our chance of obtaining an

optimal design after a pair of runs has failed, we can do so by using a design from this class. Furthermore, if
we suspect that more than two runs may fail, this class is more likely to contain a set of runs that pairwise
realise the best b1.b

′
2. However, this class also has the most pairs of runs with the worst realisable b1.b

′
2.

Thus, this class also maximises our chance of realising the worst outcome. Hence, a trade-off needs to be
made between minimising the probability of obtaining a less favourable Hamming distance and maximising
the probability of obtaining the most favourable Hamming distance. So, class 3, for example, might be
preferred as it does not contain any pairs of runs that realise the worst b1.b

′
2, but this choice would be made

at the expense of the probability of realising the best b1.b
′
2, which appears the least number of times in this

class.

5



In Table 5.2 we can see that different classes need not have different distributions of Hamming distances.
For example, when m = 4, classes 3 and 10 are ‘essentially the same’ from our perspective as they have the
same distribution of Hamming distances, as do classes 5 and 8. The trade-off we described earlier between
maximising the probability of obtaining the best b1.b

′
2 versus minimising the probability of obtaining the

worst b1.b
′
2 is well-illustrated in class 12 of the OA[18, 34] designs. This class has considerably more instances

of 100% efficiency than any other class, yet it also has the highest number of the worst realisable Hamming
distance, which in this case means that for an OA with two runs missing the model will not be estimable.
While a loss in efficiency may be considered undesirable yet tolerable in some circumstances, the inability
to estimate the model will clearly never be acceptable. It is advisable to avoid classes 1, 2, 6, 7 and 12 as
from all these a singular information matrix could be obtained with two missing runs; that is, tmax = 1 for
these classes.

We note that for m = 3 and m = 4, some classes have pairs of runs with a Hamming distance of 0. This
means that the OA contains repeated runs.

When m > 4, there are no designs with repeated runs, as we can see from Tables 5.3, 5.4 and 5.5. We
note that when m = 5, classes 3 and 5 are essentially the same in terms of the distribution of Hamming
distances, as are classes 6 and 8. When m = 6, classes 1, 2, 4 and 5 all have the same distribution of
Hamming distances and they are also the only classes that do not realise the worst b1.b

′
2. When m = 7 the

distribution of Hamming distances are the same for all three classes.

Table 5.3: Distribution of Hamming distances between all pairs of runs for each of the 10 OA[18, 35] combi-
natorial isomorphism classes

Ham. Count by Class

b1.b′
2 Dist. EffB

† 1 2 3 4 5 6 7 8 9 10
−1 4 99.82% 72 66 81 75 81 63 57 63 99 45

2 3 99.23% 63 69 54 60 54 72 78 72 36 90
−4 5 96.47% 9 11 6 8 6 12 14 12 − 18

5 2 93.72% 9 7 12 10 12 6 4 6 18 −
†Efficiency of OA minus two run design compared to theoretical bound

Table 5.4: Distribution of Hamming distances between all pairs of runs for each of the 8 OA[18, 36] combi-
natorial isomorphism classes

Ham. Count by Class

b1.b′
2 Dist. EffB

† 1 2 3 4 5 6 7 8
1 4 99.69% 81 81 93 81 81 99 111 135
−2 5 98.67% 54 54 42 54 54 36 24 −

4 3 92.44% 18 18 14 18 18 12 8 −
−5 6 NA§ − − 4 − − 6 10 18

†Efficiency of OA minus two run design compared to theoretical bound

§ΩB is singular

Table 5.5: Distribution of Hamming distances between all pairs of runs for each of the 3 OA[18, 37] combi-
natorial isomorphism classes

Ham. Count by Class

b1.b′
2 Dist. EffB

† 1 2 3
0 5 100% 108 108 108
3 4 NA§ 27 27 27
−3 6 NA§ 18 18 18

†Efficiency of OA minus two run design compared to theoretical bound

§ΩB is singular

When t = 3, only the values of the distances matter, since the position of the off-diagonal elements in ΩB
does not change the value of the determinant. Thus we need only consider the unique sets of triples of
realisable values of bx.b

′
y.
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Tables A1, A2, A3, A4 and A5 in the appendix give all possible sets of pairwise Hamming distances for
t = 3 missing runs for each combinatorial isomorphism class. In these tables, we introduce the notation {b}
to denote the ordered tuple of values {b1.b

′
2,b1.b

′
3, . . . ,bt−1.b

′
t}, although in practice for t = 3 we have

presented the values within each tuple in ascending order. The ith element in {b} is associated with the ith
element in the vector of pairwise Hamming distances.

Tables A6 to A14 in the appendix give all possible sets of pairwise Hamming distances for t = 4 missing runs
for each combinatorial isomorphism class. We order the entries in {b} lexicographically in these tables as
we can no longer ignore the location of the off-diagonal entries in ΩB . The rows of these tables are ordered
by the efficiency of the designs.

As we mentioned earlier, tmax is the largest t such that any t runs can be missing but the model is still
estimable, while there is at least one set of t + 1 runs for which the model is not estimable. The values for
tmax for the 18 run ternary arrays are given below.
m = 3: 5, 5, 5, 3
m = 4: 1, 1, 5, 5, 5, 1, 1, 5, 3, 3, 3, 1
m = 5: 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
m = 6: 3, 3, 1, 3, 3, 1, 1, 1
m = 7: 1, 1, 1.

For designs with m = 7, for instance, any one run can be mssing from the design and the main effects model
is still estimable. For all three classes of designs there are 45 pairs of runs (see Table 5.5) which, when
deleted, result in 16 run arrays from which the model can not be estimated. In all three designs these pairs
of runs can be used to divide the 18 runs into three sets of 6 runs; if any two runs from the same set are
missing then the model is not estimable. Design performance is also the same across these three classes when
three runs are missing.

6 Discussion

In this paper we have shown that if a pair of runs is missing from an OA then the ability of the OA to
estimate a main effects only model is hampered least when the pair of runs minimises the absolute value
of the inner product of the corresponding rows of the model matrix as we have defined it. This idea holds
true for sets of three and four missing runs as well. An enumeration of combinatorial isomorphism classes is
necessary to be able to recommend the best OA with a given set of parameters for designs of index greater
than unity and with qualitative factors.

Acknowledgement We thank the referees and the associate editor for their critical comments on an earlier
version.
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Appendix

Design performance with t = 3 runs missing

Table A1: Distribution of pairwise Hamming distances between all sets of t = 3 runs for each of the 4
OA[18, 33] combinatorial isomorphism classes

Hamming Count by Class

{b} Distance EffB
† 1 2 3 4

{1, 1, 1} {2, 2, 2} 99.62% 144 120 108 216
{−2, 1, 1} {3, 2, 2} 99.32% 288 240 216 432
{−2,−2, 1} {3, 3, 2} 98.81% 72 96 108 −
{−2,−2,−2} {3, 3, 3} 98.71% 12 8 6 24
{1, 1, 4} {2, 2, 1} 97.63% 72 96 108 −
{−2, 1, 4} {3, 2, 1} 97.51% 108 144 162 −
{−2,−2, 4} {3, 3, 1} 96.47% 36 48 54 −
{1, 4, 4} {2, 1, 1} 95.09% 36 48 54 −
{1, 1, 7} {2, 2, 0} 92.24% 36 12 − 108
{−2,−2, 7} {3, 3, 0} 90.23% 12 4 − 36

†Efficiency of OA minus three run design compared to theoretical bound
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Table A2: Distribution of pairwise Hamming distances between all sets of t = 3 runs for each of the 12
OA[18, 34] combinatorial isomorphism classes

Hamming Count by Class

{b} Distance EffB
† 1 2 3 4 5 6

{0, 0, 0} {3, 3, 3} 100.00% 200 272 222 150 114 372
{0, 0, 3} {3, 3, 2} 98.70% 168 144 162 186 198 108
{−3, 0, 0} {4, 3, 3} 98.70% 96 96 108 108 108 72
{0, 3, 3} {3, 2, 2} 97.25% 84 48 54 90 108 36
{−3,−3, 0} {4, 4, 3} 97.25% 20 16 18 22 24 12
{−3, 0, 3} {4, 3, 2} 97.25% 120 96 108 132 144 72
{−3,−3,−3} {4, 4, 4} 96.72% − − − − − −
{−3, 3, 3} {4, 2, 2} 96.72% 24 − − 24 36 −
{3, 3, 3} {2, 2, 2} 94.35% 12 − − 12 18 −
{−3,−3, 3} {4, 4, 2} 94.35% 12 − − 12 18 −
{0, 0, 6} {3, 3, 1} 93.68% 24 48 54 30 18 36
{−3, 0, 6} {4, 3, 1} 91.38% 16 32 36 20 12 24
{0, 3, 6} {3, 2, 1} 91.38% 24 48 54 30 18 36
{0, 0, 9} {3, 3, 0} NA§ 16 16 − − − 48

Hamming Count by Class

{b} Distance EffB
† 7 8 9 10 11 12

{0, 0, 0} {3, 3, 3} 100.00% 128 114 92 222 48 672
{0, 0, 3} {3, 3, 2} 98.70% 192 198 204 162 216 −
{−3, 0, 0} {4, 3, 3} 98.70% 96 108 120 108 144 −
{0, 3, 3} {3, 2, 2} 97.25% 120 108 120 54 144 −
{−3,−3, 0} {4, 4, 3} 97.25% 24 24 16 18 − −
{−3, 0, 3} {4, 3, 2} 97.25% 144 144 144 108 144 −
{−3,−3,−3} {4, 4, 4} 96.72% − − 2 − 6 −
{−3, 3, 3} {4, 2, 2} 96.72% 48 36 42 − 54 −
{3, 3, 3} {2, 2, 2} 94.35% 24 18 20 − 24 −
{−3,−3, 3} {4, 4, 2} 94.35% 24 18 24 − 36 −
{0, 0, 6} {3, 3, 1} 93.68% − 18 12 54 − −
{−3, 0, 6} {4, 3, 1} 91.38% − 12 8 36 − −
{0, 3, 6} {3, 2, 1} 91.38% − 18 12 54 − −
{0, 0, 9} {3, 3, 0} NA§ 16 − − − − 144

†Efficiency of OA minus three run design compared to theoretical bound

§ΩB is singular
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Table A3: Distribution of pairwise Hamming distances between all sets of t = 3 runs for each of the 10
OA[18, 35] combinatorial isomorphism classes

Hamming Count by Class

{b} Distance EffB
† 1 2 3 4 5

{−1,−1,−1} {4, 4, 4} 99.48% 72 64 114 106 114
{−1,−1, 2} {4, 4, 3} 98.70% 216 184 240 208 240
{−1, 2, 2} {4, 3, 3} 98.42% 216 236 156 176 156
{2, 2, 2} {3, 3, 3} 96.92% 42 62 36 56 36

{−4,−1,−1} {5, 4, 4} 96.24% 36 28 24 16 24
{−4, 2, 2} {5, 3, 3} 95.51% 18 38 12 32 12
{−4,−1, 2} {5, 4, 3} 94.31% 72 88 48 64 48
{−1, 2, 5} {4, 3, 2} 92.92% 72 56 96 80 96
{−4,−4,−1} {5, 5, 4} 92.41% − 4 − 4 −
{−1,−1, 5} {4, 4, 2} 92.41% 36 28 60 52 60
{−4,−4,−4} {5, 5, 5} 91.87% − − − − −
{−4, 2, 5} {5, 3, 2} 90.03% 18 14 12 8 12
{2, 2, 5} {3, 3, 2} 86.77% 18 14 12 8 12
{−1, 5, 5} {4, 2, 2} 81.47% − − 6 6 6

Hamming Count by Class

{b} Distance EffB
† 6 7 8 9 10

{−1,−1,−1} {4, 4, 4} 99.48% 60 60 60 198 60
{−1,−1, 2} {4, 4, 3} 98.70% 168 112 168 288 −
{−1, 2, 2} {4, 3, 3} 98.42% 246 284 246 36 360
{2, 2, 2} {3, 3, 3} 96.92% 72 88 72 24 120

{−4,−1,−1} {5, 4, 4} 96.24% 24 16 24 − −
{−4, 2, 2} {5, 3, 3} 95.51% 48 62 48 − 90
{−4,−1, 2} {5, 4, 3} 94.31% 96 124 96 − 180
{−1, 2, 5} {4, 3, 2} 92.92% 48 32 48 144 −
{−4,−4,−1} {5, 5, 4} 92.41% 6 4 6 − −
{−1,−1, 5} {4, 4, 2} 92.41% 24 16 24 108 −
{−4,−4,−4} {5, 5, 5} 91.87% − 2 − − 6
{−4, 2, 5} {5, 3, 2} 90.03% 12 8 12 − −
{2, 2, 5} {3, 3, 2} 86.77% 12 8 12 − −
{−1, 5, 5} {4, 2, 2} 81.47% − − − 18 −

†Efficiency of OA minus three run design compared to theoretical bound

Table A4: Distribution of pairwise Hamming distances between all sets of t = 3 runs for each of the 8
OA[18, 36] combinatorial isomorphism classes

Hamming Count by Class

{b} Distance EffB
† 1 2 3 4 5 6 7 8

{1, 1, 1} {4, 4, 4} 98.88% 120 120 184 120 120 216 324 540
{−2, 1, 1} {5, 4, 4} 98.22% 216 216 216 216 216 216 144 −
{−2,−2,−2} {5, 5, 5} 96.72% 30 30 10 30 30 − − −
{−2,−2, 1} {5, 5, 4} 95.85% 180 180 132 180 180 108 72 −
{−2, 1, 4} {5, 4, 3} 90.87% 180 180 132 180 180 108 72 −
{1, 1, 4} {4, 4, 3} 88.88% 72 72 72 72 72 72 48 −
{−2, 4, 4} {5, 3, 3} 81.68% 18 18 6 18 18 − − −
{−5, 1, 1} {6, 4, 4} NA§ − − 48 − − 72 138 270
{−5,−2,−2} {6, 5, 5} NA§ − − 12 − − 18 12 −
{−5, 4, 4} {6, 3, 3} NA§ − − 4 − − 6 4 −
{−5,−5,−5} {6, 6, 6} NA§ − − − − − − 2 6
†Efficiency of OA minus three run design compared to theoretical bound

§ΩB is singular
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Table A5: Distribution of pairwise Hamming distances between all sets of t = 3 runs for each of the 3
OA[18, 37] combinatorial isomorphism classes

Hamming Count by Class

{b} Distance EffB
† 1 2 3

{0, 0, 0} {5, 5, 5} 100.00% 216 216 216
{−3, 0, 0} {6, 5, 5} NA§ 216 216 216
{0, 0, 3} {5, 5, 4} NA§ 324 324 324
{−3, 3, 3} {6, 4, 4} NA§ 54 54 54
{−3,−3,−3} {6, 6, 6} NA§ 6 6 6
†Efficiency of OA minus three run design compared to theoretical bound

§ΩB is singular
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Design performance with t = 4 runs missing

Table A6: Distribution of pairwise Hamming distances between all sets of t = 4 runs for each of the 4
OA[18, 33] combinatorial isomorphism classes

Hamming Count by Class

{b} Distance EffB
† 1 2 3 4

{1, 1, 1, 1, 1, 1} {2, 2, 2, 2, 2, 2} 99.18% 24 23 18 −
{−2, 1, 1, 1, 1, 1} {3, 2, 2, 2, 2, 2} 98.96% 528 336 270 1296
{−2, 1, 1, 1, 1,−2} {3, 2, 2, 2, 2, 3} 98.71% 156 96 81 432
{−2,−2, 1, 1, 1, 1} {3, 3, 2, 2, 2, 2} 98.51% 204 204 162 −
{−2,−2, 1,−2, 1, 1} {3, 3, 2, 3, 2, 2} 98.45% 96 48 36 288
{−2,−2, 1, 1,−2, 1} {3, 3, 2, 2, 3, 2} 98.07% 144 168 162 −
{−2,−2,−2, 1, 1, 1} {3, 3, 3, 2, 2, 2} 97.80% 24 48 72 −
{1, 1, 1, 1, 1, 4} {2, 2, 2, 2, 2, 1} 97.06% 72 96 108 −
{−2, 1, 1, 1, 4, 1} {3, 2, 2, 2, 1, 2} 97.06% 264 312 324 −
{−2, 1, 1, 1, 4,−2} {3, 2, 2, 2, 1, 3} 96.96% 132 132 108 −
{−2,−2, 4, 1, 1, 1} {3, 3, 1, 2, 2, 2} 96.80% 60 60 54 −
{−2,−2, 1, 1, 1, 4} {3, 3, 2, 2, 2, 1} 96.58% 168 264 324 −
{−2,−2, 1, 1,−2, 4} {3, 3, 2, 2, 3, 1} 96.42% 12 48 81 −
{−2,−2, 1, 4, 1, 1} {3, 3, 2, 1, 2, 2} 96.08% 120 120 108 −
{−2,−2, 1, 4,−2, 1} {3, 3, 2, 1, 3, 2} 95.78% 120 168 216 −
{−2,−2,−2,−2, 1, 4} {3, 3, 3, 3, 2, 1} 95.61% 72 72 54 −
{−2, 1, 4, 4, 1,−2} {3, 2, 1, 1, 2, 3} 95.19% 9 18 27 −
{1, 1, 4, 4, 1, 1} {2, 2, 1, 1, 2, 2} 94.87% 6 18 27 −
{−2, 1, 1, 4, 4, 1} {3, 2, 2, 1, 1, 2} 94.61% 48 84 108 −
{−2,−2, 4, 4, 1, 1} {3, 3, 1, 1, 2, 2} 94.50% 24 72 108 −
{−2, 1, 1, 1, 4, 4} {3, 2, 2, 2, 1, 1} 94.50% 144 192 216 −

{−2,−2, 1, 4,−2,−2} {3, 3, 2, 1, 3, 3} 94.32% − 12 27 −
{1, 1, 1, 1, 4, 4} {2, 2, 2, 2, 1, 1} 94.32% 60 60 54 −
{−2,−2, 1, 4, 1, 4} {3, 3, 2, 1, 2, 1} 93.59% 120 120 108 −
{−2,−2, 4, 4,−2, 1} {3, 3, 1, 1, 3, 2} 93.39% 12 24 27 −
{−2, 1, 4, 4, 1, 4} {3, 2, 1, 1, 2, 1} 92.24% 36 48 54 −
{−2,−2,−2, 1, 4, 4} {3, 3, 3, 2, 1, 1} 91.72% 12 36 54 −
{−2, 1, 1, 1, 1, 7} {3, 2, 2, 2, 2, 0} 91.36% 72 24 − 216
{1, 1, 1, 1, 1, 7} {2, 2, 2, 2, 2, 0} 91.36% 96 30 − 324
{1, 1, 4, 4, 1, 4} {2, 2, 1, 1, 2, 1} 91.22% 12 36 54 −

{−2,−2, 4, 4,−2,−2} {3, 3, 1, 1, 3, 3} 90.76% 6 6 − −
{1, 1, 4, 1, 4, 4} {2, 2, 1, 2, 1, 1} 90.61% 12 16 18 −
{−2,−2, 1, 7, 1, 1} {3, 3, 2, 0, 2, 2} 89.63% 96 24 − 432
{1, 1, 4, 7, 1, 1} {2, 2, 1, 0, 2, 2} 89.01% 24 12 − −
{−2,−2, 4, 7, 1, 1} {3, 3, 1, 0, 2, 2} 88.36% 24 12 − −
{−2,−2,−2, 1, 1, 7} {3, 3, 3, 2, 2, 0} 88.36% 24 12 − −
{−2,−2,−2,−2,−2, 7} {3, 3, 3, 3, 3, 0} 87.68% 6 − − 36
{1, 4, 4, 4, 4, 1} {2, 1, 1, 1, 1, 2} 86.22% 6 3 − −

{−2,−2, 1, 7,−2,−2} {3, 3, 2, 0, 3, 3} 86.22% 6 6 − −
{1, 1, 7, 7, 1, 1} {2, 2, 0, 0, 2, 2} 82.74% 3 − − 27

{−2,−2, 4, 7,−2,−2} {3, 3, 1, 0, 3, 3} 80.62% 6 − − −
{−2,−2, 7, 7,−2,−2} {3, 3, 0, 0, 3, 3} NA§ − − − 9

†Efficiency of OA minus four run design compared to theoretical bound

§ΩB is singular
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Table A7: Part 1 of the distribution of pairwise Hamming distances between all sets of t = 4 runs for each
of the first 6 (out of 12) OA[18, 34] combinatorial isomorphism classes

Hamming Count by Class

{b} Distance EffB
† 1 2 3 4 5 6

{0, 0, 0, 0, 0, 0} {3, 3, 3, 3, 3, 3} 100.00% 220 400 270 116 66 726
{−3, 0, 0, 0, 0, 0} {4, 3, 3, 3, 3, 3} 98.70% 132 160 144 116 66 144
{0, 0, 0, 0, 0, 3} {3, 3, 3, 3, 3, 2} 98.70% 228 240 216 186 156 216
{−3, 0, 0, 0, 0,−3} {4, 3, 3, 3, 3, 4} 97.42% 8 16 18 18 6 −
{0, 0, 3, 3, 0, 0} {3, 3, 2, 2, 3, 3} 97.42% 14 24 27 27 24 −
{−3, 0, 0, 0, 0, 3} {4, 3, 3, 3, 3, 2} 97.42% 16 32 90 88 114 −
{0, 0, 0, 0, 3, 3} {3, 3, 3, 3, 2, 2} 97.25% 296 192 216 284 300 216
{−3,−3, 0, 0, 0, 0} {4, 4, 3, 3, 3, 3} 97.25% 72 64 72 64 84 72
{−3, 0, 0, 0, 3, 0} {4, 3, 3, 3, 2, 3} 97.25% 448 448 396 352 312 432
{−3, 0, 3, 0, 3, 0} {4, 3, 2, 3, 2, 3} 96.72% 48 − − 48 60 −
{−3, 0, 3, 3, 0, 0} {4, 3, 2, 2, 3, 3} 95.79% 32 32 90 106 144 −
{−3, 0, 0, 0, 3,−3} {4, 3, 3, 3, 2, 4} 95.79% 20 16 54 50 96 −
{−3,−3, 0, 0, 0, 3} {4, 4, 3, 3, 3, 2} 95.79% 32 32 36 44 36 −
{0, 0, 3, 3, 0, 3} {3, 3, 2, 2, 3, 2} 95.79% 52 48 54 82 102 −
{−3, 0, 0, 0, 3, 3} {4, 3, 3, 3, 2, 2} 95.79% 72 64 72 88 108 −
{−3,−3, 3, 0, 0, 0} {4, 4, 2, 3, 3, 3} 95.59% 44 48 54 54 48 36
{−3, 0, 0, 3, 3, 0} {4, 3, 3, 2, 2, 3} 95.59% 96 96 108 108 84 72
{0, 0, 3, 0, 3, 3} {3, 3, 2, 3, 2, 2} 95.59% 20 16 18 18 12 12
{−3,−3, 3, 0, 0, 3} {4, 4, 2, 3, 3, 2} 95.19% 32 − − 32 48 −
{−3, 0, 3, 3, 3, 0} {4, 3, 2, 2, 2, 3} 95.19% 64 − − 64 120 −
{−3, 0, 3, 0, 3, 3} {4, 3, 2, 3, 2, 2} 95.19% 32 − − 44 60 −
{−3,−3, 0,−3, 0, 3} {4, 4, 3, 4, 3, 2} 95.19% − − − − − −
{−3, 0, 0, 3, 3,−3} {4, 3, 3, 2, 2, 4} 95.19% 32 − − 28 36 −
{−3, 0, 3, 3, 0, 3} {4, 3, 2, 2, 3, 2} 94.57% 32 32 36 40 48 −
{−3,−3, 0, 0,−3, 3} {4, 4, 3, 3, 4, 2} 94.57% 8 16 18 18 6 −
{−3, 3, 3, 3, 3,−3} {4, 2, 2, 2, 2, 4} 94.35% 2 − − − 3 −
{−3, 0, 3, 3, 3,−3} {4, 3, 2, 2, 2, 4} 94.35% 8 − − 14 12 −
{0, 0, 0, 3, 3, 3} {3, 3, 3, 2, 2, 2} 94.35% 24 − − 20 36 −
{−3,−3, 0, 3, 0, 0} {4, 4, 3, 2, 3, 3} 94.35% 24 − − 28 36 −
{0, 3, 3, 3, 3, 0} {3, 2, 2, 2, 2, 3} 93.68% 24 − − 18 27 18
{−3,−3, 0, 0, 3, 3} {4, 4, 3, 3, 2, 2} 93.68% 28 16 18 26 36 36
{0, 0, 0, 0, 0, 6} {3, 3, 3, 3, 3, 1} 93.68% 40 80 72 36 18 72
{−3, 0, 3, 3, 0,−3} {4, 3, 2, 2, 3, 4} 93.68% 28 24 9 15 3 36
{−3,−3, 0, 3, 0, 3} {4, 4, 3, 2, 3, 2} 92.46% 40 − − 40 60 −
{−3,−3,−3, 0, 0, 3} {4, 4, 4, 3, 3, 2} 92.46% 8 − − 8 12 −
{−3,−3, 3, 3, 0, 0} {4, 4, 2, 2, 3, 3} 92.46% 20 − − 16 18 −
{−3, 0, 3, 3, 3, 3} {4, 3, 2, 2, 2, 2} 92.46% 64 − − 40 72 −
{−3,−3, 0, 3,−3, 0} {4, 4, 3, 2, 4, 3} 92.46% 16 − − 16 24 −
{0, 0, 3, 3, 3, 3} {3, 3, 2, 2, 2, 2} 92.46% 44 − − 44 78 −
{−3,−3, 3, 3, 0, 3} {4, 4, 2, 2, 3, 2} 92.46% 32 − − 32 48 −
{−3,−3, 0, 3,−3, 3} {4, 4, 3, 2, 4, 2} 92.46% 16 − − 12 24 −
{0, 0, 3, 6, 0, 0} {3, 3, 2, 1, 3, 3} 92.46% 8 16 45 33 27 −

†Efficiency of OA minus four run design compared to theoretical bound
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Table A8: Part 2 of the distribution of pairwise Hamming distances between all sets of t = 4 runs for each
of the first 6 (out of 12) OA[18, 34] combinatorial isomorphism classes

Hamming Count by Class

{b} Distance EffB
† 1 2 3 4 5 6

{−3, 0, 0, 3, 3, 3} {4, 3, 3, 2, 2, 2} 92.46% 32 − − 44 36 −
{0, 0, 0, 0, 3, 6} {3, 3, 3, 3, 2, 1} 91.38% 112 224 198 90 42 216
{−3, 0, 0, 0, 6, 0} {4, 3, 3, 3, 1, 3} 91.38% 64 128 144 72 48 144

{−3,−3,−3,−3, 3, 3} {4, 4, 4, 4, 2, 2} 90.20% − − − − − −
{−3,−3, 3, 3,−3, 3} {4, 4, 2, 2, 4, 2} 90.20% − − − 2 6 −
{−3, 3, 3, 3, 3, 3} {4, 2, 2, 2, 2, 2} 90.20% − − − 6 6 −
{−3, 0, 0, 0, 3, 6} {4, 3, 3, 3, 2, 1} 89.88% 16 32 72 48 36 −
{0, 0, 3, 6, 0, 3} {3, 3, 2, 1, 3, 2} 89.88% 16 32 36 36 24 −
{−3,−3, 0, 0, 0, 6} {4, 4, 3, 3, 3, 1} 89.88% 16 32 36 24 12 −
{−3, 0, 3, 6, 0, 0} {4, 3, 2, 1, 3, 3} 89.88% 16 32 36 24 12 −
{−3, 0, 0, 0, 6, 3} {4, 3, 3, 3, 1, 2} 88.87% 8 32 36 16 12 −
{−3, 0, 0, 0, 6,−3} {4, 3, 3, 3, 1, 4} 88.87% 4 16 18 14 − −
{−3, 0, 3, 6, 3, 0} {4, 3, 2, 1, 2, 3} 88.87% 16 − − 16 12 −
{0, 0, 3, 3, 0, 6} {3, 3, 2, 2, 3, 1} 88.87% 4 16 45 29 21 −
{0, 0, 3, 0, 3, 6} {3, 3, 2, 3, 2, 1} 88.51% 20 48 54 26 12 36
{−3,−3, 6, 0, 0, 0} {4, 4, 1, 3, 3, 3} 88.51% 4 16 18 6 − 12
{−3, 0, 3, 6, 0, 3} {4, 3, 2, 1, 3, 2} 88.51% 40 32 36 36 24 72
{−3, 0, 0, 3, 6, 0} {4, 3, 3, 2, 1, 3} 88.51% 24 96 108 36 24 72
{−3,−3, 0, 0,−3, 6} {4, 4, 3, 3, 4, 1} 88.51% 4 − − − 6 12
{−3, 0, 3, 3, 0, 6} {4, 3, 2, 2, 3, 1} 88.51% 20 32 18 10 6 36
{0, 0, 6, 6, 0, 0} {3, 3, 1, 1, 3, 3} 87.76% 4 8 9 3 − −
{0, 3, 3, 3, 3, 3} {3, 2, 2, 2, 2, 2} 87.36% − − − 6 6 −

{−3,−3, 3, 3,−3, 0} {4, 4, 2, 2, 4, 3} 87.36% 4 − − 4 6 −
{−3,−3, 0, 3, 3, 3} {4, 4, 3, 2, 2, 2} 87.36% 4 − − 4 18 −
{−3, 0, 3, 6, 0,−3} {4, 3, 2, 1, 3, 4} 85.12% 8 16 18 6 6 −
{0, 3, 3, 3, 6, 0} {3, 2, 2, 2, 1, 3} 85.12% 8 16 18 6 − −
{0, 0, 6, 3, 3, 3} {3, 3, 1, 2, 2, 2} 83.51% 4 − − 4 6 −
{−3, 0, 6, 6, 0, 3} {4, 3, 1, 1, 3, 2} 83.51% − 16 18 4 − −
{0, 0, 6, 6, 0, 3} {3, 3, 1, 1, 3, 2} 83.51% − − 9 3 3 −
{−3,−3, 0, 3, 0, 6} {4, 4, 3, 2, 3, 1} 83.51% 8 − − 8 − −
{−3,−3, 6, 3, 0, 0} {4, 4, 1, 2, 3, 3} 83.51% 4 − − 4 6 −
{3, 3, 3, 3, 3, 3} {2, 2, 2, 2, 2, 2} NA§ 2 − − − − −

{−3,−3, 3, 3,−3,−3} {4, 4, 2, 2, 4, 4} NA§ − − − − − −
{−3,−3,−3, 3, 3, 3} {4, 4, 4, 2, 2, 2} NA§ − − − − − −
{0, 0, 0, 0, 0, 9} {3, 3, 3, 3, 3, 0} NA§ 60 72 − − − 246
{0, 0, 3, 9, 0, 0} {3, 3, 2, 0, 3, 3} NA§ 36 24 − − − 54
{0, 3, 6, 6, 3, 0} {3, 2, 1, 1, 2, 3} NA§ 2 4 − − − 9
{−3, 0, 0, 0, 0, 9} {4, 3, 3, 3, 3, 0} NA§ 20 16 − − − 36
{−3, 0, 6, 6, 0,−3} {4, 3, 1, 1, 3, 4} NA§ − − − − − 6
{0, 0, 6, 9, 0, 0} {3, 3, 1, 0, 3, 3} NA§ 4 8 − − − 18
{0, 0, 9, 9, 0, 0} {3, 3, 0, 0, 3, 3} NA§ − − − − − 3

†Efficiency of OA minus four run design compared to theoretical bound

§ΩB is singular
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Table A9: Part 1 of the distribution of pairwise Hamming distances between all sets of t = 4 runs for each
of the last 6 (out of 12) OA[18, 34] combinatorial isomorphism classes

Hamming Count by Class

{b} Distance EffB
† 7 8 9 10 11 12

{0, 0, 0, 0, 0, 0} {3, 3, 3, 3, 3, 3} 100.00% 72 60 32 297 − 2016
{−3, 0, 0, 0, 0, 0} {4, 3, 3, 3, 3, 3} 98.70% 96 90 80 108 72 −
{0, 0, 0, 0, 0, 3} {3, 3, 3, 3, 3, 2} 98.70% 192 159 114 162 − −
{−3, 0, 0, 0, 0,−3} {4, 3, 3, 3, 3, 4} 97.42% 6 18 24 − 54 −
{0, 0, 3, 3, 0, 0} {3, 3, 2, 2, 3, 3} 97.42% 18 33 42 − 72 −
{−3, 0, 0, 0, 0, 3} {4, 3, 3, 3, 3, 2} 97.42% 12 102 121 162 180 −
{0, 0, 0, 0, 3, 3} {3, 3, 3, 3, 2, 2} 97.25% 360 282 296 324 288 −
{−3,−3, 0, 0, 0, 0} {4, 4, 3, 3, 3, 3} 97.25% 72 60 52 108 − −
{−3, 0, 0, 0, 3, 0} {4, 3, 3, 3, 2, 3} 97.25% 432 306 328 324 288 −
{−3, 0, 3, 0, 3, 0} {4, 3, 2, 3, 2, 3} 96.72% 96 66 90 − 144 −
{−3, 0, 3, 3, 0, 0} {4, 3, 2, 2, 3, 3} 95.79% 48 132 124 162 144 −
{−3, 0, 0, 0, 3,−3} {4, 3, 3, 3, 2, 4} 95.79% 24 60 80 108 72 −
{−3,−3, 0, 0, 0, 3} {4, 4, 3, 3, 3, 2} 95.79% 48 48 32 − − −
{0, 0, 3, 3, 0, 3} {3, 3, 2, 2, 3, 2} 95.79% 72 126 136 − 216 −
{−3, 0, 0, 0, 3, 3} {4, 3, 3, 3, 2, 2} 95.79% 96 108 124 − 144 −
{−3,−3, 3, 0, 0, 0} {4, 4, 2, 3, 3, 3} 95.59% 24 54 24 54 − −
{−3, 0, 0, 3, 3, 0} {4, 3, 3, 2, 2, 3} 95.59% 48 96 60 108 − −
{0, 0, 3, 0, 3, 3} {3, 3, 2, 3, 2, 2} 95.59% 24 6 12 18 − −
{−3,−3, 3, 0, 0, 3} {4, 4, 2, 3, 3, 2} 95.19% 48 48 32 − − −
{−3, 0, 3, 3, 3, 0} {4, 3, 2, 2, 2, 3} 95.19% 144 108 124 − 144 −
{−3, 0, 3, 0, 3, 3} {4, 3, 2, 3, 2, 2} 95.19% 48 72 86 − 144 −
{−3,−3, 0,−3, 0, 3} {4, 4, 3, 4, 3, 2} 95.19% − − 24 − 72 −
{−3, 0, 0, 3, 3,−3} {4, 3, 3, 2, 2, 4} 95.19% 48 36 34 − 72 −
{−3, 0, 3, 3, 0, 3} {4, 3, 2, 2, 3, 2} 94.57% 60 48 58 − 72 −
{−3,−3, 0, 0,−3, 3} {4, 4, 3, 3, 4, 2} 94.57% 12 18 6 − − −
{−3, 3, 3, 3, 3,−3} {4, 2, 2, 2, 2, 4} 94.35% 12 − 3 − 9 −
{−3, 0, 3, 3, 3,−3} {4, 3, 2, 2, 2, 4} 94.35% − 21 20 − − −
{0, 0, 0, 3, 3, 3} {3, 3, 3, 2, 2, 2} 94.35% 48 24 26 − − −
{−3,−3, 0, 3, 0, 0} {4, 4, 3, 2, 3, 3} 94.35% 48 42 64 − 144 −
{0, 3, 3, 3, 3, 0} {3, 2, 2, 2, 2, 3} 93.68% 48 18 30 27 36 −
{−3,−3, 0, 0, 3, 3} {4, 4, 3, 3, 2, 2} 93.68% 48 30 20 54 − −
{0, 0, 0, 0, 0, 6} {3, 3, 3, 3, 3, 1} 93.68% − 24 12 54 − −
{−3, 0, 3, 3, 0,−3} {4, 3, 2, 2, 3, 4} 93.68% 48 15 18 − 36 −
{−3,−3, 0, 3, 0, 3} {4, 4, 3, 2, 3, 2} 92.46% 72 60 88 − 144 −
{−3,−3,−3, 0, 0, 3} {4, 4, 4, 3, 3, 2} 92.46% 12 12 8 − − −
{−3,−3, 3, 3, 0, 0} {4, 4, 2, 2, 3, 3} 92.46% 36 18 22 − − −
{−3, 0, 3, 3, 3, 3} {4, 3, 2, 2, 2, 2} 92.46% 144 48 52 − − −
{−3,−3, 0, 3,−3, 0} {4, 4, 3, 2, 4, 3} 92.46% 24 24 16 − − −
{0, 0, 3, 3, 3, 3} {3, 3, 2, 2, 2, 2} 92.46% 84 90 92 − 144 −
{−3,−3, 3, 3, 0, 3} {4, 4, 2, 2, 3, 2} 92.46% 96 48 80 − 144 −
{−3,−3, 0, 3,−3, 3} {4, 4, 3, 2, 4, 2} 92.46% 48 18 24 − − −
{0, 0, 3, 6, 0, 0} {3, 3, 2, 1, 3, 3} 92.46% − 15 18 81 − −

†Efficiency of OA minus four run design compared to theoretical bound
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Table A10: Part 2 of the distribution of pairwise Hamming distances between all sets of t = 4 runs for each
of the last 6 (out of 12) OA[18, 34] combinatorial isomorphism classes

Hamming Count by Class

{b} Distance EffB
† 7 8 9 10 11 12

{−3, 0, 0, 3, 3, 3} {4, 3, 3, 2, 2, 2} 92.46% 60 60 74 − 144 −
{0, 0, 0, 0, 3, 6} {3, 3, 3, 3, 2, 1} 91.38% − 60 24 162 − −
{−3, 0, 0, 0, 6, 0} {4, 3, 3, 3, 1, 3} 91.38% − 36 24 216 − −

{−3,−3,−3,−3, 3, 3} {4, 4, 4, 4, 2, 2} 90.20% − − 6 − 18 −
{−3,−3, 3, 3,−3, 3} {4, 4, 2, 2, 4, 2} 90.20% − 6 5 − 18 −
{−3, 3, 3, 3, 3, 3} {4, 2, 2, 2, 2, 2} 90.20% − 12 15 − 36 −
{−3, 0, 0, 0, 3, 6} {4, 3, 3, 3, 2, 1} 89.88% − 24 24 108 − −
{0, 0, 3, 6, 0, 3} {3, 3, 2, 1, 3, 2} 89.88% − 24 24 − − −
{−3,−3, 0, 0, 0, 6} {4, 4, 3, 3, 3, 1} 89.88% − 18 12 − − −
{−3, 0, 3, 6, 0, 0} {4, 3, 2, 1, 3, 3} 89.88% − 18 12 − − −
{−3, 0, 0, 0, 6, 3} {4, 3, 3, 3, 1, 2} 88.87% − 12 10 − − −
{−3, 0, 0, 0, 6,−3} {4, 3, 3, 3, 1, 4} 88.87% − 12 8 − − −
{−3, 0, 3, 6, 3, 0} {4, 3, 2, 1, 2, 3} 88.87% − 18 10 − − −
{0, 0, 3, 3, 0, 6} {3, 3, 2, 2, 3, 1} 88.87% − 9 14 81 − −
{0, 0, 3, 0, 3, 6} {3, 3, 2, 3, 2, 1} 88.51% − 12 8 54 − −
{−3,−3, 6, 0, 0, 0} {4, 4, 1, 3, 3, 3} 88.51% − − − 18 − −
{−3, 0, 3, 6, 0, 3} {4, 3, 2, 1, 3, 2} 88.51% − 24 12 108 − −
{−3, 0, 0, 3, 6, 0} {4, 3, 3, 2, 1, 3} 88.51% − 12 12 108 − −
{−3,−3, 0, 0,−3, 6} {4, 4, 3, 3, 4, 1} 88.51% − − − 18 − −
{−3, 0, 3, 3, 0, 6} {4, 3, 2, 2, 3, 1} 88.51% − 12 4 − − −
{0, 0, 6, 6, 0, 0} {3, 3, 1, 1, 3, 3} 87.76% − 3 − − − −
{0, 3, 3, 3, 3, 3} {3, 2, 2, 2, 2, 2} 87.36% − 3 6 − − −

{−3,−3, 3, 3,−3, 0} {4, 4, 2, 2, 4, 3} 87.36% − 6 4 − − −
{−3,−3, 0, 3, 3, 3} {4, 4, 3, 2, 2, 2} 87.36% − 12 10 − − −
{−3, 0, 3, 6, 0,−3} {4, 3, 2, 1, 3, 4} 85.12% − − − − − −
{0, 3, 3, 3, 6, 0} {3, 2, 2, 2, 1, 3} 85.12% − 6 − − − −
{0, 0, 6, 3, 3, 3} {3, 3, 1, 2, 2, 2} 83.51% − 6 4 − − −
{−3, 0, 6, 6, 0, 3} {4, 3, 1, 1, 3, 2} 83.51% − − 1 − − −
{0, 0, 6, 6, 0, 3} {3, 3, 1, 1, 3, 2} 83.51% − − − 27 − −
{−3,−3, 0, 3, 0, 6} {4, 4, 3, 2, 3, 1} 83.51% − 6 2 − − −
{−3,−3, 6, 3, 0, 0} {4, 4, 1, 2, 3, 3} 83.51% − 6 4 − − −
{3, 3, 3, 3, 3, 3} {2, 2, 2, 2, 2, 2} NA§ 5 − − − − −

{−3,−3, 3, 3,−3,−3} {4, 4, 2, 2, 4, 4} NA§ 3 − 3 − 9 −
{−3,−3,−3, 3, 3, 3} {4, 4, 4, 2, 2, 2} NA§ 4 − − − − −
{0, 0, 0, 0, 0, 9} {3, 3, 3, 3, 3, 0} NA§ 48 − − − − 1008
{0, 0, 3, 9, 0, 0} {3, 3, 2, 0, 3, 3} NA§ 48 − − − − −
{0, 3, 6, 6, 3, 0} {3, 2, 1, 1, 2, 3} NA§ − − − − − −
{−3, 0, 0, 0, 0, 9} {4, 3, 3, 3, 3, 0} NA§ 24 − − − − −
{−3, 0, 6, 6, 0,−3} {4, 3, 1, 1, 3, 4} NA§ − − − 9 − −
{0, 0, 6, 9, 0, 0} {3, 3, 1, 0, 3, 3} NA§ − − − − − −
{0, 0, 9, 9, 0, 0} {3, 3, 0, 0, 3, 3} NA§ − − − − − 36

†Efficiency of OA minus four run design compared to theoretical bound

§ΩB is singular
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Table A11: Part 1 of the distribution of pairwise Hamming distances between all sets of t = 4 runs for each
of the 10 OA[18, 35] combinatorial isomorphism classes

Hamming Count by Class

{b} Distance EffB
† 1 2 3 4 5 6 7 8 9 10

{−1,−1,−1,−1,−1,−1} {4, 4, 4, 4, 4, 4} 99.04% − 12 24 54 24 21 27 18 126 45
{−1,−1,−1,−1,−1, 2} {4, 4, 4, 4, 4, 3} 98.10% 198 117 336 192 336 87 60 60 576 −
{−1,−1,−1,−1, 2, 2} {4, 4, 4, 4, 3, 3} 97.59% 144 164 144 248 144 144 104 192 216 −
{−1,−1, 2,−1, 2, 2} {4, 4, 3, 4, 3, 3} 97.59% 108 138 144 144 144 150 216 168 − 360
{−1,−1, 2, 2,−1, 2} {4, 4, 3, 3, 4, 3} 97.19% 360 310 240 160 240 288 208 216 − −
{−1, 2, 2, 2, 2,−1} {4, 3, 3, 3, 3, 4} 97.05% 72 76 − 49 − 84 136 117 9 270
{−1,−1, 2, 2,−1,−1} {4, 4, 3, 3, 4, 4} 96.92% 63 39 102 60 102 36 − 60 180 −
{−1,−1, 2, 2, 2, 2} {4, 4, 3, 3, 3, 3} 96.04% 180 204 96 96 96 204 168 120 − −

{−4,−1,−1,−1,−1,−1} {5, 4, 4, 4, 4, 4} 95.88% 18 14 24 8 24 6 8 12 − −
{−1,−1,−1, 2, 2, 2} {4, 4, 4, 3, 3, 3} 95.57% 72 66 120 144 120 66 48 96 144 −
{−4,−1,−1,−1,−1, 2} {5, 4, 4, 4, 4, 3} 95.07% 18 6 − − − 6 − − − −
{−4,−1, 2,−1, 2,−1} {5, 4, 3, 4, 3, 4} 94.90% 36 34 24 64 24 42 16 48 − −
{−4,−1, 2,−1, 2, 2} {5, 4, 3, 4, 3, 3} 94.73% 36 30 − − − 30 24 24 − −
{−1, 2, 2, 2, 2, 2} {4, 3, 3, 3, 3, 3} 94.55% 90 153 78 132 78 201 288 240 36 540
{−4, 2, 2, 2, 2,−1} {5, 3, 3, 3, 3, 4} 94.55% − 28 6 16 6 36 76 72 − 180

{−4,−1,−1,−1, 2,−1} {5, 4, 4, 4, 3, 4} 93.80% 108 82 96 64 96 66 40 72 − −
{−4,−1, 2, 2, 2,−1} {5, 4, 3, 3, 3, 4} 93.20% 108 128 96 80 96 144 128 72 − −
{−4,−1,−1,−1, 2, 2} {5, 4, 4, 4, 3, 3} 93.20% 144 122 96 32 96 102 80 96 − −
{−4, 2, 2, 2, 2, 2} {5, 3, 3, 3, 3, 3} 92.78% − 16 − 16 − 18 16 − − −

{−4,−1,−1, 2, 2,−1} {5, 4, 4, 3, 3, 4} 92.11% 72 86 48 104 48 102 176 108 − 360
{−4,−1, 2, 2, 2, 2} {5, 4, 3, 3, 3, 3} 92.11% 36 144 − 144 − 204 360 240 − 720
{−4,−1, 2, 2,−1, 2} {5, 4, 3, 3, 4, 3} 92.11% 72 90 48 48 48 108 168 120 − 360
{−1,−1, 2,−1, 2, 5} {4, 4, 3, 4, 3, 2} 92.11% 72 34 48 40 48 30 16 24 72 −
{−4, 2, 2, 2, 2,−4} {5, 3, 3, 3, 3, 5} 91.87% − 2 − 8 − 6 8 − − −
{−1,−1, 2, 2,−1, 5} {4, 4, 3, 3, 4, 2} 91.87% 18 18 48 72 48 24 − 72 216 −
{−1, 2, 2, 2, 5,−1} {4, 3, 3, 3, 2, 4} 91.38% 72 66 96 48 96 54 48 − − −
{−1,−1, 2, 5,−1, 2} {4, 4, 3, 2, 4, 3} 91.13% 144 104 240 176 240 84 56 120 144 −
{−4,−4, 2,−1, 2, 2} {5, 5, 3, 4, 3, 3} 91.13% − 8 − 8 − 12 8 12 − −
{−1,−1,−1,−1,−1, 5} {4, 4, 4, 4, 4, 2} 91.13% 18 20 72 80 72 24 20 30 180 −
{−1,−1,−1,−1, 2, 5} {4, 4, 4, 4, 3, 2} 91.13% 108 98 240 176 240 78 56 48 576 −
{−1,−1, 5, 2, 2, 2} {4, 4, 2, 3, 3, 3} 90.59% 36 38 48 80 48 30 32 48 144 −
{−4,−4, 2,−1,−1, 2} {5, 5, 3, 4, 4, 3} 90.32% − 16 − 16 − 24 16 24 − −
{−4,−4,−1,−1,−1, 2} {5, 5, 4, 4, 4, 3} 90.32% − 16 − 16 − 24 16 24 − −
{−4,−1, 2, 2,−1,−1} {5, 4, 3, 3, 4, 4} 90.32% 18 42 − 48 − 36 48 48 − −
{−4,−1,−1, 2, 2,−4} {5, 4, 4, 3, 3, 5} 90.32% − 18 − − − 18 24 24 − −
{2, 2, 2, 2, 2, 2} {3, 3, 3, 3, 3, 3} 89.73% − 8 6 8 6 6 8 − − −

{−4,−1, 2,−1, 2, 5} {5, 4, 3, 4, 3, 2} 89.42% − 6 24 − 24 6 − − − −
{−4,−1,−1,−1, 2,−4} {5, 4, 4, 4, 3, 5} 89.10% 18 6 − − − 6 − − − −
{−4,−1, 2,−1, 5, 2} {5, 4, 3, 4, 2, 3} 89.10% 36 22 − 16 − 18 16 24 − −
{−4, 2, 2, 2, 5,−1} {5, 3, 3, 3, 2, 4} 89.10% − 22 − 16 − 30 16 24 − −
{−1,−1, 2, 5,−1,−1} {4, 4, 3, 2, 4, 4} 88.77% 18 12 12 24 12 12 − − 72 −
{−4,−4,−1,−4, 2, 2} {5, 5, 4, 5, 3, 3} 88.77% − − − − − − 30 − − 90
{−4,−1, 2,−1, 5,−1} {5, 4, 3, 4, 2, 4} 88.77% 36 18 48 − 48 6 − − − −
{−4,−1, 2, 2, 2,−4} {5, 4, 3, 3, 3, 5} 88.77% − 11 − 8 − 15 26 24 − 90
{−4,−1,−1,−1,−1, 5} {5, 4, 4, 4, 4, 2} 88.77% 18 6 12 − 12 − − − − −
{−4,−1, 2, 2, 5,−1} {5, 4, 3, 3, 2, 4} 87.70% 72 34 48 16 48 18 16 24 − −
{−4,−1,−1, 2, 2, 2} {5, 4, 4, 3, 3, 3} 87.70% 36 36 24 − 24 36 24 24 − −
{−4,−1, 5, 2, 2, 2} {5, 4, 2, 3, 3, 3} 87.70% 36 34 48 16 48 30 16 24 − −
{−4,−1, 2, 2,−1, 5} {5, 4, 3, 3, 4, 2} 87.70% 36 22 24 16 24 18 16 − − −
{−4,−4, 2,−1,−1,−1} {5, 5, 3, 4, 4, 4} 87.32% − 8 − 8 − 12 8 12 − −
{−1,−1, 2, 2, 2, 5} {4, 4, 3, 3, 3, 2} 86.03% 108 80 96 32 96 60 32 48 − −

†Efficiency of OA minus four run design compared to theoretical bound
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Table A12: Part 2 of the distribution of pairwise Hamming distances between all sets of t = 4 runs for each
of the 10 OA[18, 35] combinatorial isomorphism classes

Hamming Count by Class

{b} Distance EffB
† 1 2 3 4 5 6 7 8 9 10

{−4,−4, 2,−1,−1, 5} {5, 5, 3, 4, 4, 2} 85.56% − 8 − 8 − 12 8 12 − −
{−4,−4,−1,−1, 2, 2} {5, 5, 4, 4, 3, 3} 85.56% − 4 − 4 − 6 4 6 − −
{−4,−1,−1,−1, 2, 5} {5, 4, 4, 4, 3, 2} 85.56% − 8 − 32 − 12 8 24 − −
{−4,−1, 2, 2, 5,−4} {5, 4, 3, 3, 2, 5} 85.56% − 4 − 4 − 6 4 6 − −
{−4, 2, 2, 2, 5,−4} {5, 3, 3, 3, 2, 5} 85.56% 9 3 − − − − − − − −
{−4,−1, 5, 2, 2,−1} {5, 4, 2, 3, 3, 4} 85.56% 36 30 − 24 − 30 24 36 − −
{−1,−1, 2, 5, 2, 2} {4, 4, 3, 2, 3, 3} 85.56% 36 38 − 32 − 30 32 48 − −
{−1,−1, 5, 5,−1, 2} {4, 4, 2, 2, 4, 3} 85.56% 18 7 − 16 − 9 4 − 72 −
{−1, 2, 5, 5, 2,−1} {4, 3, 2, 2, 3, 4} 85.06% 9 3 12 12 12 − − 12 36 −
{−4, 2, 2, 2, 5, 2} {5, 3, 3, 3, 2, 3} 83.35% 18 16 24 16 24 18 16 24 − −
{−1, 2, 2, 2, 5, 2} {4, 3, 3, 3, 2, 3} 81.20% 36 22 − 16 − 30 16 24 − −
{−4,−1, 2, 2, 2, 5} {5, 4, 3, 3, 3, 2} 81.20% − 10 − 16 − 6 16 24 − −
{−1,−1, 5, 5, 2, 2} {4, 4, 2, 2, 3, 3} 80.34% − 6 24 − 24 6 − − − −
{−1,−1, 2, 5,−1, 5} {4, 4, 3, 2, 4, 2} 80.34% − − 48 48 48 − − − 144 −
{−1,−1, 2,−1, 5, 5} {4, 4, 3, 4, 2, 2} 80.34% − − 24 24 24 − − − 72 −
{−4, 2, 2, 2, 2, 5} {5, 3, 3, 3, 3, 2} 80.34% 9 3 − − − 6 − − − −
{−1,−1,−1, 2, 2, 5} {4, 4, 4, 3, 3, 2} 80.34% 36 12 24 − 24 12 − − − −
{−4,−1, 2, 2, 5, 2} {5, 4, 3, 3, 2, 3} 75.43% − 6 − − − 6 − − − −
{−4, 2, 5, 5, 2, 2} {5, 3, 2, 2, 3, 3} 75.43% 9 3 − − − − − − − −
{−4, 2, 5, 5, 2,−4} {5, 3, 2, 2, 3, 5} NA§ − − 3 − 3 − − − − −
{−1, 2, 2, 2, 2, 5} {4, 3, 3, 3, 3, 2} NA§ − 4 6 4 6 − 4 6 − −

{−4,−1, 2, 2,−1,−4} {5, 4, 3, 3, 4, 5} NA§ 9 7 12 4 12 9 19 6 − 45
{−1,−1, 5, 5,−1,−1} {4, 4, 2, 2, 4, 4} NA§ − 2 15 5 15 − 2 3 9 −
{−1,−1,−1,−1, 5, 5} {4, 4, 4, 4, 2, 2} NA§ − − 6 6 6 − − − 18 −
{−1,−1, 5, 5,−1, 5} {4, 4, 2, 2, 4, 2} NA§ − − 6 6 6 − − − 18 −

†Efficiency of OA minus four run design compared to theoretical bound
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Table A13: Distribution of pairwise Hamming distances between all sets of t = 4 runs for each of the 8
OA[18, 36] combinatorial isomorphism classes

Hamming Count by Class

{b} Distance EffB
† 1 2 3 4 5 6 7 8

{−2, 1, 1, 1, 1, 1} {5, 4, 4, 4, 4, 4} 97.20% 108 108 180 108 108 180 216 −
{1, 1, 1, 1, 1, 1} {4, 4, 4, 4, 4, 4} 97.20% 90 90 188 90 90 267 503 1215
{−2, 1, 1, 1, 1,−2} {5, 4, 4, 4, 4, 5} 96.72% 72 72 72 72 72 96 − −
{−2,−2, 1, 1, 1, 1} {5, 5, 4, 4, 4, 4} 95.07% 432 432 480 432 432 456 432 −
{−2,−2,−2,−2, 1, 1} {5, 5, 5, 5, 4, 4} 92.99% 216 216 72 216 216 − − −
{−2,−2, 1, 1,−2, 1} {5, 5, 4, 4, 5, 4} 92.99% 216 216 144 216 216 144 − −
{−2,−2,−2,−2,−2, 1} {5, 5, 5, 5, 5, 4} 92.15% 36 36 12 36 36 − − −
{−2,−2, 1,−2, 1, 4} {5, 5, 4, 5, 4, 3} 88.88% 144 144 48 144 144 − − −
{−2, 1, 1, 1, 4,−2} {5, 4, 4, 4, 3, 5} 88.88% 144 144 96 144 144 96 − −
{−2,−2, 4, 1, 1, 1} {5, 5, 3, 4, 4, 4} 87.37% 216 216 192 216 216 180 120 −
{−2,−2,−2, 1, 1, 1} {5, 5, 5, 4, 4, 4} 87.37% 72 72 64 72 72 60 40 −
{−2,−2, 1, 1,−2, 4} {5, 5, 4, 4, 5, 3} 87.37% 216 216 144 216 216 96 96 −
{−2, 1, 1, 1, 4, 1} {5, 4, 4, 4, 3, 4} 87.37% 432 432 480 432 432 456 432 −
{−2, 1, 1, 1, 1, 4} {5, 4, 4, 4, 4, 3} 85.46% 72 72 72 72 72 96 − −
{−2,−2, 4, 1, 1, 4} {5, 5, 3, 4, 4, 3} 78.53% 144 144 48 144 144 − − −
{−2, 1, 1, 4, 4,−2} {5, 4, 4, 3, 3, 5} 78.53% 72 72 24 72 72 − − −
{−2,−2, 1, 1, 1, 4} {5, 5, 4, 4, 4, 3} 78.53% 144 144 96 144 144 96 − −
{−2, 1, 4, 4, 1, 1} {5, 4, 3, 3, 4, 4} 78.53% 72 72 48 72 72 48 − −

{−2,−2, 1, 1,−2,−2} {5, 5, 4, 4, 5, 5} NA§ 45 45 27 45 45 12 24 −
{1, 1, 1, 1, 1, 4} {4, 4, 4, 4, 4, 3} NA§ 36 36 60 36 36 60 72 −
{−5, 1, 1, 1, 1, 1} {6, 4, 4, 4, 4, 4} NA§ − − 156 − − 270 624 1620
{−5, 1, 1, 1, 1,−2} {6, 4, 4, 4, 4, 5} NA§ − − 72 − − 72 144 −
{−5,−2, 1,−2, 1, 1} {6, 5, 4, 5, 4, 4} NA§ − − 72 − − 108 72 −
{−5,−2, 1,−2, 1,−2} {6, 5, 4, 5, 4, 5} NA§ − − 48 − − 72 48 −
{−2, 1, 4, 4, 1,−2} {5, 4, 3, 3, 4, 5} NA§ 45 45 27 45 45 12 24 −

{−5,−2,−2,−2,−2, 1} {6, 5, 5, 5, 5, 4} NA§ − − 12 − − 18 12 −
{−5, 1, 1, 1, 1, 4} {6, 4, 4, 4, 4, 3} NA§ − − 24 − − 24 48 −
{−2,−2, 1,−2, 4, 4} {5, 5, 4, 5, 3, 3} NA§ 18 18 6 18 18 − − −
{−5,−2, 1,−2, 1, 4} {6, 5, 4, 5, 4, 3} NA§ − − 24 − − 36 24 −
{−5, 1, 1, 1, 1,−5} {6, 4, 4, 4, 4, 6} NA§ − − 6 − − 15 39 135
{−2, 1, 4, 4, 4,−2} {5, 4, 3, 3, 3, 5} NA§ 18 18 6 18 18 − − −
{−5, 1, 4, 1, 4, 1} {6, 4, 3, 4, 3, 4} NA§ − − 24 − − 36 24 −
{−5, 1, 4, 1, 4,−2} {6, 4, 3, 4, 3, 5} NA§ − − 24 − − 36 24 −
{−5,−2, 4,−2, 4, 1} {6, 5, 3, 5, 3, 4} NA§ − − 12 − − 18 12 −
{−5,−5, 1,−5, 1, 1} {6, 6, 4, 6, 4, 4} NA§ − − − − − − 30 90

†Efficiency of OA minus four run design compared to theoretical bound

§ΩB is singular
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Table A14: Distribution of pairwise Hamming distances between all sets of t = 4 runs for each of the 3
OA[18, 37] combinatorial isomorphism classes

Hamming Count by Class

{b} Distance EffB
† 1 2 3

{0, 0, 0, 0, 0, 3} {5, 5, 5, 5, 5, 4} NA§ 972 972 972
{−3, 0, 0, 0, 0, 0} {6, 5, 5, 5, 5, 5} NA§ 648 648 648
{0, 0, 3, 3, 0, 0} {5, 5, 4, 4, 5, 5} NA§ 243 243 243
{−3, 0, 0, 0, 0, 3} {6, 5, 5, 5, 5, 4} NA§ 324 324 324
{−3, 0, 0, 0, 0,−3} {6, 5, 5, 5, 5, 6} NA§ 108 108 108
{−3, 0, 3, 0, 3, 0} {6, 5, 4, 5, 4, 5} NA§ 648 648 648
{−3,−3, 0,−3, 0, 0} {6, 6, 5, 6, 5, 5} NA§ 72 72 72
{−3, 3, 3, 3, 3,−3} {6, 4, 4, 4, 4, 6} NA§ 27 27 27
{−3,−3, 3,−3, 3, 3} {6, 6, 4, 6, 4, 4} NA§ 18 18 18
†Efficiency of OA minus four run design compared to theoretical bound

§ΩB is singular
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