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Abstract Newly observed two charmed-strange resonan-

ces, D∗
s1(2860) and D∗

s3(2860), are investigated by cal-

culating their Okubo–Zweig–Iizuka-allowed strong decays,

which shows that they are suitable candidates for the 13 D1

and 13 D3 states in the charmed-strange meson family. Our

study also predicts other main decay modes of D∗
s1(2860)

and D∗
s3(2860), which can be accessible at the future exper-

iment. In addition, the decay behaviors of the spin partners

of D∗
s1(2860) and D∗

s3(2860), i.e., 1D(2−) and 1D′(2−), are

predicted in this work, which are still missing at present. The

experimental search for the missing 1D(2−) and 1D′(2−)

charmed-strange mesons is an intriguing and challenging

task for further experiments.

1 Introduction

Very recently the LHCb Collaboration has released a new

observation of an excess around 2.86 GeV in the D̄0 K −

invariant mass spectrum of B0
s → D̄0 K −π+, which can be

an admixture of spin-1 and spin-3 resonances corresponding

to D∗
s1(2860) and D∗

s3(2860) [1,2], respectively. As indicated

by LHCb [1,2], it is the first time to identify a spin-3 reso-

nance. In addition, D∗
s2(2573) also appears in the the D̄0 K −

invariant mass spectrum.

Before this observation, a charmed-strange state Ds J

(2860) was reported by BaBar in the DK channel [3],

where the mass and width are m = 2856.6 ± 1.5 ± 5.0

and Ŵ = 47 ± 7 ± 10 MeV [3], respectively, which was
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later confirmed by BaBar in the D∗K channel [4]. The

Ds J (2860) has stimulated extensive discussions on its under-

lying structure. In Ref. [5], Ds J (2860) is suggested as a

13 D3 cs̄ meson. This explanation was also supported by

the study of the effective Lagrangian approach [6,7], the

Regge phenomenology [8], the constituent quark model

[9], and the mass loaded flux tube model [10]. The ratio

Ŵ(Ds J (2860) → D∗K )/Ŵ(Ds J (2860) → DK ) was cal-

culated as 0.36 [11] by the effective Lagrangian method.

However, the calculation by the QPC model shows that

such a ratio is about 0.8 [12], which is close to the exper-

imental value 1.10 ± 0.15 ± 0.19 [4]. Thus, a J P = 3−

assignment to Ds J (2860) is a possible explanation. In addi-

tion, Ds J (2860) as a mixture of charmed-strange states was

given in Refs. [9,12,13]. Ds J (2860) could be a partner of

Ds1(2710), where both Ds J (2860) and Ds1(2710) are a

mixture of 23S1 and 13 D1 cs̄ states. By introducing such

a mixing mechanism, the obtained ratio of D∗K/DK for

Ds J (2860) and Ds1(2710) [12] is consistent with the exper-

imental data [4]. Reference [14] indicates that there exist

two overlapping resonances (radially excited J P = 0+ and

J P = 2+ cs̄ states) at 2.86 GeV. Besides the above explana-

tions under the conventional charmed-strange meson frame-

work, Ds J (2860) was explained as a multiquark exotic state

[15]. Ds J (2860) as a J P = 0+ charmed-strange meson was

suggested in Ref. [5]. However, this scalar charmed-strange

meson cannot decay into D∗K [5], which contradicts the

BaBar’s observation of Ds J (2860) in its D∗K decay chan-

nel [3]. After the observation of Ds J (2860), Ds J (3040) was

reported by BaBar in the D∗K channel [4], which can be

explained as the first radial excitation of Ds1(2460) with

J P = 1+ [16]. In addition, the decay behaviors of other miss-

ing 2P charmed-strange mesons in experiment were given

in Ref. [16].
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Briefly reviewing the research status of Ds J (2860), we

notice that more theoretical and experimental efforts are still

necessary to clarify the properties of Ds J (2860). It is obvious

that the recent precise measurement of LHCb [1,2] provides

us with a good opportunity to identify higher radial excita-

tions in the charmed-strange meson family.

The resonance parameters of the newly observed D∗
s1

(2860) and D∗
s3(2860) by LHCb include [1,2]:

m D∗
s1(2860) = 2859 ± 12 ± 6 ± 23 MeV, (1)

ŴD∗
s1(2860) = 159 ± 23 ± 27 ± 72 MeV, (2)

m D∗
s3(2860) = 2860.5 ± 2.6 ± 2.5 ± 6.0 MeV, (3)

ŴD∗
s3(2860) = 53 ± 7 ± 4 ± 6 MeV, (4)

where the errors are due to statistical one, experimentally

systematic effects and model variations [1,2], respectively.

At present, there are good candidates for the 1S and 1P

states in the charmed-strange meson family (see Particle Data

Group for more details [17]). Thus, the two newly observed

D∗
s1(2860) and D∗

s3(2860) can be categorized into the 1D

charmed-strange states when considering their spin quan-

tum numbers and masses. Before the observation of these

two resonances, there were several theoretical predictions

[18–21] of the mass spectrum of the 1D charmed-strange

meson family, which are collected in Table 1. Comparing the

experimental data of D∗
s1(2860) and D∗

s3(2860) with the the-

oretical results, we notice that the masses of D∗
s1(2860) and

D∗
s3(2860) are comparable with the corresponding theoret-

ical predictions, which further supports that it is reasonable

to assign D∗
s1(2860) and D∗

s3(2860) as the 1D states of the

charmed-strange meson family.

Although both the mass spectrum analysis and the mea-

surement of the spin quantum number support D∗
s1(2860)

and D∗
s3(2860) as the 1D states, we still need to carry out a

further test of this assignment through study of their decay

behaviors. This study can provide more detailed informa-

Table 1 Theoretical predictions for charmed-strange meson spectrum

and comparison with the experimental data

J P (2s+1 L J ) Expt. [17] GI [18] MMS [19] PE [20] EFG [21]

0−(1S0) 1968 1979 1967 1965 1969

1−(3S1) 2112 2129 2110 2113 2111

0+(3 P0) 2318 2484 2325 2487 2509

1+(“1 P1”) 2460 2459 2467 2535 2536

1+(“3 P1”) 2536 2556 2525 2605 2574

2+(3 P2) 2573 [1,2] 2592 2568 2581 2571

1−(3 D1) 2859 [1,2] 2899 2817 2913 2913

2−(“1 D2”) – 2900 – 2900 2931

2−(“3 D2”) – 2926 2856 2953 2961

3−(3 D3) 2860 [1,2] 2917 – 2925 2871

tion on the partial decay widths, which is valuable for future

experimental investigation of D∗
s1(2860) and D∗

s3(2860). In

addition, there exist four 1D states in the charmed-strange

meson family. At present, the spin partners of D∗
s1(2860)

and D∗
s3(2860) are still missing in experiment. Thus, we will

also predict the properties of the two missing 1D states in

this work.

This paper is organized as follows. In Sect. 2, after some

introduction we illustrate the study of decay behaviors of

Ds1(2860) and Ds3(2860). In Sect. 3, the paper ends with

the discussion and conclusions.

2 Decay behavior of Ds1(2860) and Ds3(2860)

Among all properties of these 1D states, their two-body

Okubo–Zweig–Iizuka (OZI)-allowed strong decays are the

most important and typical properties. Hence, in the follow-

ing we mainly focus on the study of their OZI-allowed strong

decays. For the 1D states studied in this work, their allowed

decay channels are listed in Table 2. Among the four 1D

states in the charmed-strange meson family, there are two

J P = 2− states, which is a mixture of 11 D2 and 13 D2 states,

i.e.,
(

1D(2−)

1D′(2−)

)

=
(

cos θ1D sin θ1D

− sin θ1D cos θ1D

)(

13 D2

11 D2

)

, (5)

where θ1D is a mixing angle. In the heavy quark limit,

a general mixing angle between 3L L and 1L L is θL =
arctan(

√
L/(L + 1)), which indicates θ1D = 39◦ [22].

In the following, we apply the quark pair creation (QPC)

model [23–33] to describe the OZI-allowed two-body strong

decays shown in Table 2, where the QPC model was exten-

sively adopted to study the strong decay of hadrons [5,16,34–

43]. In the QPC model, the quark–antiquark pair is created

in QCD vacuum with vacuum quantum number J PC =
0++. For a decay process, i.e., an initial observed meson

Table 2 The two-body OZI-allowed decay modes of the 1D charmed-

strange mesons. Here, we use symbols, ◦ and –, to mark the OZI-

allowed and OZI-forbidden decay modes, respectively. D∗
s1(2860) and

D∗
s3(2860) are 13 D1 and 13 D3 states, respectively

Channels D∗
s1(2860) 1D(2−) D∗

s3(2860)

1D′(2−)

DK ◦ – ◦
D∗K ◦ ◦ ◦
Dsη ◦ – ◦
D∗

s η ◦ ◦ ◦
DK ∗ ◦ ◦ ◦
D∗

0 (2400)K – ◦ –

D∗
s0(2317)η – ◦ –
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Table 3 The R values (in units

of GeV−1) [46] and masses (in

units of MeV) [17] of the

mesons involved in present

calculation

States R Mass States R Mass States R Mass

D 2.33 1867 D∗ 2.70 2008 D0(2400) 3.13 2318

Ds 1.92 1968 D∗
s 2.22 2112 Ds0(2317) 2.70 2318

K 2.17 494 K ∗ 3.13 896 η 2.12 548

A decaying into two observed mesons B and C , the process

can be expressed as

〈BC |T |A〉 = δ3(PB + PC )MMJA
MJB

MJC , (6)

where PB(PC ) is the three-momentum of the final meson

B(C) in the rest frame of A. MJi
(i = A, B, C) denotes the

orbital magnetic momentum. Additionally, MMJA
MJB

MJC is

the helicity amplitude. The transition operator T in Eq. (6)

is written as [23–33]

T = −3γ
∑

m

〈1m; 1 − m|00〉
∫

dp3dp4δ
3(p3 + p4)

×Y1m

(

p3 − p4

2

)

χ34
1,−mφ34

0 ω34
0 b

†
3i (p3)d

†
4 j (p4), (7)

which is introduced in a phenomenological way to reflect

the property of quark-antiquark (denoted by indices 3 and

4) created from vacuum. Ylm(p) = |p|Ylm(p) is the solid

harmonic. χ , φ, and ω are the general description of the

spin, flavor, and color wave functions, respectively.

By the Jacob–Wick formula [44], the decay amplitude

reads

MJ L(P) =
√

2L + 1

2JA + 1

∑

MJB
MJC

〈L0; J MJA
|JA MJA

〉

×〈JB MJB
; JC MJC

|JA MJA
〉MMJA

MJB
MJC .

(8)

Finally, the general decay width is

Ŵ = π2 |PB |
m2

A

∑

J,L

|MJ L(P)|2, (9)

where m A is the mass of the initial state A. In the following,

the helicity amplitudes M
MJA

MJB
MJC of the OZI-allowed

strong decay channels in Table 2 are calculated, which is

the main task of the whole calculation. Here, we adopt the

simple harmonic oscillator (SHO) wave function �n,ℓm(k),

where the value of a parameter R appearing in the SHO wave

function can be obtained such that it reproduces the realistic

root mean square (rms) radius, which can be calculated by

the relativistic quark model [46] with a Coulomb plus linear

confining potential as well as a hyperfine interaction term. In

Table 3, we list the R values adopted in our calculation. The

strength of qq̄ is taken as γ = 6.3 [16] while the strength

of ss̄ satisfies γs = γ /
√

3. We need to specify our γ value

adopted in the present work which is
√

96π times larger than

that adopted by other groups [45,46], where the γ value as

an overall factor can be obtained by fitting the experimental

data (see Ref. [47] for more details of how to get the γ value).

In addition, the constituent quark masses for charm,

up/down, and strange quarks are 1.60, 0.33, and 0.55 GeV,

respectively [46].

With the above preparation, we obtain the total and par-

tial decay widths of D∗
s1(2860), D∗

s3(2860), and their spin

partners, and comparison with the experimental data [1,2].

As shown in Table 3, the R value of the P-wave charmed-

strange meson is about 2.70 GeV−1. For the D-wave state, the

R value is estimated to be around 3.00 GeV−1 [46]. In present

calculation, we vary the R value for the D-wave charmed-

strange meson from 2.4 to 3.6 GeV−1. In Fig. 1, we present

the R dependence of the total and partial decay widths of

Ds1(2860) and Ds3(2860).

2.1 Ds1(2860)

The total width of Ds1(2860) as the 13 D1 state is given in

Fig. 1, where the total width is obtained as 128 ∼ 177 MeV

corresponding to the selected R range, which is consistent

with the experimental width of Ds1(2860) (Ŵ = 159 ± 23 ±
27 ± 72 MeV [1,2]). The information of the partial decay

widths depicted in Fig. 1 also shows that DK is the domi-

nant decay mode of the 13 D1 charm strange meson, which

explains why Ds1(2860) was experimentally observed in its

DK decay channel [1,2]). In addition, our study also indi-

cates that the D∗K and DK ∗ channels are also important

for the 13 D1 state, which have partial widths 35 ∼ 44 and

24 ∼ 40 MeV, respectively. The Dsη and D∗
s η channels

have partial decay widths with several MeV, which is far

smaller than the partial decay widths of the DK , D∗K , and

DK ∗ channels. This phenomenon can be understood since

the decays of the 13 D1 state into Dsη and D∗
s η have a smaller

phase space.

The above results show that Ds1(2860) can be a good

candidate for the 13 D1 charmed-strange meson.

Besides providing the partial decay widths, we also predict

several typical ratios, i.e.,

Ŵ(Ds1(2860) → D∗K )

Ŵ(Ds1(2860) → DK )
= 0.46 ∼ 0.70, (10)

Ŵ(Ds1(2860) → DK ∗)

Ŵ(Ds1(2860) → DK )
= 0.25 ∼ 0.85, (11)

Ŵ(Ds1(2860) → Dsη)

Ŵ(Ds1(2860) → DK )
= 0.10 ∼ 0.14, (12)
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Fig. 1 The total and partial decay widths of 13 D1 (left panel) and 13 D3 (right panel) charmed-strange mesons dependent on the R value. Here,

the dashed lines with the yellow bands are the experimental widths of D∗
s1(2860) and D∗

s3(2860) from LHCb [1,2]

which can be further tested in the coming experimental mea-

surements.

The Belle Collaboration once reported Ds1(2710) in the

DK invariant mass spectrum, which has mass 2708 ±
9+11
−10 MeV and width 108 ± 23+36

−31 MeV [48]. The analy-

sis of angular distribution indicates that Ds1(2710) has the

spin-parity J P = 1− [48]. Later, the BaBar Collaboration

confirmed Ds1(2710) in a new D∗K channel [4], where the

ratio Ŵ(D∗K )/Ŵ(DK ) = 0.91±0.13±0.12 for Ds1(2710).

In Refs. [5,11], the assignment of Ds1(2710) to the

13 D1 charmed-strange meson was proposed. However, the

obtained Ŵ(D∗K )/Ŵ(DK ) = 0.043 [11] is deviated far

from the experimental data, which does not support the

13 D1 charmed-strange assignment to Ds1(2710). Especially,

the present study of newly observed Ds1(2860) shows that

Ds1(2860) is a good candidate of the 13 D1 charmed-strange

meson.

If Ds1(2710) is not a 13 D1 charmed-strange meson, we

need to find the place in the charmed-strange meson family.

In Ref. [5], the authors once indicated that Ds1(2710) as the

23S1 charmed-strange meson is not completely excluded.1

By the effective Lagrangian approach [11] and under the

assignment of Ds1(2710) to the 23S1 charmed-strange

meson, the Ŵ(Ds1(2710) → D∗K )/Ŵ(Ds1(2710) →
DK ) = 0.91 was obtained, which is close to the experimen-

tal value [48]. We also notice the recent work of Ds J (2860)

[49], where they also proposed that Ds1(2710) is the 23S1 cs̄

meson.

1 We need to explain the reason why the 23 S1 charmed-strange meson is

not completely excluded in Ref. [5]. In Ref. [5], the total decay width of

Ds1(2710) as the 23S1 charmed-strange meson was calculated, which

is 32 MeV. This value is obtained with the typical R = 3.2 GeV−1

value. As shown in Fig. 4 (d) in [5], the total decay width is strongly

dependent on the R value due to node effects. If taking other typical R

values which are not far away from 3.2 GeV−1, the total decay width

can reach up to the lower limit of the experimental width of Ds1(2710).

Besides the above exploration in the framework of a con-

ventional charmed-strange meson, the exotic state explana-

tion to Ds1(2710) was given in Ref. [15].

In the following, we include the mixing between 23S1

and 13 D1 states to further discuss the mixing angle depen-

dence of the decay behavior of Ds1(2860). Here, Ds1(2S)

and Ds1(2860) are the mixtures of 23S1 and 13 D1 states,

which satisfy the relation

(

|Ds1(2S)〉
|Ds1(2860)〉

)

=
(

cos θ sin θ

− sin θ cos θ

) (

|23S1〉
|13 D1〉

)

. (13)

The 2S–1D mixing angle should be small due to the rel-

ative large mass gap between the 2S and 1D states, where

we take some typical values θ = 0◦, θ = 15◦, and θ = 30◦

to present our results. θ = 0◦ denotes that there is no 2S–

1D mixing. In Fig. 2, we present the total and partial decay

widths, which depend on the R value, where we show the

results with three different typical θ values. In the left-top

panel of Fig. 2, we list the total decay width of Ds1(2860)

and the comparison with the experimental data. When tak-

ing 2.4 < R < 3.6 GeV−1, the calculated total decay width

varies from 130 to 235 MeV, which indicates the theoretically

estimated total decay width of Ds1(2860) can overlap with

the experimental measurement. In addition, we also notice

that the partial decay widths for the Dsη and D∗
s η channels

are less than 10 MeV, while for the DK , D∗K , and DK ∗

decay modes, the corresponding partial decay widths vary

from several 20 MeV to more than 100 MeV, which strongly

depends on the value of a mixing angle.

In Ref. [12], the authors adopted a different convention

for the 2S–1D mixing, where their 2S–1D mixing angle has

a sign opposite to our scenario. Taking the same R value

and mixing angle for Ds1(2860), we obtain the partial decay

widths of DK and D∗K are less than 10 MeV, while the

calculated partial decay width of DK ∗ is more than 20 MeV,

which is consistent with the results in Ref. [12].
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Fig. 2 The total and partial decay widths (in units of MeV) of

Ds1(2860) dependent on the R value. The solid, dashed and dotted

curves correspond to the typical 2S–1D mixing angles θ = 0◦, θ = 15◦,

and θ = 30◦, respectively. The band in the left-top panel is the total

decay width with errors, which was reported by the LHCb Collaboration

[1,2]

2.2 Ds3(2860)

The two-body OZI-allowed decay behavior of Ds3(2860) as

the 13 D3 charmed-strange meson is presented in the right

panel of Fig. 1, where the obtained total width can reach

up to 42 ∼ 60 MeV, which overlaps with the LHCb’s data

(53 ± 7 ± 4 ± 6 MeV [1,2]). This fact further reflects that

Ds3(2860) is suitable for the 13 D3 charmed-strange meson.

Similar to Ds1(2860), the DK channel is also the dominant

decay mode of Ds3(2860), where the partial decay width of

Ds3(2860) → DK is 25 ∼ 30 MeV in the selected R value

range. Additionally, we also calculate the partial decay width

of Ds3(2860) → D∗K and Ds3(2860) → DK ∗, which are

14 ∼ 24 and 0.9 ∼ 2.5 MeV, respectively. The partial decay

widths for Dsη and D∗
s η channel are of order of 0.1 MeV.

The corresponding typical ratios for Ds3(2860) are

Ŵ(Ds3(2860) → D∗K )

Ŵ(Ds3(2860) → DK )
= 0.55 ∼ 0.80, (14)

Ŵ(Ds3(2860) → DK ∗)

Ŵ(Ds3(2860) → DK )
= 0.03 ∼ 0.09, (15)

Ŵ(Ds3(2860) → Dsη)

Ŵ(Ds1(2860) → DK )
= 0.018 ∼ 0.020, (16)

which can be tested in future experiment.

In Ref. [5], the ratio Ŵ(D∗K )/Ŵ(DK ) = 13/22 = 0.59

was given for Ds J (2860) observed by Belle as the 13 D3

state, where the QPC model was also adopted and this ratio

is obtained by taking a typical value R = 2.94 GeV−1.

In the present work, we consider the range R = 2.4 ∼
3.6 GeV−1 to present the D∗K/DK ratio for Ds3(2860).

If comparing the ratio given in Eq. (14) with the corre-

sponding one obtained in Ref. [5], we notice that their value

Ŵ(D∗K )/Ŵ(DK ) = 0.59 [5] just falls into our obtained

range Ŵ(D∗K )/Ŵ(DK ) = 0.55 ∼ 0.80.

In addition, we need to make a comment on the exper-

imental ratio Ŵ(D∗K )/Ŵ(DK ) = 1.10 ± 0.15 ± 0.19 for

Ds J (2860), which was extracted by the BaBar Collabora-

tion [3]. Since LHCb indicated that there exist two reso-

nances Ds1(2860) and Ds3(2860) in the DK invariant mass

spectrum [1,2], the experimental ratio Ŵ(D∗K )/Ŵ(DK ) for

Ds J (2860) must be changed, which means that we cannot

simply apply the old Ŵ(D∗K )/Ŵ(DK ) data in Ref. [3] to

draw a conclusion on the structure of Ds J (2860). We expect

further experimental measurements of this ratio, which will

be helpful to reveal the properties of the observed Ds J (2860)

states.

2.3 1D(2−) and 1D′(2−)

In the following, we discuss the decay behaviors of the two

missing 1D states in the present experiment, which is cru-

cial to the experimental search for the 1D(2−) and 1D′(2−)

states.

We first fix the mixing angle θ1D = 39◦ obtained in the

heavy quark limit, and discuss the R value dependence of

the total and partial decay widths of the two missing 2−

states in experiment, which are presented in Fig. 3. Since

these two 1D states have not yet been seen in experiment,

we take the mass range 2850 ∼ 2950 MeV, which covers the

theoretically predicted masses of the 1D(2−) and 1D′(2−)

states from different groups listed in Table 1, to discuss the

decay behaviors of the 1D(2−) and 1D′(2−) states.
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W
id

th
(M

e
V

)

Total

Total

DK∗

DK∗

D∗K

D∗K

D∗

s
η

D∗

s
η

D0K

D0K

R (GeV−1)

Fig. 3 The total and partial decay widths of the 1D(2−) (upper row)

and the 1D′(2−) (lower row) charmed-strange mesons dependent on

the R values. Here, a mixing angle of 39◦ is chosen. The solid and

dashed curves correspond to two predicted masses of 2− states, 2850

and 2950 MeV, respectively

The total and partial decay widths of 1D(2−) are present

in the upper panel of Fig. 3. Here, two typical masses of the

1D(2−) state, 2850 and 2950 MeV, are considered, which are

corresponding to the solid and dashed curved in Fig. 3. The

estimated total decay width varies from 90 to 190 MeV, which

is due to the uncertainty of the predicted mass of the 1D(2−)

state and the R value dependence as mentioned above. If

the mass of the 1D(2−) state can be constrained by future

experiment, the uncertainty of the total width for the 1D(2−)

state can be further reduced. In any case, our study indicates

that the 1D(2−) state has a broad width.

Additionally, as shown in Fig. 3, the 1D(2−) state can

dominantly decay into D∗K , where B(1D(2−) → D∗K ) =
(77 ∼ 87) %, and DK ∗ and D∗

s η are its main decay modes.

Comparing D∗K , DK ∗, and D∗
s η with each other, D∗

s η is

the weakest decay channel. Hence, we suggest experimental

search for the 1D(2−) state firstly via the D∗K channel.

We also obtain two typical ratios, i.e.,

Ŵ(1D(2−) → DK ∗)

Ŵ(1D(2−) → D∗K )
= 0.11 ∼ 0.36, (17)

Ŵ(1D(2−) → D∗
s η)

Ŵ(1D(2−) → D∗K )
= 0.11 ∼ 0.18, (18)

which can be accessible in experiment.

As for the 1D′(2−) state, the total and partial decay

width are present in the lower panel of Fig. 3. We pre-

dict its total decay width ((80 ∼ 240) MeV), which shows

that the 1D′(2−) state is also a broad resonance, where

DK ∗ is its dominant decay mode with a branching ratio

B(1D′(2−) → DK ∗) = (64 ∼ 73) %. Its main decay mode

includes D∗K , while 1D′ → D∗
s η and 1D′ → D0(2400)K

have small partial decay widths. Besides the above informa-

tion, two typical ratios are listed:

Ŵ(1D′(2−) → D∗K )

Ŵ(1D′(2−) → DK ∗)
= 0.36 ∼ 0.53, (19)

Ŵ(1D′(2−) → D∗η)

Ŵ(1D′(2−) → DK ∗)
= 0.004 ∼ 0.013. (20)

It should be noticed that the threshold of D∗
s0(2317)η is

2865 MeV and two 1D charmed-strange mesons with J P =
2− decaying into D∗

s0(2317)η occur via a D− wave. Thus,

1D(2−)/1D′(2−) → D∗
s0(2317)η is suppressed, which is

supported by our calculation since the corresponding partial

decay widths are of the order of a few keV for 1D(2−) →
D∗

s0η and of the order of 0.1 keV for 1D′(2−) → D∗
s0η.

In Table 4, we fix the R value of 1D(2−) and 1D′(2−)

to be 2.85 GeV−1 [46] and further discuss the total and par-

tial decay widths dependent on the mixing angle θ1D , where

three typical values θ1D = 20◦, θ1D = 30◦, and θ1D = 50◦

are adopted. For the 1D(2−) state, its total decay width varies

from 152 to 187 MeV, which indicates that the total decay

width is weakly dependent on the mixing angle θ1D . More-

over, the 1D(2−) state dominantly decays into D∗K , whose

width varies from 110 to 134 MeV caused by the uncer-

tainty of the mass of the 1D(2−) state and the different mix-

ing angle θ1D . In addition, the ratio of 1D(2−) → D∗
s η

and 1D(2−) → D∗K is estimated to be 0.11 ∼ 0.19,

which is consistent with that shown in Eq. (18). However,

the predicted partial decay width of 1D(2−) → DK ∗ is

strongly dependent on the mixing angle, which varies from

2 to 56 MeV.

The total decay width of 1D′(2−) varies from 117 to

230 MeV depending on different predicted masses and mix-

ing angles. Its dominant decay modes are D∗K and DK ∗,

and the ratios of 1D′(2−) → D∗K and 1D′(2−) → DK ∗

are predicted to be 0.39 ∼ 0.66. The partial decay widths

of 1D′(2−) → D∗
s η and 1D′(2−) → D0(2400)K are rel-
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Table 4 The total and partial decay widths of two 2− states (in units of MeV) dependent on the mixing angle θ1D (the typical values are

θ1D = 20◦, 30◦, and 50◦). Here, the R value of 1D(2−) and 1D′(2−) is fixed as R = 2.85 GeV−1 [46]

M = 2850 MeV M = 2950 MeV

θ1D = 20◦ θ1D = 30◦ θ1D = 50◦ θ1D = 20◦ θ1D = 30◦ θ1D = 50◦

Channels 1D(2−) 1D′(2−) 1D(2−) 1D′(2−) 1D(2−) 1D′(2−) 1D(2−) 1D′(2−) 1D(2−) 1D′(2−) 1D(2−) 1D′(2−)

D∗K 126.93 44.60 135.61 35.90 134.62 36.84 110.42 77.82 113.85 74.39 113.46 74.76

DK ∗ 26.06 70.04 13.54 82.59 1.99 94.18 56.19 118.06 38.58 135.69 22.34 152.00

D∗
s η 13.93 2.08 15.17 0.83 15.03 0.97 20.23 4.21 21.91 2.54 21.72 2.72

D∗
0 (2400) K 0.012 0.011 0.008 0.015 0.002 0.022 0.50 0.08 0.42 0.16 0.22 0.36

Total 166.93 116.73 164.33 119.34 151.64 132.01 187.34 200.17 174.76 212.78 157.74 229.84

atively small and are given by several MeV and less than

0.5 MeV, respectively.

3 Discussion and conclusions

With the observation of two charmed-strange resonances

Ds1(2860) and Ds3(2860), which was recently announced

by the LHCb Collaboration [1,2], the observed charmed-

strange states become more and more abundant. In this work,

we have carried out a study of the observed Ds1(2860) and

Ds3(2860), which indicates that Ds1(2860) and Ds3(2860)

can be well categorized as 13 D1 and 13 D3 states in the

charmed-strange meson family since the experimental widths

of Ds1(2860) and Ds3(2860) can be reproduced by the cor-

responding calculated total widths of the 13 D1 and 13 D3

states. In addition, the result of their partial decay widths

shows that the DK decay mode is dominant both for 13 D1

and 13 D3 states, which naturally explains why Ds1(2860)

and Ds3(2860) were first observed in the DK channel. If

Ds1(2860) and Ds3(2860) are the 13 D1 and 13 D3 states,

respectively, our study also indicates that the D∗K and

DK ∗ channels are the main decay mode of Ds1(2860) and

Ds3(2860), respectively. Thus, we suggest for future experi-

ments to search for Ds1(2860) and Ds3(2860) in these main

decay channels, which cannot only test our prediction pre-

sented in this work but also provide more information of the

properties of Ds1(2860) and Ds3(2860).

As the spin partners of Ds1(2860) and Ds3(2860), two

1D charmed-strange mesons with J P = 2− are still miss-

ing in experiment. Thus, in this work we also predict the

decay behaviors of these two missing 1D charmed-strange

mesons. Our calculation by the QPC model shows that both

the 1D(2−) and the 1D′(2−) states have very broad widths.

For the 1D(2−) and 1D′(2−) states, their dominant decay

mode is D∗K and DK ∗, respectively. In addition, DK ∗ and

D∗K are also the important decay modes of the 1D(2−)

and 1D′(2−) states, respectively. This investigation provides

valuable information when further experimentally exploring

these two missing 1D charmed-strange mesons.

In summary, the observed Ds1(2860) and Ds3(2860) pro-

vide us a good opportunity to establish higher states in the

charmed-strange meson family. The following experimental

and theoretical efforts are still necessary to reveal the under-

lying properties of Ds1(2860) and Ds3(2860). Furthermore,

it is a challenging research topic for future experiments to

hunt the two predicted missing 1D charmed-strange mesons

with J P = 2−.

Before closing this section, we would like to discuss the

threshold effect or coupled-channel effect, which was pro-

posed to solve the puzzling lower mass and narrow widths

for Ds0(2317) [50] and Ds1(2460) [51], and to understand

the properties of X (3872). We notice that there exist several

typical D∗K , DK ∗, and D∗K ∗ thresholds, which are ∼2580,

∼2762, and ∼2902 MeV, respectively. Here, the observed

Ds1(2860) and Ds3(2860) are near the D∗K ∗ threshold

while Ds1(2715) is close to the DK ∗ threshold. This fact

also shows that the threshold effect or coupled-channel effect

is important to these observed charmed-strange states. For

example, in Ref. [52], the authors studied the D∗K ∗ thresh-

old effect on D∗
s2(2573). Thus, further theoretical study

of Ds1(2860) and Ds3(2860) by considering the threshold

effect or coupled-channel effect is an interesting research

topic.

In addition, the results presented in this work are calcu-

lated by using the SHO wave functions with a rms radius

obtained within a relativistic quark model [18], which can

provide a quantitative estimate of the decay behavior of

hadrons. However, the line shape of the SHO wave function

is slightly different from the one obtained by the relativistic

quark model. For example, the nodes may appear at different

places for these two cases. Thus, adopting a numerical wave

function from a relativistic quark model [18] may further

improve the whole results, where we can compare the results

obtained by using the SHO wave function and the numerical

wave function, which is an interesting research topic.2

2 We would like to thank the anonymous referee for his/her valuable

suggestion.

123



30 Page 8 of 8 Eur. Phys. J. C (2015) 75 :30

Acknowledgments This project is supported by the National Nat-

ural Science Foundation of China under Grants No. 11222547, No.

11375240, No. 11175073, and No. 11035006, the Ministry of Educa-

tion of China (SRFDP under Grant No. 2012021111000), and the Fok

Ying Tung Education Foundation (No. 131006).

Open Access This article is distributed under the terms of the Creative

Commons Attribution License which permits any use, distribution, and

reproduction in any medium, provided the original author(s) and the

source are credited.

Funded by SCOAP3 / License Version CC BY 4.0.

References

1. R. Aaij et al., LHCb Collaboration, arXiv:1407.7574 [hep-ex]

2. R. Aaij et al., LHCb Collaboration, arXiv:1407.7712 [hep-ex]

3. B. Aubert et al., BaBar Collaboration, Phys. Rev. Lett. 97, 222001

(2006). hep-ex/0607082

4. B. Aubert et al., BaBar Collaboration, Phys. Rev. D 80, 092003

(2009). arXiv:0908.0806 [hep-ex]

5. B. Zhang, X. Liu, W.-Z. Deng, S.-L. Zhu, Eur. Phys. J. C 50, 617

(2007). hep-ph/0609013

6. P. Colangelo, F. De Fazio, S. Nicotri, Phys. Lett. B 642, 48 (2006).

hep-ph/0607245

7. P. Colangelo, F. De Fazio, F. Giannuzzi, S. Nicotri, Phys. Rev. D

86, 054024 (2012). arXiv:1207.6940 [hep-ph]

8. D. -M. Li, B. Ma, Y.-H. Liu, Eur. Phys. J. C 51, 359 (2007).

hep-ph/0703278

9. X.-H. Zhong, Q. Zhao, Phys. Rev. D 81, 014031 (2010).

arXiv:0911.1856 [hep-ph]

10. B. Chen, D.-X. Wang, A. Zhang, Phys. Rev. D 80, 071502 (2009).

arXiv:0908.3261 [hep-ph]

11. P. Colangelo, F. De Fazio, S. Nicotri, M. Rizzi, Phys. Rev. D 77,

014012 (2008). arXiv:0710.3068 [hep-ph]

12. D.-M. Li, B. Ma, Phys. Rev. D 81, 014021 (2010). arXiv:0911.2906

[hep-ph]

13. X.-H. Zhong, Q. Zhao, Phys. Rev. D 78, 014029 (2008).

arXiv:0803.2102 [hep-ph]

14. E. van Beveren, G. Rupp, Phys. Rev. D 81, 118101 (2010).

arXiv:0908.1142 [hep-ph]

15. J. Vijande, A. Valcarce, F. Fernandez, Phys. Rev. D 79, 037501

(2009). arXiv:0810.4988 [hep-ph]

16. Z.-F. Sun, X. Liu, Phys. Rev. D 80, 074037 (2009).

arXiv:0909.1658 [hep-ph]

17. J. Beringer et al., Particle Data Group Collaboration, Phys. Rev. D

86, 010001 (2012)

18. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)

19. T. Matsuki, T. Morii, K. Sudoh, Prog. Theor. Phys. 117, 1077

(2007). hep-ph/0605019

20. M. Di Pierro, E. Eichten, Phys. Rev. D 64, 114004 (2001).

hep-ph/0104208

21. D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 66, 197 (2010).

arXiv:0910.5612 [hep-ph]

22. T. Matsuki, T. Morii, K. Seo, Prog. Theor. Phys. 124, 285 (2010).

arXiv:1001.4248 [hep-ph]

23. L. Micu, Nucl. Phys. B 10, 521 (1969)

24. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Rev. D 8,

2223 (1973)

25. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Rev. D 9,

1415 (1974)

26. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Rev. D 11,

1272 (1975)

27. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Lett. B 72,

57 (1977)

28. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Lett. B 71,

397 (1977)

29. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, (Gordon and

Breach, New York, 1988), p. 311

30. E. van Beveren, C. Dullemond, G. Rupp, Phys. Rev. D 21, 772

(1980) (erratum-ibid. D 22, 787, 1980)

31. E. van Beveren, G. Rupp, T.A. Rijken, C. Dullemond, Phys. Rev.

D 27, 1527 (1983)

32. R. Bonnaz, B. Silvestre-Brac, C. Gignoux, Eur. Phys. J. A 13, 363

(2002). hep-ph/0101112

33. W. Roberts, B. Silvestre-Brac, Few Body Syst. 11, 171 (1992)

34. X. Liu, Z.-G. Luo, Z.-F. Sun, Phys. Rev. Lett. 104, 122001 (2010).

arXiv:0911.3694 [hep-ph]

35. Z.-F. Sun, J.-S. Yu, X. Liu, T. Matsuki, Phys. Rev. D 82, 111501

(2010). arXiv:1008.3120 [hep-ph]

36. J.-S. Yu, Z.-F. Sun, X. Liu, Q. Zhao, Phys. Rev. D 83, 114007

(2011). arXiv:1104.3064 [hep-ph]

37. X. Wang, Z.-F. Sun, D.-Y. Chen, X. Liu, T. Matsuki, Phys. Rev. D

85, 074024 (2012). arXiv:1202.4139 [hep-ph]

38. Z.-C. Ye, X. Wang, X. Liu, Q. Zhao, Phys. Rev. D 86, 054025

(2012). arXiv:1206.0097 [hep-ph]

39. L.-P. He, X. Wang, X. Liu, Phys. Rev. D 88, 034008 (2013).

arXiv:1306.5562 [hep-ph]

40. Y. Sun, X. Liu, T. Matsuki, Phys. Rev. D 88(9), 094020 (2013).

arXiv:1309.2203 [hep-ph]

41. Y. Sun, Q.-T. Song, D.-Y. Chen, X. Liu, S.-L. Zhu, Phys. Rev. D

89, 054026 (2014). arXiv:1401.1595 [hep-ph]

42. C.-Q. Pang, L.-P. He, X. Liu, T. Matsuki, Phys. Rev. D 90, 014001

(2014). arXiv:1405.3189 [hep-ph]

43. L.-P. He, D.-Y. Chen, X. Liu, T. Matsuki, arXiv:1405.3831 [hep-

ph]

44. M. Jacob, G. C. Wick, Ann. Phys. 7, 404 (1959). (Ann Phys, 281,

774, 2000)

45. S. Godfrey, R. Kokoski, Phys. Rev. D 43, 1679 (1991)

46. F.E. Close, E.S. Swanson, Phys. Rev. D 72, 094004 (2005).

hep-ph/0505206

47. H.G. Blundell, arXiv:hep-ph/9608473

48. J. Brodzicka et al., Belle Collaboration, Phys. Rev. Lett. 100,

092001 (2008.) arXiv:0707.3491 [hep-ex]

49. S. Godfrey, K. Moats, arXiv:1409.0874 [hep-ph]

50. E. van Beveren, G. Rupp, Phys. Rev. Lett. 91, 012003 (2003).

hep-ph/0305035

51. E. van Beveren, G. Rupp, Eur. Phys. J. C 32, 493 (2004).

hep-ph/0306051

52. R. Molina, T. Branz, E. Oset, Phys. Rev. D 82, 014010 (2010).

arXiv:1005.0335 [hep-ph]

123

http://arxiv.org/abs/1407.7574
http://arxiv.org/abs/1407.7712
http://arxiv.org/abs/hep-ex/0607082
http://arxiv.org/abs/0908.0806
http://arxiv.org/abs/hep-ph/0609013
http://arxiv.org/abs/hep-ph/0607245
http://arxiv.org/abs/1207.6940
http://arxiv.org/abs/hep-ph/0703278
http://arxiv.org/abs/0911.1856
http://arxiv.org/abs/0908.3261
http://arxiv.org/abs/0710.3068
http://arxiv.org/abs/0911.2906
http://arxiv.org/abs/0803.2102
http://arxiv.org/abs/0908.1142
http://arxiv.org/abs/0810.4988
http://arxiv.org/abs/0909.1658
http://arxiv.org/abs/hep-ph/0605019
http://arxiv.org/abs/hep-ph/0104208
http://arxiv.org/abs/0910.5612
http://arxiv.org/abs/1001.4248
http://arxiv.org/abs/hep-ph/0101112
http://arxiv.org/abs/0911.3694
http://arxiv.org/abs/1008.3120
http://arxiv.org/abs/1104.3064
http://arxiv.org/abs/1202.4139
http://arxiv.org/abs/1206.0097
http://arxiv.org/abs/1306.5562
http://arxiv.org/abs/1309.2203
http://arxiv.org/abs/1401.1595
http://arxiv.org/abs/1405.3189
http://arxiv.org/abs/1405.3831
http://arxiv.org/abs/hep-ph/0505206
http://arxiv.org/abs/hep-ph/9608473
http://arxiv.org/abs/0707.3491
http://arxiv.org/abs/1409.0874
http://arxiv.org/abs/hep-ph/0305035
http://arxiv.org/abs/hep-ph/0306051
http://arxiv.org/abs/1005.0335

	Ds1*(2860) and Ds3*(2860): candidates for 1D charmed-strange mesons
	Abstract 
	1 Introduction
	2 Decay behavior of Ds1(2860) and Ds3(2860)
	2.1 Ds1(2860)
	2.2 Ds3(2860)
	2.3 1D(2-) and 1D(2-)

	3 Discussion and conclusions
	Acknowledgments
	References


