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Abstract 

This paper descr ibes D-SCRIPT, a language 
f o r rep resen t ing knowledge in a r t i f i c i a l 
I n t e l l i g e n c e programs. D-SCRIPT conta ins a 
powerful formal ism fo r d e s c r i p t i o n s , which 
permi ts the represen ta t ion of statements tha t 
are p rob lemat ica l for o ther systems. 
P a r t i c u l a r a t t e n t i o n is paid to problems of 
opaque contex ts , t ime c o n t e x t s , and knowledge 
about knowledge. The design of a deduct ive 
system f o r t h i s language is a lso cons idered. 

1 . Int roduct ion 

1.1 Ways of Representing; Knowledge 

Methods advocated fo r represent ing 
knowledge in a r t i f i c i a l l i n t e l l i g e n c e programs 
have Included l og i ca l statements (McCarthy, 
Sandewal l ) , semantic networks ( Q u i l l i a n , 
Schank), and procedures (Hew i t t , Sussman and 
McDermott), All these approaches shpre one 
fundamental concept, the no t ion of 
p r e d i c a t i o n . That I s , the basic data 
s t r u c t u r e In each system Is some 
rep resen ta t i on of a p red ica te app l ied to 
o b j e c t s . In t h i s respect , the var ious systems 
are more or less equ i va len t . But t h i s basic 
idea must be extended to handle problems of 
q u a n t i f i c a t i o n and knowledge about knowledge. 
Mere the systems do d i f f e r . We w i l l argue, 
though, that these d i f f e rences r e s u l t from the 
d e s c r i p t i v e apparatus used in the p a r t i c u l a r 
systems being compared, ra ther than from an 
inherent advantage o f , say, procedures over 
d e c l a r a t i v e s or v ice versa. 

Advocates of PLANNER ( e . g . Winograd, p. 
2153 have argued that the p red ica te ca l cu lus 
cannot represent how a piece of knowledge 
should be used. But t h i s is t rue only of the 
f i r s t - o r d e r pred ica te c a l c u l u s . In a h igher -
order or non-ordered d e c l a r a t i v e language, 
statements could be made which would t e l l a 
theorem prover how other statements are to be 
used. PLANNER, on the other hand, has no way 
o f d i r e c t l y s t a t i n g an e x i s t e n t i a l 
q u a n t i f i c a t i o n , but t h i s does not mean that 
procedural languages are necessar i l y Incapable 
of hand l ing tha t problem. 

Our b e l i e f , then. Is that the type of 
system used to represent knowledge Is 
un impor tan t , so long as It has s u f f i c i e n t 
express ive power. This paper presents an 
attempt at such a system, the language D-
SCRIPT. As the name i m p l i e s , the most 
I n t e r e s t i n g fea tu re of D-SCRIPT is I t s 
powerful formal ism f o r d e s c r i p t i o n s , which 
enables i t to represent statements tha t are 
p rob lemat ica l in o ther systems. No p o s i t i o n 
w i l l be taken as to what k ind of language D-
SCRIPT i s . Since It is intended to answer 
quest ions by making deduct ions from a data 
base, it can be thought of as a theorem 
prover . Since it operates by comparing 
expressions l i k e the data-base languages of 
PLANNER and CONNIVER, It can be thought of as 
a pa t te rn -match ing language. And since It Is 
Tur ing un ive rsa l and. In f a c t , includes the 
lambda c a l c u l u s . It can be thought of as a 
programming language. 

1.2 Problems In Representing Knowledge 

Before present ing the d e t a i l s of D-
SCRIPT, we w i l l t r y to give some Idea of the 
type of problem It Is designed to so l ve . A 
c l a s s i c problem Is tha t of represent ing opaque 
con tex ts . An opaque context is one which does 
not a l low s u b s t i t u t i o n o f r e f e r e n t i a l l y 
equ iva len t expressions or does not a l low 
e x i s t e n t i a l q u a n t i f i c a t i o n . For example the 
verb "want" creates an opaque con tex t : 

(1 .1) John wants to marry the p r e t t i e s t g i r l . 

This sentence is ambiguous. it can mean 
e i t h e r : 

(1 .2 ) John wants to merry a s p e c i f i c g i r l who 
also happens to bp the p r e t t i e s t . 

o r : 

(1 .3 ) John wants to marry whoever is the 
p r e t t i e s t g i r l , a l though he may not know 
who that is. 

Under the f i r s t i n t e r p r e t a t i o n we can 
s u b s t i t u t e any phrase which re fe rs to the same 
person fo r " the p r e t t i e s t g i r l " . That i s , i f 
the p r e t t i e s t g i r l is named " S a l l y Sunshine", 
from (1 .2 ) we can i n f e r : 

U. I*) John wants to marry a s p e c i f i c g i r l who 
also happens to be named Sa l l y Sunshine. 

We cannot make the corresponding inference 
from ( 1 . 3 ) . I t w i l l not be t rue t h a t : 

(1 .5) John wants to marry whoever is named 
Sa l l y Sunshine, although he may not know 
who that i s . 

Because of t h i s p roper ty , (1.2) is c a l l e d the 
t ransparent reading of (1.1) and (1 .3) is 
c a l l e d the opaque read ing. I t Is almost 
always the case that sentences having an 
opaque reading are ambiguous w i th the other 
reading being t ransparen t . 

To i l l u s t r a t e b lock ing of e x i s t e n t i a l 
q u a n t i f i c a t i o n , cons ider : 

( 1 .6 ) John wants to marry a b londe. 

Again the sentence Is ambiguous, meaning 
e i t h e r : 

(1 .7) John wants to marry a s p e c i f i c g i r l , who 
also happens to be a b londe. 

o r : 

(1 .8) John has no p a r t i c u l a r g i r l In mind, but 
he wants whoever he does marry to be a 
b londe. 

We can e x i s t e n t i a l l y quan t i f y over the f i r s t 
reading but not the second. We can I n f e r : 

(1 .9) There e x i s t s someone whom John wants to 
marry. 
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from ( 1 . 7 ) , but not from ( I . 8 ) . 
Another problem is the occurrence of 

d e s c r i p t i v e phrases In sentences i nvo lv lng 
time re ference. In the sentence: 

(1 .10) The President has been marr ied since 
1945. 

the phrase " t he Pres ident " r e f e r s to an 
I n d i v i d u a l . In the sentence: 

(1.11) The President has l i v e d in the White 
Mouse since 1800. 

" the Pres ident " r e fe rs to each President In 
t u r n . 

Another type of sentence where the 
reference of a phrase depends on time Is 
I l l us t ra ted by: 

(1 .12) John met the President In 1960. 

This sentence is ambiguous, but un l i ke ( 1 . 1 1 ) , 
each I n t e r p r e t a t i o n re fe rs to on ly one person. 
The ambigui ty Is whether " t he Pres iden t " 
r e fe rs to the President at the time (1.12) is 
asser ted , or the President in 19C0. 

represent ing knowledge about knowledge 
ra ises some i n t e r e s t i n g issues. For Instance, 
in: 

(1.13) John knows B i l l ' s phone numher. 

how is John's knowledge to be represented? In 
John's mind It might be something l i k e : 

(1.14) (PHONE-NUM BILL 987-651(3) 

So, (1.13) might be: 

(1 ,15) (KNOWS JOHN (PHOMF-NUM BILL 987-6543)) 

The t roub le w i t h (1 .15) is tha t I t inc ludes 
too much I n f o rma t i on . Not on ly does It say 
what (1.13) says, it a lso says what the number 
La- The d i f f i c u l t y is to r e f e r to a piece of 
In fo rmat ion w i thou t s t a t i n g i t . 

For a l l these types of sentences, D-
SCRIPT provides representa t ions which a l low 
the cor rec t deduct ions to be made. Fur ther , 
i t provides separate representa t ions fo r each 
meaning of the ambiguous sentences, and these 
representa t ions are re la ted In a way that 
exp la ins the ambigu i ty . 

2. The D-SCRIPT Language 

2 .1 P-SCRIPT Expressions 

D-SCRIPT conta ins the f o l l o w i n g types of 
express ions: 

1 . constants 
2. va r i ab l es 
3. forms 
4. l i s t s 

A constant Is any alpha-numeric ( I . e . only 
l e t t e r s o r numbers) charac ter s t r i n g ( e . g . 
"F00" , "BL0CK5"). A va r i ab l e Is any a lpha
numeric charac te r s t r i n g p r e f i x e d by " ? " ( e . g . 
" ? X " ) . A form Is any sequence of expressions 
enclosed In ang le -brackets ( e . g . "<X Y ?Z>") . 
A l i s t Is any sequence of expressions enclosed 
In parentheses ( e . g . "(F00 A <BAR B C> ) " ) . 

D-SCRIPT observes the convent ion that a l l 
f u n c t i o n s , p r e d i c a t e s , and operators evaluate 

t h e i r arguments. The ru les f o r eva lua t i ng 
expressions are l a r g e l y adapted from LISP. In 
f a c t , D-SCRIPT va r i ab les and forms are t rea ted 
j u s t l i k e LISP atoms and l i s t s , r e s p e c t i v e l y . 
Rather than in t roduc ing "QUOTE", however, we 
use constants and l i s t s to represent p re 
def ined Items. To s t a t e our ru les f o r m a l l y : 

1. A constant evaluates to I t s e l f . 

2. A v a r i a b l e evaluates to the expression 
which It has been assigned. 

3. The value of a form Is the r e s u l t of 
app ly ing I t s f i r s t element to the values o f 
I t s remaining elements. This w i l l not be 
def ined In gene ra l , but on ly f o r those 
expressions which represent meaningful 
operat ions In D-SCRIPT. One such case Is 
tha t of lambda-expressions. A lambda-
expression is represented in D-SCRIPT by a 
form con ta in ing the constant "LAMBDA", 
fo l lowed by a l i s t of v a r i a b l e s , fo l lowed 
by an expression ( e . g . "<LAMBDA (?X ?Y) 
<TIMES ?X ?Y>>"). A form whose f i r s t 
element Is a lambda-expression is evaluated 
in the same way as a corresponding LISP 
express ion . The r e s u l t is the value of the 
body of the lambda-expression, w i t h the 
values of the arguments assigned to the 
corresponding var iab les. For Ins tance, 
assuming " + " has the usual meaning, 
"<<LAMBDA (?X) <+ 2 ?X>> 3>" has the same 
value as "<+ 2 3>" , which Is " 5 " . We w i l l 
in t roduce other types of forms whose value 
is de f ined when we exp la in the 
rep resen ta t ion of s ta tements. 

4. A l i s t evaluates to a form w i th I den t i ca l 
s t r u c t u r e , except tha t f ree va r i ab l es are 
replaced by t h e i r va lues. I f "?X" has 
p rev ious ly been assigned the value "A" , 
then "(LAMBDA (?Y) CFOO ?X ?Y)) w i l l 
evaluate to "<LAMBDA C?Y) CFOO A ?Y)>". 

I t is wor th no t i ng tha t the way lambda-
expressions and l i s t s are de f ined makes i t 
very easy to w r i t e f unc t i ons which cons t ruc t 
complex forms. For example, consider "<LAMBDA 
C?X) (F00 (BAR (GRITCH ? X ) ) ) > " . The r e s u l t of 
app ly ing t h i s to "Z " is "<F00 (BAR (GRITCII 
Z ) ) > " . A comparable LISP f u n c t i o n would have 
to be b u i l t up w i t h "C0MS" 's to achieve t h i s 
r e s u l t . 

2.2 Representing Knowledge in D-SCRIPT 

The most basic statements are those which 
express simple p r e d i c a t i o n . A statement of 
t h i s k ind Is represented In D-SCRIPT by a form 
whose f i r s t element Is a constant represent ing 
the p red ica te and whose other elements are 
constants represent ing the ob jec ts of the 
p red i ca te . For example: 

(2 .1 ) The sun is a s t a r . 
C2.2) BlockA is on BlockB. 

cou ld be represented as: 

(2 .3 ) <STAR SUN> 
(2. I t ) <0N BLOCKA BL0CKB> 

A simple statement about a s ta tement , such as: 
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( 2 . 5 ) John b e l i e v e s t he sun I s a s t a r . 

w o u l d b e : 

( 2 . 5 ) <BEL1EVE JOHN (STAR SUN)> 

The I m p o r t a n t t h i n g t o n o t i c e about ( 2 . 6 ) I s 
t h a t t he embedded s t a t e m e n t I s r e p r e s e n t e d by 
a l i s t . T h i s Is because we need an e x p r e s s i o n 
whose v a l u e I s ( 2 . 3 ) t o b e c o n s i s t e n t w i t h t he 
c o n v e n t i o n t h a t p r e d i c a t e s ( I n t h i s c a s e , 
" b e l i e v e " ) e v a l u a t e t h e i r a rgumen ts . 

To r e p r e s e n t more complex s t a t e m e n t s / two 
t y p e s o f e x t e n s i o n s a re needed. The s i m p l e r 
o f t h e s e i s t he a d d i t i o n o f l o g i c a l 
c o n n e c t i v e s . D-SCR1PT uses "OR" , "AND" , 
"NOT" , and " I M P U F S " t o s t a n d f o r t he o b v i o u s 
l o g i c a l o p e r a t i o n s . As I n ( 2 . 6 ) t h e embedded 
s t a t e m e n t s a r e e x p r e s s e d a s l i s t s . So: 

( 2 . 7 ) I f t he sun i s a s t a r , then B lockA i s on 

B l o c k B . 

w o u l d be r e p r e s e n t e d b y : 

( 2 . 8 ) < IMPUFS (STAR SUN) (ON BLOCKA BL0CKB)> 
T h i s n o t a t i o n r e f l e c t s t h e f a c t t h a t i n D -
SCP.tPT, l o g i c a l c o n n e c t i v e s o p e r a t e on t he 
s t a t e m e n t s t hemse l ves r a t h e r than o n t h e i r 
t r u t h - v a l u e s . " I M P L I E S " , t h e n , i s no t 
computed as a Boo lean f u n c t i o n , bu t r a t h e r is 
computed b y a s s e r t i n g t h a t i t s f i r s t argument 
I s t r u e , and a t t e m p t i n g t o p rove i t s second 
a r g u m e n t . 

The o t h e r e x t e n s i o n r e q u i r e d f o r complex 
s t a t e m e n t s , and t he one t h a t i s most I m p o r t a n t 
t o ou r t h e o r y , i s t h e use o f d e s c r i p t i o n s . 
The re a re t h r e e t y p e s o f d e s c r i p t i o n s i n D -
SCRIPT; e x i s t e n t i a l d e s c r i p t i o n s , u n i v e r s a l 
d e s c r i p t i o n s and d e f i n i t e d e s c r i p t i o n s . A 
d e s c r i p t i o n i s a f o r m whose f i r s t e lemen t i s 
"SOME" ( e x i s t e n t i a l ) , "EVERY" ( u n i v e r s a l ) , o r 
"THE" ( d e f i n i t e ) ; whose second e lement is a 
l i s t c o n t a i n i n g a v a r i a b l e ; and whose t h i r d 
e l emen t Is an e x p r e s s i o n whose v a l u e is a 
s t a t e m e n t . D e s c r i p t i o n s r e p r e s e n t t h e 
c o r r e s p o n d i n g t y p e s o f n a t u r a l language 
d e s c r i p t i v e p h r a s e s : 

( 2 . 9 ) a b l o c k <S0ME (?X) (CLOCK ?X)> 
e v e r y number <FVFRY (?Y) (HUM ?Y)> 
t h e T a b l e <TIIF (?X) (TABLE ?X)> , 

Some examples o f s e n t e n c e s c o n t a i n i n g 
d e s c r i p t i v e ph rases and t h e i r r e p r e s e n t a t i o n s 
a r e : 

( 2 . 1 0 ) The k i n g I s f a t . 
<FAT <THE (?X) (KING ?Xl>> 

( 2 . 1 1 ) John owns a d o g . 
<0WN JOHN <S0ME (?X) (DOG ?X)>> 

( 2 . 1 2 ) Every boy l i k e s Santa C l a u s . 
<LIKE <EVERY (?X) (BOY ?X)> SANTA> 

N o t i c e t h a t when d e s c r i p t i o n s appear i n 
s t a t e m e n t s , t h e y a r e l e f t a s f o r m s . T h i s I s 
b e c a u s e , u n l i k e embedded s t a t e m e n t s , we a r e 
t a l k i n g abou t t he o b j e c t s t o wh ich t he 
d e s c r i p t i o n s r e f e r ( i . e . t h e i r v a l u e s ) r a t h e r 
t h a n t h e d e s c r i p t i o n s t h e m s e l v e s . 

The n o t a t i o n we have used so f a r Is no t 
s u f f i c i e n t t o e x p r e s s s t a t e m e n t s c o n t a i n i n g 
more t h a n one o c c u r r e n c e o f the same 
d e s c r i p t i o n . I n t h e s e n t e n c e : 

( 2 . 1 3 ) Every boy e i t h e r l o v e s Santa C laus o r 
h a t e s h im . 

t h e ph rase " e v e r y b o y " i s t h e s u b j e c t o f b o t h 
" l o v e s " and " h a t e s " . We canno t use t he 
f o l l o w i n g r e p r e s e n t a t i o n t h o u g h : 

( 2 . 1 4 ) <OR (LOVE <EVERY <?X> (BOY 7X>> SANTA) 
(HATE <FVERY (?X) (BOY ?X)> SANTA)> 

because t h i s means: 

( 2 . 1 5 ) E i t h e r every boy l o v e s Santa C laus o r 
e v e r y boy ha tes Santa C l a u s . 

w h i c h , o f c o u r s e , i s q u i t e d i f f e r e n t . We can 
overcome t h i s d i f f i c u l t y b y u s i n g lambda-
e x p r e s s i o n s . We w i l l r e p r e s e n t ( 2 . 1 3 ) b y : 

( 2 . 1 6 ) <<LAMBDA (?X> (OR (LOVE ?X SANTA) 
(HATE ?X SANTA))> 

<FVFRY (?Y) CBOY ?Y)>> 

T h i s can be read as some th ing l i k e " t h e 
p r e d i c a t e X i s t r u e o f e v e r y b o y , " where t he 
p r e d i c a t e X i s " l o v e s Santa C laus o r h a t e s 
h i m . " 

Vie have a s i m i l a r s i t u a t i o n w i t h r e s p e c t 
t o t he scope o f q u a n t i f i e r s . i t I s no t c l e a r 
w h e t h e r : 

( 2 . 1 7 ) <GRFATER <S0ME <?X) (NUM ?X)> 
<EVERY (?Y) (NUM ?Y)>> 

r e p r e s e n t s : 

( 2 . 1 & ) For eve ry number t h e r e i s some l a r g e r 
number. 

o r : 

( 2 . 1 8 ) There Is some number w h i c h is l a r g e r 
than e v e r y number. 

We w i l l have to a r b i t r a r i l y choose a r u l e to 
d i s a m b i g u a t e ( 2 , 1 7 ) , b u t b y u s i n g l ambda-
e x p r e s s i o n s we can a v o i d t he d i f f i c u l t y . 
( 2 , 1 8 ) can be r e p r e s e n t e d b y : 

( 2 . 2 0 ) <<LAMBDA (?X) 
(CRFATER <S0ME (?Y) (MUM ?Y)> ?X)> 

<FVERY (?Z) (HUM ?Z)>> 

and ( 2 . 1 9 ) can be r e p r e s e n t e d b y : 

( 2 . 2 1 ) <<LAMBDA (?X) 
(GREATER ?X <EVERY (?Y) (MUM ?Y)>)> 

<S0ME (?Z) (NUM ?Z)>> 

A n a l y z i n g t h e s e e x p r e s s i o n s In t h e same way as 
( 2 . 1 C ) w i l l show t h a t t h e y have t h e c o r r e c t 
m e a n l n g . 

I t s h o u l d b e a p p a r e n t t h a t e x i s t e n t i a l 
and u n i v e r s a l d e s c r i p t i o n s I n D-SCRIPT s e r v e 
e x a c t l y t he same f u n c t i o n a s t he q u a n t i f i e r s 
o f t h e p r e d i c a t e c a l c u l u s . i n v i e w o f t h i s . 
I t may be asked why we have used a d i f f e r e n t 
n o t a t i o n , one reason I s t h a t ou r n o t a t i o n 
makes i t p o s s i b l e t o w r i t e e x p r e s s i o n s v/hose 
s t r u c t u r e more c t o s e l y resemb les t he s e n t e n c e s 
t hey r e p r e s e n t . H o p e f u l l y t h i s makes them 
more I n t e l l i g i b l e . The more i m p o r t a n t r e a s o n , 
t h o u g h , i s t h a t h a v i n g a s i n g l e e x p r e s s i o n f o r 
a d e s c r i p t i o n makes I t e a s i e r f o r an 
i n t e r p r e t e r t o m a n i p u l a t e I t . 



2.3 Formal Semantics of P-SCRIPT 

The previous two sec t ions o u t l i n e d the 
syntax and informal semantics of D-SCRIPT. 
This sec t ion at tempts to show how a program 
could be w r i t t e n tha t would I n t e r p r e t D-SCRIPT 
statements In accord w i t h t h e i r I n t u i t i v e 
meaning. The d e t a i l s of t h i s will be somewhat 
sketchy. One reason f o r t h i s Is t ha t choosing 
proof s t r a t e g i e s and us ing h e u r i s t i c 
In fo rmat ion are compl icated problems that we 
cannot c l a im to have so lved . Secondly, 
c rea t i ng a theorem prover is not our main 
g o a l . What we are t r y i n g to do is to show the 
so r t of d e s c r i p t i v e system necessary to 
represent the i n fo rma t i on conta ined in na tu ra l 
language s ta tements . The purpose of t h i s 
sec t ion is to e s t a b l i s h that our no ta t i on fo r 
that system is " w e l l - f o u n d e d " . 

The program we have in mind would take a 
statement as i t s Input and determine from I t s 
data base whether the statement is t r u e . For 
statements which are simple p r e d i c a t i o n s / the 
program looks f o r another statement in the 
data base which matches the f i r s t s tatement . 
The statement whose t r u t h is being determined 
w i l l be c a l l e d the " t e s t s ta tement " ; the 
statement in the data base to which it is 
being compared w i l l be c a l l e d the " t a r r e t 
s ta tement" . To prove a complex s ta tement , the 
program would break It down into its 
components and process them accord ing to the 
semantics of the opera tors i nvo lved . 
S i m i l a r l y , a complex t a rge t s ta tenent must be 
broken down to its components f o r p rocess ing , 
but the ru les are d i f f e r e n t . So, in 
e x p l a i n i n g the semantics of complex 
express ions, analyses w i l l be given f o r t h e i r 
use both In tes t statements and in ta rge t 
s ta tements. 

Two basic statements match If t h e i r 
corresponding elements match. In gene ra l , 
expressions whtch are not statements match 
whenever t h e i r values are I d e n t i c a l , A 
v a r i a b l e which has not been assigned a value 
matches any express ion , and Is assigned tha t 
express ion 's v a l u e . These ru les apply to both 
t e s t statements and t a rge t s ta tements. As an 
example, suppose " 5 " has been assigned to 
"?X", "?Y" Is unassigned, and " + " has I t s 
usual meaning. Then "<FOD 5 ?Y>" w i l l match 
"<F00 ?X <+ 3 4>>" and " 7 " w i l l be assigned to 
"?Y". 

We w i l l not g ive a complete deduct ive 
procedure fo r l o g i c a l connec t i ves . I t Is a 
we l l understood problem and Is not of pr imary 
Importance in the phenomena we wish to 
e x p l a i n . But to suggest the k ind of procedure 
we have In mind, consider "AND" and "IMPLIES". 
In hand l ing these expressions the d i s t i n c t i o n 
between tes t statements and ta rge t statements 
comes th rough . To prove "<AND X Y" both X 
and x must be proved; but in matchin 
something aga ins t "<AMD X Y>" , the match 
succeeds if e i t h e r X or V matches. "<MPLIES 
X Y>" Is t r u e I f In a hypo the t i ca l s t a t e where 
X is asse r ted , Y can be proved. A t e s t 
statement w i l l match a t a r g e t statement 
"<IMPLIES X Y>" if the tes t statement matches 
X and X can be proved. "OR" and "NOT" are 
somewhat more compl icated but can be handled 
In much the same way. 

The r e a l l y Important par t of our 
deduct ive procedure Is the treatment of 
d e s c r i p t i o n s . D e f i n i t e d e s c r i p t i o n s are the 
s imp les t . "<THE <?X) < . . . ? X . . . ) > " eva luates 
to the constant which when assigned to "?X" 

makes " < . . . ? X . . . > " t r u e . I f there is not such 
a constant or If there is more than one, the 
value of the d e s c r i p t i o n Is undef ined. For 
example. I f "LESS" means " a r i t h m e t i c a l l y less 
t h a n " , then "<F00 3>" matches: 

(2 .22) <F00 <THE (?X) (AND (LESS ?X 4) 
(LESS 2 ?X))>> 

This r u l e f o r eva lua t i ng d e f i n i t e desc r i p t i ons 
app l ies to both tes t statements and t a rge t 
s ta tements . 

For e x i s t e n t i a l and un ive rsa l 
d e s c r i p t i o n s , there is again a d i f f e r e n c e 
between t e s t statements and t a r g e t s ta tements . 
In a tes t s ta tement , an e x i s t e n t i a l 
d e s c r i p t i o n matches any th ing tha t makes the 
body of the d e s c r i p t i o n t r u e . That i s , "<FO0 
<S0ME (?X) (BAR ?X)>>" matches "<F00 A>" If 
"<BAR ?X>" Is t rue when "?X" Is assigned "A" . 
For the case of a t a rge t s ta tement , the 
eva lua t i on is more d i f f i c u l t . If we know that 
"Some bar is f o o , " we could s imply g ive It a 
name and c o n t i n u e . But g i v i n g a name would 
imply tha t we know which bar is f o o , which is 
not t r u e . Instead we can create a name and 
say tha t if the new name were the name of the 
ob jec t t ha t is asserted to e x i s t , then 
anyth ing which we can prove about the new name 
Is t rue of the o b j e c t . We do th is by c rea t i ng 
a hypo the t i ca l s t a t e of the data base in 
wh ich . if the new name is "G999", we asser t 
"<BAR G999>". The t a rge t statement then 
becomes "<F00 G999>". Another way of p u t t i n g 
t h i s is tha t "<SOME (?X> (BAR ?X)>" evaluates 
to "G999", w i t h the s ide e f f e c t of c r e a t i n g a 
hypo the t i ca l s t a t e of the data base In which 
"<BAR 3999>" is asse r ted . When the hypothesis 
is d ischarged, the new name becomes undef ined, 
and we are not in danger of supposing tha t we 
know v/hat the name of the ob jec t i s . 

The treatment of un ive rsa l desc r i p t i ons 
Is the exact dual o f t ha t f o r e x i s t e n t i a l 
d e s c r i p t i o n s . In a tes t s ta tement , we know 
tha t whatever we can prove about an 
a r b i t r a r i l y se lec ted member of a c lass is t rue 
of every member of the c l a s s . So j u s t as we 
d id fo r e x i s t e n t i a l ta rge t s ta tements , we set 
up a hypothetJcal s t a t e , produce an a r b i t r a r y 
unique name, and asser t t ha t It is a member of 
the c l a s s . Analogously to what we sa id 
be fo re , "<EVERY (?X) (FOO ?X)>" evaluates t o , 
say, "G111l" w i t h the s ide e f f e c t of c r e a t i n g a 
hypo the t i ca l s t a t e In which "<F00 G l l l > " is 
asse r ted . Also i n d u a l i t y w i t h e x i s t e n t i a l 
d e s c r i p t i o n s . In a t a rge t statement a 
un iversa l d e s c r i p t i o n matches anyth ing which 
makes its body t r u e . For example, "<F00 A>" 
matches "<F00 <EVERY (?X) (BAR ?X)>>" If "<BAR 
?X>" Is t rue when "?X" is assigned "A" . 

Now we can see why lambda-expressions are 
Important f o r rep resen t ing In fo rma t ion in 0-
SCRIPT. Eva lua t ing e x i s t e n t i a l and un ive rsa l 
desc r i p t i ons sometimes has the s ide e f f e c t of 
changing the data base. Later we w i l l 
In t roduce other expressions which a lso do 
t h i s . I f we have o ther d e s c r i p t i o n s In the 
s ta tement , we need to be able to c o n t r o l 
whether they are evaluated In the o l d data 
base or the new. By " l ambda - f y l ng " a 
statement we can b r i n g one or another 
d e s c r i p t i o n to the ou ts ide and fo rce I t to be 
eva luated f i r s t . In t h i s way we can con t ro l 
the order In which expressions are eva lua ted . 
A d e t a i l e d example of t h i s w i l l be g iven in 
s e c t i o n 3 .5 . 

In t h i s b r i e f summary, we have g iven the 



b a r e s t o u t l i n e s o f a d e d u c t i v e p r o c e d u r e . We 
have n o t d i s c u s s e d any o f t he complex 
I n t e r a c t i o n s among these l o g i c a l o p e r a t o r s . 
But h o p e f u l l y we have l a i d a s u f f i c i e n t 
f o u n d a t i o n t o t a l k about t he I ssues t h a t a re 
t h e r e a l p o i n t o f t h i s p a p e r . 

3 . S o l u t i o n t o R e p r e s e n t a t i o n 
Problems Using D-SCRIPT 

3 . 1 D e s c r i p t i o n s In Opaque Contex 6 

I n g e n e r a l , d e s c r i p t i v e phrases I n opaque 
c o n t e x t s a re s u b j e c t t o more t han one 
I n t e r p r e t a t i o n . F u r t h e r m o r e , a t l e a s t one o f 
t h e I n t e r p r e t a t i o n s seems no t t o behave 
a c c o r d i n g t o normal r u l e s o f l o g i c a l 
m a n i p u l a t i o n . L o o k i n g more c l o s e l y , opaoue 
c o n t e x t s p r i m a r i l y occu r I n t h e complement 
c o n s t r u c t i o n s o f v e r b s l i k e " w a n t " , " b e l i e v e " , 
" k n o w " , e t c . These v e r b s a l l have t he 
p r o p e r t y o f d e s c r i b i n g somebody 's model o f t h e 
w o r l d . When we s a y : 

( 3 . 1 ) John wan ts t o ma r r y S a l l y . 

what we mean Is t h a t in J o h n ' s model o f t he 
w o r l d , t he s t a t e : 

( 3 . 2 ) John i s m a r r i e d t o S a l l y . 

I s c o n s i d e r e d d e s i r a b l e . The a m b i g u i t y o f 
d e s c r i p t i v e p h r a s e s a r i s e s f r o m the q u e s t i o n 
o f w h e t h e r t h e d e s c r i p t i v e ph rase I s t o b e 
e v a l u a t e d I n ou r model o f t he w o r l d o r t he 
model o f t h e s u b j e c t o f t he s e n t e n c e . To 
I l l u s t r a t e t h i s , r e c a l l the s e n t e n c e : 

( 3 . 3 ) John wants t o ma r r y t h e p r e t t i e s t g i r l . 

In D-SCR1PT, t he opaque r e a d i n g is r e p r e s e n t e d 
b y : 

( 3 . 4 ) <WANT JOHN (MARRY JOHN 
<THE (?X) (PRETTIFST ?X)>)> 

The reason t h a t t h e r e a r e r e s t r i c t i o n s o n 
s u b s t i t u t i n g o t h e r e x p r e s s i o n s f o r "<THE (?X) 
(PRETTIEST ? X ) > " i s t h a t t h e s t a t e m e n t w h i c h 
a c t u a l l y c o n t a i n s t h i s d e s c r i p t i o n , I . e . : 

( 3 . 5 ) <MARRY JOHN <THE (?X) (PRETTIEST ?X)>> 

I s p a r t o f J o h n ' s w o r l d m o d e l . I f i n ou r 
p r o g r a m we r e p r e s e n t J o h n ' s w o r l d model by a 
s e p a r a t e d a t a b a s e , then t he e x p r e s s i o n s w h i c h 
may be s u b s t i t u t e d are t h o s e w h i c h a re 
e q u i v a l e n t I n t h a t da ta b a s e , no t I n the main 
d a t a base w h i c h r e p r e s e n t s ou r w o r l d m o d e l . 

T o r e p r e s e n t t he t r a n s p a r e n t r e a d i n g o f 
( 3 . 3 ) , w e must t a k e t h e d e s c r i p t i o n o u t s i d e 
t h e scope o f J o h n ' s m o d e l . We can do t h i s 
w i t h a l a m b d a - e x p r e s s i o n : 

( 3 . 6 ) <<LAMBDA (?X) 
(WANT JOHN (MARRY JOHN ?X) )> 

<THE (?Y) (PRFTTIFST ?Y)>> 

T h i s says t h a t t h e s t a temen t we g e t by 
e v a l u a t i n g t h e d e s c r i p t i o n I n o u r model and 
s u b s t i t u t i n g t h a t v a l u e f o r " ? X " I n : 

( 3 . 7 ) <MARRY JOHN ?X> 

I s marked a s a d e s i r a b l e s t a t e I n J o l i n ' s w o r l d 
m o d e l . 

The a n a l y s i s i s ana logous f o r e x i s t e n t i a l 
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d e s c r i p t i o n s . The two r e a d i n g s o f : 

( 3 . 8 ) John wants to ma r r y a b l o n d e , 

can be r e p r e s e n t e d b y : 

( 3 . 9 ) <WANT JOHN (MARRY JOHN 
<S0ME (?X) (BLONDE ?X)>)> 

f o r t h e opaque r e a d i n g , and b y : 

( 3 . 1 0 ) <<LAMBDA (?X) 
(WANT JOHN (MARRY JOHN ?X) )> 

<S0ME (?Y> (BLONDE ?Y)>> 

f o r t he t r a n s p a r e n t r e a d i n g . ( 3 . 9 ) means: 

( 3 . 1 1 ) John, wants t h e r e to be a b l o n d e t h a t he 
m a r r i e s . 

and ( 3 . 1 0 ) means: 

( 3 . 1 2 ) There Is a b l onde t h a t John wants to 
m a r r y . 

So t h e reason we c a n ' t make a " t h e r e I s . . . " 
p a r a p h r a s e o f ( 3 . 9 ) I s t h a t r a t h e r t han b e i n g 
a n e x i s t e n t i a l s t a t e m e n t . I t I s a n a s s e r t i o n 
abqut a n e x i s t e n t i a l s t a t e m e n t . 

3 .2 D e s c r i p t i o n s i n t i m e c o n t e x t s 

I n o r d e r t o d i s c u s s t he n e x t s e t o f 
e x a m p l e s , we need a way to r e p r e s e n t t i m e . 
The b a s i c f a c t he re I s t h a t any p r e d i c a t e can 
be made to v a r y w i t h t i m e . Even t h o s e t h a t we 
choose t o c o n s i d e r e t e r n a l can b e a l l e g e d t o 
depend o n t i m e , e . g . : 

( 3 . 1 3 ) Two used to be g r e a t e r t h a n t h r e e . 

To accoun t f o r t h i s i n f i r s t - o r d e r l o g i c , we 
w o u l d have to make t i m e an e x p l i c i t pa rame te r 
o f e v e r y p r e d i c a t e s y m b o l . I n s t e a d , w e w i l l 
r e p r e s e n t t i m e by a coptext-STRUCTURED.c.tu.red d a t a 
base ( M c D e r m o t t ) . By t h i s we mean t h a t t he 
d a t a base w i l l be b r o k e n down I n t o a s e r i e s o f 
s u b - d a t a b a s e s , o r c o n t e x t s , each o f w h i c h 
r e p r e s e n t s t h e s t a t e o f t h e w o r l d a t some 
p a r t i c u l a r t i m e . T h i s can b e e f f i c i e n t l y 
Imp lemen ted , as It is in CONNIVER (Sussman and 
McDermot t ) by s p e c i f y i n g each c o n t e x t by 
r e c o r d i n g t he d i f f e r e n c e s between I t and I t s 
p r e d e c e s s o r . 

To use t h i s k i n d of d a t a b a s e , we need a 
s p e c i a l p r e d i c a t e " T - A - T " w h i c h t a k e s a s I t s 
p a r a m e t e r s a s t a t e m e n t and t h e name of a t i m e 
c o n t e x t . " < T - A - T S t>" means s t a t e m e n t s. Is 
T rue At Time T. The f o r m a l s e m a n t i c s o f " T - A -
T" a r e t h a t i t a t t e m p t s to deduce S, in t he 
t ime c o n t e x t named by t., We a l s o need to be 
a b l e t o g e n e r a t e r e f e r e n c e s t o t i m e c o n t e x t s . 
For I n s t a n c e , t h e p h r a s e : 

( 3 . 1 4 ) when Wash ing ton was P r e s i d e n t 

w o u l d be r e p r e s e n t e d by the d e s c r i p t i o n : 

( 3 . 1 5 ) <THE (?T) ( T - A - T (PRES WASHINGTON) ?T)> 

F i n a l l y we need t he o n e - p l a c e p r e d i c a t e "T IME" 
to make q u a n t i f i e d s t a t e m e n t s abou t t i m e . We 
wou ld r e p r e s e n t : 

( 3 . 1 6 ) Three I s a l w a y s g r e a t e r t h a n t w o . 



b y : 
w h i c h means: 

C3.17) <T-A-T (HRFATF.R 3 2) 
<FVFRY (?T) (TIT'F ?T)>> 

Given t h i s n o t a t i o n f o r t i m e , w e can 
s o l v e t he a s s o c i a t e d p rob lems w h i c h wo r a i s e d 
e a r l i e r . As in t h e case o f opaque c o n t e x t s , 
t h e s o l u t i o n depends on w h e t h e r a d e s c r i p t i o n 
I s e v a l u a t e d In t he c o n t e x t i n w h i c h a 
s t a t e m e n t I s made o r t he c o n t e x t w h i c h the 
s t a t e m e n t I s a b o u t . R e c a l l i n g t h e p r e v i o u s 
e x a m p l e s : 

( 3 . 1 8 ) The P r e s i d e n t has been m a r r i e d s i n c e 
1945. 

i s r e p r e s e n t e d b y : 

( 3 . 1 9 ) <<LAMBDA (?X) ( T - A - T (MARRIED ?X) 
<EVERY (?T) (AFTER ?T 1945 )> )> 

<THE C?Y) (PRES ?Y)>> 

In ( 3 . 1 9 ) t he use o f the l a m b d a - e x p r e s s i o n 
p u t s t h e d e s c r i p t i o n "<TNIF (?Y) (PRES ? Y ) > " 
o u t s i d e the t i m e c o n s t r u c t i o n , s o i t i s 
e v a l u a t e d i n t he c o n t e x t i n w h i c h t he 
s t a t e m e n t is made. On the o t h e r h a n d : 

( 3 . 2 0 ) The P r e s i d e n t has l i v e d In t he Wh i t e 
Mouse s i n c e 1800 . 

i s r e p r e s e n t e d b y : 

( 3 . 2 1 ) <T-A-T 
( L I V E - I f <TME (?X) (PRES ?X)> W-H) 
<EVERY (?T) (AFTER ?T 1800)>> 

H e r e the d e s c r i p t i o n I s i n s i d e t he t i m e 
c o n s t r u c t i o n and i s no t e v a l u a t e d u n t i l t he 
t i m e d e s c r i p t i o n has been i n s t a n t i a t e d . The 
a n a l y s i s i s the. same f o r : 

( 3 . 2 2 ) John met the P r e s i d e n t i n 1960 . 

e x c e p t t h a t i n t h i s case t he t i m e r e f e r e n c e i s 
d e f i n i t e . One i n t e r p r e t a t i o n i s g i v e n b y : 

C3.23) <T-A-T (MEET JOHN <T11E (?X) (PRES ?X)> 
19G0> 

and t h e o t h e r i s g i v e n b y : 

( 3 . 2 d ) <<LAHDDA (?X) ( T - A - T (MEET JOHN ?X) 
1960)> 

<THE (?Y) (PRES ?Y)> 

3.3 Knowledge abou t Knowledge 

One o f t he q u e s t i o n s we r a i s e d in t h e 
b e g i n n i n g was how to r e p r e s e n t : 

( 3 . 2 5 ) John knows D i l i ' s phone number. 

I f we knew t h e number we c o u l d r e p r e s e n t 
( 3 . 2 5 ) b y : 

( 3 . 2 G ) <KNOW JOHN (PHONE-NUM BILL x x x ) > 

where xxx is t h e number. We do know one 
d e s c r i p t i o n o f t h e number , namely " C i U ' s 
phone number " . I f w e s u b s t i t u t e t h i s I n t o 
( 3 . 2 6 ) , however , we p e t a t r i v i a l s t a t e m e n t : 

( 3 . 2 7 ) <KN0W JOHN (PHOME-NUM BILL 
<TIIE (?X) (PHONF-NUM BILL ?X)> )> 

( 3 . 2 8 ) John knows t h a t B i l l ' s phone number i s 
B i l l ' s phone number. 

What we need to do Is to remove t h e o c c u r r e n c e 
o f t he d e s c r i p t i o n f r o m J o h n ' s w o r l d model 
" into ou r w o r l d m o d e l . Once a g a i n , we can do 
t h i s w i t h a l a m b d a - e x p r e s s i o n : 

( 3 . 2 9 ) <<LAMBDA (?X) 
(KNOW JOHN (PHONE-NUM BILL ?X) )> 

<T!IF (?X) (PHONE-NUM BILL ?X)>> 

T h i s says t h a t I f we were t o e v a l u a t e t he 
d e s c r i p t i o n " B i l l ' s phone number" and s t i c k 
t he r e s u l t i n ( 3 . 2 6 ) , w e w o u l d c o r r e c t l y 
d e s c r i b e J o h n ' s know ledge . 

To see t he d i f f e r e n c e between ( 3 . 2 7 ) and 
( 3 . 2 9 ) , suppose we know t h a t B i l l has a phone 
number , and we know t h a t John knows t h a t B i l l 
has a phone number. These f a c t s a r e 
r e p r e s e n t e d b y : 

( 3 . 3 0 ) <PH0ME-MUM BILL <S0ME (?X) (MUM ?X)>> 

( 3 . 3 1 ) <KN0W JOHN (PHONE-NUM BILL 
<SOME (?X) (NUM ? X ) > ) > 

G i v e n t h i s , w e can p rove ( 3 . 2 9 ) f r o m i t s e l f . 
N o t i c e t h a t I n D-SCRIPT t h i s i s n o n - t r v i a l . 
Complex s t a t e m e n t s are never p r o v e d by s i m p l y 
l o o k i n g t o see i f t hey a r e i n the l a t e b a s e . 
R a t h e r , t h e y arc b r o k e n down to t h e i r b a s i c 
components and these components a re p r o c e s s e d 
a c c o r d i n g t o t h e s e m a n t i c s o f t h e o p e r a t o r s 
c o m b i n i n g t h e n . In t he case o f "KMOW" the 
s e m a n t i c s a r e t o s h i f t t he p r o o f t o t he d a t a 
base o f t he pe rson d o i n g the k n o w i n g . So even 
t o p rove a s t a t e m e n t f r o m i t s e l f , t he 
s e m a n t i c s r e a l l y have t o w o r k . 

t n t r y i n g t o p r o v e ( 3 . 2 9 ) t h e lambda-
e x p r e s s i o n makes us f i r s t e v a l u a t e "(THE (?X) 
(PHONE-NUM DILL ? X ) > " . We do t h i s by t r y i n g 
to f i n d a match f o r "<PHONE,-NUM BILL ? X > " . I f 
we d o n ' t know B i l l ' s phone number wc c a n ' t do 
t h i s d i r e c t l y . ( 3 . 3 0 ) , however , e n t i t l e s u s 
t o c r e a t e a h y p o t h e t i c a l s t a t e i n w h i c h some 
a r b i t r a r y c o n s t a n t , say " 0 7 7 7 " i s a s s e r t e d t o 
be D i l l ' s number. So to p rove ( 3 . 2 9 ) , wc 
a t t e m p t t o p r o v e : 

( 3 . 3 2 ) <KN0W JOHN (PHONE-NUM BILL G777)> 

w i t h t h e h y p o t h e s i s : 

( 3 . 3 3 ) <PI!0NE-NUM BILL G777> 

To p r o v e ( 3 . 3 2 ) f r om ( 3 . 2 9 ) we p r o c e s s ( 3 . 2 9 ) 
much t h e same as b e f o r e . T h i s t i m e , however , 
W e a l r e a d y have ( 5 . 3 3 ) i n t he d a t a b a s e ; s o 
"<THE (?X) (PHONE-N'UM BILL ? X ) > " e v a l u a t e s to 
" 0 7 7 7 " d i r e c t l y . Our p r o o f t hen reduces t o 
p r o v i n g ( 3 . 3 2 ) f r om i t s e l f , w h i c h reduces 
a g a i n t o p r o v i n g ( 3 . 3 3 ) f r o m i t s e l f i n t he 
d a t a base w h i c h r e p r e s e n t s J o h n ' s w o r l d m o d e l . 
( 3 . 3 3 ) i s a b a s i c s t a t e m e n t , so i t can be 
I n f e r r e d f r o m I t s e l f i m m e d i a t e l y , and t h e 
e n t i r e p r o o f s u c c e e d s . 

Now suppose i n s t e a d t h a t we were t r y i n g 
t o p r o v e ( 3 . 2 9 ) f r o m ( 3 . 2 7 ) . The p r o o f w o u l d 
be t he same down to t h e p o i n t where we 
g e n e r a t e d t h e subgoa l o f p r o v i n g ( 3 . 3 2 ) . T o 
p r o v e t h i s f r o m ( 3 . 2 7 ) , w e have t o p rove 
( 3 . 3 3 ) f r o m : 

228 



- 4. F u t u r e wo rk 

In t h i s paper we have p r e s e n t e d a f o r m a l 
L a n g u a g e f o r t he r e p r e s e n t a t i o n o f knowl edge. 
We have shown how I n f o r m a t i o n w h i c h is 
d i f f i c u l t t o e x p r e s s i n o t h e r f o r m a l i s m s can 
be e x p r e s s e d in ou r l anguage . And we have 
s u g g e s t e d how a d e d u c t i v e program c o u l d be 
d e s i g n e d t o answer q u e s t i o n s i n ou r l a n g u a g e . 
C l e a r l y , t h e nex t s t e p i n t h i s r e s e a r c h i s t o 
b u i l d t h a t d e d u c t i v e p r o g r a m . 

There a r c s e v e r a l reasons why t h i s w o u l d 
b e a w o r t h w h i l e p r o j e c t . For o n e , A . I . 
d e d u c t i v e sys tems seen t o f e l l i n t o t w o 
e x t r e m e c a t e g o r i e s . On t he one hand, 
p r e d i c a t e - c a l c u l u s theorem p r o v e r s r e s t r i c t 
t h e m s e l v e s t o f i r s t o r d e r l a n g u a g e s . 
P r o c e d u r a l sys tems such as PLANNER, on t he 
o t h e r h a n d , use p a t t e r n m a t c h i n g schemes w h i c h 
a r e g e n e r a l enough t o p r o c e s s h i g h e r o r d e r 
s t a t e m e n t s , bu t t h e y a r e S o gene ra l t h a t t hey 
say n o t h i n g about t he meaning o f those 
s t a t e m e n t s . I m p l e m e n t i n g D - S C R I P T w o u l d 
c r e a t e a sys tem somewhere In between - one 
t h a t w o u l d embody s y s t e m a t i c knowledge about 
some t y p e s o f h i ghe r o r d e r s t a t e m e n t s . 

Beyond t h i s , t he p a r t i c u l a r t y p e s o f 
knowledge we have d i s c u s s e d seem to be 
e s p e c i a l l y i m p o r t a n t f o r A . I . The re i s s t i l l 
much work to be done , b u t i f we can p rog ram a 
d e d u c t i v e sys tem to t r e a t " T - A - T " and "KNOW" 
in t h e way we have p r o p o s e d , we w i l l have 
t a k e n a f i r s t s t e p t owards c r e a t i n e p rograms 
w h i c h can t h i n k abou t t h i n k i n g . 
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A b s t r a c t : The paper c o n s i d e r s the p rob lem o f c o n v e r t i n g 
axioms i n p r e d i c a t e c a l c u l u s t o d e t e r m i n i s t i c p rograms, 
wh ich a re to be used as " r u l e s " by a GPS-type s u p e r v i 
s o r . I t i s shown t h a t t h i s can be done, bu t t h a t the 
" o b j e c t s " must then c o n t a i n p rocedure c l o s u r e s o r "FUN-
ARG-express ions" wh ich are l a t e r a p p l i e d . 

Keywords: d e d u c t i o n , t h e o r e m - p r o v i n g , r e t r i e v a l , non -de 
t e r m i n i s t i c , c l o s u r e , FUNARC-expression. 

Background- R e t r i e v a l o f I m p l i c i t i n f o r m a t i o n in a sem
a n t i c da ta base is a k i n d of d e d u c t i o n . One approach to 
do ing such r e t r i e v a l has been r e s o l u t i o n - s t y l e theorem-
p r o v i n g ; a l a t e r approach has been h i g h - l e v e l p rogram
ming languages such as P lanner1 and QA42, where non -de 
t e r m i n i s t i c programs and p a t t e r n - d i r e c t e d i n v o c a t i o n o f 
p rocedures are a v a i l a b l e . The use o f u n i f o r m p r o o f p r o 
cedures f o r t h i s purpose has been r e p e a t e d l y c r i t i c i z e d , 
e . g . In 3 . Users o f the h i g h - l e v e l languages have a l s o 
been w o r r i e d because t h e i r systems are very expens i ve 
to use4,2 and because the n o n - d e t e r m i n i s m i s d i f f i c u l t 
t o c o n t r o l 4 . 

There i s ano the r app roach , wh ich has r o o t s i n A . 1 . r e 
search back to the General Problem S o l v e r 5 , where one 
has a s u p e r v i s o r wh ich a d m i n i s t r a t e s a ( r e l a t i v e l y ) f i 
xed se t o f o p e r a t o r s , and a w o r k i n g se t o f a c t i v e ob 
j e c t s . I n each c y c l e , the s u p e r v i s o r p i c k s an o b j e c t 
and an o p e r a t o r ( u s i n g any h e u r i s t i c i n f o r m a t i o n t h a t 
i t may h a v e ) , a p p l i e s the o p e r a t o r t o the o b j e c t , and 
o b t a i n s back a number of new o b j e c t s (none , o n e , or 
more) wh ich a re put i n t o the w o r k i n g s e t . T h i s p rocess 
i s c o n t i n u e d u n t i l some goal i s ach ieved ( e . g . , an ob 
j e c t i s a g iven t a r g e t se t appears in the wo rk i ng s e t ) . 

T h i s approach has c e r t a i n advantages f rom an e f f i c i e n c y 
s t a n d p o i n t , The o p e r a t o r s are f i x e d p rograms, wh ich can 
be compi led or o t h e r w i s e t r a n s f o r m e d a l l the way to ma
ch ine code l e v e l . The n o n - d e t e r m i n i s m is c o n c e n t r a t e d 
t o the s u p e r v i s o r . S t i l l , t h e r e i s room f o r p a t t e r n - d i 
r e c t e d i n v o c a t i o n , b y l e t t i n g the s u p e r v i s o r c l a s s i f y 
o b j e c t s i n t o a number of c l a s s e s , and a s s o c i a t i n g a 
subset o f the o p e r a t o r s w i t h each c l a s s . There i s a l s o 
the n o n - d e t e r m i n i s m I m p l i e d by the s e a r c h . 

The major d i s a d v a n t a g e , o f c o u r s e , i s t h a t t h i s scheme 
is more r i g i d . For example , s i nce e v e r y t h i n g happens on 
one l e v e l , t h e r e i s l i t t l e room f o r r e c u r s i o n . I f one 
o p e r a t o r c a l l s a p r o c e d u r e , wh ich c a l l s a n o t h e r , wh ich 
wants t o b e n o n - d e t e r m i n i s t i c , then t h e r e i s n o t r i v i a l 
way to map t h a t n o n - d e t e r m i n i s m back up to the " s e a r c h 
l e v e l " o f the s u p e r v i s o r , w h i l e r e t a i n i n g the e n v i r o n -
ment o f f u n c t i o n c a l l s , v a r i a b l e b i n d i n g s , e t c . t h a t 
must be kep t a v a i l a b l e in a l l b ranches . 

An I n t e r e s t i n g q u e s t i o n is t h e r e f o r e : how harmfu l i s 
t h i s r i g i d i t y ? I s i t ve ry awkward t o "p rog ram a r o u n d " 
the l i m i t a t i o n s o f such a sys tem, o r i s I t easy? 

In t h i s paper , we t r y to answer t h a t q u e s t i o n by s t u d y 
i n g those o p e r a t o r s wh ich co r respond to axioms in p r e 
d i c a t e c a l c u l u s . We assume t h a t we have a data base , 
wh ich Is l i k e a l a r g e number o f ground u n i t c l a u s e s , 
p l u s a number o f o p e r a t o r s , wh ich shou ld co r respond to 
the non-g round ax ioms . We show t h a t t h e r e a re c e r t a i n 
problems i n p h r a s i n g the l a t t e r a s o p e r a t o r s , , b u t t h a t 

t h e r e is a s y s t e m a t i c way to hand le those p rob lems . We 
conc lude t h a t the search s u p e r v i s o r approach shou ld be 
c o n s i d e r e d as a s e r i o u s c a n d i d a t e f o r t he d e d u c t i v e s y s 
tem a s s o c i a t e d w i t h a da ta base. 

Basic Idea . For the reader who might no t want to read 
the whole paper , we d i s c l o s e t h a t the idea is to pe rm i t 
the " o b j e c t s " t o c o n t a i n p rocedure c l o s u r e s 6 ' 7 , a l s o 
c a l l e d FUNARG-expressIons, I . e . l ambda-express ions t o 
ge the r w i t h a n env i ronment o f b i n d i n g s f o r i t s f r e e va 
r i a b l e s . The lambda-exp ress ion is as f i x e d as the set 
o f o p e r a t o r s , and can t h e r e f o r e b e c o m p i l e d , e t c , bu t 
the env i ronment Is new f o r each o b j e c t . 

A f t e r thus hav ing ske tched the background and the gene-
r a l i d e a , l e t us go I n t o the d e t a i l s o f t he p r e d i c a t e -
c a l c u l u s e n v i r o n m e n t . 

S imp les t case . Let us take a common-place axiom and 
c o n v e r t it into a p r o g r a m - l i k e o p e r a t o r . We choose the 
t r a n s i t i v i t y ax i om , 

R ( x , y ) A R ( y , z ) ) R ( x , z ) 

wh ich goes I n t o a r u l e o f the fo rm 

On a s u b - q u e s t i o n w i t h t he r e l a t i o n R, use 
l ambda (x , z ) beg in l o c a l y ; 

de te rm ine y f rom R ( x , y ) ; 
r e t u r n s u b - q u e s t i o n R ( y , z ) 
end 

Here , " d e t e r m i n e y f rom R ( y , z ) " c a l l s f o r a l o o k - u p in 
the da ta base , and u s u a l l y a c t s as a n o n - d e t e r m i n i s t i c 
ass ignment t o y . " R e t u r n s u b - q u e s t i o n " s p e c i f i e s the 
i n f o r m a t i o n wh ich i s g i v e n back t o t he s u p e r v i s o r , con
s i s t i n g o f a r e l a t i o n (R) and an argument l i s t . The 
l a t t e r i s a l i s t o f the c u r r e n t va lues o f x and y j I t 
does n o t need to c o n t a i n the names x and y, or t h e i r 
b i n d i n g s t o t h e i r c u r r e n t v a l u e s . The s u p e r v i s o r w i l l 
then l ook up a l l o p e r a t o r s ( l ambda -exp ress i ons ) wh ich 
a re a s s o c i a t e d w i t h R, and a p p l y them to the g i v e n a r 
gument l i s t , o f course a t whatever t ime i t chooses. 

T h i s r u l e d e s c r i b e s what has to be done when any data 
base search r o u t i n e c o n t i n u e s search a c c o r d i n g t o the 
t r a n s i t i v i t y p r o p e r t y o f the r e l a t i o n s . I t does no t 
m a t t e r i f t he search i s execu ted by a u n i f o r m theorem-
p r o v e r , a P l a n n e r - t y p e sys tem, or by a h a n d - t a i l o r e d 
proaram such as the LISP f u n c t i o n s in t he SIR system8. 
However, in a h i g h e r - l e v e l sys tem, t he system has to 
" i n t e r p r e t " the axioms o r r u l e s , I . e . f i n d o u t a t r u n 
t ime what is to be done. A r e s o l u t i o n t heo rem-p rove r 
i s ex t reme In t h i s r e s p e c t . Our concern In t h i s paper 
i s t o f i n d o u t b e f o r e e x e c u t i o n ( w i t h i n f o r m a t i o n o n l y 
about the ax iom o r r u l e , n o t about t h e a c t u a l sub -ques 
t i o n ) what o p e r a t i o n s w i l l be n e c e s s a r y , so t h a t we can 
w r i t e o u t the code f o r d o i n g e x a c t l y t h a t , t n p rogram
ming systems t e r m s , we want to comp i le t he ax ioms , and 
do as many d e c i s i o n s as p o s s i b l e at c o m p l l e - t i m e . 

I f a r e s o l u t i o n t heo r em- p r ov e r c o n t a i n s the above t r a n 
s i t i v i t y ax i om , and the ax iom 

R(a ,b ) 
and i f i t asked the " q u e s t i o n " ^ ( b . c ) , i t w i l l genera 
t e t he s u b - q u e s t i o n M l ( a , c ) . T h i s s t e p can be c l e a r l y 
I l l u s t r a t e d I f t he t r a n s i t i v i t y ax iom I s r e w r i t t e n a s 
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Thus one clause (In the resolut ion sense) usual ly cor
responds to several rules l i ke the lambda-expressions 
above. The number of rules that correspond to a clause 
Is f i n i t e . If some rules are omi t ted, then the resu l t 
ing system is not In general complete, but inclusion of 
a l l rules is s t i l l not s u f f i c i e n t to insure complete
ness. We shal l not be concerned about t h i s . 

Going back to the f i r s t ru le above, the reader should 
imagine that the supervisor contains one queue of sub-
questions for each re la t ion symbol, and that every sub-
question contains an argument l i s t . Every re la t ion sym
bol is associated wi th a set of operators, w r i t t en as 
lambda-expressions l i ke the one above, which can be 
applied to the objects that queue for that re la t i on 
symbol. The operator above returns a sub-question, and 
t e l l s what object - argument l i s t i t should conta in , 
and which re la t i on it should at tend. The operators can 
be thought about as "demons", c lustered in groups wi th 
a common point of i n t e r e s t , which is named by the re
la t ion symbol. 

L is t of problems. This organizat ion raises a number of 
questions. One problem is how one should integrate heu
r i s t i c information into the system. We shal l not go i n 
to that question here. Another question is how the l o 
cal non-determintsm in the rule is to be handled. The 
answer is simple: we map the l inear ( i . e . loop- f ree) , 
non-determinist ic program into a looping, determin is t ic 
program. Each branch-point s tar ts a new loop inside the 
loops of the previous branch-points. A l l loops end at 
the end of the ru le . This is qui te s t ra igh t - fo rward . 

If the PC (predicate calculus) axioms contain funct ion 
symbols (not merely r e l a t i o n s ) , we obtain " u n i f i c a t i o n " , 
or in programming language terms: pattern-matching and 
pat tern- reconst ruc t ion . Then the convers ion to remove 
the local non-determinism involves some addi t ional prob
lems, which however w i l l be the top ic of a l a t e r exten
sion of th i s paper. Suf f ice it to say that every PC 
funct ion should be associated w i th one construct ion pro
cedure and one or more matching procedures, and that 
the compiled version of the axiom must contain a ca l l 
to one of these procedures. It can be determined at 
"compilat ion t ime" which procedure shal l be ca l l ed . The 
matching procedure for " p l u s " may for example match " 1 * " 
against " p l u s ( x , l ) " and assign to " x " the value 3. 

Let us turn instead to the question of how open ques
t ions are handled. ("Closed questions" are questions 
which can be answered wi th a t ru th -va lue , I .e. Yes/no 
quest ions; "open quest ions" are questions which have an 
I nd i v i dua l , or n- tuple of indiv iduals as possible ans
wer.) We decide immediately that "closed questions wi th 
the r e l a t i on R" shal l be one class of object and in te r 
es t -po in t fo r operators, and "open questions wi th the 
re la t ion R and an asked-for second argument, R(x,?)" 
shal l be another class of ob jec ts , treated wi th another 
set of operators. We shal l p rov is iona l l y denote it as 
R2(X). For example, the same t r a n s i t i v i t y axiom for R 
also ca l l s fo r the fo l low ing operator: 

On a sub-question w i th R2, use 
lambda (x) begin local y; 

determine y from R(x ,y) ; 
return sub-question Ra(y) end 
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determine z from Q(y,z).; 
return answer f ( x , z ) 
end 

Each of these operators contains a main b lock, where 
each statement except the last one makes an access to 
the data base, fo r e i t he r a closed or an open quest ion, 
(Every such statement corresponds to a l i t e r a l in the 
o r ig ina l axiom). We have t a c i t l y assumed that thosere-
references should be " immediate", i . e . only use facts 
that are e x p l i c i t l y in the data base. However, it Is 
also possible to l e t such intermediate statements make 
t h e i r own search. If we maintain the idea that the ope
rators should be de te rmin is t i c programs, and a l l search 
should be managed by the supervisor, then the search In 
the Intermediate statement must be brought to an end 
before the execution of the operator can cont inue. It 
fo l lows that in an intermediate statement we can only 
make a search which is " s h o r t " compared to the main 
search done by the supervisor. 

Is it possible to use the la test formulat ion of the 
operator as it is7 A l l search would then be done In 
the intermediate statements (both " look up y" and " look 
up z" in the t r a n s i t i v i t y axiom, e t c . ) and the opera
tor can return a f i n a l answer, rather than a sub-ques
t ion for fu r ther search. This is co r rec t , but c lea r l y 
the supervisor is not used at a l l in t h i s case. 

However, given the las t formulat ion of the operators, 
we can come back to the previous formulat ion by p i c k ' 
Ing out one intermediate statement and decide that that 
is where the main search shal l be done. In the f i r s t 
axiom, the main search Is most na tu ra l l y done for "de
termine z " . In the second axiom, our previous formula
t ion does the main search for "determine y " , although 
In p r i nc ip le It would also be possible to determine y 
In the shallow search of an intermediate statement, and 
then ask the supervisor to do main search in order to 
prove Q(x,y) fo r the selected y. In the t h i r d axiom, 
our previous formulat ion does main search to determine 
z, although It would also be possible to do main search 
for y, and to determine z and f ( x , z ) in the remainder 
procedure. 

Conclusion from the discussion. We conclude that the 
general method to convert a pred 'cate-calcu lus axiom 
to an operator should be: 

(3) Decide which of the statements in the operator 
shal l be handled by the extensive, top- leve l search 
which is managed by the supervisor. This Is ca l led 
a con t ro l led statement. Let the statements in the 
operator be 

H , s 2 . . . . . . . . . . . . S k - 1 , S k , S k + r - . . S n 

where s. Is the con t ro l l ed statement. 

{*)) Construct a new operator where the statements are 
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Mult ip le cont ro l led statements. I t is eas i l y seen that 
the above rule in four steps can be generalized to the 
cases where there are several cont ro l led statements, 
and top- leve l search is performed for each of them. For 
example, in axiom 2 we might wish to make extensive 
search both in order to determine y from P ( x , y ) , and in 
order to prove Q(x ,y ) . We must then have two nested re
mainder procedures. The resu l t i ng operator should have 
the form: 

On a sub-question w i th R2, use 
lambda (x) begin 

return sub-question P 2 (x ) , w i th remain
der procedure 
lambda (y) begin 

return sub-question Q(x,y) 
/a closed sub-question/ w i th 
the remainder prodedure 
lambda () return answer y 
end 

end 

We rea l ize that "every answer" to a closed sub-question 
must be a f f i rma t i ve , i .e . as soon as it has proved 
Q(x,y) , the above operator returns y. 

Chains of sub-guestions. The operators as formulated 
above return sub-questions consist ing of a re la t i on 
symbol, an argument l i s t , and a remainder func t ion , but 
they only accept the f i r s t two items. This means that 
the supervisor is responsible fo r admin is t ra t ing the 
remainder procedures. However, in a programming system 
where procedures are permitted as arguments (to other 
procedures), the respons ib i l i t y can eas i ly be taken by 
the operators and the programming system. We shal l now 
describe how th i s can be done. 

In closed and open quest ions, we add one more argument 
9, which is the remainder procedure. The resu l t i ng ar
gument l i s t s (x ,y ,g) for R, (x,g) for R2, e t c . , are the 
objects which our supervisor shall handle. 

We then modify the examples so that g is introduced as 
an argument and appl ied to the returned answer. Thus 
the d e f i n i t e version of the rule for axiom 3 i a : 

On a sub-question wi th R2, use 
lambda (x,g) begin local y; 

determine y from P(x .y ) ; 
return sub-question 

Q2(y, function(lambda (z) g ( f ( x , z ) ) )) 
end 

The other rules are modified s i m i l a r l y . We not ice that 
the sub-questions that t h i s rule re turns, contain two 
t ransfer var iab les : x and g. The bindings of these must 
be saved in the c losure, and retained u n t i l the remain
der procedure is used. 

Let g' be the second argument of 0.2 in one pa r t i cu l a r 
use of the above operator. Clear ly g1 contains a re fe r 
ence to g, which i t s e l f pfesumably is a procedure c l o 
sure, which was set up by a previous sub-question. As 
one sub-question generates another, a chain of c losu
res is generated, where each one refers to its prede
cessor. When f i n a l l y an answer is found to the last sub-
quest ion, the last procedure closure is appl ied in a 
return-answer statement; i t ca l l s i ts predecessor by 
using a procedure va r i ab le , as seen in the example, the 
predecessor ca l l s i t s predecessor, and so on up the 
chain. In the o r i g i na l ( top- leve l ) q j es t i on , q is given 
as " re tu rn aeswer". 

Discussion of a p p l i c a b i l i t y of_the method. This proce
dure works In a l l cases where the non-determinlst ic 
in te r rup t points (where another, pa ra l l e l branch is per

mi t ted to a t t r ac t a t ten t ion) can be brought to the top-
level block of the "operators" , and not be hidden deep
er down in recursion, in p r i n c i p l e , the t r i c k is that 
the control stack (the stack of funct ion ca l l s ) is only 
one element deep at the in te r rup t points (containing 
the ca l l from the supervisor to the opera tor ) , and then 
the control stack informat ion, plus the information of 
how far we have got ten, can be put in one addi t ional 
t ransfer var iab le . With th is method, we have no control 
stack environment, but merely a var iab le-b ind ing env i 
ronment at the interrupt po in ts , and t h i s is exact ly 
what FUNARG (or procedure closures) can handle. 

We believe that th is method is s u f f i c i e n t l y powerful to 
handle e .g . a l l cases which may occur when PC axioms 
are mapped into ru les, and probab 1y also a broader app-
l i ca t i on . 

A questionable feature of th i s method is that one must 
in p r i nc ip le decide at "compi le-t ime" which re t r i eva ls 
are to be done by " b i g " search, and which are to be done 
by " sho r t " intermediate statement (• non-control led s ta 
tement) search. In some appl icat ions t h i s is OK, since 
some re la t ions are only stored e x p l i c i t l y or almost ex
p l i c i t l y ; In others it may not be acceptable. 

Requirements on the programming language. If the conver-
sion from PC axiom to operator is to be done automati
c a l l y , then the selected programming language must of 
course be able to generate and manipulate programs in 
the same language. LISP Is then an obvious choice. How
ever, during the execution of the search, our requi re
ment is instead that we must be able to create a proce
dure c losure, and send it around as data. Some simula
t i on languages, notably Simula 671 0 have th i s f a c i l i t y , 
as well as POP-211 and ECL12. LISP1.5 systems ( a - l i s t 
systems) provide it through the FUNARG feature. Later 
LISP systems (LISP 1.6, original BBN-LISP) do not p ro
vide i t 7 . A method for provid ing FUNARG in BBN-LISP'type 
systems without undue loss of e f f i c i ency has been pro
posed I n 9 . 

It has been suggested that the not ion of a "remainder 
procedure", as used in t h i s paper, is rather c losely 
connected w i t h the not ion of " con t i nua t i on " , which has 
recently proved helpfu l in discussing the denotational 
semantics of programming languages13. 

Implementation. The author has par t i c ipa ted in the deve
lopment of a program, cal led PCDB (Predicate Calculus 
Data Base), which Is organized according to the search 
supervisor p r i n c i p l e . This program was described in re 
ference 14, and contains a compiler which accepts PC 
axioms and generates corresponding LISP programs. It a l 
so contains a simple supervisor, elaborate data base 
handling f a c i l i t i e s , e tc . which are needed. The present 
(1972) version of PCDB le ts the supervisor administrate 
the remainder procedures in an ad hoc and not completely 
general way. A new compiler is being w r i t t e n , which w i l l 
administrate them wi th FUNARG expressions as indicated 
in th i s paper. We hope to have it working at the time of 
the conference. 
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A r t i f i c i a l In te l l i gence 
A Universal Modular ACTOR Formalism 

for A r t i f i c i a l Intelligence 
Carl Hewitt 

Peter Bishop 
Richard Steiger 

Abstract 
This paper proposes a modular ACTOR architecture and definit ional method for a r t i f i c i a l 

intelligence that is conceptually based on a single kind of object: actors [or, if you w i l l , 
v i r tual processors, activation frames, or streams]. The formalism makes no presuppositions 
about the representation of primitive data structures and control structures. Such structures 
can be programmed, micro-coded, or hard wired 1n a uniform modular fashion. In fact it is 
impossible to determine whether a given object is "really" represented as a l i s t , a vector, a 
hash table, a function, or a process. The architecture w i l l e f f ic ient ly run the coming 
generation of PLANNER-like a r t i f i c i a l intelligence languages including those requiring a high 
degree of parallelism. The efficiency is gained without loss of programming generality because 
it only makes certain actors more e f f ic ient ; it does not change their behavioral 
characteristics. The architecture is general with respect to control structure and 
does not have or need goto, interrupt, or semaphore primitives. The formalism achieves the goals that 
the disallowed constructs are intended to achieve by other more structured methods. 

PLANNER Progress 

"Programs should not only work, 
but they should appear to work as wel l . " 

PDP-1X Dogma 

The PLANNER project is continuing research in natural and effective means for embedding 
knowledge in procedures. In the course of this work we have succeeded in unifying the 
formalism around one fundamental concept: the ACTOR. Intu i t ive ly , an ACTOR is an active agent 
which plays a role on cue according to a script" we" use the ACTOR metaphor to emphasize the 
inseparability of control and data flow in our model. Data structures, functions, semaphores, 
monitors, ports, descriptions, Quillian nets, logical formulae, numbers, ident i f iers, demons, 
processes, contexts, and data bases can a l l be shown to be special cases of actors. Al l of the 
above are objects with certain useful modes of behavior. Our formalism shows how al l of the 
modes of behavior can be defined in terms of one kind of behavior: sending messages to actors. 
An actor is always invoked uniformly in exactly the same way regardless of whether 1t behaves 
as a recursive function, data structure, or process. 

" I t is vain to multiply Entities beyond need." 
William of Occam 

"Monotheism is the Answer." 
The unif ication and simplif ication of the formalisms for the procedural embedding of 

knowledge has a great many benefits for us: 
FOUNDATIONS: The concept puts procedural semantics [the theory of how things 

operate] on a firmer basis. It w i l l now be possible to do cleaner theoretical studies of the 
relation between procedural semantics and set-theoretic semantics such as model theories of 
the quantificational calculus and the lambda calculus. 

LOGICAL CALCULAE: A procedural semantics is developed for the quantificational 
calculus. The logical constants FOR-ALL, THERE-EXISTS, AND, OR, NOT, and IMPLIES 
are defined as actors. 

KNOWLEDGE BASED PROGRAMMING is programming in an environment which has a 
substantial knowledge base in the application area for which the programs are intended. 
The actor formalism aids knowledge based programming in the following ways-. PROCEDURAL 
EMBEDDING of KNOWLEDGE, TRACING BEHAVIORAL DEPENDENCIES, and SUBSTANTIATING that ACTORS 
SATISFY their INTENTIONS. 

INTENTIONS: Furthermore the confirmation of properties of procedures is made 
easier and more uniform. Every actor has an INTENTION which checks that the prerequisites 
and the context of the actor being sent the message are sat isf ied. The intention is the 
CONTRACT that the actor has with the outside world. How an actor f u l l f l l l s i ts contract is 
i ts own business. By a SIMPLE BUG we mean an actor which does not satisfy i ts intention. 
We would l ike to eliminate simpTedebugging of actors by the META-EVALUATION of actors to show 
that they satisfy their Intentions. Suppose that there is an external audience of actors E 
which satisfy the intentions of the actors to which they send messages. In tu i t ive ly , the 
principle of ACTOR INDUCTION states that the intentions of a l l actions caused by E are 
in turn satisf ied provided that the following condition holds: 

If for each actor A 
the intention of A is satisf ied => 
that the intentions of a l l actors sent messages by A are sat isf ied. 

Computational induction [Manna], structural induction [Bursta l l ] , and Peano induction 
are a l l special cases of ACTOR induction. Actor based intentions have the following 
advantages: The intention is decoupled from the actors it describes. Intentions of 
concurrent actions are more easily disentangled. We can more elegantly write intentions 
for dialogues between actors. The intentions are written 1n the same formalism as the 
procedures they describe. Thus for example intentions can have intentions. Because 
protection is an intr insic property of actors, we hope to be able to deal with protection 
issues in the same straight forward manner as more conventional intentions. Intentions 
of data structures are handled by the same machinery as for a l l other actors. 

COMPARATIVE SCHEHATOLOGY: The theory of comparative power of control structures is 
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extended and unif ied. The following hierarchy of control structures can be explicated by 
incrementally Increasing the power of the message sending pr imit ive: 

iterative---recursive---backtrack---+determinate- --universal 
EDUCATION: The model is suf f ic ient ly natural and simple that it can be made the 

conceptual basis of the model of computation for students. In particular it can be used as 
the conceptual model for a generalization of Seymour Papert's " l i t t l e man" model of LOGO. 
The model becomes a cooperating society of " l i t t l e men" each of whom can address others 
with whom it is acquainted and pol i te ly request that some task be performed. 

LEARNING and MODULARITY: Actors also enable us to teach computers more easily 
because they make it possible to incrementally add knowledge to procedures without having 
to rewrite a l l the knowledge which the computer already possesses. Incremental extensions 
can be incorporated and interfaced in a natural f lexib le manner. Protocol abstraction 
[Hewitt 1969; Hart, Nilsson, and Fixes 1972] can be generalized to actors so that 
procedures with an arbitrary control structure can be abstracted. 

EXTENDABILITY: The model provides for only one extension mechanism: creating 
new actors. However, this mechanism is suff ic ient to obtain any semantic extension that might 
be desired. 

PRIVACF and PROTECTION: Actors enable us to define effective and ef f ic ient 
protection schemes. Ordinary protection fa l l s out as an ef f ic ient in t r ins ic property of 
actors. The protection is based on the concept of "use". Actors can be freely passed 
out since they w i l l work only for actors which have the authority to use them. Mutually 
suspicious "memoryless" subsystems are easily and e f f ic ient ly implemented. ACTORS are at 
least as powerful a protection mechanism as domains [Schroeder, Needham, e t c . ] , access 
control l i s t s [MULTICS], objects [Wulf 1972], and capabil it ies [Dennis, Plummer, Lampson]. 
Because actors are locally computationally universal and cannot be coerced there is reason 
to believe that they are a universal protection mechanism in the sense that a l l other 
protection mechanisms can be ef f ic ient ly defined using actors. The most important issues 
in privacy and protection that remain unsolved are those involving intent and t rust . We 
are currently considering ways in which our model can be further developed to address these 
problems. 

SYNCHRONIZATION: It provides at least as powerful a synchronization mechanism as 
the multiple semaphore P operation with no busy waiting and guaranteed f i r s t in f i r s t out 
discipl ine on each resource. Synchronization actors are easier to use and substantiate 
than semaphores since they are direct ly t ied to the control-data flow. 

SIMULTANEOUS GOALS: The synchronization problem is actually a special case of the 
simultaneous goal problem. Each resource which is seized is the achievement and 
maintenance of one of a number of simultaneous goals. Recently Sussman has extended the 
previous theory of goal protection by making the protection guardians into a l i s t of 
predicates which must be re-evaluated every time anything changes. We have generalized 
protection in our model by endowing each actor with a scheduler. We thus retain the 
advantages of local intentional semantics. A scheduler actor allows us to 
program EXCUSES for violat ion in case of need and to allow NEGOTIATION and re-negotiation 
between the actor which seeks to seize another and i ts scheduler. Richard Waldinger has 
pointed out that the task of sorting three numbers is a very elegant simple example 
i l lus t ra t ing the u t i l i t y of incorporating these kinds of excuses for violating protection. 

RESOURCE ALLOCATION: Each actor has a banker who can keep track of the resources 
used by the actors that are financed by the banker. 

STRUCTURING: The actor point of view raises some interesting questions concerning 
the structure of programming. 

STRUCTURED PROGRAMS: We maintain that actor communication is well-structured. 
Having no goto, interrupt, semphore, etc. constructs, they do not violate "the le t ter 
of the law." Some readers w i l l probably feel that some actors exhibit "undisciplined" 
control flow. These distinctions can be formalized through the mathematical discipl ine 
of comparative schematology [Patterson and Hewitt]. 

STRUCTURED PROGRAMMING: Some authors have advocated top down programming. We 
f ind that our own programming style can be more accurately described as "middle out". 
We typical ly start with specifications for a large task which we would l ike to program. 
We refine these specifications attempting to create a program as rapidly as possible. 
This i n i t i a l attempt to meet the specifications has the effect of causing us to change 
the specifications in two ways: 

1: More specifications [features which we or ig inal ly did not realize are 
important] are added to the definit ion of the task. 

2: The specifications are generalized and combined to produce a task that 
is easier to implement and more suited to our real needs. 
IMPLEMENTATION: Actors provide a very f lexib le implementation language. In fact 

we are carrying out the implementation entirely in the formalism i t s e l f . By so doing we 
obtain an implementation that is ef f ic ient and has an effective model of i t se l f . The 
efficiency is gained by not having to incur the interpretive overhead of embedding the 
implementation in some other formalism. The model enables the formalism to answer 
questions about i t se l f and to draw conclusions as to the impact of proposed changes in the 
Implementation. 

ARCHITECTURE: Actors can be made the basis of the architecture of a computer which 
means that a l l the benefits l is ted above can be enforced and made e f f ic ient . Programs 
written for the machine are guaranteed to be syntactically properly nested. The basic unit 
of execution on an actor machine is sending a message in much the same way that the basic 
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unit of execution on present day machines is an Instruction. On a current generation 
machine in order to do an addition an add Instruction must be executed; so on an actor 
machine a hardware actor must be sent the operands to be added. There are no goto, 
semaphore, interrupt, etc. instructions on an ACTOR machine. An ACTOR machine can be bui l t 
using the current hardware technology that is competitive with current generation machines. 

"Now! Now!" cried the Queen. "Faster! Faster!" 
Lewis Carroll 

Current developments in hardware technology are making it economically attractive 
to run many physical processors in paral le l . This leads to a "swarm of bees" style of 
programming. The actor formalism provides a coherent method for organizing and 
controll ing a l l these processors. One way to build an ACTOR machine is to put each actor 
on a chip and build a decoding network so that each actor chip can address a l l the others. 
In certain applications parallel processing can greatly speed up the processing. For 
example with suff ic ient parallelism, garbage collection can be done 1n a time which is 
proportional to the logarithm of the storage collected instead of a time proportional to 
the amount of storage collected which is the best that a serial processor can do. Also the 
architecture looks very promising for parallel processing In the lower levels of computer 
audio and visual processing. 

"Al l the world's a stage, 
And a l l the men and women merely actors. 
They have their exits and their entrances; 
And one man in his time plays many parts." 

" I f it waddles l ike a duck, quacks l i ke a duck, and otherwise behaves l ike a duck; then 
you can't t e l l that it i sn ' t a duck." 

Adding and Reorganizing Knowledge 
Our aim is to build a firm procedural foundation for problem solving. The foundation 

attempts to be a matrix in which real world problem solving knowledge can be e f f ic ient ly and 
naturally embedded. We envisage knowledge being embedded in a set of knowledge boxes with 
interfaces between the boxes. In constructing models we need the ab i l i t y to embed more 
knowledge in the model without having to to ta l ly rewrite i t . Certain kinds of additions can be 
easily encompassed by declarative formalisms such as the quantificational calculus by simply 
adding more axioms. Imperative formalisms such as actors do not automatically extend so 
easily. However, we are implementing mechanisms that allow a great deal of f l e x i b i l i t y in 
adding new procedural knowledge. The mechanisms attempt to provide the following ab i l i t i es ; 

PROCEDURAL EMBEDDING:. They provide the means by which knowledge can easily and 
naturally be embedded in processes so that it w i l l be used as intended. 

CONSERVATIVE EXTENSION: They enable new knowledge boxes to be added and 
interfaced between knowledge "Foxes. 

MODULAR CONNECTIVITY: They make it possible to reorganize the interfaces 
between knowledge boxes. 

MODULAR EQUIVALENCE: They guarantee that any box can be replaced by one which 
satisf ies the previous interfaces. 
Actors must provide interfaces so that the binding of interfaces between boxes can be 

controlled by knowledge of the domain of the problem. The r ight kind of interface promotes 
modularity because the procedures on the other side of the interface are not affected so long 
as the conventions of the interface are not changed. These interfaces aid in debugging since 
traps and checkpoints are conveniently placed there. More generally, formal conditions can be 
stated for the interfaces and confirmed once and for a l l . 

Unification 
We claim that there is a common Intellectual core to the following (now somewhat 

isolated) f ie lds that can be characterized and investigated: d ig i ta l c i rcu i t designers, data 
base designers, computer architecture designers, programming language designers, computer 
system architects. 

"Our primary thesis is that there can and must exist a single language for 
software engineering which is usable at a l l stages of design from the i n i t i a l 
conception through to the f inal stage in which the last b i t 1s sol idly 1n place on 
some hardware computing system." 

Doug Ross 
The time has come for the unif ication and integration of the f ac i l i t i e s provided by the 

above designers into an inte l lectual ly coherent manageable whole. Current systems which 
separate the following intel lectual capabil i t ies with arbitrary boundaries are now obsolete. 

"Know thyself". 
We intend that our actors should have a useful working knowledge of themselves. That i s , they 
should be able to answer reasonable questions about themselves and be able to trace the 
implications of proposed changes in their intentions. It might seem that having the 
implementation understand i t se l f is a rather incestuous a r t i f i c i a l intelligence domain but we 
believe that it is a good one for several reasons. The implementation of actors on a 
conventional computer Is a re lat ively large complex useful program which is not a toy. The 
implementation must adapt i t se l f to a re lat ively unfavorable environment. Creating a model of 
i tse l f should aid in showing how to create useful models of other large knowledge based programs 
since the implementation addresses a large number of d i f f i cu l t semantic issues. We have a 
number of experts on the domain that are very interested 1n formalizing and extending their 
knowledge. These experts are good programmers and have the time, motivations, and ab i l i t y to 
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embed their knowledge and intentions in the formalism. 
"The road to hell is paved with good intentions." 

Once the experts put in some of their intentions they f ind that they have to put in a great 
deal more to convince the auditor of the consistency of their intentions and procedures. In 
this way we hope to make expl ic i t a l l the behavioral assumptions that our implementation 1s 
relying upon. The domain is closed 1n the "sense""that the questions that can reasonably be 
asked do not lead to a vast body of other knowledge which would have to be formalized as wel l . 
The domain is l imited in that 1t is possible to start with a small superficial model of actors 
and build up Incrementally. Any advance is immediately useful in aiding and motivating future 
advances. There 1s no hidden knowledge as the formalism is being ent irely implemented in 
i t se l f . The task is not complicated by unnecessary bad software engineering practices such as 
the use of gotos, interrupts, or semaphores. 

Intr insic Computation 
We are approaching the problem from a behavioral [procedural] as opposed to an 

axiomatic approach. Our view is that objects are defined by their actors rather than by 
axiomatizing the properties of the operations that can be performed on them. 

"Ask not what you can do to some actor; 
but what the actor can [w i l l ? ] do for you." 

Alan Kay has called this the INTRINSIC as opposed to the EXTRINSIC approach to defining 
objects. Our model follows the following two fundamental principles of organizing behavior: 

Control flow and data flow are inseparable. 
Computation should be done in t r ins ica l ly instead of extr insical ly i .e. "Every 

actor should act for himself or delegate the responsibi l i ty [pass the buck] to an actor 
who w i l l . " 

Although the fundamental principles are very general they have defini te concrete consequences. 
For example they rule out the goto construct on the grounds that it does not allow a message to 
be passed to the place where control is going. Thus it violates the inseparability of control 
and data flow. Also the goto defines a semantic object [the code following the tag] which is 
not properly syntactically delimited thus possibly leading to programs which are not properly 
syntactically nested. Similarly the classical interrupt mechanism of present day machines 
violates the principle of in t r ins ic computation since it wrenches control away from whatever 
instruction is running when the interrupt str ikes. 

Hierarchies 
The model provides for the following orthogonal hierarchies: 

SCHEDULING: Every actor has a scheduler which determines when the actor 
actually acts after it 1s sent a message. The scheduler handles problems of 
synchronization. Another job of the scheduler [Rulifson] is to t ry to cause actors to 
act in an order such that their intentions w i l l be sat is f ied. 

INTENTIONS: Every actor has an intention which makes certain that the 
prerequisites and context of the actor being sent the message are sat isf ied. 
Intentions provide a certain amount of redundancy in the specifications of what is 
supposed to happen. 

MONITORING: Every actor can have monitors which look over each message sent to 
the actor. 

BINDING: Every actor can have a procedure for looking up the values of names 
that occur within 1t. 

RESOURCE MANAGEMENT: Every actor has a banker which monitors the use of space 
and time. 

Note that every actor had all of the above ab i l i t i es and that each is done via an 
actor! 

"A slow sort of country!" said the Queen. "Now here, you see, it 
takes a l l the running you can do, to keep in the same place. If you want 
to get somewhere else, you must run at least twice as fast as that!" 

Lewis Carroll 
The previous sentence may worry the reader a b i t as she [he] might envisage an in f i n i t e 

chain of actions [such as banking] to be necessary in order to get anything done. We short 
c i rcu i t this by only requiring that it appear that each of the above act iv i t ies 1s done each 
time an actor is sent a message. 

"There's no use t ry ing, " she said: "one can't believe impossible 
things." 

"I daresay you haven't had much practice," said the Queen. "When I 
was your age, I always did it for half-an-hour a day. Why, sometimes I've 
believed as many as six impossible things before breakfast." 

Lewis Carroll 
Each of the act iv i t ies is locally defined and executed at the point of invocation. 

This allows the maximum possible degree of parallelism. Our model contrasts strongly with 
extr insic quantlficatlonal calculus models which are forced into global noneffective statements 
1n order to characterize the semantics. 

"Global state considered harmful." 
We consider language def in i t ion techniques [such as those used with the Vienna 

Definition Language] that require the semantics be defined in terms of the global computational 
state to be harmful. Formal penalties [such as the frame problem and the def ini t ion of 
simultaneity] must be paid even if the def in i t ion only effect ively modifies local parts of the 
state. Local in t r ins ic models are better suited for our purposes. 
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Hardware 
Procedural embedding should be carried to I ts ultimate level : the architecture of the machine. 

Conceptually, the only objects in the machine are actors. In practice the machine recognizes certain 
actors as special cases to save speed and storage. We can easily reserve a portion of the name space 
for actors implemented in hardware. 

Syntactic Sugar 
"What's the good of Mercator's North Poles and Equators, 
Tropics, Zones and Meridian Lines?" 
So the Bellman would cry: and the crew would reply 
"They are merely conventional signs!" 

Lewis Carroll 
Thus far 1n our discussion we have discussed the semantic issues in tu i t ive ly but vaguely. 

We would now l ike to proceed with more precision. Unfortunately in order to do this it seems 
necessary to introduce a formal language. The precise nature of this language 1s completely 
unimportant so long as it 1s capable of expressing the semantic meanings we wish to convey. For some 
years we have been constructing a series of languages to express our evolving understanding of the 
above semantic issues. The latest of these is called PLANNER-73. 

Meta-syntactic variables w i l l be underlined. We shall assume that the reader 1s familiar with 
advanced pattern matching languages such as SN0B0L4, CONVERT, QA4, and PLANNER-71. 

We shall use (%A M%) to indicate sending the message M to the actor A. We shall use 
[s1 s2 . . . sn] to denote the f i n i t e sequence s1, s2_, . . . sn. ft sequence s is an actor where (%s_ i%) 
is element i of the sequence s. For example (%[a c b] 2%) is c. We w i l l use ( ) to delimit the 
simultaneous synchronous transmission of more than one message so that (Al A2...An) w i l l be 
defined to be (%A1 [A2 . . . An]%). The expression [%a1 a2 . . . an%] (read as ""a] then a2 . . . f i na l l y 
send back an") willI be evaluated by evaluating a l , a2, . . . . and an in sequence and then sending back 
["returning"] the value of an as the message. 

Identi f iers can be created by the prefix operator =. For example if the pattern = x 1s matched 
with y, then a new ident i f ier is created and bound to v. 

"But 'glory' doesn't mean 'a nice knock-down argument," Alice 
objected. 

"When I use a word," Humpty Dumpty said, in rather a scornful tone, 
" i t means just what I choose 1t to mean—neither more nor less." 

"The question i s , " said Al ice, "whether you can make words mean so 
many dif ferent things." 

"The question i s , " said Humpty Dumpty, "which is to be master--
that's a l l . " 

Lewis Carroll 
Humpty Dumpty propounds two cr i ter ia on the rules for names: 

Each actor has complete control over the names he uses. 
Al l other actors must respect the meaning that an actor has chosen for a name. 

We are encouraged to note that in addition to satisfying the cr i ter ia of Humpty Dumpty, our names also 
satisfy those subsequently proposed by B i l l Wulf and Mary Shaw: The default is not necessarily to 
extend the scope of a name to any other actor. The r ight to access a name is by mutual agreement 
between the creating actor and each accessing actor. An access r ight to an actor and one of i t s acquan-
tances is decoupled. It is possible to distinguish dif ferent types of access. The def ini t ion of a 
name, access to a name, and allocation of storage are decoupled. The use of the prefix = does not imply 
the allocation of any storage. 

One of the simplest kinds of ACTORS is a c e l l . A cell with i n i t i a l contents V can be created 
by evaluating (cel l V_). Given a cell x, we can ask it to send back its contents by evaluating 
(contents xj which is an abbreviation for (x #contents). For example (contents(cell 3)) evaluates to 3. 
We can ask it to change its contents to v by evaluating (x-y_). For example if we le t x be (cel l 3) and 
evaluate (x--4), we w i l l subsequently find" that (contents x) w i l l evaluate to 4. 

The pattern (by-reference P) matches object E_ 1f the pattern Pmatches (cel l E) i .e. a " ce l l " 
[see below] which contains E. Thus matching the pattern (by-reference =x) against E 1s the same as 
binding x to (cel l E) i .e . a new cell which contains the value of the expression E.We shall use => 
[read as "RECEIVE MESSAGE"] to mean an actor which is reminiscent of the actor LAMBDA in the lambda 
calculus. For example (=> x body) 1s l ike (LAMBDA x body) where x 1s an ident i f ie r . An expression 
(=> pattern body) is an abbreviation for (receive {[#message pattern]} body) where receive 1s a more 
general actor that is capable of binding elements of the action in addition to the message. 
Evaluating 

(%(=> pattern body) the-messaqe%), i .e . sending 
(=> pattern body) the-message, w i l l attempt to match the-message against pattern. If the-message 

is not of the form specified by pattern, then the actor is NOT APPLICABLE to the-message. If the-message 
matches pattern, then body 1s evaluated. 

Evaluating (%(cases [f1 f2 ••• fn]) arg%) w i l l send fl_ the message arg and if it is not applicable 
then it w i l l send f2 the message a r g , . . . , and send fn the message aro 

The following abbreviations w i l l be used to improve readabil i ty: 
(rules object clauses) for 

((cases clauses)object) 
( l e t object pattern-for-message body) for 

(%(=> pattern-for-message body) objects) 
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message mechanisms of the current SMALL TALK machine of Alan Kay and the port mechanism of 
Krutat and Balzer. Being free of side effects allows us a maximum of parallelism and allows an 
actor to be engaged in several conversations at the same time without becoming confused. 

4: Sending a message to an actor makes no presupposition that the actor sent the 
message w i l l ever send back a message to the continuation. The unidirectional nature of 
sending messages enables us to define i te ra t ion, monitors, coroutines, etc.straight forwardly, 

5: The ACTOR model is nojt an [environment-pointer, instruction-pointer] model such as 
the CONTOUR model. A'continuation is a f u l l blown actor [with a l l the rights and pr iv i leges]; 
it is not a program counter. There are no instructions [ in the sense of present day machines] 
in our model. Instead of instructions, an actor machine has certain primitive actors bu i l t in 
hardware. 

Logic 
" I t is behavior, not meaning, that counts." 

We would l ike to show how actors represent formulas in the quantificational calculus 
and how the rules of natural deduction follow as special cases from the mechanism of extension 
worlds. We assume the existence of a function ANONYMOUS which generates a new name which has 
never before been encountered. Consider a formula of the form (every phi) which means that for 
every x we have that (phi x) is the case. The formula has two important uses: it can be 
asserted and it can be proved. We shall use an actor >=> [read as "ACCEPT REQUEST"] with the 
syntax 

(>=> pattern-for-request body) for procedures to be invoked by pattern directed 
invocation by a command which matches pattern-for-request. 

Our behavioral definit ions are reminiscent of classical natural deduction except that 
we have four introduction and elimination rules [PROVE, DISPROVE, ASSERT, and DENY] to give us 
more f l e x i b i l i t y in dealing with negation. 

"Then Logic would take you by the throat, and force you to do i t ! " 
Lewis Carroll 

Data Bases 
Data bases are actors which organize a set of actors for ef f ic ient ret r ieval . There 

are two primitive operations on data bases: PUT and GET. A new virgin data base can be 
created by evaluating (v i rg in) . If we evaluate (w +■ (virgin)) then (contents w) w i l l be a 
virgin world. We can put an actor (at John airport) in the world (contents w) by evaluating 
(put(at John airport) {[#world{contents w)]>). We could add further knowledge by evaluating 

(put (at airport Boston) {[#world (contents w)]]) to record that the airport is at 
Boston. 
(put {c i ty Boston) {[#world (contents w)])) to record that Boston is a c i t y . 

If the constructor EXTENSION is passed a message then it w i l l create a world which is an 
extension of i t s message. Eor example 
(put 

[(on John ( f l i gh t 34)) 
(extension-world ■*- (contents w))]) 

w i l l set extension-world to a new world in which we have supposed that John is on f l i gh t #34. 
The world (contents w) is unaffected by this operation. On the other hand the extension world 
is affected if we do (put [(hungry John) (contents w)]). Extension worlds are very good for 
modeling the following: 

WORLD DIRECTED INVOCATION 
The extension world machinery provides a very powerful invocation and parameter 

passing mechanism for procedures. The idea is that to invoke a procedure, f i r s t grow an 
extension world; then do a world directed invocation on the extension world. This 
mechanism generalizes the previous pattern directed invocation of PLANNER-67 several ways. 
Pattern directed invocation is a special case in which there is just one assertion in the 
wish world. World Directed Invocation represents a formalization of the useful problem 
solving technique known as "wishful thinking" which is invocation on the basis of a 
fragment of a micro-world. Terry Winograd uses restr ict ion l i s t s for the same purpose in 
his thesis version of the blocks world. Suppose that we want to find a bridge with a red 
top which is supported by i ts le f t - leg and i ts r ight-leg both of which are of the same 
color. In order to accomplish this we can call upon a genie with our wish as i t s message. 
The genie uses whatever domain dependent knowledge it has to t ry to realize the wish. 
(realize 

(utopia 
(top le f t - leg r ight- leg color-of-legs} 

;"the variables in the uptopia are l isted above" 
{ 

(color top red) 
(supported-by top le f t - leg) 
'supported-by top r ight- leg) 
; ie f t -o f le f t - leg r ight- leg) 
[color le f t - leg color-of-legs) 
kcolor le f t - leg color-of- legs)})) 

LOGICAL HYPOTHETICALS are logical ly possible alternatives to a world. 
By the Normalization Theorem for in tu i t ion is t ic logic our actor def ini t ion of the 

logical constant IMPLIES is suff ic ient to mechanize logical implication. The rules of 
natural deduction are a special case of our rules for extension worlds and our procedural 
def in i t ion of the logical connectives. 

ALTERNATIVE WORLDS are physically possible alternatives to a world. 
PERCEPTUAL VIEWPOINTS can be mechanized as extension worlds. For example suppose 
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ra t t le- t rap is the name of a world which describes my car. Then (front rat t le- t rap) could 
be a world which describes my car from the front and ( le f t rat t le- t rap) can be the 
description from the l e f t side. We can also consider a future historian's view of the 
present by (vlew-from-1984 world-of-1972). Mlnsky [1973] considers these possibi l i t ies from 
a somewhat different point of view. 

The following general principles hold for the use of extension worlds: 
Each independent fact should be a separate assertion. For example to record that 

"the banana banl is under the table tab l " we would assert: 
(banana banl) 
table tabl) 
under banl tabl) 

instead of conglomerating [McDermott 1973] them Into one assertion: 
(at 

(the banl (1s banl banana)) 
(place 

(the tabl ( is tabl table)) 
under)) 

A person knowing a statement can be analyzed into the person believing the statement and 
the statement being true. So we might make the following def in i t ion of knowing: 

[know <= 
(=> [= person = statement] 

(and 
(believes person statement) 
(true statement)))] 

Thus the statement [Moore 1973] "John knows B i l l ' s phone number" can be represented by the 
assertion: 

(knows John (phone-number B i l l pn0005)) 
where pn0005 is a new name and (phone-number B i l l pn0005) is Intended to mean that the 
phone number of B i l l 1s pn0005. The assertion can be expanded as follows: 

(believes John (phone-number B i l l pn0005)) 
(true (phone-number B i l l pn0005)) 

However the expansion is optional since the two assertions are not independent of the 
original assertion. 

"Whatever Logic is good enough to te l l me Is worth writ ing down," said 
the Tortoise. "So enter it in your book, please." 

Lewis Carroll 
Each assertion should have just i f icat ions[derivat ions] which are also assertions 

and which therefore . . . 
Extraneous factors such as time and causality should not_ be conglomerated 

[McDermott 1973] into the extension world mechanism. Facts about time and causality should 
also be separate assertions. In this way we can deal more naturally and uniformly with 
questions involving more than one time. For example we can answer the question "How many 
times were there at most two cannibals in the boat while the missionaries and cannibals 
were crossing the r iver?" Also we can check the consistency of two dif ferent narratives of 
overlapping events such as might be generated by two people who attended the same party. 
Retreival of actors from data bases takes facts about time and causality into account 1n 
the re t re iva l . Thus we s t i l l effectively avoid most of the frame problem of McCarthy. The 
ab i l i t y to do this is enhanced by the way we define data bases as actors. 

A CONTEXT mechanism was invented for QA4 to generalize the property l i s t structure of 
LISP. Rulifson explained 1t by means of examples of I ts use to mechanize ident i f ie rs . By use 
of the functions PUSH-CONTEXT and POPJONTEXT and an EPAM discrimination net [Feigenbaum and 
Simon] the context mechanism can be used to mechanize a version of tree-structured worlds, The 
tree-structured worlds of PLANNER-71 were Invented to get around the problem of having only one 
global data base not realizing that a context mechanism could be used to implement something 
l ike that. The tree-structured worlds were defined direct ly in terms of the hash-coding 
mechanism of PLANNER which had the advantage of decoupling them from the ident i f ier structure 
of PLANNER. In addition by not conceiving an extension world analogue of P0P_C0NTEXT large 
gains in efficiency over the context mechanism are possible. 

Worlds can ask the actors put In them to index themselves for rapid retreival.We also 
need to be able to retrieve actors from worlds. Simple retrieval can be done using patterns. 
For example 
(locations +■ (get (at (?) (?)){[#world (contents w)]})) 
w i l l set locations to an actor which w i l l retrieve a l l the actors stored in (contents w) which 
match the pattern (at (?) {?) ) . Now (next locations) w i l l thus retrieve either (at airport 
Boston) or (at John a i rpor t ) . Actually* the above 1s an over simpl i f icat ion. We shall le t 
$real1ty stand for the current world at any given point and $utopia stand for the world as we 
would l ike to see 1t. We do not want to have to expl ic i ty store every piece of knowledge 
which we have but would l ike to beable to derive conclusions from what is already known: We 
can distinguish several different classes of procedures for deriving conclusions. 

"McCarthy 1s at the a i rpor t . " (put (at McCarthy airport)) If a person 1s at the 
a i rpor t , then the person might take a plane from the airport , 

[put-at <» 
(>«> (put (at = person airport)) 

(put (might (take-plane-from person a i rpor t ) ) ) ) ] 
"McCarthy 1s not at the a i rpor t . " (deny (at McCarthy a i rport ) ) If a person Is not at 

th airport then he can't take a plane from the ai rport . 

242 



243 

"McCarthy is not at the airport . " (deny (at McCarthy airport)) If a person is not at 
the airport then he can't take a plane from the airport . 

[deny-at<= 
(>=> (deny (at =person airport)) 

(put (can't (take—plane—from person airport ) ) ) ) ] 

" I t is not known whether McCarthy is at the airport , " (erase (at McCarthy airport)) If 
it is not known whether a person is at the airport then erase whatever depends on previous 
knowledge that the person is at the airport, 

[erase-at <= 
(>=> (erase (at -person airport)) 

(f ind (depends—on =s (at person airport)) 
(erase s ) ) ) ] 

"Get McCarthy to the airport ." (achieve {(at McCarthy airport )}) To achieve a person at 
a place: 

Find the present location of the person. 
Show that it is walkable from the present location to the car. 
Show that 1t is drivable from the car to the place, 

[achieve-at <= 
(>=> (achieve [ (at =person =place ) ]) 

(achieve 
(f ind [ (at person -present-location)] 

(show {(walkable present-location car)} 
(show {(drivable car p lace)} ) ) ) ) ) ] 

"Show that McCarthy is at the a i rpor t . " (show {(at McCarthy airport)}) To show that a 
thing is at a place show that the thing is at some intermediate and the intermediate is at the 
place. 

[show-at <= 
(>=> (show {(at =th1ng =place)}) 

(show {(at thing 'intermediate)} 
(show {(at intermediate place)}))) ] 

The actor show-at is simply t rans i t i v i t y of at. 
l ! Anything Really Better 

Than Anything Else? 
CONNIVER can easily be defined TrTTerms of P L A W R - 7 3 . We do this not because we 

believe that the procedures of CONNIVER are part icularly well designed. Indeed we have given 
reasons above why these procedures are deficient. Rather we formally define these procedures 
to show how our model applies even to rather baroque control structures. 

CONNIVER is essentially the conglomeration of the following ideas: Landin's non-
hierarchical goto-71, the pattern directed construction, matching, re t r ieva l , and invocation of 
PLANNER, Landin's streams, the context mechanism of QAA, and Balzer's and Krutar's ports. 

In most cases, two procedures in CONNIVER do not talk direct ly to each other but 
instead are required to communicate through an intermediary which is called a possibi l i t ies l i s t . 
The concept of a POSSIBILITIES LIST is the major original contribution of CONNIVER. 

"What are these 
So wild and withered in their a t t i r e , 
That look not l i ke the inhabitants 

0' the earth, 
and yet are on't?" 

Macbeth: Act 1, Scene 111 
Substitution, Reduction, and Meta-evaluation 

"One program's constant is another program's variable." 
Alan Perils 

"Programming [or problem solving in general] is the judicious postponement of 
decisions and commitments!" 

Edsger W. Dijkstra [1969] 
"Programming languages should be designed to suppress what is constant and 
emphasize what is variable." 

Alan Perlis 
"Each constant wi l l eventually be a variable!" 

Corollary to Murphy's Law 
We never do unsubstitution [or if you wish decompilation, unsimpllfication, or 

unevaluation]. We always save the higher level language and resubstltute. The metaphor of 
substitution followed by reduction gives us a macroscopic view of a large number of 
computational ac t i v i t i es . We hope to show more precisely how a l l the following act iv i t ies f i t 
within the general scheme of substitution followed by reduction: 

EVALUATION [Church, McCarthy, Lnadin] can be done by substituting the message 
into the code and reducing [execution]. 

DEDUCTION [Herbrand, Godel, Heyting. Prawltz, Robinson, Hewitt, Weyhrauch and 
Milner] can be done by procedural embedding. In this paper we have extended our 
previous work by defining the logical constants to be certain actors thus providing a 
procedural semantics for the quantlficational calculus along the lines indicated by 
natural deduction. 

CONFIRMING the CONSISTENCY of ACTORS and their INTENTIONS [Naur, Floyd, Hewitt 



1971, Waldlnger, Deutsch] can be done by substituting the code for the actors Into 
their intentions and then meta-evaluating the code. 

AUTOMATIC ACTOR GENERATION. An important corollary of the Thesis of Procedural 
Embedding is that the Fundamental Technique of A r t i f i c i a l Intelligence is automatic 
programming and procedural knowledge base construction. It can be done by the 
following' "methods: 

PARAMETERIZATION [Church, McCarthy, Landin, Mcintosh, Manna and 
Waldinger, Hewitt] of canned procedure templates. 

COMPILATION [Lombardi, Elcock, Fikes, Daniels, Wulff, Reynolds, and 
Wegbreit] can be done by substituting the values of the free variables in the 
code and then reducing [optimizing]. For examples we can enhance the behavior 
of the l i s t s which were behaviorally defined above to vectors which w i l l run 
more e f f ic ient ly on current generation machines. 

ABSTRACT IMPOSSIBILITIES REMOVAL can be done by binding the 
alternatives with the code and deleting those which can never succeed, What we 
have in mind are situations such as having simultaneous subgoals (on a b) and 
(on b c) where we can show by meta-evaluation that the order given above can 
never succeed. Gerry Sussman has designed a program which attempts to abstract 
this fact from running on concrete examples. We believe that in this case and 
many others it can be abstractly derived by meta-evaluation. 

EXAMPLE EXPANSION [Hart, Nilsson, and Fikes 1971; Sussman 1972; Hewitt 
1971] can be done by binding the high level goal oriented language to an 
example problem and then reducing [executing and expanding to the paths executed] 
using world directed invocation [or some generalization] to create linkages 
between the variablized special cases. 

PROTOCOL ABSTRACTION [Hewitt 1969, 1971] can be done by binding 
together the protocols, reducing the resulting protocol tree by identifying 
indistinguishable nodes. 

ABSTRACT CASE GENERATION to distinguish the methods to achieve a goal 
can be done by determining the necessary pre-conditions for each method by 
reducing to a decision tree which distinguishes each method. 
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Abstract 

Newer programming languages for ar t i f ic ia l inte l 
ligence extend the class of available control regimes 
beyond simple hierarchical control. In so doing, a key 
issue is using a model that clearly exhibits the relation 
between modules, processes, access environments, 
and control environments. This paper presents a 
model which is applicable to diverse languages and 
presents a set of control pr imit ives which provide a 
concise basis on which one can define almost a l l known 
regimes of control. 

1. Introduction 

Newer programming languages! for ar t i f ic ia l 
intelligence ( e . g . , PLANNER9^ CONNIVER,18 BBN-
LlSP.ly QA4.1 ' 1 extend the nature of control regimes 
available to the user. In this paper, we present an 
information structure model20 which deals with control 
and access contexts in a programming language; it is 
based on consideration of the form of run-t ime data 
structures which represent program control and v a r i 
able bindings. The model is designed to help clar i fy 
some relationships of hierarchical function cal ls, 
backtracking, co-routines, and multiprocess structure. 
We present the model and its small set of pr imi t ive 
operations, then define several control regimes in 
terms of the pr imi t ives, and then consider extensions 
to handle cooperating sequential processes. 

2. The Basic Environment Structure 

In a language which has blocks and procedures, 
new nomenclature (named variables) can be introduced 
either by declarations in block heads or through named 
parameters to procedures. Since both define access 
environments, we call the body of a procedure or block 
a uniform access module. Upon entry to an access 
module, certain storage is allocated for those new 
named items which are defined at entry. We call this 
named allocated storage the basic frame of the module. 
In addition, certain additional storage for the module 
may be required for temporary intermediate results of 
computation; this additional allocated storage we call 
the frame extension. The total storage is called the 
total frame for the module, or usually just the module 
frame. 

A" frame contains other information, in addition to 
named variables and temporaries. It is often useful to 
reference a frame by symbolic nomenclature. For this 
purpose, each frame has a framename (usually the pro
cedure name). When a module is entered, its frame 
extension is init ial ized with two pointers (perhaps i m 
pl ic i t ly) ; one, called A LINK, is a linked access 
pointer to the frame(s) which contains the higher level 
free variable and parameter bindings accessible within 

this module. The other, called CLINK, is associated 
with control and is a generalized return which points to 
the calling frame. In Algol , these are called the static 
and dynamic l inks, respectively. In L I S p H the two 
pointers usually reference the same f rame, since bind
ings for variables free in a module are found by 
tracing up the call structure chain. (An exception is 
the use of functional arguments, and we i l lustrate that 
below.) 

At the t ime of a call (entry to a lower module), the 
caller stores in his frame extension a continuation 
point for the computation. Since the continuation point 
is stored in the caller, the generalized return is 
simply a pointer to the last active frame. 

The size of a basic frame is fixed on module entry. 
It is just large enough to store the parameters and 
associated information. However, during one function 
activation, the required size of the frame extension 
can vary widely (with a computable maximum), since 
the amount of temporary storage used by this module 
before calling different lower modules is quite v a r i 
able. Therefore, the allocation of these two frame 
segments may sometimes (advantageously) be done 
separately and n on contiguously. This requires a link 
(BLINK) f rom the frame extension to the basic frame 
which contains the bindings. 

When a frame is exited, either by a normal exit 
or by a non-local goto which skips the frame (e. g. , an 
e r ro r condition), it is often useful to perform clean-up 
action for the frame. Examples include: close f i les 
opened by the frame which are no longer needed, 
restore the state of more global structures which have 
been temporar i ly modified by the f rame, etc. T e r m i 
nal action for a frame is carried out by executing an 
exit function for the f rame, passing it as argument the 
nominal value which the frame is returning as its 
result; the value returned by the exit function is the 
actual value of the frame. The variable values and the 
exit function are the only components of the frame 
which can be updated by the user; a l l the others are 
fixed at the t ime of frame allocation. Figure 1 sum
marizes the contents of the frame. 

Figure 2a shows a sketch of an algorithm pro
grammed in a block structure language such as Algol 
60 with contourslO drawn around access modules. Bl 
has locals N and P, P has parameter N, and B3 locals 
Q and L. Figure 2b is a snapshot of the environment 
structure after the following sequence: Bl is entered; 
P is called (just above P I , the program continuation 
point after this outer call); B3 is entered; and F is 
called f rom within B3. For each access module there 
are two separate segments — one for the basic frame 
(denoted by the module name) and one for the frame 
extension (denoted by the module name*). Note that 
the sequence of access l inks (shown with dotted lines) 
goes direct ly from P to B l * and is different f rom the 
control chain of calls. However, each points higher 

246 



( e a r l i e r ) on the s tack. 
A point to note about an access module is that i t 

has no knowledge of any modu le below i t . I f an a p p r o 
p r ia te value ( i . e . , one whose type agrees w i t h the 
s to red r e t u r n type) i s p rov ided , cont inuat ion in that 
access module can be achieved w i t h only a po in te r to 
the cont inued f r a m e . No i n f o rma t i on s tored outside 
th i s f r a m e i s necessary . 

F i g u r e 3 shows two examples in which mo re than 
one independent env i ronment s t r uc tu re is ma in ta ined. 
In F i g u r e 3a, two corout ines are shown which share 
common access and con t ro l env i ronment A. Note that 
the f r a m e extension of A has been copied so that 
r e t u r n s f r o m B and Q may go to d i f fe ren t cont inuat ion 
po in ts . Th i s is a key point in the mode l ; whenever a 
f r a m e extension i s r equ i red f o r con f l i c t i ng purposes , 
a copy is made. Since f r a m e A is used by two p r o 
cesses , i f e i ther corout ine were de le ted , the bas ic 
f r a m e f o r A should not be de le ted. However , one 
f r a m e extension A* could be deleted in that case, s ince 
f r a m e extensions a re never re ferenced d i r e c t l y by 
m o r e than one p rocess . Since the basic f r ame A is 
sha red , e i the r process can update the var iab le b i n d 
ings in i t ; such changes a re seen both by B and Q, In 
F i g u r e 3b, corout ine Q is shown ca l l i ng a funct ion D 
w i t h ex te rna l access chain th rough B, but w i th con t ro l 
to r e t u r n to Q. 

3 . P r i m i t i v e Funct ions 

In th is mode l f o r access module ac t i va t i on , each 
f r a m e is genera l l y re leased upon ex i t o f that modu le . 
Only i f a f r a m e is s t i l l re fe renced is i t re ta ined . A l l 
non-chained re fe rences to a f r a m e (and to the e n v i r o n 
ment s t r u c t u r e i t heads) a re made through a spec ia l 
p ro tec ted data type ca l led an env i ronment d e s c r i p t o r , 
abbrev ia ted ed. The heads of a l l env i ronment chains 
a re re fe renced only f r o m th i s space o f d e s c r i p t o r s . 
(The one except ion is the i m p l i c i t ed f o r the c u r r e n t l y 
act ive p rocess . ) The p r i m i t i v e funct ions create an ed 
f o r a spec i f ied f r ame and update the contents of an ed; 
create a new f r ame w i t h spec i f ied contents, and a l low 
execut ion of a computat ion in that context; and access 
and update the exi t funct ion f o r a f r a m e . Note that 
none of the p r i m i t i v e s manipu la te the l inks of ex is t ing 
f r a m e s ; t h e r e f o r e , only w e l l - f o r m e d f r ame chains 
ex i s t ( i . e . , n o r i n g s t r u c t u r e s ) . 

1) envi ron(pos) — creates an env i ronment d e s c r i p t o r 
f o r the f r a m e speci f ied by pos. 

2) setenv(olded, pos) -- changes the contents of an 
ex is t ing env i ronment d e s c r i p t o r olded to point to 
the f r a m e speci f ied by pos. As a s ide e f fec t , i t 
re leases storage re fe renced only through prev ious 
contents of o lded. 

3) mk f rame(epos ,apos , epos,bpos,bcopf lg) - - creates 
a new f r a m e and re tu rns an ed f o r that f r a m e . The 
f r a m e extension i s copied f r o m the f r ame spec i f ied 
by epos, and the A L I N K and C L I N K are speci f ied 
by apos and epos, r espec t i ve l y . The B L I N K points 
to the bas ic f r a m e spec i f i ed by bpos , or to a copy 
o f the bas ic f r a m e i f bcop f l g=TRUE. In use , a r g u 
ments may be om i t t ed ; bcopf lg is defaulted to 
F A L S E ; apos, bpos and epos a re defaulted to the 
cor respond ing f i e l ds of the f r a m e speci f ied by epos. 
Thus mk f rame(epos) creates a new f r ame extension 
iden t i ca l to that spec i f ied by epos. 

4) enveva l ( fo r rA ,apos ,cpos) — creates a new f r a m e 
and i n i t i a tes a computat ion w i t h th i s env i ronment 
s t r u c t u r e . A L I N K and C L I N K point to f r a m e s 
spec i f ied by apos and epos, respec t i ve l y ; and f o r m 
spec i f ies the code to be executed, or the ex
p ress ion to be evaluated in th is new env i ronment . 
I f apos or cpos a r e o m i t t e d , they are defaulted to 
the A L I N K or C L I N K of th i s invocat ion o f enveva l . 
T h u s , enveva l ( fo rm) is the usual ca l l to an 

i n t e r p r e t e r , and has the same effect as i f the value of 
f o r m had appeared in place of the s imp le ca l l to 
enveva l . 

5) setexfn(pos, fn) — places a po in te r to a use r def ined 
funct ion in the ex i t fn f i e ld of the f rame pos. I f the 
sys tem is us ing the e x i t f n , th i s w i l l c rea te a new 
funct ion which is the composi t ion of the use r 
func t ion (appl ied f i r s t ) and the sys tem func t ion . On 
f r a m e ex i t , the ex i t fn w i l l be cal led w i t h one a r g u 
men t , the value re tu rned by the f r ame code; the 
value re turned by fn w i l l be the actual value r e 
tu rned to the f r a m e spec i f ied by C L I N K . 

6) getexfn(pos) — gets the use r set funct ion s tored in 
ex i t fn of f r ame pos. Returns N I L i f none has been 
e x p l i c i t l y s to red the re . 

7) f ramenm(pos) - - r e tu rns the f ramename of f r a m e 
pos. 

A f r a m e spec i f i ca t ion ( i . e . , pos, apos, bpos, epos, 
epos above} is one of the fo l l ow ing : 

1 . An in teger N: 
a. N=0 speci f ies the f r a m e al located on ac t i va t ion 

of the funct ion e n v i r o n , setenv, e tc . In the case 
of env i ron , setenv and m k f r a m e , the con t inu
at ion point is set up so that a value re tu rned to 
th is f r ame (using enveval) is re turned as a 
value o f the o r i g i n a l ca l l to e n v i r o n , setenv o r 
m k f r a m e . 

b. N>0 speci f ies the f r a m e N l inks down the con t ro l 
l i n k chain f r o m the N=0 f r a m e . 

c. N<0 spec i f ies the f r a m e INI l i nks down the 
access l ink chain f r o m the N=0 f r a m e , 

2. A l i s t of two e lements ( F , N ) where F is a f r a m e -
name and N is an in teger . Th i s gives the Nth 
f r a m e w i th name F, where a posi t ive (negative) 
va lue fo r N spec i f ies the con t ro l (access) chain 
env i ronment . 

3. The d is t inguished constant N I L . As an a c c e s s - l i n k 
spec i f i ca t ion , N I L spec i f ies that only global values 
a re to be used f r e e . A process which re tu rns 
a long a N I L c o n t r o l - l i n k w i l l ha l t . Doing a 
se tenv(ed ,NIL ) re leases f r a m e storage f o r m e r l y 
re ferenced only through ed , wi thout t y i ng up any 
new s torage. 

4. An ed (env i ronment desc r i p t o r ) . When given an ed 
argument created by a p r i o r ca l l on e n v i r o n , 
env i ron creates a new desc r i p to r w i th the same 
contents as ed; setenv copies the contents of ed 
in to o lded. 

5. A l i s t " (ed) " cons is t ing of exac t l y one ed. The 
contents of the l i s t ed ed a re used iden t i ca l l y to 
that of an un l is ted ed. However , a f ter th i s value 
is used in any of the func t ions , se tenv(ed .NIL) is 
done, thus re leas ing the f r a m e storage f o r m e r l y 
re ferenced only th rough ed. Th is has been c o m 
bined into an argument f o r m ra ther than a l low ing 
the user to do a setenv exp l i c i t l y because in the 
ca l l to enveval the contents a re needed, so i t can
not be done before the c a l l ; i t cannot be done ex
p l i c i t l y a f t e r the enveval s ince cont ro l m igh t never 
r e t u r n to that point . 

4 . N o n - P r i m i t i v e Con t ro l Funct ions 

To i l l u s t r a t e the use of these p r i m i t i v e con t ro l 
func t ions , we expla in a number of cont ro l r eg imes 
wh ich d i f f e r f r o m the usual nested funct ion c a l l - r e t u r n 
h i e r a r c h i c a l s t r u c t u r e , and def ine t h e i r con t ro l s t r u c 
tu re rout ines in t e r m s of the p r i m i t i v e s . We inc lude 
s tack j u m p s , funct ion c l osu re , and severa l m u l t i p r o 
cess ing d i sc ip l i nes . In p r o g r a m m i n g examp les , we 
use the syntax and semant ics of a L I S P - l i k e s y s t e m . 

In an o rd ina ry h i e r a r c h i c a l con t ro l s t r u c t u r e 
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system, if module F calls G, G calls H, and H calls J, 
it is impossible for J to return to F without going back 
through G and H. Consider some program in which a 
search is implemented as a series of such nested 
function calls. Suppose J discovered that the call to G 
was inappropriate and wanted to return to F with such 
a message. In a hierarchical control structure, H and 
G would both have to be prepared to pass such a mes
sage back. However, in general, the function J should 
not have to know how to force intermediaries; it should 
be able to pass control directly to the relevant module. 
Two functions may be defined to allow such jumpbacks. 
(These are implemented in BBN-LISP;19 experience 
has shown them to be quite useful.) The f i rs t function, 
ret from(form,pos), evaluates form in the current con
text, and returns its value f rom the frame specified by 
pos to that frame's caller; in the above example, this 
returns a value to G's caller, i . e . , P, The second 
function, retevaKform, pos), evaluates form in the con
text of the caller of pos and returns the "value of the 
form to that cal ler. These are easily defined in terms 
of enveval: 

retfrom(form,pos) = enveval{form,2,pos) 
re teva l fo rm, pos) = enveval form, pos, pos) 

(The second argument to retfrom establishes that the 
current environment is to be used for the evaluation of 
form.) 

As another example of the use of re t f rom, con
sider an implementation of the LISP er ror protection 
mechanism. The programmer "wraps a form in 
er rorse t " , i . e . , errorset(form) which is defined as 
cons(eval(form),NIL). This "wrapping" indicates to 
the system the programmer's intent that any er rors 
which arise in the evaluation of form are to be handled 
by the function containing the errorset. Since the 
value of errorset in the non-error case is always a 
l ist consisting of one element (the value of form), an 
er ror can be indicated by forcing errorset to return 
any non-l ist i tem. Hence, the system function e r ro r 
can be defined as retfrom(NIL,(ERRORSET 1)) where 
uppercase items are l i tera l objects in LISP. This 
jumps back over a l l intermediary calls to return NIL 
as the value of the most recent occurrence of errorset 
in the hierarchical calling sequence. 

In the fol lowing, we employ envapply which takes 
as arguments a function name and l is t of (already eval
uated) arguments for that function. Envapply simply 
creates the appropriate form for enveval. 

envapply(fn,args,aframe, cframe) = 
enveval(list(APPLY , l ist(QUOTE, fn), 

l ist(QUOTE, args)), aframe, cframe) 
A central notion for control structures is a pair

ing of a function with an environment for its evaluation. 
Following LISP, we call such an object a funarg. 
Funargs are created by the procedure function, defined 

function(fn)=list(FUNARG, fn , environ(2)) 
That i s , in our implementation, a funarg is a l ist of 
three elements: the indicator FUNARG, a function, 
and an environment descriptor. (The argument to en
viron makes it reference the frame which called 
function.) A funarg l i s t , being a globally valid data 
structure, can be passed as an argument, returned as 
a result, or assigned as the value of appropriately 
typed variables. When the language evaluator gets a 
form (fen arg1 arg2 . . . argn) whose functional object 
fen is a funarg, i. e. , a l ist (FUNARG fn-name ed), it 
creates a l is t , args, of (the values of) a r g l , arg2, . . . . 
argn and does 

envapply(second(fcn),args,third(fcn), 1) 
The environment in this case is used exactly l ike the 
original LISP A- l i s t . Moses 12 and Weizenbaum25 

have discussed the use of function for preserving bind
ing contexts. Figure 4 i l lustrates the environment 

structure where a functional has been passed down: the 
function foo with variables X and L has been called; foo 
called mapcar(X,function(fie)) and fie has been entered. 
Note that along the access chain the f i rs t free L seen 
in fie is bound in foo, although there is a bound v a r i 
able L in mapcar which occurs f i rs t in the control 
chain. Since frames are retained, a funarg can be 
returned to higher contexts and st i l l work. (Burge3 

gives examples of the use of funargs passed up as 
values.) 

In the above description, the environment pointer 
is used only to save the access environment. In fact, 
however, the pointer records the state of a process at 
the instant of some cal l , having both access and 
control environments. Hence, such an environment 
pointer serves as part of a process handle. It is con
venient to additionally specify an action to take when 
the process is restarted and some information to be 
passed to that process from the one restart ing i t . The 
funarg can be reinterpreted to provide these features. 
The function component specifies the f i rs t module to 
be run in a restarted process, and the arguments 
(evaluated in the caller) provided to that function can 
be used to pass information. Hence, a funarg can be 
used as a complete process handle. It proves con
venient for a running process to be able to reference 
its own process handle. To make this simple, we 
adopt the convention that the global variable curproc 
is kept updated to the current running process. 

With this introduction, we now define the routines 
start and resume, which allow control to pass among a 
set of coordinated sequential processes, i .e. , co
routines, in which each maintains its own control and 
access environment (with perhaps some sharing). A 
coroutine system consists of n coroutines each of 
which has a funarg handle on those other coroutines to 
which it may transfer control. To initiate a process 
represented by the funarg fp, use start (we use 
brackets below to delimit comments): 

start(fp.args) = curproc — fp; 
[ curproc is a global variable set to 
the current process funarg ] ; 

envapply(second(fp),args,third(fp),third(fp)) 
Once the variable curproc is ini t ial ized, and any co
routine started, resume wi l l transfer control between 
n coroutines. The control point saved is just outside 
the resume, and the user specifies a function (backfn) 
to be called when control returns, i . e . , the process is 
resumed. This function is destructively inserted in 
the funarg l is t . The args to this function are specified 
by the coroutine transferr ing back to this point. 
resume(fnarg,args,backfn) = 

second( curproc) — backfn; 
[save the specified backfn for a subsequent 
resume back here] 

setenv(third(curproc), 2); 
[environment saved is the caller of resume] 

curproc — fnarg; 
[set up curproc for the coroutine to be 
activated] 

envapply(second(fnarg),args,third(fnarg), 
th i rd (fnarg)) 

[activate the specified coroutine by applying 
its backfn to args] 

We call a funarg used in this way a process 
funarg. The state of a "process" is updated by de
structively modifying a l ist to change i ts continuation 
function, and s imi la r ly directly modifying its environ
ment descriptor in the l i s t . A pseudo-multiprocessing 
capability can be added to the system using these 
process funargs if each process takes responsibil ity 
for requesting additional t ime for processing f rom a 
supervisor or by explicit ly passing control as in 
CONNIVER,18 A more automatic multiprocessing 
control regime using interrupts is discussed later. 
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Back t rack ing is a technique by wh ich c e r t a i n en 
v i r onmen ts a re saved before a funct ion r e t u r n , and 
l a t e r r e s t o r e d i f needed. C o n t r o l i s r e s t o r e d in a 
s t r i c t l y l as t saved, f i r s t r es to red o r d e r . As an ex
ample of i t s use , cons ider a funct ion which r e t u r n s 
one (selected) va lue f r o m a set of computed va lues but 
can e f fec t i ve ly r e t u r n an a l te rna t i ve se lec t ion i f the 
f i r s t se lec t ion was inadequate. That i s , the cu r ren t 
process can f a i l back to a p rev ious l y spec i f ied f a i l set 
point and then redo the computat ion w i t h a new 
se lec t ion . A sequence of d i f fe ren t se lect ions can lead 
to a s tack of f a i l se t po in ts , and successive fa i l s can 
r e s t a r t a t each in t u r n . Back t rack ing thus p rov ides a 
way of doing a d e p t h - f i r s t search of a t r e e w i th r e t u r n 
to prev ious b ranch po in ts . 

We define f a i l and fa i l se t be low. We use 
push (L ,a ) wh ich adds a to the f ron t of L, and pop(L) 
wh ich removes one element and r e t u r n s the f i r s t e l e 
ment of L. F a i l i s t is the stack of f a i l se t po in ts . As 
def ined be low , f a i l can reverse ce r ta in changes when 
r e t u r n i n g to the prev ious fa i l se t point by exp l i c i t 
d i r ec t i on a t the point o f f a i l u r e . (To au tomat i ca l l y u n 
do ce r ta i n s ide ef fects and b ind ing changes, we could 
def ine "undoab le " funct ions wh ich add to f a i l i s t f o r m s 
whose evaluat ion w i l l reset approp r ia te c e l l s . F a i l 
could then eval a l l f o r m s th rough the next ed and then 
ca l l enveval . ) 

fa i l se t { ) = push( fa i l i s t ,env i ron (2 ) ) 
[2 means env i ronment outside fa i l se t ] 

fa i l (message) = enveva l (message, l i s t (pop( fa i l i s t ) ) ) 

The funct ion se lec t defined below re tu rns the f i r s t 
e lement of i ts a rgument set when f i r s t ca l l ed ; upon 
subsequent f a i l s back to se lec t , successive e lements 
f r o m set a re r e t u r n e d . I f set is exhausted, f a i l u r e is 
propagated back. The code uses the fact that the b i n d 
ing env i ronment saved by f a i l se t shares the va r i ab le 
f i g w i t h the instance of select wh ich ca l ls f a i l se t . The 
tes t o f f i g is reached in two ways : a f t e r a ca l l on f a i l -
set ( in which case fig is fa lse) and a f t e r a f a i l u r e ( in 
wh ich case f i g i s t r u e ) . 

se lec t (se t ,undo l i s t ) = 
progt ( f ig) 

s1 : i f nu l l (se t ) then fa i l (undo l is t ) [ leave here and 
undo as spec i f ied] 

f i g — false; 
fai lsetOT 
[ f i g is t rue i f f we have fa i led to th is point ; then 

set has been popped] 
i f f i g then go(s l ) ; 
f i g — t r u e ; 
returnTpop(set)) ; 
end 

Floyd,"7 Hewi t t ,9 and Golomb and B a u m e r t 8 have d i s 
cussed uses f o r back t rack ing in p rob lem so l v i ng . 
S u s s m a n l 8 has d iscussed a number of p rob lems w i t h 
back t r ack i ng . In gene ra l , i t p roves to be too s imp le 
a f o r m of sw i tch ing between env i ronmen ts . Use of the 
m u l t i p l e process fea ture descr ibed above prov ides 
much m o r e f l e x i b i l i t y . 

5. Coord inated Sequential P rocesses 

and P a r a l l e l P rocess ing 

I t should be noted that in the mode l above, con t ro l 
mus t be e x p l i c i t l y t r a n s f e r r e d f r o m one ac t ive en 
v i r o n m e n t to another (by means o f enveval o r resume) . 
We use the t e r m , coord inated sequent ia l p r o c e s s , to 
desc r ibe such a con t ro l r e g i m e . T h e r e a re s i tuat ions 
in wh ich a p rob lem statement is s i m p l i f i e d by tak ing a 
qui te d i f fe ren t point of v iew - assuming p a r a l l e l (co-
opera t ing sequent ia l ) processes which synchron ize only 
when r e q u i r e d (e . g. , by means of D i j k s t r a ' s 4 P and V 
opera t ions) . Us ing our coord inated sequent ia l p r o 
cesses w i t h i n t e r r u p t s , we can define such a con t ro l 
r e g i m e . 

In our mode l o f env i ronment s t r u c t u r e s , the re is 
a t r e e f o r m e d by the con t ro l l i n k s , a dendrarchy_ of 
f r a m e s . One t e r m i n a l node is ma rked f o r ac t i v i t y by 
the c u r r e n t con t ro l bubble (the point where the 
language evaluator i s operat ing) . A l l o ther t e r m i n a l 
nodes are re fe renced by env i ronment d e s c r i p t o r s or 
by an access l i n k po in ter of a f rame in the t r e e . To 
extend the model to mu l t i p l e p a r a l l e l processes in a 
s ingle p rocesso r s y s t e m , k branches of the t r e e mus t 
be s imu l taneous ly ma rked ac t i ve . Then the con t ro l 
bubble of the p rocessor must be swi tched f r o m one 
ac t i ve node to another accord ing to some schedul ing 
a l g o r i t h m . 

To imp lemen t cooperat ing sequent ia l processes in 
our m o d e l , i t is s imp les t to th ink of ad jo in ing to the 
set of processes a d is t inguished p rocess , PS , which 
acts as a s u p e r v i s o r or mon i t o r . Th is m o n i t o r sched
u les processes f o r se rv ice and main ta ins severa l 
p r i v i l eged data s t r uc tu res ( e . g . , queues fo r sema
phores and ac t ive processes) . (A re la ted technique is 
used by P rem ie r , 1 4 ) 

The bas ic funct ions necessary to manipu la te 
p a r a l l e l processes a l low process ac t i va t i on , s topp ing, 
con t inu ing , synchron iza t ion and status que ry ing . In a 
s ing le p rocesso r coord inated sequent ial p rocess 
m o d e l , these can al l be defined by ca l l s ( through 
enveval) to the mon i t o r PS. Speci f icat ions f o r these 
funct ions a r e ; 

1 ) p rocess ( fo rm ,apos , cpos) - - th is i s s i m i l a r to 
enveval except that i t creates a new ac t ive p r o -
cess P ' f o r the evaluat ion of f o r m , and re tu rns 
to the c rea t ing process a process d e s c r i p t o r (pd) 
which acts as a handle on P ' . 

In th i s m o d e l , the pd could be a po in ter to a l i s t wh ich 
has been placed on a " r unnab le " queue in PS, and 
wh ich is i n t e rp re ted by PS when the scheduler in PS 
g ives th i s process a t i m e quantum. One element of 
the process d e s c r i p t o r gives the status of the p r o c e s s , 
e . g . , RUNNING or STOPPED. P rocess is defined 
us ing env i ron (to obtain an env i ronment d e s c r i p t o r 
used as par t of the pd) and enveval (to ca l l PS), 

2) stop(pd) — hal ts the execut ion of the process 
spec i f ied by pd — PS removes the process f r o m 
runnable queue. The value re tu rned is an ed of 
the c u r r e n t env i ronment of pd. 

3) continue(pd) -- r e tu rns pd to the runnable queues. 

4) status(pd) — value is an ind icat ion of status of pd. 

5) obta in(semaphore) — th i s D i j k s t r a P opera to r 
t r a n s f e r s con t ro l to PS (by enveval) wh ich de
t e r m i n e s i f a resource i s ava i lab le ( i . e , , s e m a 
phore count pos i t i ve ) . PS e i the r hands con t ro l 
back to PI (w i th enveval) having decremented the 
the semaphore count, or enters P1 on that sema
phore 's queue in PS's env i ronment and swi tches 
con t ro l to a runnable p rocess . 

6) re lease(semaphore) -- th is Dijkstra V operator 
i n c remen ts the semaphore count; i f the count 
goes pos i t i ve , one process is moved f r o m the 
semaphore queue ( i f any ex is t ) onto the runnable 
queue and the count is decremented . I t then 
hands con t ro l back to the ca l l i ng p rocess . 

We emphasize that these s ix funct ions can be de 
f ined in t e r m s of the con t ro l p r i m i t i v e s of sect ion 3. 

Schedul ing of runnable processes could be done by 
having each process by agreement ask f o r a t i m e 
r e s o u r c e , i . e . , ob ta in ( t ime) , a t app rop r i a te i n t e r v a l s . 
In th is schedul ing m o d e l , con t ro l never leaves a p r o 
cess wi thout i t s knowledge, and the m o n i t o r s i m p l y 
acts as a bookkeeping mechan i sm. A l t e r n a t i v e l y , 
o r d i n a r y t i m e - s h a r i n g among processes on a t i m e 
quantum basis could be imp lemented th rough a t i m e r 
i n t e r r u p t m e c h a n i s m . I n t e r r u p t s a re t rea ted as fo rced 
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calls to environ (to obtain an ed for the current state), 
and then an enveval to the monitor process. The only 
problem which must be handled by the system in forc
ing the call to environ is making sure the interrupted 
process is in a clean state; that i s , one in which basic 
communication assumptions about states of pointers, 
queues, buffers, etc. are true ( e . g . , no pointers in 
machine registers which should be traced during gar
bage collection). This can be ensured if asynchronous 
hardware interrupts perform only minimal necessary 
operations, and set a software interrupt f lag. Soft
ware checks made before procedure cal ls, returns and 
backward jumps within program w i l l ensure that a 
timely response in a clean state w i l l occur. 

The ed of the interrupted process is sufficient to 
restart i t , and can be saved on the runnable queue 
within a process descriptor. Because t imer inter
rupts are asynchronous with other processing in such 
a simulated multiprocessor system, evaluation of 
forms in the dynamic environment of another running 
process cannot be done consistently; however, the ed 
obtained from stopping a process provides a consistent 
environment. Because of this interrupt asynchrony, in 
order to ensure system integri ty, queue and sema
phore management must be uninterruptible, e . g . , at 
the highest pr ior i ty level. 

Obtaining a system of cooperating sequential pro
cesses as an extension of the pr imit ives has a number 
of desirable attributes. Most important, perhaps, it 
allows the scheduler to be defined by the user. When 
parallel processes are used to realize a breadth-f irst 
search of an or-graph, there is a significant issue of 
how the competing processes are to be allotted t ime. 
Provision for a user supplied scheduler establishes a 
framework in which an intelligent allocation algorithm 
can be employed. 

Once a multi-process supervisor is defined, a 
variety of additional control structures may be readily 
created. As an example, consider multiple parallel 
returns — the abil i ty to return from a single activation 
of a module G several times with several (different) 
values. For G to return to its caller with value given 
by val and st i l l continue to run, G simply calls 
process(val, 1,2). Then the current G and the new 
process proceed in paral lel. 

6. Conclusion 

In providing linguistic facil i t ies more complex 
than hierarchical control, a key problem is finding a 
model that clearly exhibits the relation between pro
cesses, access modules, and their environment. This 
paper has presented a model which is applicable to 
languages as diverse as LISP, APL and P L / I and can 
be used for the essential aspects of control and access 
in each. The control primit ives provide a small basis 
on which one can define almost a l l known regimes of 
control. 

Although not stressed in this paper, there is an 
implementation for the model which is perfectly 
general, yet for several subcases ( e .g . , simple re 
cursion and backtracking) this implementation is as 
efficient as existing special techniques. The main 
ideas of the implementation are as follows (cf. [2] for 
details). The basic frame and frame extension are 
treated as potentially discontiguous segments. When 
a frame extension is to be used for running, it is 
copied to an open stack end if not there already, so 
that ordinary nested calls can use simple stack d isc i 
pline for storage management. Reference counts are 
combined with a count propagation technique to ensure 
that only those frames are kept which are s t i l l in use. 

Thus, the model provides both a linguistic frame-
work for expressing control regimes, and a practical 
basis for an implementation. It is being incorporated 
intoBBN-LISP.19 
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