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Facial action units (AUs) relate to specific local facial regions. Recent efforts in automated

AU detection have focused on learning the facial patch representations to detect specific

AUs. These efforts have encountered three hurdles. First, they implicitly assume that

facial patches are robust to head rotation; yet non-frontal rotation is common. Second,

mappings between AUs and patches are defined a priori, which ignores co-occurrences

among AUs. And third, the dynamics of AUs are either ignored or modeled sequentially

rather than simultaneously as in human perception. Inspired by recent advances in human

perception, we propose a dynamic patch-attentive deep network, called D-PAttNet, for

AU detection that (i) controls for 3D head and face rotation, (ii) learnsmappings of patches

to AUs, and (iii) models spatiotemporal dynamics. D-PAttNet approach significantly

improves upon existing state of the art.

Keywords: action unit detection, 3D face registration, 3D-CNN, sigmoidal attention, patch-based

1. INTRODUCTION

Facial actions communicate intention, emotion, and physical state (Tian et al., 2001). The most
comprehensive method to annotate facial action is the anatomically-based Facial Action Coding
System (FACS) (Ekman et al., 2002). Action units defined in FACS correspond to facial muscle
movements that individually or in combination can describe nearly all possible facial expressions.
Automated detection of AUs has become a crucial computer vision problem.

The core of the human neural system for face and facial action perception consists of three
bilateral regions, the occipital face area (OFA), fusiform face area (FFA), and superior temporal
sulcus (STS) (Haxby et al., 2000). Previous work suggests that the OFA represents face parts,
including eyes, nose, and mouth, in the early stage of face perception (Liu et al., 2010; Nichols
et al., 2010; Arcurio et al., 2012). At a higher-level, the FFA performs holistic processing and
representations of identity (George et al., 1999; Hoffman and Haxby, 2000). The STS is sensitive to
facial dynamics and involves the representation of changeable aspects of faces such as expression,
lip movement, and eye gaze (Hoffman and Haxby, 2000). The anatomical location of OFA suggests
that it provides input to both the FFA and STS. This system is consistent with hierarchical models
(Grill-Spector and Malach, 2004; Fairhall and Ishai, 2006) that propose that complex visual objects
are recognized via a series of stages in which features of increasing complexity are extracted and
analyzed at progressively higher levels of the visual processing stream (Pitcher et al., 2011). The
success of many human-inspired approaches in machine learning urges the following question:
Can we model machine perception of facial actions with a hierarchical system analogous to the
suggested models of human perception of faces and facial action?
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Recent approaches to facial action detection have begun
to address this question. Analogous to the OFA in human
face perception, region learning, or what is referred to as
patch learning, separately processes specific facial regions. This
work is informed by the observation that the human face is
more structured than many other natural images and different
face regions have different local statistics (Zhao et al., 2016b).
Variation in local statistics stems from both structural features
and transient facial muscle contraction and relaxation. Facial
action units (AUs), which are anatomically based, are responsible
for muscle contraction and relaxation. For instance, tightening
of the eye aperture results from contraction of the inner portion
of the orbicularis oculi muscle, which is AU7. Performing AU7
will change the appearance of eye corners and not mouth regions.
When the goal is to detect AU7, it is natural to look around eye
region more than mouth region. Therefore, due to the locality of
AUs, some facial regions aremore important than others to detect
specific AUs (Zhao et al., 2016a). Thus, patch learning approaches
have components for representing facial parts. These local parts
then are integrated holistically in mechanisms analogous to the
FFA in human face perception.

Patches have been defined in one of two principal ways. One is
with respect to fixed grids (Liu et al., 2014). The other is centered
around facial landmarks (Zhao et al., 2016a). Both approaches
assume that patches are invariant to head rotation. That is, when
the head moves or rotates, patches are assumed to maintain
consistent semantic correspondence. This assumption often is
violated. Faces look very different from different poses. Because
most registration techniques treat the face as a 2D object, they
are unable to accommodate 3D head rotation. In this work, we
address this problem.

Another problem is that mappings between AUs and patches
are defined a priori, and the mappings often fail to exploit co-
occurrences among AUs. We know that some AUs frequently
co-occur, while others inhibit the activity of others. AU6 (cheek
raiser) and AU12 (oblique lip-corner puller) occur together in
both Duchenne smiles and in pain expressions. AU24, which
presses the lips together, inhibits dropping of the jaw (AU27).
Because appearance changes in different facial regions are likely
to contribute to the prediction of co-occurring AUs, it may be
advantageous to weight the significance of patches to detection
of specific AUs. Some patch-based AU detection methods fail
to weight the contribution of each patch (Zhao et al., 2016b).
A few of them do by using either regularization on the shallow
representation of patches (Zhao et al., 2016a) or pre-defined
attention masks in CNN (Jaiswal and Valstar, 2016; Sanchez
et al., 2018), which often ignore AU correlations. Below, we show
that AU detection can be improved by learning attention maps
empirically to accommodate AU correlations.

The STS is sensitive to dynamic change in facial parts, and
a number of studies have reported that dynamic information
contributes to expression perception (Ambadar et al., 2005; Bould
et al., 2008; Kätsyri and Sams, 2008; Horstmann and Ansorge,
2009). Yet, most recent work in machine perception of AUs
ignores motion information or dynamics. In static approaches,
each video frame is considered independently and outside of
its temporal context. Temporal context may matter little for

strong AUs but for subtle AUs lack of dynamics weakens the
detection. Human observers have difficulty perceiving subtle
AUs when motion information is missing (Ambadar et al.,
2005). The same may be true for automated AU detection.
When dynamics has been considered, spatial and temporal
information typically is handled sequentially. For instance, a
CNN represents spatial information and then LSTM models
temporal information (Jaiswal and Valstar, 2016; Chu et al.,
2017; Li et al., 2017). In human perception, on the other hand,
spatiotemporal information may be processed tightly integrated.

Informed by human face perception and facial anatomy
and dynamics, we propose a dynamic patch-attentive deep
network (D-PAttNet) for AU detection. D-PAttNet jointly learns
static and dynamic patch representations and weights them
for AU detection. We first apply 3D registration to reduce
changes from head movement and preserve facial actions
that would be distorted by change in pose. Then, we crop
local patches that contain the same facial parts across frames
and that are informative for detection of specific AUs. We
encode patches with individual 2D and 3D CNNs and obtain
local representations that capture spatiotemporal information.
Inspired by the recent success of attention mechanisms in
various tasks including neural machine translation (Luong
et al., 2015), text classification (Yang et al., 2016), and object
detection (Rodríguez et al., 2018), we then introduce an attention
mechanism to weight the importance of patches in detecting
specific AUs. Since our network is trained in an end-to-end
manner, the network itself learns (i) static and dynamic encoding
of patches and (ii) the degree of attention to those patches
to maximize AU detection. Unlike state-of-the-art attention
approaches, which employ softmax activation function to “select”
where to attend, we propose sigmoidal attention to allow
networks to attend to multiple patches when needed.

The contributions of this paper are:

• An end-to-end trainable dynamic patch-attentive deep
network that learns to encode static and dynamic patch
information and learns to attend to specific patches for the
detection of specific AUs.

• A sigmoidal attention mechanism that allows multiple static
and dynamic patch encodings to contribute to the prediction
of specific AUs.

• Relative to state of the art, an increase of 2.1% performance in
F1-score and 0.7% performance in AUC.

2. RELATED WORK

2.1. Using Dynamics for AU Detection
Most AU detection approaches model frames individually and
ignore the temporal dependencies among them (Chu et al., 2013;
Zeng et al., 2015; Zhao et al., 2018; Onal Ertugrul et al., 2019a,c).
Valstar and Pantic (2007) combine Support Vector Machines and
Hidden Markov Models to incorporate temporal information.
Gonzalez et al. (2015) propose a hidden semi-Markov model
(HSMM) and variable duration semi-Markov model (VDHMM)
to recognize AU dynamics. Koelstra et al. (2010) present a
dynamic texture based approach that combines a discriminative,
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frame-based GentleBoost classifier with a dynamic, generative
HMM model for temporal AU classification. Yang et al.
(2009) extract temporal information of facial expressions using
dynamic haar-like features and uses AdaBoost to select highly
discriminating subset of these for AU recognition. Jeni et al.
(2014) represent the spatio-temporal organization of expressions
with time-series of shape and appearance descriptors and uses
time-warping methods to classify different facial actions.

Recently, deep approaches have been proposed to model
temporal information for AU detection. Chu et al. (2017) propose
an architecture that combines convolutional neural network
(CNN) and long short-term memory network (LSTM) for multi-
label AU detection. In this architecture, CNN is used to learn
spatial representations within frames while LSTM is used to
model temporal dynamics among frames. Similarly, Jaiswal and
Valstar (2016) use CNN to obtain spatial representations of
facial parts cropped from the whole face using binary masks
and used Bi-directional LSTM to learn the dynamics of facial
parts for AU detection. Li et al. (2017) propose an adaptive
region cropping based multi-label learning with deep recurrent
net, which is based on combining region-based CNN (RCNN)
with LSTM. Although a few deep approaches considering
dynamics for AU detection have been proposed, many efforts
have been devoted to incorporate dynamics in deep models
for emotion recognition (Fan et al., 2016; Vielzeuf et al., 2017;
Kollias and Zafeiriou, 2018; Liu et al., 2018; Lu et al., 2018).
However, focusing on detecting action units is crucial since
FACS is a comprehensive, anatomically-based system which
describes all visually discernible facial movement and provides
an objective measure.

As noted above, both shallow and deep AU detection
approaches (e.g., SVM and 2D CNN) alike combine spatial and
temporal information sequentially. Temporal representation is
added only after spatial representation. In contrast, in human
perception spatiotemporal processing is tightly integrated.

In a recent study, Yang et al. (2019) have proposed to
model spatiotemporal information combining 2D-CNN with
3D-CNN for frame-level AU detection. However, whole video
sequences are fed as input to 3D-CNN part to provide summary
information about the entire video while modeling each frame.
They do not consider modeling the local dynamics of segments,
which is more informative to detect AUs.

2.2. Patch Learning
Traditional AU detection methods are based on (i) extracting
appearance (Jiang et al., 2011; Eleftheriadis et al., 2015;
Baltrusaitis et al., 2018) or geometric features (Lucey et al., 2007;
Du et al., 2014) from the whole face and (ii) obtaining shallow
representations as histograms of these features, thus ignoring
the specificity of facial parts to AUs (Shojaeilangari et al., 2015).
Deep approaches using whole face to train CNNs (Hammal et al.,
2017; Onal Ertugrul et al., 2019a) also ignore the specificity of
facial parts. More recent approaches focus on obtaining local
representations using patch learning. Some of these approaches
divide the face image into uniform grids (Liu et al., 2014; Zhong
et al., 2015; Zhao et al., 2016b) while others define patches around
facial parts (Corneanu et al., 2018) or facial landmarks (Zhao

et al., 2016a). Among them, Liu et al. (2014) divide a face image
into non-overlapping patches and categorize them into common
and specific patches to describe different expressions. Zhong et al.
(2015) identify active patches common to multiple expressions
and specific to an individual expression using a multi-task sparse
learning framework. Zhao et al. (2016b) use a regional connected
convolutional layer that learns specific convolutional filters from
sub-areas of the input. Corneanu et al. (2018) crop patches
containing facial parts, train separate classifiers for each part
and fuse the decisions of classifiers using structured learning.
Zhao et al. (2016a) describe overlapping patches centered at
facial landmarks, obtain shallow representations of patches
and identify informative patches using a multi-label learning
framework. These studies generally pre-process their frames
to remove roll rotation. None of the aforementioned studies
perform a 3D face registration to remove pitch and yaw rotation.
Hence, patches cropped from different frames are likely to
contain variable facial regions under pose. Only in a recent study,
Onal Ertugrul et al. (2019b) cropped patches from 3D-registered
faces for AU detection from static frames.

2.3. Regional Attention
As described in FACS (Ekman et al., 2002), AUs relate to
specific regions of human faces. Motivated by this fact, recent
studies aim to highlight information obtained from specific facial
regions to detect specific AUs. Zhao et al. (2016a) employ patch
regularization to eliminate the effect of non-informative shallow
patch representations. Taheri et al. (2014) learn a dictionary per
AU using local features extracted from predefined AU semantic
regions on faces performing that AU. Jaiswal and Valstar (2016)
use a pre-defined binary mask created to select a relevant region
for a particular AU and pass it to a convolutional and bi-
directional Long Short-Term Memory (LSTM) neural network.
Li et al. (2018) design an attention map using the facial key
points and AU centers to enforce their CNN-based architecture
to focus more on these AU centers. Sanchez et al. (2018) generate
heatmaps for a target AU, by estimating the facial landmarks and
drawing a 2DGaussian around the points where the AU is known
to cause changes. They train Hourglass network to estimate AU
intensity. Shao et al. (2018) employ an initial attention map,
created based on AU centers and refine it to jointly perform AU
detection and face alignment. These studies have mechanisms to
enforce their models to focus on pre-defined regions. They do
not have a learned attention mechanism, in which the network
decides where to attend itself for each AU. In a recent work,
Onal Ertugrul et al. (2019b) has proposed a mechanism which
learns to attend to significant patches from their static encodings.

3. METHODS

Figure 1 shows the components of the proposed dynamic
patch-attentive network (D-PAttNet) architecture. First, we
perform dense 3D registration from 2D videos (Figure 1a).
Then, we crop patches containing local facial parts. For each
patch location, we use a separate 2D-CNN to encode local,
static information and 3D-CNN to encode local, dynamic
information. We concatenate static and dynamic encoding to
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FIGURE 1 | Proposed D-PAttNet approach. (a) A dense set of facial landmarks is estimated and a dense 3D mesh of the face is reconstructed. (b) Patches

containing facial regions related to specific AUs are cropped and fed to different CNNs for encoding. For each patch, 2D-CNN is used to encode static frame-level

information and 3D-CNN is used to encode dynamic, segment-level information. Patch encoding is obtained by concatenating static and dynamic encoding.

(c) Patches are weighted by sigmoidal attention mechanism to detect specific AUs. (d) Face encodings are fed to a fully connected layer (FC) to detect AUs.

obtain patch encoding (Figure 1b). We employ a sigmoidal
attention mechanism to weight the contribution of each patch
to detect specific AUs (Figure 1c). Finally, using the final face
encoding, we detect 12 AUs (Figure 1d). In the following, we
describe in detail, the different components of the proposed
D-PAttNet approach.

3.1. 3D Face Registration
We track and normalize videos using ZFace (Jeni et al., 2015,
2017), a real-time face alignment software that accomplishes
dense 3D registration from 2D videos and images without
requiring person-specific training. ZFace performs a canonical
3D normalization that minimizes appearance changes from head
movement and maximizes changes from expressions. First, it
uses dense cascade-regression-based face alignment to estimate
a dense set of 1,024 facial landmarks. Then a part-based 3D
deformable model is applied to reconstruct a dense 3D mesh of
the face. Face images are normalized in terms of pitch, yaw and
roll rotation and scale and then centered. At the output of this
step, video resolution is 512 × 512 with an interocular distance
(IOD) of about 100 pixels.

3.2. Patch Cropping and Encoding
The 3D face registration step ensures that faces in all frames of
all individuals are registered to the same template and that same
landmarks (facial parts) in all frames are very close to each other.

This step allows us to identify the locations of face parts and crop
patches containing the same face parts for all frames.

Patch locations are identified using the domain knowledge of
human FACS coders and based on the FACS manual (Ekman
et al., 2002). We identify N = 9 patches given in Figure 2 with
the aim to cover specific face parts that are deformed during
the appearance of specific AUs, namely right eyebrow (P1), left
eyebrow (P2), right eye (P3), region between eyebrows and nose
root (P4), left eye (P5), right cheek and lip corner (P6), nose and
upper mouth (P7), left cheek and lip corner (P8), and mouth and
chin (P9). Then, we cropN = 9 patches using the same identified
locations from all frames in the dataset. The size of each RGB
patch is 100× 100 pixels.

3.2.1. Static Patch Encoding
Weuse 2D-CNNs to encode static information. Input to each 2D-
CNN is a single patch. We feed patches cropped from each of the
nine locations to a different static encoder so that each encoder
aims to learn representations of local face parts. Each of the nine
static encoders has an identical architecture, which includes three
convolutional layers and 1 fully connected layer. At the output of
static encoders, we obtainM-dimensional vector representations
of local patches.

3.2.2. Dynamic Patch Encoding
We use 3D-CNNs to encode dynamic information. We feed a
patch sequence of length T as input to each 3D-CNN. Note
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FIGURE 2 | Cropped patches from 3D registered face images.

that, each patch sequence contains the current patch fed to 2D-
CNN and T − 1 patches preceding the current patch. Similar to
static encoders, we feed patch sequences cropped from each of
the nine locations to a different dynamic encoder so that each
encoder aims to learn dynamic representations of local face parts.
3D-CNNs have the same architectures as 2D-CNNs except 2D
convolution layers are replaced by 3D convolution layers. At the
output of dynamic encoders, we obtain M-dimensional vector
representations of local patches.

After we obtain static and dynamic encoding of patches, we
concatenate them and have a 2M-dimensional patch encoding.

3.3. Patch Weighting by Sigmoidal
Attention Mechanism
Different face patches contribute unequally to the face
representation to predict AUs. In order to weight the contribution
of patch encodings, we use an attention mechanism. An attention
mechanism aggregates the representation of the informative
patch encodings to form a face encoding. Let ep be the encoding
of patch p obtained by concatenating the outputs of 2D and 3D
CNNs. First, patch encoding ep is fed to a one-layer MLP to
obtain hidden representation hp of ep as follows:

hp = tanh(Wf ep + bf ) (1)

whereWf and bf are the weight and bias parameters of the MLP,
respectively. Then, the importance of each patch is measured by
the similarity between hp and a patch level context vector cf .
In order to normalize the importance of patches to the range
[0,1] and obtain attention weight αp, we apply sigmoid function
as follows:

αp =
1

1+ exp(−hTp cf )
(2)

If a patch representation is similar to context vector, their inner
product will give a large value, and sigmoid output will be closer
to 1. On the other hand, if a patch representation is very different
from context vector, then their inner product will be close to
zero, and the sigmoid output will also be close to zero (meaning
that given patch is not important to detect the AU). Therefore,
patch level context vector cf can be interpreted as the high level
representation of fixed query “What are the informative patches
to predict a specific AU?” It is randomly initialized and learned
during training. Finally, we obtain face encoding v as a weighted
sum of patch encodings ep as:

v =
∑

p

αpep (3)

Note that, it is typical to use softmax activation function for
normalization in attention mechanisms employed in many NLP
tasks. One such task is neural machine translation, where the
network is trained to attend to one word (or a few words,
but not to the others) to obtain the corresponding translation
of the word. Output of softmax function can be used to
represent a categorical distribution. In our case, we aim to allow
multiple patches to contribute to predict a specific AU. Therefore,
instead of softmax, we used sigmoid activation function which
allows for multiple selection with a collection of Bernoulli
random variables.

3.4. AU Detection
Face encoding v is a high level representation of the face that is
used for AU detection. To v we apply ReLU for non-linearity and
have a fully connected layer to predict the occurrence of AUs.
We train individual networks for each AU. We apply sigmoid
function and use weighted binary cross-entropy loss as follows:

L = −ylog(ŷ)wpos − (1− y)log(1− ŷ) (4)

where y denotes actual AU occurrence, ŷ denotes predicted AU
occurrence. wpos is the weight that is used for adjusting positive
error relative to negative error.

4. EXPERIMENTS

4.1. Dataset
BP4D is a manually FACS annotated database of spontaneous
behavior containing 2D and 3D videos of 41 subjects (23 female
and 18 male). Following previous research in AU detection,
only 2D videos are used here. In BP4D, well-designed tasks
initiated by an experimenter are used to elicit varied spontaneous
emotions. Each subject performs eight tasks. In total there
are 328 videos of approximately 20 s each that have been
FACS annotated manually. This results in about 140,000 valid,
manually FACS annotated frames. We include 12 AUs that
occurred in more than 5% of the frames. Positive samples are
defined as ones with intensities equal to or higher than A-level,
and the remaining ones are negative samples. We visualize the
co-occurrence matrix of AUs computed using Jaccard index in
Figure 3. It can be observed that AU6, AU7, AU10, AU12, and
AU14 co-occur frequently.

4.2. Network
In 2D-CNN, we employ 32, 64, and 64 filters of 5 × 5 pixels in
three convolutional layers with a stride of 1. After convolution,
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FIGURE 3 | Co-occurrence matrix of AUs computed with Jaccard index.

rectified linear unit (ReLU) is applied to the output of the
convolutional layers to add non-linearity to the model. We
apply batch normalization to the outputs of all convolutional
layers. The network contains three maxpooling layers that are
applied after batch normalization. We apply max-pooling with
a 2 × 2 window such that the output of max-pooling layer
is downsampled with a factor of 2. At the output of the fully
connected layer of static encoder, we obtain an encoding of size
1×M, whereM = 60.

In 3D-CNN, we select the patch sequence length T = 20.
We employ 32, 64, and 64 filters of 5 × 5 × 5 pixels in the
first two convolutional layers and 2 × 5 × 5 pixels in the final
convolutional layer with a stride of 1. 3D convolutional layers
are followed by ReLU and batch normalization layers. The first
two batch normalization layers are followed bymaxpooling layers
with a 2× 2× 2 window, while the last batch normalization layer
is followed by a maxpooling layer with a 1 × 2 × 2 window. At
the output of the fully connected layer of dynamic encoder, we
obtain an encoding of size 1×M, whereM = 60.

Temporal window length varies in the range [10, 24] in
previous AU detection studies (Chu et al., 2017; Li et al., 2017).
To be consistent with previous work, we selected patch sequences
of length T = 20 within that range. The CNN architecture used in
this study has been shown to be successful in previous studies
(Cohn et al., 2018; Onal Ertugrul et al., 2019a,c). Two differences
from previous work may be noted. One is the size of input
images. Previously, we used holistic face images of size 200×200.
Here we use local facial patches of size 100 × 100. The other
difference results from the smaller input size. Because input size
was reduced by 50%, we reduced the number of filters by 50%
from 64, 128, and 128 filters to 32, 64, and 64 filters. The number
of convolutional layers remained the same.

We obtain a patch encoding ep of size 1× 120, for each frame,
which is obtained by concatenating 1×60 dimensional outputs of
static and dynamic encoder outputs. In patch attention layer, we
use the weight matrixWf of size 120× 120 and face level context
vector cf as 1 × 120. Attention layer output is a face encoding v
of size 1× 120, for each frame.

4.3. Training
We trained our architecture with mini-batches of 50 samples for
10 epochs. We used stochastic gradient descent (SGD) optimizer.
Our models were initialized with learning rate of 1e-3, with a
momentum of 0.9. In order to keep variability in the data, we
used all of the available frames and did not subsample training
frames to generate balanced dataset. For each AU, we assign wpos

to the ratio between the number of training frames excluding the
AU and containing the AU. We perform a subject independent
three-fold cross-validation for BP4D dataset. Our folds include
the same subjects as in Zhao et al. (2016a).

4.4. Evaluation Measures
We evaluate network performance on two metrics: F1-score and
area under the receiver operator characteristics curve (AUC).
F1-score is the harmonic mean of precision (P) and recall (R)
2RP

R+ P
. It is widely used in the literature and therefore enables

comparison with the many approaches that have used it to
report their performance. Because F1-score is highly attenuated
by imbalanced data (Jeni et al., 2013), however, results for less
frequent AUs must be considered with caution. AUC has the
advantage of being robust to imbalanced data but has been
reported less frequently in the literature. It supports more limited
comparisons with other approaches.

4.5. Threshold Tuning
For each AU, our model predicts a value between 0 and 1,
denoting the probability that the specified AU is present in
the frame. In order to binarize the output, we take threshold
τ = 0.5 and then evaluate the performance of D-PAttNet.
Although during training we employed a weighted loss based on
the baserates of AUs, it does not totally solve class imbalance
problem. Optimal threshold τ may be different for different
AUs and may not be equal to 0.5. We optimized the threshold
τ ∈ [0.1, 0.9] on training set and evaluate the test performance
in D-PAttNettt .

5. RESULTS

5.1. Performance Comparison With the
State-of-the-Art
We compare the performance of D-PAttNet with the following
state-of-the-art approaches:

Linear SVM (LSVM) is based on training an SVM classifier
using the SIFT features obtained from the frames without
considering patch learning.
Joint patch and multilabel learning (JPML) (Zhao et al.,
2016a) simultaneously selects a discriminative set of patches
and learn multi-AU classifiers. It uses SIFT features obtained
from patches.
Deep region and multilabel learning (DRML) (Zhao et al.,
2016b) combines region learning and multilabel learning for
AU detection.
Network combining CNN and LSTM (LSTM) (Chu et al.,
2017) employs CNN to model spatial information and LSTM
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to model temporal dynamics in a sequential way for multi-
label AU detection.
Adversarial Training Framework (ATF) (Zhang et al., 2018)
is a CNN-based framework in which AU loss is minimized and
identity loss is maximized to learn subject invariant feature
representations during the adversarial training.
Finetuned VGG Network (FVGG) (Li et al., 2018) is
the model obtained after finetuning the pretrained VGG
19-layer model.
Network with enhancing layers (E-Net) (Li et al., 2018) is the
finetuned VGG network with enhancing layer which forces
the network to pay more attention to AU interest regions on
face images.
Enhancing and Cropping Network (EAC Net) (Li et al.,
2018) is a pretrained CNN model with enhancing (E-Net)
and cropping (C-Net) layers. E-net forces the network to
attend more to AU interest regions based on a predefined
attention map while C-Net crops facial regions around
detected landmarks and applies upscaling and convolutional
layers in the cropped regions.
Deep Structured InferenceNetwork (DSIN) (Corneanu et al.,
2018) is a deep network which performs patch learning to
learn local representations and structure inference to model
AU correlations.
Joint AU detection and face alignment (JAA) (Shao et al.,
2018) is a deep learning based joint AU detection and face
alignment framework in which multi-scale shared features for
the two tasks are learned firstly, and high-level features of face
alignment are extracted and fed into AU detection.
Patch-attentive deep network (PAttNet) (Onal Ertugrul et al.,
2019b) is a CNN-based approach which jointly learns local
patch representations and weights them with a learned
attention mechanism for AU detection.

F1-score performances for the state-of-the-art approaches and
D-PAttNet are given in Table 1. We also report results with
Only3D-PAttNet, which includes only 3D CNN component of
the D-PAttNet. Note that, for DSIN and D-PAttNet, superscript
tt denotes the results after tuning the threshold. For fair
comparison, we excluded the studies which do not follow three-
fold protocol (Tősér et al., 2016).

Results reflect that, D-PAttNet and D-PAttNettt give the best
F1-score for 6 of 12 AUs (For D-PAttNet AU6, AU7, AU12, and
AU23 and for D-PAttNettt AU15 and AU24). For the remaining
6 AUs (AU1, AU2, AU4, AU10, AU14, and AU17), D-PAttNettt

gives the second best result. For four of the AUs (AU1, AU10,
AU14, and AU17) for which D-PAttNet or D-PAttNettt did not
perform the best, DSINtt show the best F1-score. On average,
our method outperforms all of the comparison approaches and
provides 2.1% absolute improvement over PAttNet.

Since F1-score is affected by the skew in the labels and some
action units are highly skewed, we also compute AUC results,
which are not affected by the skew. Only a few studies report AUC
values. In Table 2, we compare the performance of D-PAttNet
with the state of the art approaches using AUC. D-PAttNet gives
an average AUC of 73.4% over all AUs. For each AU, AUC is
above 64%. D-PAttNet gives superior performance compared to

all of the approaches reporting AUC for 9 of the 12 AUs except
for AU14, AU15, and AU24. For these three AUs, the maximum
AUC is obtained for PAttNet.

Comparison of variants of PAttNet approach reflects that D-
PAttNet which combines 2D CNN with 3D CNN outperforms
PAttNet, which only has 2D CNN. Both variants give much better
performance compared to using Only3D-PAttNet, which only
has 3D CNN. D-PAttNet gives the best F1-scores for all AUs and
the best AUC values for all but three AUs.

For the comparisons between D-PAttNet and other two
variants (PAttNet and Only3D-PAttNet) we performed
significance tests as given in Table 3. For each set of comparisons
we controlled for Type I error using Bonferroni correction.
With experiment-wise error of 0.05 and 12 comparisons in each
set, a p of 0.004 is the critical value for significance. For AU7,
AU10 and AU14 D-PAttNet significantly outperforms PAttNet
when F1 scores are compared. When AUC values are compared,
D-PAttNet performs significantly better for AU1, AU6, and AU7.
Moreover, D-PAttNet outperforms Only3D-PAttNet for all AUs
except for AU1 when F1 scores are compared. When AUC is
used, it is significantly better for AU12, AU15, and AU24.

5.2. Performance Comparison of Using
Sigmoid and Softmax Functions for
Attention in Variants of Patch-Attentive
Deep Networks
In this section, we compare the AU detection results of using our
proposed attention function sigmoid and conventional activation
function softmax to weight the contributions of patches. We
compare these functions for (i) PAttNet approach which has
2D CNN to model static information, (ii) Only3D-PAttNet
approach which has 3D CNN to model dynamic information,
and (iii) D-PAttNet approachwhich combines static and dynamic
information using 2DCNN and 3DCNN.We compare F1-scores
and AUC values in Tables 4, 5, respectively. We also performed
significance tests for the comparisons between sigmoid& softmax
in given Table 6.

Comparison of the softmax and sigmoid rows of each
approach in Table 4 shows that using softmax instead of sigmoid
for both PAttNet and D-PAttNet causes a drop in the F1-scores
for all AUs. Decreases in F1 are significant for all AUs except for
AU24. For Only3D-PAttNet, sigmoid function performs similarly
to softmax. We observe similar results for AUC values in Table 5.
Decreases in AUC are significant for four AUs namely, AU4,
AU12, AU15, and AU17. When we force the network to attend
one or a few patches, it cannot learn proper facial representation.
These results are consistent with the assumption that even if
AUs relate to specific facial regions, co-occurring nature of AUs
causes the contribution of other facial regions to detect specific
AUs. When softmax attention function is used, D-PAttNet leads
to a 2.4% increase in the average F1-score (see Table 4), and a
1.7% increase in the AUC (see Table 5). Similarly, using patch
dynamics provides a 1.5% improvement in the average F1-score
(see Table 4) and a 0.7% improvement in the average AUC
(see Table 5).
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TABLE 1 | AU detection performances (F1-scores) on BP4D dataset.

AU 1 2 4 6 7 10 12 14 15 17 23 24 Avg.

LSVM 23.2 22.8 23.1 27.2 47.1 77.2 63.7 64.3 18.4 33.0 19.4 20.7 36.7

JPML 32.6 25.6 37.4 42.3 50.5 72.2 74.1 65.7 38.1 40.0 30.4 42.3 45.9

DRML 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 47.7

LSTM 31.4 31.1 71.4 63.3 77.1 45.0 82.6 72.9 34.0 53.9 38.6 37.0 53.2

ATF 39.2 35.2 45.9 71.6 71.9 79.0 83.7 65.5 33.8 60.0 37.3 41.8 55.4

FVGG 27.8 27.6 18.3 69.7 69.1 78.1 63.2 36.4 26.1 50.7 22.8 35.9 43.8

E-Net 37.6 32.1 44.2 75.6 74.5 80.8 85.1 56.8 31.6 55.6 21.9 29.1 52.1

EAC-Net 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.6

JAA 47.2 44.0 54.9 77.5 74.6 84.0 86.9 61.9 43.6 60.3 42.7 41.9 60.0

DSIN 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9

DSINtt 51.7 41.6 58.1 76.6 74.1 85.5 87.4 72.6 40.4 66.5 38.6 46.9 61.7

PAttNet 46.1 41.4 57.1 77.9 76.1 83.8 88.4 66.5 51.2 61.6 44.1 57.3 62.6

Only3D-PAttNet 36.8 33.9 47.9 74.6 72.2 81.7 84.0 62.0 41.9 58.1 40.0 45.7 56.6

D-PAttNet 50.4 41.1 58.4 78.6 77.5 84.6 89.0 66.7 52.6 64.5 49.0 57.6 64.1

D-PAttNettt 50.7 42.5 59.0 79.4 79.0 85.0 89.3 67.6 51.6 65.3 49.6 57.5 64.7

The best results are shown in bold and the second best results are shown underlined. For methods DSIN and D-PAttNet, tt denotes the use of threshold tuning.

TABLE 2 | AU detection performances (AUC) on BP4D dataset.

AU 1 2 4 6 7 10 12 14 15 17 23 24 Avg.

LSVM 20.7 17.7 22.9 20.3 44.8 73.4 55.3 46.8 18.3 36.4 19.2 11.7 32.3

JPML 40.7 42.1 46.2 40.0 50.0 75.2 60.5 53.6 50.1 42.5 51.9 53.2 50.5

DRML 55.7 54.5 58.8 56.6 61.0 53.6 60.8 57.0 56.2 50.0 53.9 53.9 56.0

PAttNet 66.5 65.6 74.4 78.6 71.8 78.4 86.4 65.4 72.1 70.1 68.0 74.8 72.7

Only3D-PAttNet 59.5 59.6 67.6 75.9 66.1 75.9 81.5 63.0 65.6 67.1 64.6 68.1 67.9

D-PAttNet 68.3 66.0 75.6 79.1 73.0 79.0 87.0 64.9 72.0 71.9 69.5 74.5 73.4

The best results are shown in bold.

TABLE 3 | Significance of differences between D-PAttNet and the two other variants (PAttNet and Only3D-PAttNet) by t-test.

1 2 4 6 7 10 12 14 15 17 23 24

D-PAttNet >

PAttNet

F1 n.s. * n.s. n.s. ** ** n.s. ** * * n.s. n.s.

AUC ** n.s. n.s. ** ** n.s. n.s. ** n.s. * n.s. n.s.

D-PAttNet >

Only3D-PAttNet

F1 * ** ** ** ** ** ** ** ** ** ** **

AUC * n.s. * n.s. n.s. n.s. ** n.s. ** n.s. n.s. **

*p < 0.05, **p < 0.05/12. The latter are significant after correcting for multiple comparisons. n.s., not significant. Cells denoted with gray color indicates cases where the results for

PAttNet are greater than the ones for D-PAttNet.

TABLE 4 | Comparison of sigmoid and softmax attention functions in PAttNet, Only3D-PAttNet, and D-PAttNet (F1-scores).

AU 1 2 4 6 7 10 12 14 15 17 23 24 Avg

PAttNet (2D)
Softmax 37.2 28.4 41.4 73.4 69.8 79.3 81.9 58.7 32.7 58.5 39.8 49.2 54.2

Sigmoid 46.1 41.4 57.1 77.9 76.1 83.8 88.4 66.5 51.2 61.6 44.1 57.3 62.6

Only3D Softmax 46.5 33.8 41.3 74.5 71.4 81.9 85.9 57.6 33.4 55.2 43.1 46.1 55.9

PAttNet Sigmoid 36.8 33.9 47.9 74.6 72.2 81.7 84.0 62.0 41.9 58.1 40.0 45.7 56.6

D-PAttNet (2D + 3D)
Softmax 42.5 41.2 42.0 72.1 72.2 82.6 86.7 62.1 32.2 54.9 37.8 52.4 56.6

Sigmoid 50.4 41.1 58.4 78.6 77.5 84.6 89.0 66.7 52.6 64.5 49.0 57.6 64.1

The best results are shown in bold.
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TABLE 5 | Comparison of sigmoid and softmax attention functions in PAttNet, Only3D-PAttNet, and D-PAttNet (AUC).

AU 1 2 4 6 7 10 12 14 15 17 23 24 Avg

PAttNet (2D)
Softmax 59.2 54.7 63.4 74.7 65.9 72.9 76.9 58.8 59.6 67.3 65.3 71.4 65.8

Sigmoid 66.5 65.6 74.4 78.6 71.8 78.4 86.4 65.4 72.1 70.1 68.0 74.8 72.7

Only3D Softmax 66.4 60.2 62.4 74.8 65.1 78.8 83.6 59.5 59.3 64.5 67.1 69.4 67.6

PAttNet Sigmoid 59.5 59.6 67.6 76.0 66.1 75.9 81.5 63.0 65.6 67.1 64.6 68.1 67.9

D-PAttNet (2D + 3D)
Softmax 63.2 63.9 60.7 73.2 63.5 77.0 84.4 61.4 59.1 63.2 63.4 77.4 67.5

Sigmoid 68.3 66.0 75.6 79.1 73.0 79.0 87.0 64.9 72.0 71.9 69.5 74.5 73.4

The best results are shown in bold.

TABLE 6 | Significance of differences between classifiers (sigmoid and softmax) by t-test.

1 2 4 6 7 10 12 14 15 17 23 24

Sigmoid >

Softmax

F1 ** ** ** ** ** ** ** ** ** ** ** n.s.

AUC n.s. n.s. ** n.s. n.s. n.s. ** n.s. ** ** * *

*p < 0.05, **p < 0.05/12. The latter are significant after correcting for multiple comparisons. n.s., not significant. Cells denoted with gray color indicates cases where the results for

softmax are greater than the ones for sigmoid.

5.3. Patch Attention Analysis
We visualize the attention maps formed using the learned
attention weights of D-PAttNet with sigmoid attention, D-
PAttNet with softmax attention, PAttNet with sigmoid attention,
and PAttNet with softmax attention in Figure 4. We obtain an
attention map for each sample and then average these maps to
obtain the presented attention maps. In all maps, entries can
take values between [0,1]. Cells with black color denote that the
corresponding patch has high attention weight (is significant) to
detect the corresponding AU for all of these folds whereas cells
with white color denote that the related patch is not significant to
detect the corresponding AU in any of the folds. Multiple patches
contribute with varying weights to detect AUs.

5.3.1. Comparison of Sigmoid and Softmax Attention
We can compare the attention maps obtained using sigmoid
(Figures 4A,C) and softmax (Figures 4B,D) attention. As
expected, we obtain denser maps with sigmoid attention for
both PAttNet and D-PAttNet since softmax tends to select
sparse entries. Moreover, we observe larger number of black
or dark gray entries in the attention maps obtained using
sigmoid meaning that models learned for different folds
agree on the significance of corresponding patches to detect
related AUs. On the other hand, attention maps obtained
using softmax attention do not have black entries and have
a few dark gray entries. This indicates an inconsistency
between the models trained for different folds, each of
which learns to detect the same AU from different parts of
the face.

5.3.2. Comparison of D-PAttNet and PAttNet
When we compare D-PAttNet with sigmoid (Figure 4A) and
PAttNet with sigmoid (Figure 4C), we observe that for most of
the AUs, the network learns to attend meaningful patches. In
both maps, generally higher attention is observed in upper face

patches to detect AUs of upper face region (AU1, AU2, and AU4).
Similarly, higher attention is observed in mouth and lip corner
patches to detect AUs of lower face region. In both maps, the
highest attention is given to patches containing eyebrows (P1 for
D-PAttNet and P4 for PAttNet) to detect AU1. AU12 is detected
mainly from patches containing mouth and lip corner regions
(P7, P8, and P9 for D-PAttNet and P6, P9 for PAttNet).

AU6 (contraction of the orbicularis oculi) raises the cheeks,
narrows the eye aperture, and in social contexts, such as BP4D,
typically occurs together with AU12 (zygomatic major). AU12
stretches the lip corners obliquely. Because AU6 and AU12
frequently co-occur and lip-corner stretching often is a relatively
prominent appearance change, it may not be surprising that
PAttNet for AU6 (Figure 4C) learns to attend more to patches
containing lip corner, cheek, and mouth than to ones containing
only the eyes. What is unexpected is that when patch dynamics
are included for AU6 in PAttNet (Figure 4A), eye features
become more salient (P1). The same effect may be seen with
respect to AU7, which also is highly correlated with AU12 (P6
in Figure 4A and P8 in Figure 4C). The addition of dynamics in
this way contributes to the detection of these AUs.

When we compare D-PAttNet with softmax (Figure 4B) and
PAttNet with softmax (Figure 4D), we observe that forcing the
classifier to attend sparse facial regions with softmax attention
causes the network to attend irrelevant patches for some AUs
in D-PAttNet. For example, to detect eye AUs, AU1 and AU2
the classifier does not attend to any of the eye patches. Recall
that a black cell represents that the corresponding patch is
significant to detect specific AUs for all or majority of the
input frames. Neither maps for models with softmax attention
contains black or dark cells. Contrary to the maps obtained with
sigmoid atention, models with softmax attention do not attend
to consistent patches to detect specific AUs for different images.
Therefore, using softmax function for attention is not a good
option for D-PAttNet and PAttNet.
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FIGURE 4 | Average attention maps for PAttNet with sigmoid attention (A), PAttNet with softmax attention (B), D-PAttNet with sigmoid attention (C), and D-PAttNet

with softmax attention (D). Attention maps are obtained by averaging attention weights of all samples. Attention weights are in [0,1]. White color represents no

attention (0) and black color represents the maximum attention (1).

6. DISCUSSION AND CONCLUSION

Inspired by the human perception of face and facial actions,

we have proposed a dynamic patch-attentive deep network

called D-PAttNet for AU detection. Analogous to OFA in
human face perception, we encode local patches in an early

stage of the network. Then, analogous to FFA, patch-based
information is fused at a later stage by means of an attention
mechanism. Analogous to STS, spatiotemporal dynamics are
modeled by 3D-CNN.

In D-PAttNet, we first apply 3D face registration to remove
the variation caused by the differences in pose and scale. Then,
we crop patches containing important facial parts to detect
specific AUs. We encode static patch information using 2D-CNN

and patch dynamics using 3D-CNN and concatenate them to
obtain patch encodings. After encoding each patch with CNN-
based encoders, we weight the contribution of patch encodings
using a patch attention mechanism. To allow multiple patches to
contribute AU detection, we employ sigmoidal attention rather
than the conventional softmax attention.

D-PAttNet outperforms state-of-the-art approaches on BP4D.
Considering patch dynamics in D-PAttNet leads to an increase
in the AU detection performance compared to its variants
PAttNet and Only3D-PAttNet. Tuning the decision threshold of
classifier further improves the detection performance. While
D-PAttNet and PAttNet results are closer to each other,
Only3D-PAttNet results are much worse than these two.
Both PAttNet and D-PAttNet include a 2D CNN component.
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Current frame whose AUs are being detected is explicitly fed
to these models through the 2D CNN component. However,
in Only3D-PAttNet, 2D-CNN component does not exist. A
sequence of frames is given as input to the 3D-CNN component
but the task is to predict the AU occurrences of the last
frame. Therefore, it may be more difficult for Only3D-
PAttNet model to figure out the problem compared to the
other variants.

Visualizing attention maps provides interpretation of the
significant facial regions to detect AUs. Attention maps show
that, with the help of sigmoidal attention D-PAttNet chooses
to attend multiple patches and the most significant patches are
meaningful. Softmax attention map is much sparser and leads
to lower AU detection performance. While the facial regions
attended in both D-PAttNet and PAttNet are similar, D-PAttNet
is more successful to capture subtle appearance changes from
the dynamics.

A limitation of our work is that we only tested our approach
on a single database, BP4D, in which non-frontal variation in
head pose is relatively limited. The 3D registration in D-PAttNet
may be especially effective in databases that have larger non-
frontal variation in head pose. More generally, generalizability
of models and decision thresholds across databases or domains
are open research questions. Decreases in classifier performance
are common in cross-domain settings (Onal Ertugrul et al.,
2019a) even when models are trained on large databases. Future
work should explore cross-domain generalizability of models and
thresholds in large databases that vary in pose characteristics.
Another future direction would be modeling spatiotemporal
patch dynamics for AU intensity estimation.
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