
Session 8 Formalisms fo r
D-SCRIPT: A COMPUTATIONAL THEORY OF DESCRIPTIONS A r t i f i c i a l In te l l i gence

Rober t C. Moore
M a s s a c h u s e t t s I n s t i t u t e o f T e c h n o l o g y

Cambr i dge , M a s s a c h u s e t t s

Abstract

This paper descr ibes D-SCRIPT, a language
f o r rep resen t ing knowledge in a r t i f i c i a l
I n t e l l i g e n c e programs. D-SCRIPT conta ins a
powerful formal ism fo r d e s c r i p t i o n s , which
permi ts the represen ta t ion of statements tha t
are p rob lemat ica l for o ther systems.
P a r t i c u l a r a t t e n t i o n is paid to problems of
opaque contex ts , t ime c o n t e x t s , and knowledge
about knowledge. The design of a deduct ive
system f o r t h i s language is a lso cons idered.

1 . Int roduct ion

1.1 Ways of Representing; Knowledge

Methods advocated fo r represent ing
knowledge in a r t i f i c i a l l i n t e l l i g e n c e programs
have Included l og i ca l statements (McCarthy,
Sandewal l) , semantic networks (Q u i l l i a n ,
Schank), and procedures (Hew i t t , Sussman and
McDermott), All these approaches shpre one
fundamental concept, the no t ion of
p r e d i c a t i o n . That I s , the basic data
s t r u c t u r e In each system Is some
rep resen ta t i on of a p red ica te app l ied to
o b j e c t s . In t h i s respect , the var ious systems
are more or less equ i va len t . But t h i s basic
idea must be extended to handle problems of
q u a n t i f i c a t i o n and knowledge about knowledge.
Mere the systems do d i f f e r . We w i l l argue,
though, that these d i f f e rences r e s u l t from the
d e s c r i p t i v e apparatus used in the p a r t i c u l a r
systems being compared, ra ther than from an
inherent advantage o f , say, procedures over
d e c l a r a t i v e s or v ice versa.

Advocates of PLANNER (e . g . Winograd, p.
2153 have argued that the p red ica te ca l cu lus
cannot represent how a piece of knowledge
should be used. But t h i s is t rue only of the
f i r s t - o r d e r pred ica te c a l c u l u s . In a h igher -
order or non-ordered d e c l a r a t i v e language,
statements could be made which would t e l l a
theorem prover how other statements are to be
used. PLANNER, on the other hand, has no way
o f d i r e c t l y s t a t i n g an e x i s t e n t i a l
q u a n t i f i c a t i o n , but t h i s does not mean that
procedural languages are necessar i l y Incapable
of hand l ing tha t problem.

Our b e l i e f , then. Is that the type of
system used to represent knowledge Is
un impor tan t , so long as It has s u f f i c i e n t
express ive power. This paper presents an
attempt at such a system, the language D-
SCRIPT. As the name i m p l i e s , the most
I n t e r e s t i n g fea tu re of D-SCRIPT is I t s
powerful formal ism f o r d e s c r i p t i o n s , which
enables i t to represent statements tha t are
p rob lemat ica l in o ther systems. No p o s i t i o n
w i l l be taken as to what k ind of language D-
SCRIPT i s . Since It is intended to answer
quest ions by making deduct ions from a data
base, it can be thought of as a theorem
prover . Since it operates by comparing
expressions l i k e the data-base languages of
PLANNER and CONNIVER, It can be thought of as
a pa t te rn -match ing language. And since It Is
Tur ing un ive rsa l and. In f a c t , includes the
lambda c a l c u l u s . It can be thought of as a
programming language.

1.2 Problems In Representing Knowledge

Before present ing the d e t a i l s of D-
SCRIPT, we w i l l t r y to give some Idea of the
type of problem It Is designed to so l ve . A
c l a s s i c problem Is tha t of represent ing opaque
con tex ts . An opaque context is one which does
not a l low s u b s t i t u t i o n o f r e f e r e n t i a l l y
equ iva len t expressions or does not a l low
e x i s t e n t i a l q u a n t i f i c a t i o n . For example the
verb "want" creates an opaque con tex t :

(1 .1) John wants to marry the p r e t t i e s t g i r l .

This sentence is ambiguous. it can mean
e i t h e r :

(1 .2) John wants to merry a s p e c i f i c g i r l who
also happens to bp the p r e t t i e s t .

o r :

(1 .3) John wants to marry whoever is the
p r e t t i e s t g i r l , a l though he may not know
who that is.

Under the f i r s t i n t e r p r e t a t i o n we can
s u b s t i t u t e any phrase which re fe rs to the same
person fo r " the p r e t t i e s t g i r l " . That i s , i f
the p r e t t i e s t g i r l is named " S a l l y Sunshine",
from (1 .2) we can i n f e r :

U. I*) John wants to marry a s p e c i f i c g i r l who
also happens to be named Sa l l y Sunshine.

We cannot make the corresponding inference
from (1 . 3) . I t w i l l not be t rue t h a t :

(1 .5) John wants to marry whoever is named
Sa l l y Sunshine, although he may not know
who that i s .

Because of t h i s p roper ty , (1.2) is c a l l e d the
t ransparent reading of (1.1) and (1 .3) is
c a l l e d the opaque read ing. I t Is almost
always the case that sentences having an
opaque reading are ambiguous w i th the other
reading being t ransparen t .

To i l l u s t r a t e b lock ing of e x i s t e n t i a l
q u a n t i f i c a t i o n , cons ider :

(1 .6) John wants to marry a b londe.

Again the sentence Is ambiguous, meaning
e i t h e r :

(1 .7) John wants to marry a s p e c i f i c g i r l , who
also happens to be a b londe.

o r :

(1 .8) John has no p a r t i c u l a r g i r l In mind, but
he wants whoever he does marry to be a
b londe.

We can e x i s t e n t i a l l y quan t i f y over the f i r s t
reading but not the second. We can I n f e r :

(1 .9) There e x i s t s someone whom John wants to
marry.

223

from (1 . 7) , but not from (I . 8) .
Another problem is the occurrence of

d e s c r i p t i v e phrases In sentences i nvo lv lng
time re ference. In the sentence:

(1 .10) The President has been marr ied since
1945.

the phrase " t he Pres ident " r e f e r s to an
I n d i v i d u a l . In the sentence:

(1.11) The President has l i v e d in the White
Mouse since 1800.

" the Pres ident " r e fe rs to each President In
t u r n .

Another type of sentence where the
reference of a phrase depends on time Is
I l l us t ra ted by:

(1 .12) John met the President In 1960.

This sentence is ambiguous, but un l i ke (1 . 1 1) ,
each I n t e r p r e t a t i o n re fe rs to on ly one person.
The ambigui ty Is whether " t he Pres iden t "
r e fe rs to the President at the time (1.12) is
asser ted , or the President in 19C0.

represent ing knowledge about knowledge
ra ises some i n t e r e s t i n g issues. For Instance,
in:

(1.13) John knows B i l l ' s phone numher.

how is John's knowledge to be represented? In
John's mind It might be something l i k e :

(1.14) (PHONE-NUM BILL 987-651(3)

So, (1.13) might be:

(1 ,15) (KNOWS JOHN (PHOMF-NUM BILL 987-6543))

The t roub le w i t h (1 .15) is tha t I t inc ludes
too much I n f o rma t i on . Not on ly does It say
what (1.13) says, it a lso says what the number
La- The d i f f i c u l t y is to r e f e r to a piece of
In fo rmat ion w i thou t s t a t i n g i t .

For a l l these types of sentences, D-
SCRIPT provides representa t ions which a l low
the cor rec t deduct ions to be made. Fur ther ,
i t provides separate representa t ions fo r each
meaning of the ambiguous sentences, and these
representa t ions are re la ted In a way that
exp la ins the ambigu i ty .

2. The D-SCRIPT Language

2 .1 P-SCRIPT Expressions

D-SCRIPT conta ins the f o l l o w i n g types of
express ions:

1 . constants
2. va r i ab l es
3. forms
4. l i s t s

A constant Is any alpha-numeric (I . e . only
l e t t e r s o r numbers) charac ter s t r i n g (e . g .
"F00" , "BL0CK5"). A va r i ab l e Is any a lpha
numeric charac te r s t r i n g p r e f i x e d by " ? " (e . g .
" ? X ") . A form Is any sequence of expressions
enclosed In ang le -brackets (e . g . "<X Y ?Z>") .
A l i s t Is any sequence of expressions enclosed
In parentheses (e . g . "(F00 A <BAR B C>) ") .

D-SCRIPT observes the convent ion that a l l
f u n c t i o n s , p r e d i c a t e s , and operators evaluate

t h e i r arguments. The ru les f o r eva lua t i ng
expressions are l a r g e l y adapted from LISP. In
f a c t , D-SCRIPT va r i ab les and forms are t rea ted
j u s t l i k e LISP atoms and l i s t s , r e s p e c t i v e l y .
Rather than in t roduc ing "QUOTE", however, we
use constants and l i s t s to represent p re
def ined Items. To s t a t e our ru les f o r m a l l y :

1. A constant evaluates to I t s e l f .

2. A v a r i a b l e evaluates to the expression
which It has been assigned.

3. The value of a form Is the r e s u l t of
app ly ing I t s f i r s t element to the values o f
I t s remaining elements. This w i l l not be
def ined In gene ra l , but on ly f o r those
expressions which represent meaningful
operat ions In D-SCRIPT. One such case Is
tha t of lambda-expressions. A lambda-
expression is represented in D-SCRIPT by a
form con ta in ing the constant "LAMBDA",
fo l lowed by a l i s t of v a r i a b l e s , fo l lowed
by an expression (e . g . "<LAMBDA (?X ?Y)
<TIMES ?X ?Y>>"). A form whose f i r s t
element Is a lambda-expression is evaluated
in the same way as a corresponding LISP
express ion . The r e s u l t is the value of the
body of the lambda-expression, w i t h the
values of the arguments assigned to the
corresponding var iab les. For Ins tance,
assuming " + " has the usual meaning,
"<<LAMBDA (?X) <+ 2 ?X>> 3>" has the same
value as "<+ 2 3>" , which Is " 5 " . We w i l l
in t roduce other types of forms whose value
is de f ined when we exp la in the
rep resen ta t ion of s ta tements.

4. A l i s t evaluates to a form w i th I den t i ca l
s t r u c t u r e , except tha t f ree va r i ab l es are
replaced by t h e i r va lues. I f "?X" has
p rev ious ly been assigned the value "A" ,
then "(LAMBDA (?Y) CFOO ?X ?Y)) w i l l
evaluate to "<LAMBDA C?Y) CFOO A ?Y)>".

I t is wor th no t i ng tha t the way lambda-
expressions and l i s t s are de f ined makes i t
very easy to w r i t e f unc t i ons which cons t ruc t
complex forms. For example, consider "<LAMBDA
C?X) (F00 (BAR (GRITCH ? X))) > " . The r e s u l t of
app ly ing t h i s to "Z " is "<F00 (BAR (GRITCII
Z)) > " . A comparable LISP f u n c t i o n would have
to be b u i l t up w i t h "C0MS" 's to achieve t h i s
r e s u l t .

2.2 Representing Knowledge in D-SCRIPT

The most basic statements are those which
express simple p r e d i c a t i o n . A statement of
t h i s k ind Is represented In D-SCRIPT by a form
whose f i r s t element Is a constant represent ing
the p red ica te and whose other elements are
constants represent ing the ob jec ts of the
p red i ca te . For example:

(2 .1) The sun is a s t a r .
C2.2) BlockA is on BlockB.

cou ld be represented as:

(2 .3) <STAR SUN>
(2. I t) <0N BLOCKA BL0CKB>

A simple statement about a s ta tement , such as:

224

(2 . 5) John b e l i e v e s t he sun I s a s t a r .

w o u l d b e :

(2 . 5) <BEL1EVE JOHN (STAR SUN)>

The I m p o r t a n t t h i n g t o n o t i c e about (2 . 6) I s
t h a t t he embedded s t a t e m e n t I s r e p r e s e n t e d by
a l i s t . T h i s Is because we need an e x p r e s s i o n
whose v a l u e I s (2 . 3) t o b e c o n s i s t e n t w i t h t he
c o n v e n t i o n t h a t p r e d i c a t e s (I n t h i s c a s e ,
" b e l i e v e ") e v a l u a t e t h e i r a rgumen ts .

To r e p r e s e n t more complex s t a t e m e n t s / two
t y p e s o f e x t e n s i o n s a re needed. The s i m p l e r
o f t h e s e i s t he a d d i t i o n o f l o g i c a l
c o n n e c t i v e s . D-SCR1PT uses "OR" , "AND" ,
"NOT" , and " I M P U F S " t o s t a n d f o r t he o b v i o u s
l o g i c a l o p e r a t i o n s . As I n (2 . 6) t h e embedded
s t a t e m e n t s a r e e x p r e s s e d a s l i s t s . So:

(2 . 7) I f t he sun i s a s t a r , then B lockA i s on

B l o c k B .

w o u l d be r e p r e s e n t e d b y :

(2 . 8) < IMPUFS (STAR SUN) (ON BLOCKA BL0CKB)>
T h i s n o t a t i o n r e f l e c t s t h e f a c t t h a t i n D -
SCP.tPT, l o g i c a l c o n n e c t i v e s o p e r a t e on t he
s t a t e m e n t s t hemse l ves r a t h e r than o n t h e i r
t r u t h - v a l u e s . " I M P L I E S " , t h e n , i s no t
computed as a Boo lean f u n c t i o n , bu t r a t h e r is
computed b y a s s e r t i n g t h a t i t s f i r s t argument
I s t r u e , and a t t e m p t i n g t o p rove i t s second
a r g u m e n t .

The o t h e r e x t e n s i o n r e q u i r e d f o r complex
s t a t e m e n t s , and t he one t h a t i s most I m p o r t a n t
t o ou r t h e o r y , i s t h e use o f d e s c r i p t i o n s .
The re a re t h r e e t y p e s o f d e s c r i p t i o n s i n D -
SCRIPT; e x i s t e n t i a l d e s c r i p t i o n s , u n i v e r s a l
d e s c r i p t i o n s and d e f i n i t e d e s c r i p t i o n s . A
d e s c r i p t i o n i s a f o r m whose f i r s t e lemen t i s
"SOME" (e x i s t e n t i a l) , "EVERY" (u n i v e r s a l) , o r
"THE" (d e f i n i t e) ; whose second e lement is a
l i s t c o n t a i n i n g a v a r i a b l e ; and whose t h i r d
e l emen t Is an e x p r e s s i o n whose v a l u e is a
s t a t e m e n t . D e s c r i p t i o n s r e p r e s e n t t h e
c o r r e s p o n d i n g t y p e s o f n a t u r a l language
d e s c r i p t i v e p h r a s e s :

(2 . 9) a b l o c k <S0ME (?X) (CLOCK ?X)>
e v e r y number <FVFRY (?Y) (HUM ?Y)>
t h e T a b l e <TIIF (?X) (TABLE ?X)> ,

Some examples o f s e n t e n c e s c o n t a i n i n g
d e s c r i p t i v e ph rases and t h e i r r e p r e s e n t a t i o n s
a r e :

(2 . 1 0) The k i n g I s f a t .
<FAT <THE (?X) (KING ?Xl>>

(2 . 1 1) John owns a d o g .
<0WN JOHN <S0ME (?X) (DOG ?X)>>

(2 . 1 2) Every boy l i k e s Santa C l a u s .
<LIKE <EVERY (?X) (BOY ?X)> SANTA>

N o t i c e t h a t when d e s c r i p t i o n s appear i n
s t a t e m e n t s , t h e y a r e l e f t a s f o r m s . T h i s I s
b e c a u s e , u n l i k e embedded s t a t e m e n t s , we a r e
t a l k i n g abou t t he o b j e c t s t o wh ich t he
d e s c r i p t i o n s r e f e r (i . e . t h e i r v a l u e s) r a t h e r
t h a n t h e d e s c r i p t i o n s t h e m s e l v e s .

The n o t a t i o n we have used so f a r Is no t
s u f f i c i e n t t o e x p r e s s s t a t e m e n t s c o n t a i n i n g
more t h a n one o c c u r r e n c e o f the same
d e s c r i p t i o n . I n t h e s e n t e n c e :

(2 . 1 3) Every boy e i t h e r l o v e s Santa C laus o r
h a t e s h im .

t h e ph rase " e v e r y b o y " i s t h e s u b j e c t o f b o t h
" l o v e s " and " h a t e s " . We canno t use t he
f o l l o w i n g r e p r e s e n t a t i o n t h o u g h :

(2 . 1 4) <OR (LOVE <EVERY <?X> (BOY 7X>> SANTA)
(HATE <FVERY (?X) (BOY ?X)> SANTA)>

because t h i s means:

(2 . 1 5) E i t h e r every boy l o v e s Santa C laus o r
e v e r y boy ha tes Santa C l a u s .

w h i c h , o f c o u r s e , i s q u i t e d i f f e r e n t . We can
overcome t h i s d i f f i c u l t y b y u s i n g lambda-
e x p r e s s i o n s . We w i l l r e p r e s e n t (2 . 1 3) b y :

(2 . 1 6) <<LAMBDA (?X> (OR (LOVE ?X SANTA)
(HATE ?X SANTA))>

<FVFRY (?Y) CBOY ?Y)>>

T h i s can be read as some th ing l i k e " t h e
p r e d i c a t e X i s t r u e o f e v e r y b o y , " where t he
p r e d i c a t e X i s " l o v e s Santa C laus o r h a t e s
h i m . "

Vie have a s i m i l a r s i t u a t i o n w i t h r e s p e c t
t o t he scope o f q u a n t i f i e r s . i t I s no t c l e a r
w h e t h e r :

(2 . 1 7) <GRFATER <S0ME <?X) (NUM ?X)>
<EVERY (?Y) (NUM ?Y)>>

r e p r e s e n t s :

(2 . 1 &) For eve ry number t h e r e i s some l a r g e r
number.

o r :

(2 . 1 8) There Is some number w h i c h is l a r g e r
than e v e r y number.

We w i l l have to a r b i t r a r i l y choose a r u l e to
d i s a m b i g u a t e (2 , 1 7) , b u t b y u s i n g l ambda-
e x p r e s s i o n s we can a v o i d t he d i f f i c u l t y .
(2 , 1 8) can be r e p r e s e n t e d b y :

(2 . 2 0) <<LAMBDA (?X)
(CRFATER <S0ME (?Y) (MUM ?Y)> ?X)>

<FVERY (?Z) (HUM ?Z)>>

and (2 . 1 9) can be r e p r e s e n t e d b y :

(2 . 2 1) <<LAMBDA (?X)
(GREATER ?X <EVERY (?Y) (MUM ?Y)>)>

<S0ME (?Z) (NUM ?Z)>>

A n a l y z i n g t h e s e e x p r e s s i o n s In t h e same way as
(2 . 1 C) w i l l show t h a t t h e y have t h e c o r r e c t
m e a n l n g .

I t s h o u l d b e a p p a r e n t t h a t e x i s t e n t i a l
and u n i v e r s a l d e s c r i p t i o n s I n D-SCRIPT s e r v e
e x a c t l y t he same f u n c t i o n a s t he q u a n t i f i e r s
o f t h e p r e d i c a t e c a l c u l u s . i n v i e w o f t h i s .
I t may be asked why we have used a d i f f e r e n t
n o t a t i o n , one reason I s t h a t ou r n o t a t i o n
makes i t p o s s i b l e t o w r i t e e x p r e s s i o n s v/hose
s t r u c t u r e more c t o s e l y resemb les t he s e n t e n c e s
t hey r e p r e s e n t . H o p e f u l l y t h i s makes them
more I n t e l l i g i b l e . The more i m p o r t a n t r e a s o n ,
t h o u g h , i s t h a t h a v i n g a s i n g l e e x p r e s s i o n f o r
a d e s c r i p t i o n makes I t e a s i e r f o r an
i n t e r p r e t e r t o m a n i p u l a t e I t .

2.3 Formal Semantics of P-SCRIPT

The previous two sec t ions o u t l i n e d the
syntax and informal semantics of D-SCRIPT.
This sec t ion at tempts to show how a program
could be w r i t t e n tha t would I n t e r p r e t D-SCRIPT
statements In accord w i t h t h e i r I n t u i t i v e
meaning. The d e t a i l s of t h i s will be somewhat
sketchy. One reason f o r t h i s Is t ha t choosing
proof s t r a t e g i e s and us ing h e u r i s t i c
In fo rmat ion are compl icated problems that we
cannot c l a im to have so lved . Secondly,
c rea t i ng a theorem prover is not our main
g o a l . What we are t r y i n g to do is to show the
so r t of d e s c r i p t i v e system necessary to
represent the i n fo rma t i on conta ined in na tu ra l
language s ta tements . The purpose of t h i s
sec t ion is to e s t a b l i s h that our no ta t i on fo r
that system is " w e l l - f o u n d e d " .

The program we have in mind would take a
statement as i t s Input and determine from I t s
data base whether the statement is t r u e . For
statements which are simple p r e d i c a t i o n s / the
program looks f o r another statement in the
data base which matches the f i r s t s tatement .
The statement whose t r u t h is being determined
w i l l be c a l l e d the " t e s t s ta tement " ; the
statement in the data base to which it is
being compared w i l l be c a l l e d the " t a r r e t
s ta tement" . To prove a complex s ta tement , the
program would break It down into its
components and process them accord ing to the
semantics of the opera tors i nvo lved .
S i m i l a r l y , a complex t a rge t s ta tenent must be
broken down to its components f o r p rocess ing ,
but the ru les are d i f f e r e n t . So, in
e x p l a i n i n g the semantics of complex
express ions, analyses w i l l be given f o r t h e i r
use both In tes t statements and in ta rge t
s ta tements.

Two basic statements match If t h e i r
corresponding elements match. In gene ra l ,
expressions whtch are not statements match
whenever t h e i r values are I d e n t i c a l , A
v a r i a b l e which has not been assigned a value
matches any express ion , and Is assigned tha t
express ion 's v a l u e . These ru les apply to both
t e s t statements and t a rge t s ta tements. As an
example, suppose " 5 " has been assigned to
"?X", "?Y" Is unassigned, and " + " has I t s
usual meaning. Then "<FOD 5 ?Y>" w i l l match
"<F00 ?X <+ 3 4>>" and " 7 " w i l l be assigned to
"?Y".

We w i l l not g ive a complete deduct ive
procedure fo r l o g i c a l connec t i ves . I t Is a
we l l understood problem and Is not of pr imary
Importance in the phenomena we wish to
e x p l a i n . But to suggest the k ind of procedure
we have In mind, consider "AND" and "IMPLIES".
In hand l ing these expressions the d i s t i n c t i o n
between tes t statements and ta rge t statements
comes th rough . To prove "<AND X Y" both X
and x must be proved; but in matchin
something aga ins t "<AMD X Y>" , the match
succeeds if e i t h e r X or V matches. "<MPLIES
X Y>" Is t r u e I f In a hypo the t i ca l s t a t e where
X is asse r ted , Y can be proved. A t e s t
statement w i l l match a t a r g e t statement
"<IMPLIES X Y>" if the tes t statement matches
X and X can be proved. "OR" and "NOT" are
somewhat more compl icated but can be handled
In much the same way.

The r e a l l y Important par t of our
deduct ive procedure Is the treatment of
d e s c r i p t i o n s . D e f i n i t e d e s c r i p t i o n s are the
s imp les t . "<THE <?X) < . . . ? X . . .) > " eva luates
to the constant which when assigned to "?X"

makes " < . . . ? X . . . > " t r u e . I f there is not such
a constant or If there is more than one, the
value of the d e s c r i p t i o n Is undef ined. For
example. I f "LESS" means " a r i t h m e t i c a l l y less
t h a n " , then "<F00 3>" matches:

(2 .22) <F00 <THE (?X) (AND (LESS ?X 4)
(LESS 2 ?X))>>

This r u l e f o r eva lua t i ng d e f i n i t e desc r i p t i ons
app l ies to both tes t statements and t a rge t
s ta tements .

For e x i s t e n t i a l and un ive rsa l
d e s c r i p t i o n s , there is again a d i f f e r e n c e
between t e s t statements and t a r g e t s ta tements .
In a tes t s ta tement , an e x i s t e n t i a l
d e s c r i p t i o n matches any th ing tha t makes the
body of the d e s c r i p t i o n t r u e . That i s , "<FO0
<S0ME (?X) (BAR ?X)>>" matches "<F00 A>" If
"<BAR ?X>" Is t rue when "?X" Is assigned "A" .
For the case of a t a rge t s ta tement , the
eva lua t i on is more d i f f i c u l t . If we know that
"Some bar is f o o , " we could s imply g ive It a
name and c o n t i n u e . But g i v i n g a name would
imply tha t we know which bar is f o o , which is
not t r u e . Instead we can create a name and
say tha t if the new name were the name of the
ob jec t t ha t is asserted to e x i s t , then
anyth ing which we can prove about the new name
Is t rue of the o b j e c t . We do th is by c rea t i ng
a hypo the t i ca l s t a t e of the data base in
wh ich . if the new name is "G999", we asser t
"<BAR G999>". The t a rge t statement then
becomes "<F00 G999>". Another way of p u t t i n g
t h i s is tha t "<SOME (?X> (BAR ?X)>" evaluates
to "G999", w i t h the s ide e f f e c t of c r e a t i n g a
hypo the t i ca l s t a t e of the data base In which
"<BAR 3999>" is asse r ted . When the hypothesis
is d ischarged, the new name becomes undef ined,
and we are not in danger of supposing tha t we
know v/hat the name of the ob jec t i s .

The treatment of un ive rsa l desc r i p t i ons
Is the exact dual o f t ha t f o r e x i s t e n t i a l
d e s c r i p t i o n s . In a tes t s ta tement , we know
tha t whatever we can prove about an
a r b i t r a r i l y se lec ted member of a c lass is t rue
of every member of the c l a s s . So j u s t as we
d id fo r e x i s t e n t i a l ta rge t s ta tements , we set
up a hypothetJcal s t a t e , produce an a r b i t r a r y
unique name, and asser t t ha t It is a member of
the c l a s s . Analogously to what we sa id
be fo re , "<EVERY (?X) (FOO ?X)>" evaluates t o ,
say, "G111l" w i t h the s ide e f f e c t of c r e a t i n g a
hypo the t i ca l s t a t e In which "<F00 G l l l > " is
asse r ted . Also i n d u a l i t y w i t h e x i s t e n t i a l
d e s c r i p t i o n s . In a t a rge t statement a
un iversa l d e s c r i p t i o n matches anyth ing which
makes its body t r u e . For example, "<F00 A>"
matches "<F00 <EVERY (?X) (BAR ?X)>>" If "<BAR
?X>" Is t rue when "?X" is assigned "A" .

Now we can see why lambda-expressions are
Important f o r rep resen t ing In fo rma t ion in 0-
SCRIPT. Eva lua t ing e x i s t e n t i a l and un ive rsa l
desc r i p t i ons sometimes has the s ide e f f e c t of
changing the data base. Later we w i l l
In t roduce other expressions which a lso do
t h i s . I f we have o ther d e s c r i p t i o n s In the
s ta tement , we need to be able to c o n t r o l
whether they are evaluated In the o l d data
base or the new. By " l ambda - f y l ng " a
statement we can b r i n g one or another
d e s c r i p t i o n to the ou ts ide and fo rce I t to be
eva luated f i r s t . In t h i s way we can con t ro l
the order In which expressions are eva lua ted .
A d e t a i l e d example of t h i s w i l l be g iven in
s e c t i o n 3 .5 .

In t h i s b r i e f summary, we have g iven the

b a r e s t o u t l i n e s o f a d e d u c t i v e p r o c e d u r e . We
have n o t d i s c u s s e d any o f t he complex
I n t e r a c t i o n s among these l o g i c a l o p e r a t o r s .
But h o p e f u l l y we have l a i d a s u f f i c i e n t
f o u n d a t i o n t o t a l k about t he I ssues t h a t a re
t h e r e a l p o i n t o f t h i s p a p e r .

3 . S o l u t i o n t o R e p r e s e n t a t i o n
Problems Using D-SCRIPT

3 . 1 D e s c r i p t i o n s In Opaque Contex 6

I n g e n e r a l , d e s c r i p t i v e phrases I n opaque
c o n t e x t s a re s u b j e c t t o more t han one
I n t e r p r e t a t i o n . F u r t h e r m o r e , a t l e a s t one o f
t h e I n t e r p r e t a t i o n s seems no t t o behave
a c c o r d i n g t o normal r u l e s o f l o g i c a l
m a n i p u l a t i o n . L o o k i n g more c l o s e l y , opaoue
c o n t e x t s p r i m a r i l y occu r I n t h e complement
c o n s t r u c t i o n s o f v e r b s l i k e " w a n t " , " b e l i e v e " ,
" k n o w " , e t c . These v e r b s a l l have t he
p r o p e r t y o f d e s c r i b i n g somebody 's model o f t h e
w o r l d . When we s a y :

(3 . 1) John wan ts t o ma r r y S a l l y .

what we mean Is t h a t in J o h n ' s model o f t he
w o r l d , t he s t a t e :

(3 . 2) John i s m a r r i e d t o S a l l y .

I s c o n s i d e r e d d e s i r a b l e . The a m b i g u i t y o f
d e s c r i p t i v e p h r a s e s a r i s e s f r o m the q u e s t i o n
o f w h e t h e r t h e d e s c r i p t i v e ph rase I s t o b e
e v a l u a t e d I n ou r model o f t he w o r l d o r t he
model o f t h e s u b j e c t o f t he s e n t e n c e . To
I l l u s t r a t e t h i s , r e c a l l the s e n t e n c e :

(3 . 3) John wants t o ma r r y t h e p r e t t i e s t g i r l .

In D-SCR1PT, t he opaque r e a d i n g is r e p r e s e n t e d
b y :

(3 . 4) <WANT JOHN (MARRY JOHN
<THE (?X) (PRETTIFST ?X)>)>

The reason t h a t t h e r e a r e r e s t r i c t i o n s o n
s u b s t i t u t i n g o t h e r e x p r e s s i o n s f o r "<THE (?X)
(PRETTIEST ? X) > " i s t h a t t h e s t a t e m e n t w h i c h
a c t u a l l y c o n t a i n s t h i s d e s c r i p t i o n , I . e . :

(3 . 5) <MARRY JOHN <THE (?X) (PRETTIEST ?X)>>

I s p a r t o f J o h n ' s w o r l d m o d e l . I f i n ou r
p r o g r a m we r e p r e s e n t J o h n ' s w o r l d model by a
s e p a r a t e d a t a b a s e , then t he e x p r e s s i o n s w h i c h
may be s u b s t i t u t e d are t h o s e w h i c h a re
e q u i v a l e n t I n t h a t da ta b a s e , no t I n the main
d a t a base w h i c h r e p r e s e n t s ou r w o r l d m o d e l .

T o r e p r e s e n t t he t r a n s p a r e n t r e a d i n g o f
(3 . 3) , w e must t a k e t h e d e s c r i p t i o n o u t s i d e
t h e scope o f J o h n ' s m o d e l . We can do t h i s
w i t h a l a m b d a - e x p r e s s i o n :

(3 . 6) <<LAMBDA (?X)
(WANT JOHN (MARRY JOHN ?X))>

<THE (?Y) (PRFTTIFST ?Y)>>

T h i s says t h a t t h e s t a temen t we g e t by
e v a l u a t i n g t h e d e s c r i p t i o n I n o u r model and
s u b s t i t u t i n g t h a t v a l u e f o r " ? X " I n :

(3 . 7) <MARRY JOHN ?X>

I s marked a s a d e s i r a b l e s t a t e I n J o l i n ' s w o r l d
m o d e l .

The a n a l y s i s i s ana logous f o r e x i s t e n t i a l
227

d e s c r i p t i o n s . The two r e a d i n g s o f :

(3 . 8) John wants to ma r r y a b l o n d e ,

can be r e p r e s e n t e d b y :

(3 . 9) <WANT JOHN (MARRY JOHN
<S0ME (?X) (BLONDE ?X)>)>

f o r t h e opaque r e a d i n g , and b y :

(3 . 1 0) <<LAMBDA (?X)
(WANT JOHN (MARRY JOHN ?X))>

<S0ME (?Y> (BLONDE ?Y)>>

f o r t he t r a n s p a r e n t r e a d i n g . (3 . 9) means:

(3 . 1 1) John, wants t h e r e to be a b l o n d e t h a t he
m a r r i e s .

and (3 . 1 0) means:

(3 . 1 2) There Is a b l onde t h a t John wants to
m a r r y .

So t h e reason we c a n ' t make a " t h e r e I s . . . "
p a r a p h r a s e o f (3 . 9) I s t h a t r a t h e r t han b e i n g
a n e x i s t e n t i a l s t a t e m e n t . I t I s a n a s s e r t i o n
abqut a n e x i s t e n t i a l s t a t e m e n t .

3 .2 D e s c r i p t i o n s i n t i m e c o n t e x t s

I n o r d e r t o d i s c u s s t he n e x t s e t o f
e x a m p l e s , we need a way to r e p r e s e n t t i m e .
The b a s i c f a c t he re I s t h a t any p r e d i c a t e can
be made to v a r y w i t h t i m e . Even t h o s e t h a t we
choose t o c o n s i d e r e t e r n a l can b e a l l e g e d t o
depend o n t i m e , e . g . :

(3 . 1 3) Two used to be g r e a t e r t h a n t h r e e .

To accoun t f o r t h i s i n f i r s t - o r d e r l o g i c , we
w o u l d have to make t i m e an e x p l i c i t pa rame te r
o f e v e r y p r e d i c a t e s y m b o l . I n s t e a d , w e w i l l
r e p r e s e n t t i m e by a coptext-STRUCTURED.c.tu.red d a t a
base (M c D e r m o t t) . By t h i s we mean t h a t t he
d a t a base w i l l be b r o k e n down I n t o a s e r i e s o f
s u b - d a t a b a s e s , o r c o n t e x t s , each o f w h i c h
r e p r e s e n t s t h e s t a t e o f t h e w o r l d a t some
p a r t i c u l a r t i m e . T h i s can b e e f f i c i e n t l y
Imp lemen ted , as It is in CONNIVER (Sussman and
McDermot t) by s p e c i f y i n g each c o n t e x t by
r e c o r d i n g t he d i f f e r e n c e s between I t and I t s
p r e d e c e s s o r .

To use t h i s k i n d of d a t a b a s e , we need a
s p e c i a l p r e d i c a t e " T - A - T " w h i c h t a k e s a s I t s
p a r a m e t e r s a s t a t e m e n t and t h e name of a t i m e
c o n t e x t . " < T - A - T S t>" means s t a t e m e n t s. Is
T rue At Time T. The f o r m a l s e m a n t i c s o f " T - A -
T" a r e t h a t i t a t t e m p t s to deduce S, in t he
t ime c o n t e x t named by t., We a l s o need to be
a b l e t o g e n e r a t e r e f e r e n c e s t o t i m e c o n t e x t s .
For I n s t a n c e , t h e p h r a s e :

(3 . 1 4) when Wash ing ton was P r e s i d e n t

w o u l d be r e p r e s e n t e d by the d e s c r i p t i o n :

(3 . 1 5) <THE (?T) (T - A - T (PRES WASHINGTON) ?T)>

F i n a l l y we need t he o n e - p l a c e p r e d i c a t e "T IME"
to make q u a n t i f i e d s t a t e m e n t s abou t t i m e . We
wou ld r e p r e s e n t :

(3 . 1 6) Three I s a l w a y s g r e a t e r t h a n t w o .

b y :
w h i c h means:

C3.17) <T-A-T (HRFATF.R 3 2)
<FVFRY (?T) (TIT'F ?T)>>

Given t h i s n o t a t i o n f o r t i m e , w e can
s o l v e t he a s s o c i a t e d p rob lems w h i c h wo r a i s e d
e a r l i e r . As in t h e case o f opaque c o n t e x t s ,
t h e s o l u t i o n depends on w h e t h e r a d e s c r i p t i o n
I s e v a l u a t e d In t he c o n t e x t i n w h i c h a
s t a t e m e n t I s made o r t he c o n t e x t w h i c h the
s t a t e m e n t I s a b o u t . R e c a l l i n g t h e p r e v i o u s
e x a m p l e s :

(3 . 1 8) The P r e s i d e n t has been m a r r i e d s i n c e
1945.

i s r e p r e s e n t e d b y :

(3 . 1 9) <<LAMBDA (?X) (T - A - T (MARRIED ?X)
<EVERY (?T) (AFTER ?T 1945)>)>

<THE C?Y) (PRES ?Y)>>

In (3 . 1 9) t he use o f the l a m b d a - e x p r e s s i o n
p u t s t h e d e s c r i p t i o n "<TNIF (?Y) (PRES ? Y) > "
o u t s i d e the t i m e c o n s t r u c t i o n , s o i t i s
e v a l u a t e d i n t he c o n t e x t i n w h i c h t he
s t a t e m e n t is made. On the o t h e r h a n d :

(3 . 2 0) The P r e s i d e n t has l i v e d In t he Wh i t e
Mouse s i n c e 1800 .

i s r e p r e s e n t e d b y :

(3 . 2 1) <T-A-T
(L I V E - I f <TME (?X) (PRES ?X)> W-H)
<EVERY (?T) (AFTER ?T 1800)>>

H e r e the d e s c r i p t i o n I s i n s i d e t he t i m e
c o n s t r u c t i o n and i s no t e v a l u a t e d u n t i l t he
t i m e d e s c r i p t i o n has been i n s t a n t i a t e d . The
a n a l y s i s i s the. same f o r :

(3 . 2 2) John met the P r e s i d e n t i n 1960 .

e x c e p t t h a t i n t h i s case t he t i m e r e f e r e n c e i s
d e f i n i t e . One i n t e r p r e t a t i o n i s g i v e n b y :

C3.23) <T-A-T (MEET JOHN <T11E (?X) (PRES ?X)>
19G0>

and t h e o t h e r i s g i v e n b y :

(3 . 2 d) <<LAHDDA (?X) (T - A - T (MEET JOHN ?X)
1960)>

<THE (?Y) (PRES ?Y)>

3.3 Knowledge abou t Knowledge

One o f t he q u e s t i o n s we r a i s e d in t h e
b e g i n n i n g was how to r e p r e s e n t :

(3 . 2 5) John knows D i l i ' s phone number.

I f we knew t h e number we c o u l d r e p r e s e n t
(3 . 2 5) b y :

(3 . 2 G) <KNOW JOHN (PHONE-NUM BILL x x x) >

where xxx is t h e number. We do know one
d e s c r i p t i o n o f t h e number , namely " C i U ' s
phone number " . I f w e s u b s t i t u t e t h i s I n t o
(3 . 2 6) , however , we p e t a t r i v i a l s t a t e m e n t :

(3 . 2 7) <KN0W JOHN (PHOME-NUM BILL
<TIIE (?X) (PHONF-NUM BILL ?X)>)>

(3 . 2 8) John knows t h a t B i l l ' s phone number i s
B i l l ' s phone number.

What we need to do Is to remove t h e o c c u r r e n c e
o f t he d e s c r i p t i o n f r o m J o h n ' s w o r l d model
" into ou r w o r l d m o d e l . Once a g a i n , we can do
t h i s w i t h a l a m b d a - e x p r e s s i o n :

(3 . 2 9) <<LAMBDA (?X)
(KNOW JOHN (PHONE-NUM BILL ?X))>

<T!IF (?X) (PHONE-NUM BILL ?X)>>

T h i s says t h a t I f we were t o e v a l u a t e t he
d e s c r i p t i o n " B i l l ' s phone number" and s t i c k
t he r e s u l t i n (3 . 2 6) , w e w o u l d c o r r e c t l y
d e s c r i b e J o h n ' s know ledge .

To see t he d i f f e r e n c e between (3 . 2 7) and
(3 . 2 9) , suppose we know t h a t B i l l has a phone
number , and we know t h a t John knows t h a t B i l l
has a phone number. These f a c t s a r e
r e p r e s e n t e d b y :

(3 . 3 0) <PH0ME-MUM BILL <S0ME (?X) (MUM ?X)>>

(3 . 3 1) <KN0W JOHN (PHONE-NUM BILL
<SOME (?X) (NUM ? X) >) >

G i v e n t h i s , w e can p rove (3 . 2 9) f r o m i t s e l f .
N o t i c e t h a t I n D-SCRIPT t h i s i s n o n - t r v i a l .
Complex s t a t e m e n t s are never p r o v e d by s i m p l y
l o o k i n g t o see i f t hey a r e i n the l a t e b a s e .
R a t h e r , t h e y arc b r o k e n down to t h e i r b a s i c
components and these components a re p r o c e s s e d
a c c o r d i n g t o t h e s e m a n t i c s o f t h e o p e r a t o r s
c o m b i n i n g t h e n . In t he case o f "KMOW" the
s e m a n t i c s a r e t o s h i f t t he p r o o f t o t he d a t a
base o f t he pe rson d o i n g the k n o w i n g . So even
t o p rove a s t a t e m e n t f r o m i t s e l f , t he
s e m a n t i c s r e a l l y have t o w o r k .

t n t r y i n g t o p r o v e (3 . 2 9) t h e lambda-
e x p r e s s i o n makes us f i r s t e v a l u a t e "(THE (?X)
(PHONE-NUM DILL ? X) > " . We do t h i s by t r y i n g
to f i n d a match f o r "<PHONE,-NUM BILL ? X > " . I f
we d o n ' t know B i l l ' s phone number wc c a n ' t do
t h i s d i r e c t l y . (3 . 3 0) , however , e n t i t l e s u s
t o c r e a t e a h y p o t h e t i c a l s t a t e i n w h i c h some
a r b i t r a r y c o n s t a n t , say " 0 7 7 7 " i s a s s e r t e d t o
be D i l l ' s number. So to p rove (3 . 2 9) , wc
a t t e m p t t o p r o v e :

(3 . 3 2) <KN0W JOHN (PHONE-NUM BILL G777)>

w i t h t h e h y p o t h e s i s :

(3 . 3 3) <PI!0NE-NUM BILL G777>

To p r o v e (3 . 3 2) f r om (3 . 2 9) we p r o c e s s (3 . 2 9)
much t h e same as b e f o r e . T h i s t i m e , however ,
W e a l r e a d y have (5 . 3 3) i n t he d a t a b a s e ; s o
"<THE (?X) (PHONE-N'UM BILL ? X) > " e v a l u a t e s to
" 0 7 7 7 " d i r e c t l y . Our p r o o f t hen reduces t o
p r o v i n g (3 . 3 2) f r om i t s e l f , w h i c h reduces
a g a i n t o p r o v i n g (3 . 3 3) f r o m i t s e l f i n t he
d a t a base w h i c h r e p r e s e n t s J o h n ' s w o r l d m o d e l .
(3 . 3 3) i s a b a s i c s t a t e m e n t , so i t can be
I n f e r r e d f r o m I t s e l f i m m e d i a t e l y , and t h e
e n t i r e p r o o f s u c c e e d s .

Now suppose i n s t e a d t h a t we were t r y i n g
t o p r o v e (3 . 2 9) f r o m (3 . 2 7) . The p r o o f w o u l d
be t he same down to t h e p o i n t where we
g e n e r a t e d t h e subgoa l o f p r o v i n g (3 . 3 2) . T o
p r o v e t h i s f r o m (3 . 2 7) , w e have t o p rove
(3 . 3 3) f r o m :

228

- 4. F u t u r e wo rk

In t h i s paper we have p r e s e n t e d a f o r m a l
L a n g u a g e f o r t he r e p r e s e n t a t i o n o f knowl edge.
We have shown how I n f o r m a t i o n w h i c h is
d i f f i c u l t t o e x p r e s s i n o t h e r f o r m a l i s m s can
be e x p r e s s e d in ou r l anguage . And we have
s u g g e s t e d how a d e d u c t i v e program c o u l d be
d e s i g n e d t o answer q u e s t i o n s i n ou r l a n g u a g e .
C l e a r l y , t h e nex t s t e p i n t h i s r e s e a r c h i s t o
b u i l d t h a t d e d u c t i v e p r o g r a m .

There a r c s e v e r a l reasons why t h i s w o u l d
b e a w o r t h w h i l e p r o j e c t . For o n e , A . I .
d e d u c t i v e sys tems seen t o f e l l i n t o t w o
e x t r e m e c a t e g o r i e s . On t he one hand,
p r e d i c a t e - c a l c u l u s theorem p r o v e r s r e s t r i c t
t h e m s e l v e s t o f i r s t o r d e r l a n g u a g e s .
P r o c e d u r a l sys tems such as PLANNER, on t he
o t h e r h a n d , use p a t t e r n m a t c h i n g schemes w h i c h
a r e g e n e r a l enough t o p r o c e s s h i g h e r o r d e r
s t a t e m e n t s , bu t t h e y a r e S o gene ra l t h a t t hey
say n o t h i n g about t he meaning o f those
s t a t e m e n t s . I m p l e m e n t i n g D - S C R I P T w o u l d
c r e a t e a sys tem somewhere In between - one
t h a t w o u l d embody s y s t e m a t i c knowledge about
some t y p e s o f h i ghe r o r d e r s t a t e m e n t s .

Beyond t h i s , t he p a r t i c u l a r t y p e s o f
knowledge we have d i s c u s s e d seem to be
e s p e c i a l l y i m p o r t a n t f o r A . I . The re i s s t i l l
much work to be done , b u t i f we can p rog ram a
d e d u c t i v e sys tem to t r e a t " T - A - T " and "KNOW"
in t h e way we have p r o p o s e d , we w i l l have
t a k e n a f i r s t s t e p t owards c r e a t i n e p rograms
w h i c h can t h i n k abou t t h i n k i n g .

Bibilography

H e w i t t , C , " D e s c r i p t i o n and T h e o r e t i c a l
A n a l y s i s (U s i n g Schemata) of PLANNER: A
Language f o r P r o v i n g Theorems and
M a n i p u l a t i n g Models In a R o b o t , " Repor t
A l TR-25B, M . l . T . A . I . L a b o r a t o r y , 1972.

M c C a r t h y , J . , "P rog rams w i t h Common S e n s e , " i n
Semant ic I n f o r m a t i o n P r o c e s s i n g . M a r v i n
M l n s k y , e d , , p p . 4 0 3 - 4 1 8 . C a m b r i d g e ,
M a s s . : N. I . T . P r e s s , 1068 .

McDermo t t , D , V . , " A s s i m i l a t i o n o f flew
I n f o r m a t i o n by a N a t u r a l LanGuare-
U n d e r s t a n d l n n S y s t e m , " u n p u b l i s h e d S.N..
t h e s i s , M . I . T . , 1973.

Quillian, M. R. , "Seman t i c Memory, " in
Seman t i c I n f o r m a t i o n P r o c e s s i n g . o n . 227-
270 .

S a n d e w a l l , F . , "Fo rma l Methods i n t he Des ign
o f Q u e s t i o n - A n s w e r i n g Systems, 1 1

A r t i f i c i a l I n t e l l i g e n c e . V o l . 2 (1 9 7 1) ,
p p . 129 -145 .

Schank , R, C. "A Concep tua l Dependency
R e p r e s e n t a t i o n f o r a C o m p u t e r - O r i e n t e d
S e m a n t i c s , " Memo A l - 8 3 , S t a n f o r d A . l .
P r o j e c t , 1969.

Sussman, G. J. and D. V. McDermo t t , "F rom
PLANNER to CONNIVER - A g e n e t i c
a p p r o a c h , " P roc . FJCC 41 (1 9 7 2) , p p .
1171-1179 .

W i n o g r a d , T . , " P r o c e d u r e s as a R e p r e s e n t a t i o n
f o r Data In a Program f o r Unde rs tand inp ;
N a t u r a l L a n g u a g e , " Repor t A l TR-17 ,
M . l . T . A . I . L a b o r a t o r y , 1 9 7 1 .

Session 8 Formalisms f o r
A r t i f i c i a l In te l l i gence

CONVERSION OF PREDICATE-CALCULUS AXIOMS, VIEWED AS

NON-DETERMINISTIC PROGRAMS, TO CORRESPONDING DETERMINISTIC PROGRAMS

E r i k Sandewall
Computer Sciences Department

Uppsala u n i v e r s i t y

A b s t r a c t : The paper c o n s i d e r s the p rob lem o f c o n v e r t i n g
axioms i n p r e d i c a t e c a l c u l u s t o d e t e r m i n i s t i c p rograms,
wh ich a re to be used as " r u l e s " by a GPS-type s u p e r v i
s o r . I t i s shown t h a t t h i s can be done, bu t t h a t the
" o b j e c t s " must then c o n t a i n p rocedure c l o s u r e s o r "FUN-
ARG-express ions" wh ich are l a t e r a p p l i e d .

Keywords: d e d u c t i o n , t h e o r e m - p r o v i n g , r e t r i e v a l , non -de
t e r m i n i s t i c , c l o s u r e , FUNARC-expression.

Background- R e t r i e v a l o f I m p l i c i t i n f o r m a t i o n in a sem
a n t i c da ta base is a k i n d of d e d u c t i o n . One approach to
do ing such r e t r i e v a l has been r e s o l u t i o n - s t y l e theorem-
p r o v i n g ; a l a t e r approach has been h i g h - l e v e l p rogram
ming languages such as P lanner1 and QA42, where non -de
t e r m i n i s t i c programs and p a t t e r n - d i r e c t e d i n v o c a t i o n o f
p rocedures are a v a i l a b l e . The use o f u n i f o r m p r o o f p r o
cedures f o r t h i s purpose has been r e p e a t e d l y c r i t i c i z e d ,
e . g . In 3 . Users o f the h i g h - l e v e l languages have a l s o
been w o r r i e d because t h e i r systems are very expens i ve
to use4,2 and because the n o n - d e t e r m i n i s m i s d i f f i c u l t
t o c o n t r o l 4 .

There i s ano the r app roach , wh ich has r o o t s i n A . 1 . r e
search back to the General Problem S o l v e r 5 , where one
has a s u p e r v i s o r wh ich a d m i n i s t r a t e s a (r e l a t i v e l y) f i
xed se t o f o p e r a t o r s , and a w o r k i n g se t o f a c t i v e ob
j e c t s . I n each c y c l e , the s u p e r v i s o r p i c k s an o b j e c t
and an o p e r a t o r (u s i n g any h e u r i s t i c i n f o r m a t i o n t h a t
i t may h a v e) , a p p l i e s the o p e r a t o r t o the o b j e c t , and
o b t a i n s back a number of new o b j e c t s (none , o n e , or
more) wh ich a re put i n t o the w o r k i n g s e t . T h i s p rocess
i s c o n t i n u e d u n t i l some goal i s ach ieved (e . g . , an ob
j e c t i s a g iven t a r g e t se t appears in the wo rk i ng s e t) .

T h i s approach has c e r t a i n advantages f rom an e f f i c i e n c y
s t a n d p o i n t , The o p e r a t o r s are f i x e d p rograms, wh ich can
be compi led or o t h e r w i s e t r a n s f o r m e d a l l the way to ma
ch ine code l e v e l . The n o n - d e t e r m i n i s m is c o n c e n t r a t e d
t o the s u p e r v i s o r . S t i l l , t h e r e i s room f o r p a t t e r n - d i
r e c t e d i n v o c a t i o n , b y l e t t i n g the s u p e r v i s o r c l a s s i f y
o b j e c t s i n t o a number of c l a s s e s , and a s s o c i a t i n g a
subset o f the o p e r a t o r s w i t h each c l a s s . There i s a l s o
the n o n - d e t e r m i n i s m I m p l i e d by the s e a r c h .

The major d i s a d v a n t a g e , o f c o u r s e , i s t h a t t h i s scheme
is more r i g i d . For example , s i nce e v e r y t h i n g happens on
one l e v e l , t h e r e i s l i t t l e room f o r r e c u r s i o n . I f one
o p e r a t o r c a l l s a p r o c e d u r e , wh ich c a l l s a n o t h e r , wh ich
wants t o b e n o n - d e t e r m i n i s t i c , then t h e r e i s n o t r i v i a l
way to map t h a t n o n - d e t e r m i n i s m back up to the " s e a r c h
l e v e l " o f the s u p e r v i s o r , w h i l e r e t a i n i n g the e n v i r o n -
ment o f f u n c t i o n c a l l s , v a r i a b l e b i n d i n g s , e t c . t h a t
must be kep t a v a i l a b l e in a l l b ranches .

An I n t e r e s t i n g q u e s t i o n is t h e r e f o r e : how harmfu l i s
t h i s r i g i d i t y ? I s i t ve ry awkward t o "p rog ram a r o u n d "
the l i m i t a t i o n s o f such a sys tem, o r i s I t easy?

In t h i s paper , we t r y to answer t h a t q u e s t i o n by s t u d y
i n g those o p e r a t o r s wh ich co r respond to axioms in p r e
d i c a t e c a l c u l u s . We assume t h a t we have a data base ,
wh ich Is l i k e a l a r g e number o f ground u n i t c l a u s e s ,
p l u s a number o f o p e r a t o r s , wh ich shou ld co r respond to
the non-g round ax ioms . We show t h a t t h e r e a re c e r t a i n
problems i n p h r a s i n g the l a t t e r a s o p e r a t o r s , , b u t t h a t

t h e r e is a s y s t e m a t i c way to hand le those p rob lems . We
conc lude t h a t the search s u p e r v i s o r approach shou ld be
c o n s i d e r e d as a s e r i o u s c a n d i d a t e f o r t he d e d u c t i v e s y s
tem a s s o c i a t e d w i t h a da ta base.

Basic Idea . For the reader who might no t want to read
the whole paper , we d i s c l o s e t h a t the idea is to pe rm i t
the " o b j e c t s " t o c o n t a i n p rocedure c l o s u r e s 6 ' 7 , a l s o
c a l l e d FUNARG-expressIons, I . e . l ambda-express ions t o
ge the r w i t h a n env i ronment o f b i n d i n g s f o r i t s f r e e va
r i a b l e s . The lambda-exp ress ion is as f i x e d as the set
o f o p e r a t o r s , and can t h e r e f o r e b e c o m p i l e d , e t c , bu t
the env i ronment Is new f o r each o b j e c t .

A f t e r thus hav ing ske tched the background and the gene-
r a l i d e a , l e t us go I n t o the d e t a i l s o f t he p r e d i c a t e -
c a l c u l u s e n v i r o n m e n t .

S imp les t case . Let us take a common-place axiom and
c o n v e r t it into a p r o g r a m - l i k e o p e r a t o r . We choose the
t r a n s i t i v i t y ax i om ,

R (x , y) A R (y , z)) R (x , z)

wh ich goes I n t o a r u l e o f the fo rm

On a s u b - q u e s t i o n w i t h t he r e l a t i o n R, use
l ambda (x , z) beg in l o c a l y ;

de te rm ine y f rom R (x , y) ;
r e t u r n s u b - q u e s t i o n R (y , z)
end

Here , " d e t e r m i n e y f rom R (y , z) " c a l l s f o r a l o o k - u p in
the da ta base , and u s u a l l y a c t s as a n o n - d e t e r m i n i s t i c
ass ignment t o y . " R e t u r n s u b - q u e s t i o n " s p e c i f i e s the
i n f o r m a t i o n wh ich i s g i v e n back t o t he s u p e r v i s o r , con
s i s t i n g o f a r e l a t i o n (R) and an argument l i s t . The
l a t t e r i s a l i s t o f the c u r r e n t va lues o f x and y j I t
does n o t need to c o n t a i n the names x and y, or t h e i r
b i n d i n g s t o t h e i r c u r r e n t v a l u e s . The s u p e r v i s o r w i l l
then l ook up a l l o p e r a t o r s (l ambda -exp ress i ons) wh ich
a re a s s o c i a t e d w i t h R, and a p p l y them to the g i v e n a r
gument l i s t , o f course a t whatever t ime i t chooses.

T h i s r u l e d e s c r i b e s what has to be done when any data
base search r o u t i n e c o n t i n u e s search a c c o r d i n g t o the
t r a n s i t i v i t y p r o p e r t y o f the r e l a t i o n s . I t does no t
m a t t e r i f t he search i s execu ted by a u n i f o r m theorem-
p r o v e r , a P l a n n e r - t y p e sys tem, or by a h a n d - t a i l o r e d
proaram such as the LISP f u n c t i o n s in t he SIR system8.
However, in a h i g h e r - l e v e l sys tem, t he system has to
" i n t e r p r e t " the axioms o r r u l e s , I . e . f i n d o u t a t r u n
t ime what is to be done. A r e s o l u t i o n t heo rem-p rove r
i s ex t reme In t h i s r e s p e c t . Our concern In t h i s paper
i s t o f i n d o u t b e f o r e e x e c u t i o n (w i t h i n f o r m a t i o n o n l y
about the ax iom o r r u l e , n o t about t h e a c t u a l sub -ques
t i o n) what o p e r a t i o n s w i l l be n e c e s s a r y , so t h a t we can
w r i t e o u t the code f o r d o i n g e x a c t l y t h a t , t n p rogram
ming systems t e r m s , we want to comp i le t he ax ioms , and
do as many d e c i s i o n s as p o s s i b l e at c o m p l l e - t i m e .

I f a r e s o l u t i o n t heo r em- p r ov e r c o n t a i n s the above t r a n
s i t i v i t y ax i om , and the ax iom

R(a ,b)
and i f i t asked the " q u e s t i o n " ^ (b . c) , i t w i l l genera
t e t he s u b - q u e s t i o n M l (a , c) . T h i s s t e p can be c l e a r l y
I l l u s t r a t e d I f t he t r a n s i t i v i t y ax iom I s r e w r i t t e n a s

230

Thus one clause (In the resolut ion sense) usual ly cor
responds to several rules l i ke the lambda-expressions
above. The number of rules that correspond to a clause
Is f i n i t e . If some rules are omi t ted, then the resu l t
ing system is not In general complete, but inclusion of
a l l rules is s t i l l not s u f f i c i e n t to insure complete
ness. We shal l not be concerned about t h i s .

Going back to the f i r s t ru le above, the reader should
imagine that the supervisor contains one queue of sub-
questions for each re la t ion symbol, and that every sub-
question contains an argument l i s t . Every re la t ion sym
bol is associated wi th a set of operators, w r i t t en as
lambda-expressions l i ke the one above, which can be
applied to the objects that queue for that re la t i on
symbol. The operator above returns a sub-question, and
t e l l s what object - argument l i s t i t should conta in ,
and which re la t i on it should at tend. The operators can
be thought about as "demons", c lustered in groups wi th
a common point of i n t e r e s t , which is named by the re
la t ion symbol.

L is t of problems. This organizat ion raises a number of
questions. One problem is how one should integrate heu
r i s t i c information into the system. We shal l not go i n
to that question here. Another question is how the l o
cal non-determintsm in the rule is to be handled. The
answer is simple: we map the l inear (i . e . loop- f ree) ,
non-determinist ic program into a looping, determin is t ic
program. Each branch-point s tar ts a new loop inside the
loops of the previous branch-points. A l l loops end at
the end of the ru le . This is qui te s t ra igh t - fo rward .

If the PC (predicate calculus) axioms contain funct ion
symbols (not merely r e l a t i o n s) , we obtain " u n i f i c a t i o n " ,
or in programming language terms: pattern-matching and
pat tern- reconst ruc t ion . Then the convers ion to remove
the local non-determinism involves some addi t ional prob
lems, which however w i l l be the top ic of a l a t e r exten
sion of th i s paper. Suf f ice it to say that every PC
funct ion should be associated w i th one construct ion pro
cedure and one or more matching procedures, and that
the compiled version of the axiom must contain a ca l l
to one of these procedures. It can be determined at
"compilat ion t ime" which procedure shal l be ca l l ed . The
matching procedure for " p l u s " may for example match " 1 * "
against " p l u s (x , l) " and assign to " x " the value 3.

Let us turn instead to the question of how open ques
t ions are handled. ("Closed questions" are questions
which can be answered wi th a t ru th -va lue , I .e. Yes/no
quest ions; "open quest ions" are questions which have an
I nd i v i dua l , or n- tuple of indiv iduals as possible ans
wer.) We decide immediately that "closed questions wi th
the r e l a t i on R" shal l be one class of object and in te r
es t -po in t fo r operators, and "open questions wi th the
re la t ion R and an asked-for second argument, R(x,?)"
shal l be another class of ob jec ts , treated wi th another
set of operators. We shal l p rov is iona l l y denote it as
R2(X). For example, the same t r a n s i t i v i t y axiom for R
also ca l l s fo r the fo l low ing operator:

On a sub-question w i th R2, use
lambda (x) begin local y;

determine y from R(x ,y) ;
return sub-question Ra(y) end

231

determine z from Q(y,z).;
return answer f (x , z)
end

Each of these operators contains a main b lock, where
each statement except the last one makes an access to
the data base, fo r e i t he r a closed or an open quest ion,
(Every such statement corresponds to a l i t e r a l in the
o r ig ina l axiom). We have t a c i t l y assumed that thosere-
references should be " immediate", i . e . only use facts
that are e x p l i c i t l y in the data base. However, it Is
also possible to l e t such intermediate statements make
t h e i r own search. If we maintain the idea that the ope
rators should be de te rmin is t i c programs, and a l l search
should be managed by the supervisor, then the search In
the Intermediate statement must be brought to an end
before the execution of the operator can cont inue. It
fo l lows that in an intermediate statement we can only
make a search which is " s h o r t " compared to the main
search done by the supervisor.

Is it possible to use the la test formulat ion of the
operator as it is7 A l l search would then be done In
the intermediate statements (both " look up y" and " look
up z" in the t r a n s i t i v i t y axiom, e t c .) and the opera
tor can return a f i n a l answer, rather than a sub-ques
t ion for fu r ther search. This is co r rec t , but c lea r l y
the supervisor is not used at a l l in t h i s case.

However, given the las t formulat ion of the operators,
we can come back to the previous formulat ion by p i c k '
Ing out one intermediate statement and decide that that
is where the main search shal l be done. In the f i r s t
axiom, the main search Is most na tu ra l l y done for "de
termine z " . In the second axiom, our previous formula
t ion does the main search for "determine y " , although
In p r i nc ip le It would also be possible to determine y
In the shallow search of an intermediate statement, and
then ask the supervisor to do main search in order to
prove Q(x,y) fo r the selected y. In the t h i r d axiom,
our previous formulat ion does main search to determine
z, although It would also be possible to do main search
for y, and to determine z and f (x , z) in the remainder
procedure.

Conclusion from the discussion. We conclude that the
general method to convert a pred 'cate-calcu lus axiom
to an operator should be:

(3) Decide which of the statements in the operator
shal l be handled by the extensive, top- leve l search
which is managed by the supervisor. This Is ca l led
a con t ro l led statement. Let the statements in the
operator be

H , s 2 S k - 1 , S k , S k + r - . . S n

where s. Is the con t ro l l ed statement.

{*)) Construct a new operator where the statements are

232

Mult ip le cont ro l led statements. I t is eas i l y seen that
the above rule in four steps can be generalized to the
cases where there are several cont ro l led statements,
and top- leve l search is performed for each of them. For
example, in axiom 2 we might wish to make extensive
search both in order to determine y from P (x , y) , and in
order to prove Q(x ,y) . We must then have two nested re
mainder procedures. The resu l t i ng operator should have
the form:

On a sub-question w i th R2, use
lambda (x) begin

return sub-question P 2 (x) , w i th remain
der procedure
lambda (y) begin

return sub-question Q(x,y)
/a closed sub-question/ w i th
the remainder prodedure
lambda () return answer y
end

end

We rea l ize that "every answer" to a closed sub-question
must be a f f i rma t i ve , i .e . as soon as it has proved
Q(x,y) , the above operator returns y.

Chains of sub-guestions. The operators as formulated
above return sub-questions consist ing of a re la t i on
symbol, an argument l i s t , and a remainder func t ion , but
they only accept the f i r s t two items. This means that
the supervisor is responsible fo r admin is t ra t ing the
remainder procedures. However, in a programming system
where procedures are permitted as arguments (to other
procedures), the respons ib i l i t y can eas i ly be taken by
the operators and the programming system. We shal l now
describe how th i s can be done.

In closed and open quest ions, we add one more argument
9, which is the remainder procedure. The resu l t i ng ar
gument l i s t s (x ,y ,g) for R, (x,g) for R2, e t c . , are the
objects which our supervisor shall handle.

We then modify the examples so that g is introduced as
an argument and appl ied to the returned answer. Thus
the d e f i n i t e version of the rule for axiom 3 i a :

On a sub-question wi th R2, use
lambda (x,g) begin local y;

determine y from P(x .y) ;
return sub-question

Q2(y, function(lambda (z) g (f (x , z))))
end

The other rules are modified s i m i l a r l y . We not ice that
the sub-questions that t h i s rule re turns, contain two
t ransfer var iab les : x and g. The bindings of these must
be saved in the c losure, and retained u n t i l the remain
der procedure is used.

Let g' be the second argument of 0.2 in one pa r t i cu l a r
use of the above operator. Clear ly g1 contains a re fe r
ence to g, which i t s e l f pfesumably is a procedure c l o
sure, which was set up by a previous sub-question. As
one sub-question generates another, a chain of c losu
res is generated, where each one refers to its prede
cessor. When f i n a l l y an answer is found to the last sub-
quest ion, the last procedure closure is appl ied in a
return-answer statement; i t ca l l s i ts predecessor by
using a procedure va r i ab le , as seen in the example, the
predecessor ca l l s i t s predecessor, and so on up the
chain. In the o r i g i na l (top- leve l) q j es t i on , q is given
as " re tu rn aeswer".

Discussion of a p p l i c a b i l i t y of_the method. This proce
dure works In a l l cases where the non-determinlst ic
in te r rup t points (where another, pa ra l l e l branch is per

mi t ted to a t t r ac t a t ten t ion) can be brought to the top-
level block of the "operators" , and not be hidden deep
er down in recursion, in p r i n c i p l e , the t r i c k is that
the control stack (the stack of funct ion ca l l s) is only
one element deep at the in te r rup t points (containing
the ca l l from the supervisor to the opera tor) , and then
the control stack informat ion, plus the information of
how far we have got ten, can be put in one addi t ional
t ransfer var iab le . With th is method, we have no control
stack environment, but merely a var iab le-b ind ing env i
ronment at the interrupt po in ts , and t h i s is exact ly
what FUNARG (or procedure closures) can handle.

We believe that th is method is s u f f i c i e n t l y powerful to
handle e .g . a l l cases which may occur when PC axioms
are mapped into ru les, and probab 1y also a broader app-
l i ca t i on .

A questionable feature of th i s method is that one must
in p r i nc ip le decide at "compi le-t ime" which re t r i eva ls
are to be done by " b i g " search, and which are to be done
by " sho r t " intermediate statement (• non-control led s ta
tement) search. In some appl icat ions t h i s is OK, since
some re la t ions are only stored e x p l i c i t l y or almost ex
p l i c i t l y ; In others it may not be acceptable.

Requirements on the programming language. If the conver-
sion from PC axiom to operator is to be done automati
c a l l y , then the selected programming language must of
course be able to generate and manipulate programs in
the same language. LISP Is then an obvious choice. How
ever, during the execution of the search, our requi re
ment is instead that we must be able to create a proce
dure c losure, and send it around as data. Some simula
t i on languages, notably Simula 671 0 have th i s f a c i l i t y ,
as well as POP-211 and ECL12. LISP1.5 systems (a - l i s t
systems) provide it through the FUNARG feature. Later
LISP systems (LISP 1.6, original BBN-LISP) do not p ro
vide i t 7 . A method for provid ing FUNARG in BBN-LISP'type
systems without undue loss of e f f i c i ency has been pro
posed I n 9 .

It has been suggested that the not ion of a "remainder
procedure", as used in t h i s paper, is rather c losely
connected w i t h the not ion of " con t i nua t i on " , which has
recently proved helpfu l in discussing the denotational
semantics of programming languages13.

Implementation. The author has par t i c ipa ted in the deve
lopment of a program, cal led PCDB (Predicate Calculus
Data Base), which Is organized according to the search
supervisor p r i n c i p l e . This program was described in re
ference 14, and contains a compiler which accepts PC
axioms and generates corresponding LISP programs. It a l
so contains a simple supervisor, elaborate data base
handling f a c i l i t i e s , e tc . which are needed. The present
(1972) version of PCDB le ts the supervisor administrate
the remainder procedures in an ad hoc and not completely
general way. A new compiler is being w r i t t e n , which w i l l
administrate them wi th FUNARG expressions as indicated
in th i s paper. We hope to have it working at the time of
the conference.

Acknowledgements. The fo l lowing people in Uppsala have
helped w i th the PCDB work: Lennart Drugge, Anders Harald-
son, Rene" Reboh.

Sponsor: This research was supported by IBM Svenska AB.

233

References

1 . C H e w i t t
D e s c r i p t i o n and t h e o r e t i c a l a n a l y s i s (u s i n g schemata)
of PLANNER, a language f o r p r o v i n g theorems and mani-
p u l a t i n g models In a robo t
Ph.D. t h e s i s , Dept . o f ma thema t i cs , MIT, Cambr idge,
Mass. (1972)

2 . J . F . R u l I f s o n e t a l .
QA4: a p r o c e d u r a l b a s i s f o r i n t u i t i v e r eason ing
A l Cen te r , S t a n f o r d Research I n s t i t u t e (1972)

3. D.B. Anderson and P . J . Hayes
The l o g i c i a n ' s f o l l y
in the (European) AlSB B u l l e t i n , B r i t i s h Computer
S o c i e t y , 1972

4. G . J . Sussman
Why c o n n i v i n g is b e t t e r than p l a n n i n g
MIT Al l a b o r a t o r y , 1972

5 . A . Newel l e t a l .
Repor t on a genera l p r o b l e m - s o l v i n g program
Proc . IF IP Congress 1959, p. 256

6 . P . J . Landin
The mechanical e v a l u a t i o n o f e x p r e s s i o n s
Computer J o u r n a l , V o l . 6 (1 9 6 4) , pp. 308-320

7. J . Moses
The F u n c t i o n of FUNCTION in L ISP, or why the FUNARG
prob lem shou ld be c a l l e d the env i ronment p rob lem
ACM SIGSAM b u l l e t i n No. 15 (1970)

9. B. Raphe1
SIR: a computer program f o r semant ic I n f o r m a t i o n r e
t r i e v a l
i n M i n s k y , e d . : Semant ic i n f o r m a t i o n p r o c e s s i n g
MIT p r e s s , 1968

9. E. Sandewal l
A proposed s o l u t i o n to the FUNARG problem
ACM SIGSAM b u l l e t i n No. 17 (1971)

10. O le-Johan Dahl e t a t .
Common Base Language
Norwegian Computing C e n t e r , O s l o , 1970

1 . R.M. B u r s t a l l e t a l .
Programming in POP-2
Ed lnburhg Un iv . P r e s s , 1971

2 . B . Wegbre i t e t a l .
ECL Programmer 's Manual
Harvard U n i v e r s i t y , Cambr idge, Mass. 1972

3. J. Reynolds
D e f i n i t i o n a l i n t e r p r e t e r s f o r h i ghe r o r d e r p rog ram
ming languages
Proceed ings of an ACM Con fe rence , Bos ton , Mass. ,1972

4. E. Sandewall
A programming t o o l f o r management of a p r e d i c a t e -
c a l c u l u s - o r i e n t e d da ta base
i n Proceed ings o f the second I n t e r n a t i o n a l j o i n t
con fe rence o n A r t i f i c i a l i n t e l l i g e n c e , B r i t i s h Com
p u t e r S o c i e t y , London, 1971

234

A r t i f i c i a l In te l l i gence
A Universal Modular ACTOR Formalism

for A r t i f i c i a l Intelligence
Carl Hewitt

Peter Bishop
Richard Steiger

Abstract
This paper proposes a modular ACTOR architecture and definit ional method for a r t i f i c i a l

intelligence that is conceptually based on a single kind of object: actors [or, if you w i l l ,
v i r tual processors, activation frames, or streams]. The formalism makes no presuppositions
about the representation of primitive data structures and control structures. Such structures
can be programmed, micro-coded, or hard wired 1n a uniform modular fashion. In fact it is
impossible to determine whether a given object is "really" represented as a l i s t , a vector, a
hash table, a function, or a process. The architecture w i l l e f f ic ient ly run the coming
generation of PLANNER-like a r t i f i c i a l intelligence languages including those requiring a high
degree of parallelism. The efficiency is gained without loss of programming generality because
it only makes certain actors more e f f ic ient ; it does not change their behavioral
characteristics. The architecture is general with respect to control structure and
does not have or need goto, interrupt, or semaphore primitives. The formalism achieves the goals that
the disallowed constructs are intended to achieve by other more structured methods.

PLANNER Progress

"Programs should not only work,
but they should appear to work as wel l . "

PDP-1X Dogma

The PLANNER project is continuing research in natural and effective means for embedding
knowledge in procedures. In the course of this work we have succeeded in unifying the
formalism around one fundamental concept: the ACTOR. Intu i t ive ly , an ACTOR is an active agent
which plays a role on cue according to a script" we" use the ACTOR metaphor to emphasize the
inseparability of control and data flow in our model. Data structures, functions, semaphores,
monitors, ports, descriptions, Quillian nets, logical formulae, numbers, ident i f iers, demons,
processes, contexts, and data bases can a l l be shown to be special cases of actors. Al l of the
above are objects with certain useful modes of behavior. Our formalism shows how al l of the
modes of behavior can be defined in terms of one kind of behavior: sending messages to actors.
An actor is always invoked uniformly in exactly the same way regardless of whether 1t behaves
as a recursive function, data structure, or process.

" I t is vain to multiply Entities beyond need."
William of Occam

"Monotheism is the Answer."
The unif ication and simplif ication of the formalisms for the procedural embedding of

knowledge has a great many benefits for us:
FOUNDATIONS: The concept puts procedural semantics [the theory of how things

operate] on a firmer basis. It w i l l now be possible to do cleaner theoretical studies of the
relation between procedural semantics and set-theoretic semantics such as model theories of
the quantificational calculus and the lambda calculus.

LOGICAL CALCULAE: A procedural semantics is developed for the quantificational
calculus. The logical constants FOR-ALL, THERE-EXISTS, AND, OR, NOT, and IMPLIES
are defined as actors.

KNOWLEDGE BASED PROGRAMMING is programming in an environment which has a
substantial knowledge base in the application area for which the programs are intended.
The actor formalism aids knowledge based programming in the following ways-. PROCEDURAL
EMBEDDING of KNOWLEDGE, TRACING BEHAVIORAL DEPENDENCIES, and SUBSTANTIATING that ACTORS
SATISFY their INTENTIONS.

INTENTIONS: Furthermore the confirmation of properties of procedures is made
easier and more uniform. Every actor has an INTENTION which checks that the prerequisites
and the context of the actor being sent the message are sat isf ied. The intention is the
CONTRACT that the actor has with the outside world. How an actor f u l l f l l l s i ts contract is
i ts own business. By a SIMPLE BUG we mean an actor which does not satisfy i ts intention.
We would l ike to eliminate simpTedebugging of actors by the META-EVALUATION of actors to show
that they satisfy their Intentions. Suppose that there is an external audience of actors E
which satisfy the intentions of the actors to which they send messages. In tu i t ive ly , the
principle of ACTOR INDUCTION states that the intentions of a l l actions caused by E are
in turn satisf ied provided that the following condition holds:

If for each actor A
the intention of A is satisf ied =>
that the intentions of a l l actors sent messages by A are sat isf ied.

Computational induction [Manna], structural induction [Bursta l l] , and Peano induction
are a l l special cases of ACTOR induction. Actor based intentions have the following
advantages: The intention is decoupled from the actors it describes. Intentions of
concurrent actions are more easily disentangled. We can more elegantly write intentions
for dialogues between actors. The intentions are written 1n the same formalism as the
procedures they describe. Thus for example intentions can have intentions. Because
protection is an intr insic property of actors, we hope to be able to deal with protection
issues in the same straight forward manner as more conventional intentions. Intentions
of data structures are handled by the same machinery as for a l l other actors.

COMPARATIVE SCHEHATOLOGY: The theory of comparative power of control structures is

235

extended and unif ied. The following hierarchy of control structures can be explicated by
incrementally Increasing the power of the message sending pr imit ive:

iterative---recursive---backtrack---+determinate- --universal
EDUCATION: The model is suf f ic ient ly natural and simple that it can be made the

conceptual basis of the model of computation for students. In particular it can be used as
the conceptual model for a generalization of Seymour Papert's " l i t t l e man" model of LOGO.
The model becomes a cooperating society of " l i t t l e men" each of whom can address others
with whom it is acquainted and pol i te ly request that some task be performed.

LEARNING and MODULARITY: Actors also enable us to teach computers more easily
because they make it possible to incrementally add knowledge to procedures without having
to rewrite a l l the knowledge which the computer already possesses. Incremental extensions
can be incorporated and interfaced in a natural f lexib le manner. Protocol abstraction
[Hewitt 1969; Hart, Nilsson, and Fixes 1972] can be generalized to actors so that
procedures with an arbitrary control structure can be abstracted.

EXTENDABILITY: The model provides for only one extension mechanism: creating
new actors. However, this mechanism is suff ic ient to obtain any semantic extension that might
be desired.

PRIVACF and PROTECTION: Actors enable us to define effective and ef f ic ient
protection schemes. Ordinary protection fa l l s out as an ef f ic ient in t r ins ic property of
actors. The protection is based on the concept of "use". Actors can be freely passed
out since they w i l l work only for actors which have the authority to use them. Mutually
suspicious "memoryless" subsystems are easily and e f f ic ient ly implemented. ACTORS are at
least as powerful a protection mechanism as domains [Schroeder, Needham, e t c .] , access
control l i s t s [MULTICS], objects [Wulf 1972], and capabil it ies [Dennis, Plummer, Lampson].
Because actors are locally computationally universal and cannot be coerced there is reason
to believe that they are a universal protection mechanism in the sense that a l l other
protection mechanisms can be ef f ic ient ly defined using actors. The most important issues
in privacy and protection that remain unsolved are those involving intent and t rust . We
are currently considering ways in which our model can be further developed to address these
problems.

SYNCHRONIZATION: It provides at least as powerful a synchronization mechanism as
the multiple semaphore P operation with no busy waiting and guaranteed f i r s t in f i r s t out
discipl ine on each resource. Synchronization actors are easier to use and substantiate
than semaphores since they are direct ly t ied to the control-data flow.

SIMULTANEOUS GOALS: The synchronization problem is actually a special case of the
simultaneous goal problem. Each resource which is seized is the achievement and
maintenance of one of a number of simultaneous goals. Recently Sussman has extended the
previous theory of goal protection by making the protection guardians into a l i s t of
predicates which must be re-evaluated every time anything changes. We have generalized
protection in our model by endowing each actor with a scheduler. We thus retain the
advantages of local intentional semantics. A scheduler actor allows us to
program EXCUSES for violat ion in case of need and to allow NEGOTIATION and re-negotiation
between the actor which seeks to seize another and i ts scheduler. Richard Waldinger has
pointed out that the task of sorting three numbers is a very elegant simple example
i l lus t ra t ing the u t i l i t y of incorporating these kinds of excuses for violating protection.

RESOURCE ALLOCATION: Each actor has a banker who can keep track of the resources
used by the actors that are financed by the banker.

STRUCTURING: The actor point of view raises some interesting questions concerning
the structure of programming.

STRUCTURED PROGRAMS: We maintain that actor communication is well-structured.
Having no goto, interrupt, semphore, etc. constructs, they do not violate "the le t ter
of the law." Some readers w i l l probably feel that some actors exhibit "undisciplined"
control flow. These distinctions can be formalized through the mathematical discipl ine
of comparative schematology [Patterson and Hewitt].

STRUCTURED PROGRAMMING: Some authors have advocated top down programming. We
f ind that our own programming style can be more accurately described as "middle out".
We typical ly start with specifications for a large task which we would l ike to program.
We refine these specifications attempting to create a program as rapidly as possible.
This i n i t i a l attempt to meet the specifications has the effect of causing us to change
the specifications in two ways:

1: More specifications [features which we or ig inal ly did not realize are
important] are added to the definit ion of the task.

2: The specifications are generalized and combined to produce a task that
is easier to implement and more suited to our real needs.
IMPLEMENTATION: Actors provide a very f lexib le implementation language. In fact

we are carrying out the implementation entirely in the formalism i t s e l f . By so doing we
obtain an implementation that is ef f ic ient and has an effective model of i t se l f . The
efficiency is gained by not having to incur the interpretive overhead of embedding the
implementation in some other formalism. The model enables the formalism to answer
questions about i t se l f and to draw conclusions as to the impact of proposed changes in the
Implementation.

ARCHITECTURE: Actors can be made the basis of the architecture of a computer which
means that a l l the benefits l is ted above can be enforced and made e f f ic ient . Programs
written for the machine are guaranteed to be syntactically properly nested. The basic unit
of execution on an actor machine is sending a message in much the same way that the basic

2 3 6

unit of execution on present day machines is an Instruction. On a current generation
machine in order to do an addition an add Instruction must be executed; so on an actor
machine a hardware actor must be sent the operands to be added. There are no goto,
semaphore, interrupt, etc. instructions on an ACTOR machine. An ACTOR machine can be bui l t
using the current hardware technology that is competitive with current generation machines.

"Now! Now!" cried the Queen. "Faster! Faster!"
Lewis Carroll

Current developments in hardware technology are making it economically attractive
to run many physical processors in paral le l . This leads to a "swarm of bees" style of
programming. The actor formalism provides a coherent method for organizing and
controll ing a l l these processors. One way to build an ACTOR machine is to put each actor
on a chip and build a decoding network so that each actor chip can address a l l the others.
In certain applications parallel processing can greatly speed up the processing. For
example with suff ic ient parallelism, garbage collection can be done 1n a time which is
proportional to the logarithm of the storage collected instead of a time proportional to
the amount of storage collected which is the best that a serial processor can do. Also the
architecture looks very promising for parallel processing In the lower levels of computer
audio and visual processing.

"Al l the world's a stage,
And a l l the men and women merely actors.
They have their exits and their entrances;
And one man in his time plays many parts."

" I f it waddles l ike a duck, quacks l i ke a duck, and otherwise behaves l ike a duck; then
you can't t e l l that it i sn ' t a duck."

Adding and Reorganizing Knowledge
Our aim is to build a firm procedural foundation for problem solving. The foundation

attempts to be a matrix in which real world problem solving knowledge can be e f f ic ient ly and
naturally embedded. We envisage knowledge being embedded in a set of knowledge boxes with
interfaces between the boxes. In constructing models we need the ab i l i t y to embed more
knowledge in the model without having to to ta l ly rewrite i t . Certain kinds of additions can be
easily encompassed by declarative formalisms such as the quantificational calculus by simply
adding more axioms. Imperative formalisms such as actors do not automatically extend so
easily. However, we are implementing mechanisms that allow a great deal of f l e x i b i l i t y in
adding new procedural knowledge. The mechanisms attempt to provide the following ab i l i t i es ;

PROCEDURAL EMBEDDING:. They provide the means by which knowledge can easily and
naturally be embedded in processes so that it w i l l be used as intended.

CONSERVATIVE EXTENSION: They enable new knowledge boxes to be added and
interfaced between knowledge "Foxes.

MODULAR CONNECTIVITY: They make it possible to reorganize the interfaces
between knowledge boxes.

MODULAR EQUIVALENCE: They guarantee that any box can be replaced by one which
satisf ies the previous interfaces.
Actors must provide interfaces so that the binding of interfaces between boxes can be

controlled by knowledge of the domain of the problem. The r ight kind of interface promotes
modularity because the procedures on the other side of the interface are not affected so long
as the conventions of the interface are not changed. These interfaces aid in debugging since
traps and checkpoints are conveniently placed there. More generally, formal conditions can be
stated for the interfaces and confirmed once and for a l l .

Unification
We claim that there is a common Intellectual core to the following (now somewhat

isolated) f ie lds that can be characterized and investigated: d ig i ta l c i rcu i t designers, data
base designers, computer architecture designers, programming language designers, computer
system architects.

"Our primary thesis is that there can and must exist a single language for
software engineering which is usable at a l l stages of design from the i n i t i a l
conception through to the f inal stage in which the last b i t 1s sol idly 1n place on
some hardware computing system."

Doug Ross
The time has come for the unif ication and integration of the f ac i l i t i e s provided by the

above designers into an inte l lectual ly coherent manageable whole. Current systems which
separate the following intel lectual capabil i t ies with arbitrary boundaries are now obsolete.

"Know thyself".
We intend that our actors should have a useful working knowledge of themselves. That i s , they
should be able to answer reasonable questions about themselves and be able to trace the
implications of proposed changes in their intentions. It might seem that having the
implementation understand i t se l f is a rather incestuous a r t i f i c i a l intelligence domain but we
believe that it is a good one for several reasons. The implementation of actors on a
conventional computer Is a re lat ively large complex useful program which is not a toy. The
implementation must adapt i t se l f to a re lat ively unfavorable environment. Creating a model of
i tse l f should aid in showing how to create useful models of other large knowledge based programs
since the implementation addresses a large number of d i f f i cu l t semantic issues. We have a
number of experts on the domain that are very interested 1n formalizing and extending their
knowledge. These experts are good programmers and have the time, motivations, and ab i l i t y to

237

embed their knowledge and intentions in the formalism.
"The road to hell is paved with good intentions."

Once the experts put in some of their intentions they f ind that they have to put in a great
deal more to convince the auditor of the consistency of their intentions and procedures. In
this way we hope to make expl ic i t a l l the behavioral assumptions that our implementation 1s
relying upon. The domain is closed 1n the "sense""that the questions that can reasonably be
asked do not lead to a vast body of other knowledge which would have to be formalized as wel l .
The domain is l imited in that 1t is possible to start with a small superficial model of actors
and build up Incrementally. Any advance is immediately useful in aiding and motivating future
advances. There 1s no hidden knowledge as the formalism is being ent irely implemented in
i t se l f . The task is not complicated by unnecessary bad software engineering practices such as
the use of gotos, interrupts, or semaphores.

Intr insic Computation
We are approaching the problem from a behavioral [procedural] as opposed to an

axiomatic approach. Our view is that objects are defined by their actors rather than by
axiomatizing the properties of the operations that can be performed on them.

"Ask not what you can do to some actor;
but what the actor can [w i l l ?] do for you."

Alan Kay has called this the INTRINSIC as opposed to the EXTRINSIC approach to defining
objects. Our model follows the following two fundamental principles of organizing behavior:

Control flow and data flow are inseparable.
Computation should be done in t r ins ica l ly instead of extr insical ly i .e. "Every

actor should act for himself or delegate the responsibi l i ty [pass the buck] to an actor
who w i l l . "

Although the fundamental principles are very general they have defini te concrete consequences.
For example they rule out the goto construct on the grounds that it does not allow a message to
be passed to the place where control is going. Thus it violates the inseparability of control
and data flow. Also the goto defines a semantic object [the code following the tag] which is
not properly syntactically delimited thus possibly leading to programs which are not properly
syntactically nested. Similarly the classical interrupt mechanism of present day machines
violates the principle of in t r ins ic computation since it wrenches control away from whatever
instruction is running when the interrupt str ikes.

Hierarchies
The model provides for the following orthogonal hierarchies:

SCHEDULING: Every actor has a scheduler which determines when the actor
actually acts after it 1s sent a message. The scheduler handles problems of
synchronization. Another job of the scheduler [Rulifson] is to t ry to cause actors to
act in an order such that their intentions w i l l be sat is f ied.

INTENTIONS: Every actor has an intention which makes certain that the
prerequisites and context of the actor being sent the message are sat isf ied.
Intentions provide a certain amount of redundancy in the specifications of what is
supposed to happen.

MONITORING: Every actor can have monitors which look over each message sent to
the actor.

BINDING: Every actor can have a procedure for looking up the values of names
that occur within 1t.

RESOURCE MANAGEMENT: Every actor has a banker which monitors the use of space
and time.

Note that every actor had all of the above ab i l i t i es and that each is done via an
actor!

"A slow sort of country!" said the Queen. "Now here, you see, it
takes a l l the running you can do, to keep in the same place. If you want
to get somewhere else, you must run at least twice as fast as that!"

Lewis Carroll
The previous sentence may worry the reader a b i t as she [he] might envisage an in f i n i t e

chain of actions [such as banking] to be necessary in order to get anything done. We short
c i rcu i t this by only requiring that it appear that each of the above act iv i t ies 1s done each
time an actor is sent a message.

"There's no use t ry ing, " she said: "one can't believe impossible
things."

"I daresay you haven't had much practice," said the Queen. "When I
was your age, I always did it for half-an-hour a day. Why, sometimes I've
believed as many as six impossible things before breakfast."

Lewis Carroll
Each of the act iv i t ies is locally defined and executed at the point of invocation.

This allows the maximum possible degree of parallelism. Our model contrasts strongly with
extr insic quantlficatlonal calculus models which are forced into global noneffective statements
1n order to characterize the semantics.

"Global state considered harmful."
We consider language def in i t ion techniques [such as those used with the Vienna

Definition Language] that require the semantics be defined in terms of the global computational
state to be harmful. Formal penalties [such as the frame problem and the def ini t ion of
simultaneity] must be paid even if the def in i t ion only effect ively modifies local parts of the
state. Local in t r ins ic models are better suited for our purposes.

238

Hardware
Procedural embedding should be carried to I ts ultimate level : the architecture of the machine.

Conceptually, the only objects in the machine are actors. In practice the machine recognizes certain
actors as special cases to save speed and storage. We can easily reserve a portion of the name space
for actors implemented in hardware.

Syntactic Sugar
"What's the good of Mercator's North Poles and Equators,
Tropics, Zones and Meridian Lines?"
So the Bellman would cry: and the crew would reply
"They are merely conventional signs!"

Lewis Carroll
Thus far 1n our discussion we have discussed the semantic issues in tu i t ive ly but vaguely.

We would now l ike to proceed with more precision. Unfortunately in order to do this it seems
necessary to introduce a formal language. The precise nature of this language 1s completely
unimportant so long as it 1s capable of expressing the semantic meanings we wish to convey. For some
years we have been constructing a series of languages to express our evolving understanding of the
above semantic issues. The latest of these is called PLANNER-73.

Meta-syntactic variables w i l l be underlined. We shall assume that the reader 1s familiar with
advanced pattern matching languages such as SN0B0L4, CONVERT, QA4, and PLANNER-71.

We shall use (%A M%) to indicate sending the message M to the actor A. We shall use
[s1 s2 . . . sn] to denote the f i n i t e sequence s1, s2_, . . . sn. ft sequence s is an actor where (%s_ i%)
is element i of the sequence s. For example (%[a c b] 2%) is c. We w i l l use () to delimit the
simultaneous synchronous transmission of more than one message so that (Al A2...An) w i l l be
defined to be (%A1 [A2 . . . An]%). The expression [%a1 a2 . . . an%] (read as ""a] then a2 . . . f i na l l y
send back an") willI be evaluated by evaluating a l , a2, and an in sequence and then sending back
["returning"] the value of an as the message.

Identi f iers can be created by the prefix operator =. For example if the pattern = x 1s matched
with y, then a new ident i f ier is created and bound to v.

"But 'glory' doesn't mean 'a nice knock-down argument," Alice
objected.

"When I use a word," Humpty Dumpty said, in rather a scornful tone,
" i t means just what I choose 1t to mean—neither more nor less."

"The question i s , " said Al ice, "whether you can make words mean so
many dif ferent things."

"The question i s , " said Humpty Dumpty, "which is to be master--
that's a l l . "

Lewis Carroll
Humpty Dumpty propounds two cr i ter ia on the rules for names:

Each actor has complete control over the names he uses.
Al l other actors must respect the meaning that an actor has chosen for a name.

We are encouraged to note that in addition to satisfying the cr i ter ia of Humpty Dumpty, our names also
satisfy those subsequently proposed by B i l l Wulf and Mary Shaw: The default is not necessarily to
extend the scope of a name to any other actor. The r ight to access a name is by mutual agreement
between the creating actor and each accessing actor. An access r ight to an actor and one of i t s acquan-
tances is decoupled. It is possible to distinguish dif ferent types of access. The def ini t ion of a
name, access to a name, and allocation of storage are decoupled. The use of the prefix = does not imply
the allocation of any storage.

One of the simplest kinds of ACTORS is a c e l l . A cell with i n i t i a l contents V can be created
by evaluating (cel l V_). Given a cell x, we can ask it to send back its contents by evaluating
(contents xj which is an abbreviation for (x #contents). For example (contents(cell 3)) evaluates to 3.
We can ask it to change its contents to v by evaluating (x-y_). For example if we le t x be (cel l 3) and
evaluate (x--4), we w i l l subsequently find" that (contents x) w i l l evaluate to 4.

The pattern (by-reference P) matches object E_ 1f the pattern Pmatches (cel l E) i .e. a " ce l l "
[see below] which contains E. Thus matching the pattern (by-reference =x) against E 1s the same as
binding x to (cel l E) i .e . a new cell which contains the value of the expression E.We shall use =>
[read as "RECEIVE MESSAGE"] to mean an actor which is reminiscent of the actor LAMBDA in the lambda
calculus. For example (=> x body) 1s l ike (LAMBDA x body) where x 1s an ident i f ie r . An expression
(=> pattern body) is an abbreviation for (receive {[#message pattern]} body) where receive 1s a more
general actor that is capable of binding elements of the action in addition to the message.
Evaluating

(%(=> pattern body) the-messaqe%), i .e . sending
(=> pattern body) the-message, w i l l attempt to match the-message against pattern. If the-message

is not of the form specified by pattern, then the actor is NOT APPLICABLE to the-message. If the-message
matches pattern, then body 1s evaluated.

Evaluating (%(cases [f1 f2 ••• fn]) arg%) w i l l send fl_ the message arg and if it is not applicable
then it w i l l send f2 the message a r g , . . . , and send fn the message aro

The following abbreviations w i l l be used to improve readabil i ty:
(rules object clauses) for

((cases clauses)object)
(l e t object pattern-for-message body) for

(%(=> pattern-for-message body) objects)

239

message mechanisms of the current SMALL TALK machine of Alan Kay and the port mechanism of
Krutat and Balzer. Being free of side effects allows us a maximum of parallelism and allows an
actor to be engaged in several conversations at the same time without becoming confused.

4: Sending a message to an actor makes no presupposition that the actor sent the
message w i l l ever send back a message to the continuation. The unidirectional nature of
sending messages enables us to define i te ra t ion, monitors, coroutines, etc.straight forwardly,

5: The ACTOR model is nojt an [environment-pointer, instruction-pointer] model such as
the CONTOUR model. A'continuation is a f u l l blown actor [with a l l the rights and pr iv i leges];
it is not a program counter. There are no instructions [in the sense of present day machines]
in our model. Instead of instructions, an actor machine has certain primitive actors bu i l t in
hardware.

Logic
" I t is behavior, not meaning, that counts."

We would l ike to show how actors represent formulas in the quantificational calculus
and how the rules of natural deduction follow as special cases from the mechanism of extension
worlds. We assume the existence of a function ANONYMOUS which generates a new name which has
never before been encountered. Consider a formula of the form (every phi) which means that for
every x we have that (phi x) is the case. The formula has two important uses: it can be
asserted and it can be proved. We shall use an actor >=> [read as "ACCEPT REQUEST"] with the
syntax

(>=> pattern-for-request body) for procedures to be invoked by pattern directed
invocation by a command which matches pattern-for-request.

Our behavioral definit ions are reminiscent of classical natural deduction except that
we have four introduction and elimination rules [PROVE, DISPROVE, ASSERT, and DENY] to give us
more f l e x i b i l i t y in dealing with negation.

"Then Logic would take you by the throat, and force you to do i t ! "
Lewis Carroll

Data Bases
Data bases are actors which organize a set of actors for ef f ic ient ret r ieval . There

are two primitive operations on data bases: PUT and GET. A new virgin data base can be
created by evaluating (v i rg in) . If we evaluate (w +■ (virgin)) then (contents w) w i l l be a
virgin world. We can put an actor (at John airport) in the world (contents w) by evaluating
(put(at John airport) {[#world{contents w)]>). We could add further knowledge by evaluating

(put (at airport Boston) {[#world (contents w)]]) to record that the airport is at
Boston.
(put {c i ty Boston) {[#world (contents w)])) to record that Boston is a c i t y .

If the constructor EXTENSION is passed a message then it w i l l create a world which is an
extension of i t s message. Eor example
(put

[(on John (f l i gh t 34))
(extension-world ■*- (contents w))])

w i l l set extension-world to a new world in which we have supposed that John is on f l i gh t #34.
The world (contents w) is unaffected by this operation. On the other hand the extension world
is affected if we do (put [(hungry John) (contents w)]). Extension worlds are very good for
modeling the following:

WORLD DIRECTED INVOCATION
The extension world machinery provides a very powerful invocation and parameter

passing mechanism for procedures. The idea is that to invoke a procedure, f i r s t grow an
extension world; then do a world directed invocation on the extension world. This
mechanism generalizes the previous pattern directed invocation of PLANNER-67 several ways.
Pattern directed invocation is a special case in which there is just one assertion in the
wish world. World Directed Invocation represents a formalization of the useful problem
solving technique known as "wishful thinking" which is invocation on the basis of a
fragment of a micro-world. Terry Winograd uses restr ict ion l i s t s for the same purpose in
his thesis version of the blocks world. Suppose that we want to find a bridge with a red
top which is supported by i ts le f t - leg and i ts r ight-leg both of which are of the same
color. In order to accomplish this we can call upon a genie with our wish as i t s message.
The genie uses whatever domain dependent knowledge it has to t ry to realize the wish.
(realize

(utopia
(top le f t - leg r ight- leg color-of-legs}

;"the variables in the uptopia are l isted above"
{

(color top red)
(supported-by top le f t - leg)
'supported-by top r ight- leg)
; ie f t -o f le f t - leg r ight- leg)
[color le f t - leg color-of-legs)
kcolor le f t - leg color-of- legs)}))

LOGICAL HYPOTHETICALS are logical ly possible alternatives to a world.
By the Normalization Theorem for in tu i t ion is t ic logic our actor def ini t ion of the

logical constant IMPLIES is suff ic ient to mechanize logical implication. The rules of
natural deduction are a special case of our rules for extension worlds and our procedural
def in i t ion of the logical connectives.

ALTERNATIVE WORLDS are physically possible alternatives to a world.
PERCEPTUAL VIEWPOINTS can be mechanized as extension worlds. For example suppose

241

ra t t le- t rap is the name of a world which describes my car. Then (front rat t le- t rap) could
be a world which describes my car from the front and (le f t rat t le- t rap) can be the
description from the l e f t side. We can also consider a future historian's view of the
present by (vlew-from-1984 world-of-1972). Mlnsky [1973] considers these possibi l i t ies from
a somewhat different point of view.

The following general principles hold for the use of extension worlds:
Each independent fact should be a separate assertion. For example to record that

"the banana banl is under the table tab l " we would assert:
(banana banl)
table tabl)
under banl tabl)

instead of conglomerating [McDermott 1973] them Into one assertion:
(at

(the banl (1s banl banana))
(place

(the tabl (is tabl table))
under))

A person knowing a statement can be analyzed into the person believing the statement and
the statement being true. So we might make the following def in i t ion of knowing:

[know <=
(=> [= person = statement]

(and
(believes person statement)
(true statement)))]

Thus the statement [Moore 1973] "John knows B i l l ' s phone number" can be represented by the
assertion:

(knows John (phone-number B i l l pn0005))
where pn0005 is a new name and (phone-number B i l l pn0005) is Intended to mean that the
phone number of B i l l 1s pn0005. The assertion can be expanded as follows:

(believes John (phone-number B i l l pn0005))
(true (phone-number B i l l pn0005))

However the expansion is optional since the two assertions are not independent of the
original assertion.

"Whatever Logic is good enough to te l l me Is worth writ ing down," said
the Tortoise. "So enter it in your book, please."

Lewis Carroll
Each assertion should have just i f icat ions[derivat ions] which are also assertions

and which therefore . . .
Extraneous factors such as time and causality should not_ be conglomerated

[McDermott 1973] into the extension world mechanism. Facts about time and causality should
also be separate assertions. In this way we can deal more naturally and uniformly with
questions involving more than one time. For example we can answer the question "How many
times were there at most two cannibals in the boat while the missionaries and cannibals
were crossing the r iver?" Also we can check the consistency of two dif ferent narratives of
overlapping events such as might be generated by two people who attended the same party.
Retreival of actors from data bases takes facts about time and causality into account 1n
the re t re iva l . Thus we s t i l l effectively avoid most of the frame problem of McCarthy. The
ab i l i t y to do this is enhanced by the way we define data bases as actors.

A CONTEXT mechanism was invented for QA4 to generalize the property l i s t structure of
LISP. Rulifson explained 1t by means of examples of I ts use to mechanize ident i f ie rs . By use
of the functions PUSH-CONTEXT and POPJONTEXT and an EPAM discrimination net [Feigenbaum and
Simon] the context mechanism can be used to mechanize a version of tree-structured worlds, The
tree-structured worlds of PLANNER-71 were Invented to get around the problem of having only one
global data base not realizing that a context mechanism could be used to implement something
l ike that. The tree-structured worlds were defined direct ly in terms of the hash-coding
mechanism of PLANNER which had the advantage of decoupling them from the ident i f ier structure
of PLANNER. In addition by not conceiving an extension world analogue of P0P_C0NTEXT large
gains in efficiency over the context mechanism are possible.

Worlds can ask the actors put In them to index themselves for rapid retreival.We also
need to be able to retrieve actors from worlds. Simple retrieval can be done using patterns.
For example
(locations +■ (get (at (?) (?)){[#world (contents w)]}))
w i l l set locations to an actor which w i l l retrieve a l l the actors stored in (contents w) which
match the pattern (at (?) {?)) . Now (next locations) w i l l thus retrieve either (at airport
Boston) or (at John a i rpor t) . Actually* the above 1s an over simpl i f icat ion. We shall le t
$real1ty stand for the current world at any given point and $utopia stand for the world as we
would l ike to see 1t. We do not want to have to expl ic i ty store every piece of knowledge
which we have but would l ike to beable to derive conclusions from what is already known: We
can distinguish several different classes of procedures for deriving conclusions.

"McCarthy 1s at the a i rpor t . " (put (at McCarthy airport)) If a person 1s at the
a i rpor t , then the person might take a plane from the airport ,

[put-at <»
(>«> (put (at = person airport))

(put (might (take-plane-from person a i rpor t))))]
"McCarthy 1s not at the a i rpor t . " (deny (at McCarthy a i rport)) If a person Is not at

th airport then he can't take a plane from the ai rport .

242

243

"McCarthy is not at the airport . " (deny (at McCarthy airport)) If a person is not at
the airport then he can't take a plane from the airport .

[deny-at<=
(>=> (deny (at =person airport))

(put (can't (take—plane—from person airport))))]

" I t is not known whether McCarthy is at the airport , " (erase (at McCarthy airport)) If
it is not known whether a person is at the airport then erase whatever depends on previous
knowledge that the person is at the airport,

[erase-at <=
(>=> (erase (at -person airport))

(f ind (depends—on =s (at person airport))
(erase s)))]

"Get McCarthy to the airport ." (achieve {(at McCarthy airport)}) To achieve a person at
a place:

Find the present location of the person.
Show that it is walkable from the present location to the car.
Show that 1t is drivable from the car to the place,

[achieve-at <=
(>=> (achieve [(at =person =place)])

(achieve
(f ind [(at person -present-location)]

(show {(walkable present-location car)}
(show {(drivable car p lace)})))))]

"Show that McCarthy is at the a i rpor t . " (show {(at McCarthy airport)}) To show that a
thing is at a place show that the thing is at some intermediate and the intermediate is at the
place.

[show-at <=
(>=> (show {(at =th1ng =place)})

(show {(at thing 'intermediate)}
(show {(at intermediate place)})))]

The actor show-at is simply t rans i t i v i t y of at.
l ! Anything Really Better

Than Anything Else?
CONNIVER can easily be defined TrTTerms of P L A W R - 7 3 . We do this not because we

believe that the procedures of CONNIVER are part icularly well designed. Indeed we have given
reasons above why these procedures are deficient. Rather we formally define these procedures
to show how our model applies even to rather baroque control structures.

CONNIVER is essentially the conglomeration of the following ideas: Landin's non-
hierarchical goto-71, the pattern directed construction, matching, re t r ieva l , and invocation of
PLANNER, Landin's streams, the context mechanism of QAA, and Balzer's and Krutar's ports.

In most cases, two procedures in CONNIVER do not talk direct ly to each other but
instead are required to communicate through an intermediary which is called a possibi l i t ies l i s t .
The concept of a POSSIBILITIES LIST is the major original contribution of CONNIVER.

"What are these
So wild and withered in their a t t i r e ,
That look not l i ke the inhabitants

0' the earth,
and yet are on't?"

Macbeth: Act 1, Scene 111
Substitution, Reduction, and Meta-evaluation

"One program's constant is another program's variable."
Alan Perils

"Programming [or problem solving in general] is the judicious postponement of
decisions and commitments!"

Edsger W. Dijkstra [1969]
"Programming languages should be designed to suppress what is constant and
emphasize what is variable."

Alan Perlis
"Each constant wi l l eventually be a variable!"

Corollary to Murphy's Law
We never do unsubstitution [or if you wish decompilation, unsimpllfication, or

unevaluation]. We always save the higher level language and resubstltute. The metaphor of
substitution followed by reduction gives us a macroscopic view of a large number of
computational ac t i v i t i es . We hope to show more precisely how a l l the following act iv i t ies f i t
within the general scheme of substitution followed by reduction:

EVALUATION [Church, McCarthy, Lnadin] can be done by substituting the message
into the code and reducing [execution].

DEDUCTION [Herbrand, Godel, Heyting. Prawltz, Robinson, Hewitt, Weyhrauch and
Milner] can be done by procedural embedding. In this paper we have extended our
previous work by defining the logical constants to be certain actors thus providing a
procedural semantics for the quantlficational calculus along the lines indicated by
natural deduction.

CONFIRMING the CONSISTENCY of ACTORS and their INTENTIONS [Naur, Floyd, Hewitt

1971, Waldlnger, Deutsch] can be done by substituting the code for the actors Into
their intentions and then meta-evaluating the code.

AUTOMATIC ACTOR GENERATION. An important corollary of the Thesis of Procedural
Embedding is that the Fundamental Technique of A r t i f i c i a l Intelligence is automatic
programming and procedural knowledge base construction. It can be done by the
following' "methods:

PARAMETERIZATION [Church, McCarthy, Landin, Mcintosh, Manna and
Waldinger, Hewitt] of canned procedure templates.

COMPILATION [Lombardi, Elcock, Fikes, Daniels, Wulff, Reynolds, and
Wegbreit] can be done by substituting the values of the free variables in the
code and then reducing [optimizing]. For examples we can enhance the behavior
of the l i s t s which were behaviorally defined above to vectors which w i l l run
more e f f ic ient ly on current generation machines.

ABSTRACT IMPOSSIBILITIES REMOVAL can be done by binding the
alternatives with the code and deleting those which can never succeed, What we
have in mind are situations such as having simultaneous subgoals (on a b) and
(on b c) where we can show by meta-evaluation that the order given above can
never succeed. Gerry Sussman has designed a program which attempts to abstract
this fact from running on concrete examples. We believe that in this case and
many others it can be abstractly derived by meta-evaluation.

EXAMPLE EXPANSION [Hart, Nilsson, and Fikes 1971; Sussman 1972; Hewitt
1971] can be done by binding the high level goal oriented language to an
example problem and then reducing [executing and expanding to the paths executed]
using world directed invocation [or some generalization] to create linkages
between the variablized special cases.

PROTOCOL ABSTRACTION [Hewitt 1969, 1971] can be done by binding
together the protocols, reducing the resulting protocol tree by identifying
indistinguishable nodes.

ABSTRACT CASE GENERATION to distinguish the methods to achieve a goal
can be done by determining the necessary pre-conditions for each method by
reducing to a decision tree which distinguishes each method.

Acknowledgements
"Everything of importance has been said before by somebody who did not
discover i t . "

Alfred North Whitehead

This research was sponsored by the MIT A r t i f i c i a l Intelligence Laboratory and Project
MAC under a contract from the Office of Naval Research. We would be very appreciative of any
comments, cr i t ic isms, or suggestions that the reader might care to offer. Please address them
to:

Carl Hewitt
Room 813
545 Technology Square
M.I.T. A r t i f i c i a l Intelligence Laboratory
Cambridge, Massachusetts 02139

The topics discussed in this paper have been under intense investigation by a large
number of researchers for a decade. In this paper we have merely attempted to construct a
coherent manageable formalism that embraces the ideas that are currently "in the a i r " .

We would l ike to acknowledge the help of the following colleagues: B i l l Gosper who
knew the truth a l l along: "A data structure is nothing but a stupid programming language."
Alan Kay whose FLEX and SMALL TALK machines have influenced our work. Alan emphasized the
crucial importance of using intentional definit ions of data structures and of passing messages
to them. This paper explores the consequences of generalizing the message mechanism of SMALL
TALK and SIMULA-67; the port mechanism of Krutar, Balzer, and Mitchel l ; and the previous CALL
statement of PLANNER-71 to a universal communications mechanism. Alan has been extremely
helpful in discussions both of overall philosophy and technical detai ls. Nick Pippenger for
his very beautiful ITERATE statememt and for helping us to f ind a fast economical decoding net
for our ACTOR machine. John McCarthy for making the f i r s t circular def ini t ion of an effective
problem solving formalism and for emphasizing the importance of the epistemological problem for
a r t i f i c i a l intel l igence. Seymour Papert for his " l i t t l e man" metaphor for computation. Allen
Newell whose kernel approach to building software systems has here perhaps been carried to near
i t s ultimate extreme along one dimension. David Marr whose penetrating questions led us to
further discoveries. Rudy Krutar, Bob Balzer, and Jim Mitchell who introduced the notion of a
PORT which we have generalized into an ACTOR. Robin Milner is tackling the problems of L-
values and processes from the point of view of the lambda calculus. He has enphasized the
practical as well as the theoretical implications of fixed point operators. Robin's puzzlement
over the meaning of "equality" for processes led to our def ini t ion of behavior. Edsger Dijkstra
for a pleasant afternoon discussion. Jim Mitchell has patiently explained the systems
implementation language MPS. Jeff Rulifson, Bruce Anderson, Gregg Pf ister, and Julian Davies
showed us how to clean up and generalize certain aspects of PLANNER-71. Peter Landin and John
Reynolds for emphasizing the importance of continuations for defining control structures.
Warren Teitleman who cleaned up and generalized the means of integrating editors and debuggers
in higher level languages. Peter Landin, Arthur Evans, and John Reynolds for emphasizing the
importance of "functional" data structures. Danny Bobrow and Ben Wegbreit who originated an
implementation method that cuts down on some of the overhead. We have simplif ied their scheme

244

by eliminating the reference counts and a l l of their primitives, c. A. R. Hoare 1s Independently
Investigating "monitors" for data structures. Jack Dennis for sharing many of our same goals in his
COMMON BASE LANGUAGE and for his emphasis on logical c la r i t y of language def ini t ion and the importance of
parallelism. B i l l Wulff for our " . " notation on the conventions of the values of cells and for being a
strong advocate of exceptional cleanliness in language. Pi t ts Jarvis and Richard Greenblatt have given us
valuable help and advice on systems aspects. Todd Matson, Brian Smith, Irene Grief, and Henry Baker are
aiding us 1n the implementation. Chris Reeve» Bruce Daniels, Terry Winograd, Jerry Sussman, Gene Charniak,
Gordon Benedict, Gary Peskin, and Drew McDermott for implementing previous generations of these ideas in
addition to their own. J.C.R. Licklider for emphasizing the importance of mediating procedure cal ls . Butler
Lampson for the notion of a banker and for the question which led to our c r i te r ia for separating an actor
from i ts base. Richard Weyhrauch for pointing out that logicians are also considering the possibi l i ty of
procedural semantics for logic. He is doing some very interesting research in the much abused f ie ld of
"computational logic." Terry Winograd, Donald Eastlake, Bob Frankston, Jerry Sussman, Ira Goldstein, and
others who made valuable suggestions at a seminar which we gave at M.l.T. John Shockley for helping us to
eradicate an Infestation of bugs from this document. Greg Pf is ter , Bruce Daniels, Seymour Papert, Bruce
Anderson, Andee Rubin, Allen Brown, Terry Winograd, Dave Waltz, Nick Horn, Ken Harrenstien, David Marr,
El l is Cohen, Ira Goldstein, Steve Z i l les , Roger Hale, and Richard Howell made valuable comments and suggestions
on previous versions of this paper.

Bibliography
Balzer, R.M., "Ports—A Method for Dynamic Interprogram Communication and Job Control"The Rand Corp., 1971.
Bishop, Peter, "Data Types for Programming Generality"M.S. June 1972. M.l.T.
Bobrow D., and Wegbreit Ben. "A Model and Stack Implementation of Multiple Environments." March 1973.
Davies, D.J.M. "POPLER: A P0P-2PLANNER" MIP-89. School of A . I . University of Edinburgh.
Deutsch L.P. "An Interactive Program Verif ier" Phd. University of California at Berkeley. June, 1973

Forthcoming.
Earley, Jay. "Toward an Understanding of Data Structures" Computer Science Department, University

of Cali fornia, Berkeley.
Elcock, E.W.; Foster, J.M.; Gray, P.M.D.; McGregor, H.H.; and Murray A.M. Abset, a Programming

Language Based on Sets: Motivation and Examples. Machine Intelligence 6. Edinburgh, University Press.
Fisher. D.A. "Control Structures for Programming Languages" Phd. Carnegie. 1970
Gentzen G. "Collected Papers of Gerhard Gentzen".North Holland. 1969.
Greif l.G. "Induction in Proofs about Programs" Project MAC Technical Report 93. Feb. 1972.
Hewitt, C. and Patterson M. "Comparative Schematology" Record of Project MAC Conference on Concurrent

Systems and Parallel Computation. June 2-5, 1970. Available from ACM.
Hewitt, C., Bishop P., and Steiger R. "The Democratic Ethos or 'How a Society of Noncoercable ACTORS

can be Incorporated into a Structured System'" SIGPLAN-SIGOPS Interface Meeting, Savannah, Georgia. Ap r i l , 1973.
Hewitt, C, and Gre i f , I . "Actor Induction and Meta-Evaluation"ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages. Boston, Mass- Oct, 1973. Forthcoming.
Hoare, C.A.R. "An Axiomatic Definition of the Programming Language PASCAL" Feb. 1972.
Kay, Alan C. Private Communication.
Krutar, R. "Conversational Systems Programming (or Program Plagiarism made Easy)" First USA-Japan

Computer Conference. October 1972,
Lampson, B. "An Overview of CAL-TSS". Computer Center, University of Cali fornia, Berkeley.
Liskov, B.H. "A Design Methodology for Reliable Software Systems" The Last FJCC. Dec.1972. Pt. 1, 191-199.
McDermott D.V. "Assimilation of New Information by a Natural Language-Understanding System" M.S. MIT.

Forthcoming 1973.
McDermott, D.V. and Sussman G.J. "The Conniver Reference Manual" A . I . Memo no. 259. 1972.
Milner, R. Private Communication.
Minsky, Marvin. "Frame-Systems: A Theory for Representation of Knowledge" Forthcoming 1973.
Mitchel l , J.G. "A Unified Sequential Control Structure Model" NIC 16816. Forthcoming.
Newell, A. "Some Problems of Basic Organization in Problem-Solving Programs." Self-Organizing Systems. 1962.
Papert S. and Solomon C. "NIM: A Game-Playing Program" A . I . Memo no. 254.
Reynolds, J.C. "Definitional Interpreters for Higher-Order Programming Languages" Proceedings of ACM

National Convention 1972.
Rulifson Johns F., Derksen J.A., and Waldinger R.J. "QA4: A Procedural Calculus for Intu i t ive Reasoning"

Phd. Stanford. November 1972.
Scott, D. "Data Types as Lattices" Notes. Amsterdam, June 1972.
Steiger, R. "Actors". M.S. 1973. Forthcoming.
Sussman, G.J. "Teaching of Procedures-Progress Report" Oct. 1972. A . I . Memo no. 270.
Waldinger R. Private Communication.
Wang A. and Dahl 0. "Coroutine Sequencing in a Block Structured Environment" BIT 11 425-449.
Weyhrauch, R. and Milner R. "Programming Semantics and Correctness in a Mechanized Logic." First USA-Japan

Computer Conference. October 1972.
Winograd, T. "Procedures as a Representation for Data 1n a Computer Program for Understanding Natural

Language" MAC TR-B4. February 1971.
W1rth, N. "How to Live without Interrupts" or some such. Vol. 1? No. 9, pp. 489-498.
Wulf W. and Shaw M. "Global Variable Considered Harmful" Carnegie-Mellon University. Pittsburgh, Pa.

SIGPLAN Bul let in. 1973.

245

Session 8 Formalisms for
A r t i f i c i a l Intelligence

A MODEL FOR CONTROL STRUCTURES
FOR ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

by

Daniel G. Bobrow
Computer Science Division

Xerox Palo Alto Research Center
Palo Al to , California 94304

Ben Wegbreit
Harvard University

Center for Research in Computing Technology
Cambridge, Massachusetts 02138

Abstract

Newer programming languages for ar t i f ic ia l inte l
ligence extend the class of available control regimes
beyond simple hierarchical control. In so doing, a key
issue is using a model that clearly exhibits the relation
between modules, processes, access environments,
and control environments. This paper presents a
model which is applicable to diverse languages and
presents a set of control pr imit ives which provide a
concise basis on which one can define almost a l l known
regimes of control.

1. Introduction

Newer programming languages! for ar t i f ic ia l
intelligence (e . g . , PLANNER9^ CONNIVER,18 BBN-
LlSP.ly QA4.1 ' 1 extend the nature of control regimes
available to the user. In this paper, we present an
information structure model20 which deals with control
and access contexts in a programming language; it is
based on consideration of the form of run-t ime data
structures which represent program control and v a r i
able bindings. The model is designed to help clar i fy
some relationships of hierarchical function cal ls,
backtracking, co-routines, and multiprocess structure.
We present the model and its small set of pr imi t ive
operations, then define several control regimes in
terms of the pr imi t ives, and then consider extensions
to handle cooperating sequential processes.

2. The Basic Environment Structure

In a language which has blocks and procedures,
new nomenclature (named variables) can be introduced
either by declarations in block heads or through named
parameters to procedures. Since both define access
environments, we call the body of a procedure or block
a uniform access module. Upon entry to an access
module, certain storage is allocated for those new
named items which are defined at entry. We call this
named allocated storage the basic frame of the module.
In addition, certain additional storage for the module
may be required for temporary intermediate results of
computation; this additional allocated storage we call
the frame extension. The total storage is called the
total frame for the module, or usually just the module
frame.

A" frame contains other information, in addition to
named variables and temporaries. It is often useful to
reference a frame by symbolic nomenclature. For this
purpose, each frame has a framename (usually the pro
cedure name). When a module is entered, its frame
extension is init ial ized with two pointers (perhaps i m
pl ic i t ly) ; one, called A LINK, is a linked access
pointer to the frame(s) which contains the higher level
free variable and parameter bindings accessible within

this module. The other, called CLINK, is associated
with control and is a generalized return which points to
the calling frame. In Algol , these are called the static
and dynamic l inks, respectively. In L I S p H the two
pointers usually reference the same f rame, since bind
ings for variables free in a module are found by
tracing up the call structure chain. (An exception is
the use of functional arguments, and we i l lustrate that
below.)

At the t ime of a call (entry to a lower module), the
caller stores in his frame extension a continuation
point for the computation. Since the continuation point
is stored in the caller, the generalized return is
simply a pointer to the last active frame.

The size of a basic frame is fixed on module entry.
It is just large enough to store the parameters and
associated information. However, during one function
activation, the required size of the frame extension
can vary widely (with a computable maximum), since
the amount of temporary storage used by this module
before calling different lower modules is quite v a r i
able. Therefore, the allocation of these two frame
segments may sometimes (advantageously) be done
separately and n on contiguously. This requires a link
(BLINK) f rom the frame extension to the basic frame
which contains the bindings.

When a frame is exited, either by a normal exit
or by a non-local goto which skips the frame (e. g. , an
e r ro r condition), it is often useful to perform clean-up
action for the frame. Examples include: close f i les
opened by the frame which are no longer needed,
restore the state of more global structures which have
been temporar i ly modified by the f rame, etc. T e r m i
nal action for a frame is carried out by executing an
exit function for the f rame, passing it as argument the
nominal value which the frame is returning as its
result; the value returned by the exit function is the
actual value of the frame. The variable values and the
exit function are the only components of the frame
which can be updated by the user; a l l the others are
fixed at the t ime of frame allocation. Figure 1 sum
marizes the contents of the frame.

Figure 2a shows a sketch of an algorithm pro
grammed in a block structure language such as Algol
60 with contourslO drawn around access modules. Bl
has locals N and P, P has parameter N, and B3 locals
Q and L. Figure 2b is a snapshot of the environment
structure after the following sequence: Bl is entered;
P is called (just above P I , the program continuation
point after this outer call); B3 is entered; and F is
called f rom within B3. For each access module there
are two separate segments — one for the basic frame
(denoted by the module name) and one for the frame
extension (denoted by the module name*). Note that
the sequence of access l inks (shown with dotted lines)
goes direct ly from P to B l * and is different f rom the
control chain of calls. However, each points higher

246

(e a r l i e r) on the s tack.
A point to note about an access module is that i t

has no knowledge of any modu le below i t . I f an a p p r o
p r ia te value (i . e . , one whose type agrees w i t h the
s to red r e t u r n type) i s p rov ided , cont inuat ion in that
access module can be achieved w i t h only a po in te r to
the cont inued f r a m e . No i n f o rma t i on s tored outside
th i s f r a m e i s necessary .

F i g u r e 3 shows two examples in which mo re than
one independent env i ronment s t r uc tu re is ma in ta ined.
In F i g u r e 3a, two corout ines are shown which share
common access and con t ro l env i ronment A. Note that
the f r a m e extension of A has been copied so that
r e t u r n s f r o m B and Q may go to d i f fe ren t cont inuat ion
po in ts . Th i s is a key point in the mode l ; whenever a
f r a m e extension i s r equ i red f o r con f l i c t i ng purposes ,
a copy is made. Since f r a m e A is used by two p r o
cesses , i f e i ther corout ine were de le ted , the bas ic
f r a m e f o r A should not be de le ted. However , one
f r a m e extension A* could be deleted in that case, s ince
f r a m e extensions a re never re ferenced d i r e c t l y by
m o r e than one p rocess . Since the basic f r ame A is
sha red , e i the r process can update the var iab le b i n d
ings in i t ; such changes a re seen both by B and Q, In
F i g u r e 3b, corout ine Q is shown ca l l i ng a funct ion D
w i t h ex te rna l access chain th rough B, but w i th con t ro l
to r e t u r n to Q.

3 . P r i m i t i v e Funct ions

In th is mode l f o r access module ac t i va t i on , each
f r a m e is genera l l y re leased upon ex i t o f that modu le .
Only i f a f r a m e is s t i l l re fe renced is i t re ta ined . A l l
non-chained re fe rences to a f r a m e (and to the e n v i r o n
ment s t r u c t u r e i t heads) a re made through a spec ia l
p ro tec ted data type ca l led an env i ronment d e s c r i p t o r ,
abbrev ia ted ed. The heads of a l l env i ronment chains
a re re fe renced only f r o m th i s space o f d e s c r i p t o r s .
(The one except ion is the i m p l i c i t ed f o r the c u r r e n t l y
act ive p rocess .) The p r i m i t i v e funct ions create an ed
f o r a spec i f ied f r ame and update the contents of an ed;
create a new f r ame w i t h spec i f ied contents, and a l low
execut ion of a computat ion in that context; and access
and update the exi t funct ion f o r a f r a m e . Note that
none of the p r i m i t i v e s manipu la te the l inks of ex is t ing
f r a m e s ; t h e r e f o r e , only w e l l - f o r m e d f r ame chains
ex i s t (i . e . , n o r i n g s t r u c t u r e s) .

1) envi ron(pos) — creates an env i ronment d e s c r i p t o r
f o r the f r a m e speci f ied by pos.

2) setenv(olded, pos) -- changes the contents of an
ex is t ing env i ronment d e s c r i p t o r olded to point to
the f r a m e speci f ied by pos. As a s ide e f fec t , i t
re leases storage re fe renced only through prev ious
contents of o lded.

3) mk f rame(epos ,apos , epos,bpos,bcopf lg) - - creates
a new f r a m e and re tu rns an ed f o r that f r a m e . The
f r a m e extension i s copied f r o m the f r ame spec i f ied
by epos, and the A L I N K and C L I N K are speci f ied
by apos and epos, r espec t i ve l y . The B L I N K points
to the bas ic f r a m e spec i f i ed by bpos , or to a copy
o f the bas ic f r a m e i f bcop f l g=TRUE. In use , a r g u
ments may be om i t t ed ; bcopf lg is defaulted to
F A L S E ; apos, bpos and epos a re defaulted to the
cor respond ing f i e l ds of the f r a m e speci f ied by epos.
Thus mk f rame(epos) creates a new f r ame extension
iden t i ca l to that spec i f ied by epos.

4) enveva l (fo r rA ,apos ,cpos) — creates a new f r a m e
and i n i t i a tes a computat ion w i t h th i s env i ronment
s t r u c t u r e . A L I N K and C L I N K point to f r a m e s
spec i f ied by apos and epos, respec t i ve l y ; and f o r m
spec i f ies the code to be executed, or the ex
p ress ion to be evaluated in th is new env i ronment .
I f apos or cpos a r e o m i t t e d , they are defaulted to
the A L I N K or C L I N K of th i s invocat ion o f enveva l .
T h u s , enveva l (fo rm) is the usual ca l l to an

i n t e r p r e t e r , and has the same effect as i f the value of
f o r m had appeared in place of the s imp le ca l l to
enveva l .

5) setexfn(pos, fn) — places a po in te r to a use r def ined
funct ion in the ex i t fn f i e ld of the f rame pos. I f the
sys tem is us ing the e x i t f n , th i s w i l l c rea te a new
funct ion which is the composi t ion of the use r
func t ion (appl ied f i r s t) and the sys tem func t ion . On
f r a m e ex i t , the ex i t fn w i l l be cal led w i t h one a r g u
men t , the value re tu rned by the f r ame code; the
value re turned by fn w i l l be the actual value r e
tu rned to the f r a m e spec i f ied by C L I N K .

6) getexfn(pos) — gets the use r set funct ion s tored in
ex i t fn of f r ame pos. Returns N I L i f none has been
e x p l i c i t l y s to red the re .

7) f ramenm(pos) - - r e tu rns the f ramename of f r a m e
pos.

A f r a m e spec i f i ca t ion (i . e . , pos, apos, bpos, epos,
epos above} is one of the fo l l ow ing :

1 . An in teger N:
a. N=0 speci f ies the f r a m e al located on ac t i va t ion

of the funct ion e n v i r o n , setenv, e tc . In the case
of env i ron , setenv and m k f r a m e , the con t inu
at ion point is set up so that a value re tu rned to
th is f r ame (using enveval) is re turned as a
value o f the o r i g i n a l ca l l to e n v i r o n , setenv o r
m k f r a m e .

b. N>0 speci f ies the f r a m e N l inks down the con t ro l
l i n k chain f r o m the N=0 f r a m e .

c. N<0 spec i f ies the f r a m e INI l i nks down the
access l ink chain f r o m the N=0 f r a m e ,

2. A l i s t of two e lements (F , N) where F is a f r a m e -
name and N is an in teger . Th i s gives the Nth
f r a m e w i th name F, where a posi t ive (negative)
va lue fo r N spec i f ies the con t ro l (access) chain
env i ronment .

3. The d is t inguished constant N I L . As an a c c e s s - l i n k
spec i f i ca t ion , N I L spec i f ies that only global values
a re to be used f r e e . A process which re tu rns
a long a N I L c o n t r o l - l i n k w i l l ha l t . Doing a
se tenv(ed ,NIL) re leases f r a m e storage f o r m e r l y
re ferenced only through ed , wi thout t y i ng up any
new s torage.

4. An ed (env i ronment desc r i p t o r) . When given an ed
argument created by a p r i o r ca l l on e n v i r o n ,
env i ron creates a new desc r i p to r w i th the same
contents as ed; setenv copies the contents of ed
in to o lded.

5. A l i s t " (ed) " cons is t ing of exac t l y one ed. The
contents of the l i s t ed ed a re used iden t i ca l l y to
that of an un l is ted ed. However , a f ter th i s value
is used in any of the func t ions , se tenv(ed .NIL) is
done, thus re leas ing the f r a m e storage f o r m e r l y
re ferenced only th rough ed. Th is has been c o m
bined into an argument f o r m ra ther than a l low ing
the user to do a setenv exp l i c i t l y because in the
ca l l to enveval the contents a re needed, so i t can
not be done before the c a l l ; i t cannot be done ex
p l i c i t l y a f t e r the enveval s ince cont ro l m igh t never
r e t u r n to that point .

4 . N o n - P r i m i t i v e Con t ro l Funct ions

To i l l u s t r a t e the use of these p r i m i t i v e con t ro l
func t ions , we expla in a number of cont ro l r eg imes
wh ich d i f f e r f r o m the usual nested funct ion c a l l - r e t u r n
h i e r a r c h i c a l s t r u c t u r e , and def ine t h e i r con t ro l s t r u c
tu re rout ines in t e r m s of the p r i m i t i v e s . We inc lude
s tack j u m p s , funct ion c l osu re , and severa l m u l t i p r o
cess ing d i sc ip l i nes . In p r o g r a m m i n g examp les , we
use the syntax and semant ics of a L I S P - l i k e s y s t e m .

In an o rd ina ry h i e r a r c h i c a l con t ro l s t r u c t u r e

247

system, if module F calls G, G calls H, and H calls J,
it is impossible for J to return to F without going back
through G and H. Consider some program in which a
search is implemented as a series of such nested
function calls. Suppose J discovered that the call to G
was inappropriate and wanted to return to F with such
a message. In a hierarchical control structure, H and
G would both have to be prepared to pass such a mes
sage back. However, in general, the function J should
not have to know how to force intermediaries; it should
be able to pass control directly to the relevant module.
Two functions may be defined to allow such jumpbacks.
(These are implemented in BBN-LISP;19 experience
has shown them to be quite useful.) The f i rs t function,
ret from(form,pos), evaluates form in the current con
text, and returns its value f rom the frame specified by
pos to that frame's caller; in the above example, this
returns a value to G's caller, i . e . , P, The second
function, retevaKform, pos), evaluates form in the con
text of the caller of pos and returns the "value of the
form to that cal ler. These are easily defined in terms
of enveval:

retfrom(form,pos) = enveval{form,2,pos)
re teva l fo rm, pos) = enveval form, pos, pos)

(The second argument to retfrom establishes that the
current environment is to be used for the evaluation of
form.)

As another example of the use of re t f rom, con
sider an implementation of the LISP er ror protection
mechanism. The programmer "wraps a form in
er rorse t " , i . e . , errorset(form) which is defined as
cons(eval(form),NIL). This "wrapping" indicates to
the system the programmer's intent that any er rors
which arise in the evaluation of form are to be handled
by the function containing the errorset. Since the
value of errorset in the non-error case is always a
l ist consisting of one element (the value of form), an
er ror can be indicated by forcing errorset to return
any non-l ist i tem. Hence, the system function e r ro r
can be defined as retfrom(NIL,(ERRORSET 1)) where
uppercase items are l i tera l objects in LISP. This
jumps back over a l l intermediary calls to return NIL
as the value of the most recent occurrence of errorset
in the hierarchical calling sequence.

In the fol lowing, we employ envapply which takes
as arguments a function name and l is t of (already eval
uated) arguments for that function. Envapply simply
creates the appropriate form for enveval.

envapply(fn,args,aframe, cframe) =
enveval(list(APPLY , l ist(QUOTE, fn),

l ist(QUOTE, args)), aframe, cframe)
A central notion for control structures is a pair

ing of a function with an environment for its evaluation.
Following LISP, we call such an object a funarg.
Funargs are created by the procedure function, defined

function(fn)=list(FUNARG, fn , environ(2))
That i s , in our implementation, a funarg is a l ist of
three elements: the indicator FUNARG, a function,
and an environment descriptor. (The argument to en
viron makes it reference the frame which called
function.) A funarg l i s t , being a globally valid data
structure, can be passed as an argument, returned as
a result, or assigned as the value of appropriately
typed variables. When the language evaluator gets a
form (fen arg1 arg2 . . . argn) whose functional object
fen is a funarg, i. e. , a l ist (FUNARG fn-name ed), it
creates a l is t , args, of (the values of) a r g l , arg2,
argn and does

envapply(second(fcn),args,third(fcn), 1)
The environment in this case is used exactly l ike the
original LISP A- l i s t . Moses 12 and Weizenbaum25

have discussed the use of function for preserving bind
ing contexts. Figure 4 i l lustrates the environment

structure where a functional has been passed down: the
function foo with variables X and L has been called; foo
called mapcar(X,function(fie)) and fie has been entered.
Note that along the access chain the f i rs t free L seen
in fie is bound in foo, although there is a bound v a r i
able L in mapcar which occurs f i rs t in the control
chain. Since frames are retained, a funarg can be
returned to higher contexts and st i l l work. (Burge3

gives examples of the use of funargs passed up as
values.)

In the above description, the environment pointer
is used only to save the access environment. In fact,
however, the pointer records the state of a process at
the instant of some cal l , having both access and
control environments. Hence, such an environment
pointer serves as part of a process handle. It is con
venient to additionally specify an action to take when
the process is restarted and some information to be
passed to that process from the one restart ing i t . The
funarg can be reinterpreted to provide these features.
The function component specifies the f i rs t module to
be run in a restarted process, and the arguments
(evaluated in the caller) provided to that function can
be used to pass information. Hence, a funarg can be
used as a complete process handle. It proves con
venient for a running process to be able to reference
its own process handle. To make this simple, we
adopt the convention that the global variable curproc
is kept updated to the current running process.

With this introduction, we now define the routines
start and resume, which allow control to pass among a
set of coordinated sequential processes, i .e. , co
routines, in which each maintains its own control and
access environment (with perhaps some sharing). A
coroutine system consists of n coroutines each of
which has a funarg handle on those other coroutines to
which it may transfer control. To initiate a process
represented by the funarg fp, use start (we use
brackets below to delimit comments):

start(fp.args) = curproc — fp;
[curproc is a global variable set to
the current process funarg] ;

envapply(second(fp),args,third(fp),third(fp))
Once the variable curproc is ini t ial ized, and any co
routine started, resume wi l l transfer control between
n coroutines. The control point saved is just outside
the resume, and the user specifies a function (backfn)
to be called when control returns, i . e . , the process is
resumed. This function is destructively inserted in
the funarg l is t . The args to this function are specified
by the coroutine transferr ing back to this point.
resume(fnarg,args,backfn) =

second(curproc) — backfn;
[save the specified backfn for a subsequent
resume back here]

setenv(third(curproc), 2);
[environment saved is the caller of resume]

curproc — fnarg;
[set up curproc for the coroutine to be
activated]

envapply(second(fnarg),args,third(fnarg),
th i rd (fnarg))

[activate the specified coroutine by applying
its backfn to args]

We call a funarg used in this way a process
funarg. The state of a "process" is updated by de
structively modifying a l ist to change i ts continuation
function, and s imi la r ly directly modifying its environ
ment descriptor in the l i s t . A pseudo-multiprocessing
capability can be added to the system using these
process funargs if each process takes responsibil ity
for requesting additional t ime for processing f rom a
supervisor or by explicit ly passing control as in
CONNIVER,18 A more automatic multiprocessing
control regime using interrupts is discussed later.

248

Back t rack ing is a technique by wh ich c e r t a i n en
v i r onmen ts a re saved before a funct ion r e t u r n , and
l a t e r r e s t o r e d i f needed. C o n t r o l i s r e s t o r e d in a
s t r i c t l y l as t saved, f i r s t r es to red o r d e r . As an ex
ample of i t s use , cons ider a funct ion which r e t u r n s
one (selected) va lue f r o m a set of computed va lues but
can e f fec t i ve ly r e t u r n an a l te rna t i ve se lec t ion i f the
f i r s t se lec t ion was inadequate. That i s , the cu r ren t
process can f a i l back to a p rev ious l y spec i f ied f a i l set
point and then redo the computat ion w i t h a new
se lec t ion . A sequence of d i f fe ren t se lect ions can lead
to a s tack of f a i l se t po in ts , and successive fa i l s can
r e s t a r t a t each in t u r n . Back t rack ing thus p rov ides a
way of doing a d e p t h - f i r s t search of a t r e e w i th r e t u r n
to prev ious b ranch po in ts .

We define f a i l and fa i l se t be low. We use
push (L ,a) wh ich adds a to the f ron t of L, and pop(L)
wh ich removes one element and r e t u r n s the f i r s t e l e
ment of L. F a i l i s t is the stack of f a i l se t po in ts . As
def ined be low , f a i l can reverse ce r ta in changes when
r e t u r n i n g to the prev ious fa i l se t point by exp l i c i t
d i r ec t i on a t the point o f f a i l u r e . (To au tomat i ca l l y u n
do ce r ta i n s ide ef fects and b ind ing changes, we could
def ine "undoab le " funct ions wh ich add to f a i l i s t f o r m s
whose evaluat ion w i l l reset approp r ia te c e l l s . F a i l
could then eval a l l f o r m s th rough the next ed and then
ca l l enveval .)

fa i l se t {) = push(fa i l i s t ,env i ron (2))
[2 means env i ronment outside fa i l se t]

fa i l (message) = enveva l (message, l i s t (pop(fa i l i s t)))

The funct ion se lec t defined below re tu rns the f i r s t
e lement of i ts a rgument set when f i r s t ca l l ed ; upon
subsequent f a i l s back to se lec t , successive e lements
f r o m set a re r e t u r n e d . I f set is exhausted, f a i l u r e is
propagated back. The code uses the fact that the b i n d
ing env i ronment saved by f a i l se t shares the va r i ab le
f i g w i t h the instance of select wh ich ca l ls f a i l se t . The
tes t o f f i g is reached in two ways : a f t e r a ca l l on f a i l -
set (in which case fig is fa lse) and a f t e r a f a i l u r e (in
wh ich case f i g i s t r u e) .

se lec t (se t ,undo l i s t) =
progt (f ig)

s1 : i f nu l l (se t) then fa i l (undo l is t) [leave here and
undo as spec i f ied]

f i g — false;
fai lsetOT
[f i g is t rue i f f we have fa i led to th is point ; then

set has been popped]
i f f i g then go(s l) ;
f i g — t r u e ;
returnTpop(set)) ;
end

Floyd,"7 Hewi t t ,9 and Golomb and B a u m e r t 8 have d i s
cussed uses f o r back t rack ing in p rob lem so l v i ng .
S u s s m a n l 8 has d iscussed a number of p rob lems w i t h
back t r ack i ng . In gene ra l , i t p roves to be too s imp le
a f o r m of sw i tch ing between env i ronmen ts . Use of the
m u l t i p l e process fea ture descr ibed above prov ides
much m o r e f l e x i b i l i t y .

5. Coord inated Sequential P rocesses

and P a r a l l e l P rocess ing

I t should be noted that in the mode l above, con t ro l
mus t be e x p l i c i t l y t r a n s f e r r e d f r o m one ac t ive en
v i r o n m e n t to another (by means o f enveval o r resume) .
We use the t e r m , coord inated sequent ia l p r o c e s s , to
desc r ibe such a con t ro l r e g i m e . T h e r e a re s i tuat ions
in wh ich a p rob lem statement is s i m p l i f i e d by tak ing a
qui te d i f fe ren t point of v iew - assuming p a r a l l e l (co-
opera t ing sequent ia l) processes which synchron ize only
when r e q u i r e d (e . g. , by means of D i j k s t r a ' s 4 P and V
opera t ions) . Us ing our coord inated sequent ia l p r o
cesses w i t h i n t e r r u p t s , we can define such a con t ro l
r e g i m e .

In our mode l o f env i ronment s t r u c t u r e s , the re is
a t r e e f o r m e d by the con t ro l l i n k s , a dendrarchy_ of
f r a m e s . One t e r m i n a l node is ma rked f o r ac t i v i t y by
the c u r r e n t con t ro l bubble (the point where the
language evaluator i s operat ing) . A l l o ther t e r m i n a l
nodes are re fe renced by env i ronment d e s c r i p t o r s or
by an access l i n k po in ter of a f rame in the t r e e . To
extend the model to mu l t i p l e p a r a l l e l processes in a
s ingle p rocesso r s y s t e m , k branches of the t r e e mus t
be s imu l taneous ly ma rked ac t i ve . Then the con t ro l
bubble of the p rocessor must be swi tched f r o m one
ac t i ve node to another accord ing to some schedul ing
a l g o r i t h m .

To imp lemen t cooperat ing sequent ia l processes in
our m o d e l , i t is s imp les t to th ink of ad jo in ing to the
set of processes a d is t inguished p rocess , PS , which
acts as a s u p e r v i s o r or mon i t o r . Th is m o n i t o r sched
u les processes f o r se rv ice and main ta ins severa l
p r i v i l eged data s t r uc tu res (e . g . , queues fo r sema
phores and ac t ive processes) . (A re la ted technique is
used by P rem ie r , 1 4)

The bas ic funct ions necessary to manipu la te
p a r a l l e l processes a l low process ac t i va t i on , s topp ing,
con t inu ing , synchron iza t ion and status que ry ing . In a
s ing le p rocesso r coord inated sequent ial p rocess
m o d e l , these can al l be defined by ca l l s (through
enveval) to the mon i t o r PS. Speci f icat ions f o r these
funct ions a r e ;

1) p rocess (fo rm ,apos , cpos) - - th is i s s i m i l a r to
enveval except that i t creates a new ac t ive p r o -
cess P ' f o r the evaluat ion of f o r m , and re tu rns
to the c rea t ing process a process d e s c r i p t o r (pd)
which acts as a handle on P ' .

In th i s m o d e l , the pd could be a po in ter to a l i s t wh ich
has been placed on a " r unnab le " queue in PS, and
wh ich is i n t e rp re ted by PS when the scheduler in PS
g ives th i s process a t i m e quantum. One element of
the process d e s c r i p t o r gives the status of the p r o c e s s ,
e . g . , RUNNING or STOPPED. P rocess is defined
us ing env i ron (to obtain an env i ronment d e s c r i p t o r
used as par t of the pd) and enveval (to ca l l PS),

2) stop(pd) — hal ts the execut ion of the process
spec i f ied by pd — PS removes the process f r o m
runnable queue. The value re tu rned is an ed of
the c u r r e n t env i ronment of pd.

3) continue(pd) -- r e tu rns pd to the runnable queues.

4) status(pd) — value is an ind icat ion of status of pd.

5) obta in(semaphore) — th i s D i j k s t r a P opera to r
t r a n s f e r s con t ro l to PS (by enveval) wh ich de
t e r m i n e s i f a resource i s ava i lab le (i . e , , s e m a
phore count pos i t i ve) . PS e i the r hands con t ro l
back to PI (w i th enveval) having decremented the
the semaphore count, or enters P1 on that sema
phore 's queue in PS's env i ronment and swi tches
con t ro l to a runnable p rocess .

6) re lease(semaphore) -- th is Dijkstra V operator
i n c remen ts the semaphore count; i f the count
goes pos i t i ve , one process is moved f r o m the
semaphore queue (i f any ex is t) onto the runnable
queue and the count is decremented . I t then
hands con t ro l back to the ca l l i ng p rocess .

We emphasize that these s ix funct ions can be de
f ined in t e r m s of the con t ro l p r i m i t i v e s of sect ion 3.

Schedul ing of runnable processes could be done by
having each process by agreement ask f o r a t i m e
r e s o u r c e , i . e . , ob ta in (t ime) , a t app rop r i a te i n t e r v a l s .
In th is schedul ing m o d e l , con t ro l never leaves a p r o
cess wi thout i t s knowledge, and the m o n i t o r s i m p l y
acts as a bookkeeping mechan i sm. A l t e r n a t i v e l y ,
o r d i n a r y t i m e - s h a r i n g among processes on a t i m e
quantum basis could be imp lemented th rough a t i m e r
i n t e r r u p t m e c h a n i s m . I n t e r r u p t s a re t rea ted as fo rced

249

calls to environ (to obtain an ed for the current state),
and then an enveval to the monitor process. The only
problem which must be handled by the system in forc
ing the call to environ is making sure the interrupted
process is in a clean state; that i s , one in which basic
communication assumptions about states of pointers,
queues, buffers, etc. are true (e . g . , no pointers in
machine registers which should be traced during gar
bage collection). This can be ensured if asynchronous
hardware interrupts perform only minimal necessary
operations, and set a software interrupt f lag. Soft
ware checks made before procedure cal ls, returns and
backward jumps within program w i l l ensure that a
timely response in a clean state w i l l occur.

The ed of the interrupted process is sufficient to
restart i t , and can be saved on the runnable queue
within a process descriptor. Because t imer inter
rupts are asynchronous with other processing in such
a simulated multiprocessor system, evaluation of
forms in the dynamic environment of another running
process cannot be done consistently; however, the ed
obtained from stopping a process provides a consistent
environment. Because of this interrupt asynchrony, in
order to ensure system integri ty, queue and sema
phore management must be uninterruptible, e . g . , at
the highest pr ior i ty level.

Obtaining a system of cooperating sequential pro
cesses as an extension of the pr imit ives has a number
of desirable attributes. Most important, perhaps, it
allows the scheduler to be defined by the user. When
parallel processes are used to realize a breadth-f irst
search of an or-graph, there is a significant issue of
how the competing processes are to be allotted t ime.
Provision for a user supplied scheduler establishes a
framework in which an intelligent allocation algorithm
can be employed.

Once a multi-process supervisor is defined, a
variety of additional control structures may be readily
created. As an example, consider multiple parallel
returns — the abil i ty to return from a single activation
of a module G several times with several (different)
values. For G to return to its caller with value given
by val and st i l l continue to run, G simply calls
process(val, 1,2). Then the current G and the new
process proceed in paral lel.

6. Conclusion

In providing linguistic facil i t ies more complex
than hierarchical control, a key problem is finding a
model that clearly exhibits the relation between pro
cesses, access modules, and their environment. This
paper has presented a model which is applicable to
languages as diverse as LISP, APL and P L / I and can
be used for the essential aspects of control and access
in each. The control primit ives provide a small basis
on which one can define almost a l l known regimes of
control.

Although not stressed in this paper, there is an
implementation for the model which is perfectly
general, yet for several subcases (e .g . , simple re
cursion and backtracking) this implementation is as
efficient as existing special techniques. The main
ideas of the implementation are as follows (cf. [2] for
details). The basic frame and frame extension are
treated as potentially discontiguous segments. When
a frame extension is to be used for running, it is
copied to an open stack end if not there already, so
that ordinary nested calls can use simple stack d isc i
pline for storage management. Reference counts are
combined with a count propagation technique to ensure
that only those frames are kept which are s t i l l in use.

Thus, the model provides both a linguistic frame-
work for expressing control regimes, and a practical
basis for an implementation. It is being incorporated
intoBBN-LISP.19

7. Acknowledgments

This work was supported in part by the Advanced
Research Projects Agency under Contracts DAHC 15-
71-00088 and F19628-68-0-0379, and by the U.S. A i r
Force Electronics Systems Division under Contract
F19628-71-C-0173. Daniel Bobrow was at Bolt
Beranek and Newman, Cambridge, Massachusetts,
when many of the ideas in this paper were f i rs t de
veloped.

References

[l] Bobrow, D . G . , "Requirements for Advanced
Programming Systems for List Processing,"
CACM, Vo l . 15, No. 6, June 1972.

[2l Bobrow, D.G. and Wegbreit, B. "A Model and
Stack Implementation of Multiple Environ
ments," BBN Report No. 2334, Cambridge,
Mass., March 1972, to appear in CACM.

[3] Burge, W.H. "Some Examples of the Use of
Function Producing Functions," Second Sym
posium on Symbolic and Algebraic Manipu
lat ion, AC:M, 1971.

[41 Di jks t ra , E.W. "Co-operating Sequential P ro
cesses," in Genuys (Ed.), Programming
Languages, Academic Press, 1967.

[5] Di jkst ra, E.W. "Recursive Programming,"
Numerische Mathematik 2 (I960), 312-318.
Also in Programming Systems and Languages,
S. Rosen (Ed.), McGraw-Hi l l , New York, 1967.

[6] Fenichel, R. "On Implementation of Label Var i
ables, CACM, Vol . 14, No. 5 (May 1971),
pp. 349-350.

[7] Floyd, R.W. "Non-determinist ic Algori thms,"
J_. ACM, 14 (October 1967), pp. 638-644.

[8t Golomb, S.W. and Baumert, L .D . "Backtrack
Programming," J. ACM, 12 (October 1965),
pp. 516-524.

[9! Hewitt, C. "PLANNER: A Language for Manipu
lating Models and Proving Theorems in a
Robot," in A r t i f i c ia l Intell igence,
Washington, D .C . , May 1969.

[10] Johnston, J . B . "The Contour Model of Block
Structured Processes," in Tou and Wegner,
Proc. Symposium on Data Structures in
Programming Languages. SIGPLAN Notices,
Vol. 6, No. 2, pp. 55-82.

[11] McCarthy, J . , et a l . Lisp 1. 5 Programmer's
Manual, T h e M . I . T . Press, Cambridge,
Massachusetts (1962).

[12] Moses, J. "The Function of FUNCTION in
LISP," SIGSAM Bul let in, No. 15, (July 1970),
pp. 13-27.

[13j Prenner, C , , Spitzen, J. and Wegbreit, B.
"An Implementation of Backtracking for Pro
gramming Languages," submitted for publi
cation, ACM-72.

[14J Prenner, C. "Mul t i -path Control Structures for
Programming Languages," Ph.D. Thesis,
Harvard Universi ty, May 1972.

[151 Quam, L. LISP 1. 6 Reference Manual, Stanford
AI Laboratory.

250

[16] Reynolds, J. "GEDANKEN - A Simple TypelesS
Language Based on the Principle of Complete
ness and the Reference Concept," CACM,
Vo l . 13, No. 5 (May 1970), pp. 308-319.

[17] Rulifson, J. et a l . " Q A 4 - A Language for
Writ ing Problem-Solving Programs," SRI
Technical Note 48, November 1970.

[18] Sussman, G.J. "Why Conniving is Better than
Planning," FJCC 1972, pp. 1171-1179.

[19] Teitelman, W. , Bobrow, D. , Murphy, D . , and
Hart ley, A. BBN-LISP Manual. BBN,
July 1971.

[20] Tou, J, andWegner, P. (Eds.), SIGFLAN
Notices — Proc. Symposium on Data
Structures in Programming languages.
Vol . 6, No. 2 (February 1971)

[2 l l van Wijngaarden, A. (Ed.). Report on the
Algorithmic Language ALGOL 68, MR 101,
Mathematisch Centrum, Amsterdam
(February 1969).

[22] Wegbreit, B, "Studies in Extensible Program
ming Languages" Ph.D. Thesis, Harvard
University, May 1970.

[23] Wegbreit, B, "The ECL Programming System,"
Proc. AFIPS 1971 FJCC, Vol. 39, AFIPS
Press, Montvale, N . J . , pp. 253-262.

[24] Wegner, P. "Data Structure Models for Pro-
gramming Languages," in Tou and Wegner,
pp. 55-82.

[25] Weizenbaum, J. "The Funarg Problem
Explained," M . I . T . , Cambridge, Mass. ,
March 1968.

251

252

253

