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We present a modification of the � self-consistent field ��SCF� method of calculating energies of excited
states in order to make it applicable to resonance calculations of molecules adsorbed on metal surfaces, where
the molecular orbitals are highly hybridized. The �SCF approximation is a density-functional method closely
resembling standard density-functional theory �DFT�, the only difference being that in �SCF one or more
electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible
orbitals as one does when calculating the ground-state energy within standard DFT. We extend the �SCF
method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals.
With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such
that resonance energies can be estimated, which is not possible in traditional �SCF because of very delocalized
Kohn-Sham orbitals. The method is applied to N2, CO, and NO adsorbed on different metallic surfaces and
compared to ordinary �SCF without our modification, spatially constrained DFT, and inverse-photoemission
spectroscopy measurements. This comparison shows that the modified �SCF method gives results in close
agreement with experiment, significantly closer than the comparable methods. For N2 adsorbed on ruthenium
�0001� we map out a two-dimensional part of the potential energy surfaces in the ground state and the 2�

resonance. From this we conclude that an electron hitting the resonance can induce molecular motion, opti-
mally with 1.5 eV transferred to atomic movement. Finally we present some performance test of the �SCF
approach on gas-phase N2 and CO in order to compare the results to higher accuracy methods. Here we find
that excitation energies are approximated with accuracy close to that of time-dependent density-functional
theory. Especially we see very good agreement in the minimum shift of the potential energy surfaces in the
excited state compared to the ground state.
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I. INTRODUCTION

Density-functional theory1,2 �DFT� has proved to be a vi-
tal tool in gaining information on many gas-surface pro-
cesses. This may be surprising, since DFT is only valid for
relaxed systems in their ground state and therefore not di-
rectly applicable to dynamical situations. However, often the
electrons relax much faster than the time scale of the atomic
movement, such that the electron gas can be considered re-
laxed in its ground state at all times. Then potential energy
surfaces �PES� of the ground state obtained by DFT, or any
other method, can be used to describe the motion of atomic
cores. This is the Born-Oppenheimer approximation.

In some situations, however, the Born-Oppenheimer ap-
proximation is not valid. This is for example the case when
the electronic system is excited by a femtosecond laser3,4 or
hot electrons are produced with a metal-insulator-metal
junction.5 The Born-Oppenheimer approximation also breaks
down if the time scales for the electronic and nuclear mo-
tions are comparable or if the separations between the elec-
tronic states are very small, such that transitions between the
electronic states will occur. In these situations it is necessary
to go beyond the Born-Oppenheimer approximation either by
considering the coupling between electronic states6,7 where it
becomes necessary to obtain PESs of excited states, or by an
electronic friction model.8,9

The problem of calculating excitation energies is being
approached in many different ways, even within DFT. Time
dependent density-functional theory10 �TDDFT� gives, com-

pared to the computational cost, good agreement with experi-
ments for excitations in atoms and molecules.11 However,
TDDFT suffers some problems in excitations involving
charge transfer.12 The GW approximation13,14 can be used to
gain accurate excitation energies for molecules and clusters.
The embedding method,15,16 which combines high-accuracy
quantum chemistry methods with DFT, makes it possible to
handle larger periodic systems with great accuracy. The em-
bedding theory has been applied to estimate PESs of excited
molecules on surfaces.17 However, the computational cost
and involved complexity are still very high. Our aim has
been to find a method, which at a computational cost close
the level of ground-state DFT, can estimate excited-state en-
ergies of molecules on surfaces with reasonable accuracy.
Such a method would make it more feasible to consider a
large range of systems in search of systems with interesting
or desired properties.

Constrained DFT �Refs. 7, 18, and 19� and � self-
consistent field ��SCF� �Refs. 20 and 21� are two different
approaches, which both can be considered as small exten-
sions of ground-state DFT, such that the computational cost
lies close to that of ground-state DFT. In constrained DFT an
additional potential is introduced and varied until a certain
constraint on the electrons is fulfilled. The simplest approach
is to lower �or increase� the potential in a certain part of
space until you have the desired number electrons in this
area.18 A different approach is to introduce potentials on the
orbitals in a localized basis set, which depends on the orbit-
als’ positions in space.7 In Sec. III we will argue that when
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considering molecular resonance states on surfaces it may be
problematic with such a strict constraint on the electrons,
since a part of the charge may return to the surface on a
much shorter time scale than the lifetime of the resonance.

In the �SCF scheme the positions of the electrons are
controlled by controlling the occupation of the Kohn-Sham
�KS� states as the system reaches self-consistency. The
�SCF scheme has for a long time been justified in cases,
where the excited state corresponds to the lowest state of a
given symmetry.22 The scheme has, however, often been ap-
plied to more general cases. More recently, Görling23 ex-
tended the KS formalism to include excited states, such that
�SCF gets a formal justification in the general case, although
a special unknown orbital-dependent exchange-correlation
potential should be used for the excited states. In practical
implementations standard exchange-correlation potentials
from ground-state DFT are typically used.

This traditional way of just controlling the occupation of
the KS orbitals has some limitations. For example when a
molecule is placed on a metallic surface the molecular orbit-
als will hybridize with the orbitals in the surface, such that
the molecular orbitals will be spread over several KS states.
For such systems there is no good way of representing a
resonance on the molecule as a change in the occupations of
the KS orbitals. The optimal thing one can do within this
scheme is to occupy the KS orbital with the largest overlap
with the molecular orbital in question, but this overlap can be
quite small and highly system size dependent. This problem
was also pointed out by Hellman et al.21 and Behler et al.7

In this paper we modify the �SCF approach, such that
electrons are allowed to occupy arbitrary linear combinations
of KS orbitals. In this way one achieves much better control
on the position of the excited electron. As is the case for
traditional �SCF some knowledge of the resonance is
needed in order to apply the method. The method is espe-
cially relevant in Newns-Anderson-type24,25 systems, where
a resonance can be attributed to a known single level, which
has been hybridized through interactions with other states.
This includes systems with molecules adsorbed on metal sur-
faces and molecules trapped between to metal contacts.

The modification we propose only has minor implications
on the way practical calculations are performed, which is
very similar to performing an ordinary ground-state DFT cal-
culation. In the following we will go through the details of
the method and apply it to a few diatomic molecules on
metallic surfaces. The obtained results will be compared to
the ordinary �SCF method, spatially constrained DFT, and
inverse-photoemission spectroscopy �IPES� measurements.
Finally we present some tests on the performance of the
�SCF approach on N2 and CO in the gas phase.

II. METHOD

In the following we go through the differences between
the linear-expansion �SCF method we propose, ordinary
�SCF, and standard DFT. We start by stating the modifica-
tion of the KS equations when considering an electron ex-
cited from the Fermi level to a higher lying state. Then we
show how this affects the energy calculation. Finally we gen-

eralize the approach to other types of excitations.

A. Kohn-Sham equations

The fundamental KS equations2 represent a practical way
of finding the ground-state electron density for a given ex-
ternal potential and a given number of electrons through an
iterative process

�−
�2

2
+ vKS�n��r���i�r� = �i�i�r� , �1�

n�r� = �
i=1

N

�i
��r��i�r� , �2�

vKS�n��r� = vext�r� +� dr�
n�r��

	r − r�	
+

�Exc

�n�r�
, �3�

where vKS is the KS potential, Exc is the exchange-
correlation energy, and N is the number of electrons. As seen
from Eq. �2� only the N orbitals with lowest energy contrib-
ute to the density, i.e., the electrons are placed in these
orbitals.26 In ordinary �SCF one estimates properties of ex-
cited states by placing the electrons differently. For example
the HOMO-LUMO gap in a molecule could be estimated by
replacing Eq. �2� with

n�r� = �
i=1

N−1

�i
��r��i�r� + �a

��r��a�r� , �4�

where �a�r� is the KS orbital resembling the LUMO from
the ground-state calculation. Naturally, the KS orbitals found
when solving these modified KS equations will differ from
the ones found in an ordinary DFT calculation due to the
change in the Hamilton through the change in the density
when different orbitals are occupied.

In the linear-expansion �SCF method we propose, the
excited electron is not forced to occupy a KS orbital, but can
occupy any orbital that is a linear combination of empty KS
orbitals

�res�r� = �
i=N

M

ai�i�r� , �5�

where M is the number of KS orbitals in the calculation. In
practice this means that the KS many-particle wave function
is no longer just a Slater determinant of N KS orbitals, but a
Slater determinant of N−1 KS orbitals and �res�r�. Only
empty KS orbitals are included in the linear expansion, since
otherwise �res�r� will not be orthogonal to the filled KS or-
bitals. Equation �2� is then replaced with

n�r� = �
i=1

N−1

�i
��r��i�r� + �

i,j=N

M

ai
�aj�i

��r�� j�r� . �6�

Since the expansion coefficients ai in principle could have
any value some a priori knowledge are needed in order to
choose good values. In the case of molecular resonances on
surfaces the expansion coefficients are chosen such that
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�res�r� resembles the relevant molecular orbital as much as
possible, i.e.,

ai =

�i	��

��i
	
�i	��	2�1/2 , �7�

where � is the molecular orbital. This is consistent with a
Newns24 and Anderson25 picture, where the resonance corre-
sponds to an electron getting in the molecular orbital, but the
resonance broadening and energy shift are due to hybridiza-
tion with the metallic bands and an image charge effect.

In calculations with k-point sampling the linear expansion
is performed independently in all k points. In the linear-
expansion �SCF one then avoids the difficulties one can
encounter in choosing which KS state to occupy in each k
point in the traditional way of performing �SCF calcula-
tions. For example, one may risk occupying different bands
in each k point, when just choosing the KS orbital with the
largest overlap with the molecular orbital in each k point.

B. Energy

The energy calculation, which is performed after the KS
equations have reached self-consistency, is not significantly
different in the linear-expansion �SCF scheme compared to
ordinary DFT. The Hartree energy is evaluated directly from
the density, which is also the case for the exchange-
correlation energy if an orbital independent functional is
used. So in linear-expansion �SCF these terms are evaluated
exactly as in ordinary DFT. In ordinary DFT the kinetic en-
ergy is evaluated as

T�n�r�� = �
i=1

N


�i	 −
�2

2
	�i� = �

i=1

N

�i −� vKS�n��r�n�r�dr ,

�8�

where the last equality is seen directly from Eq. �1�. Simi-
larly the expression for the kinetic energy in the linear-
expansion �SCF is found to be

T�n�r�� = �
i=1

N−1

�i + �
i=N

M

	ai	2�i −� vKS�n��r�n�r�dr . �9�

For orbital-dependent exchange-correlation functionals some
effort must be put into ensuring that the exchange-correlation
energy is evaluated correctly. This should however be quite
straightforward since all the occupied orbitals are known.

C. Gradients

Gradients of PESs are easily evaluated in ordinary DFT
due to the Hellman-Feynman theorem. The Hellman-
Feynman theorem, however, only applies to eigenstates and
not linear expansions of eigenstates. Due to this there is no
easy way of gaining the gradients in a linear-expansion
�SCF calculation. In Sec. IV C we will show that the
Hellman-Feynman gradients do in fact not match the true
gradients.

D. Other excitations

Above we only considered excitations where an electron
is removed from the Fermi energy and placed in some speci-
fied orbital. The method is, however, easily extended to other
types of excitations by representing each removed and each
added electrons as linear expansions of KS orbitals. Equation
�6� then gains an extra sum for each extra linear expansion.
In cases of removed electrons the sign should of course be
negative and the sum be over KS states below the Fermi
energy. Similarly Eq. �9� gains extra sums.

E. Implementation

We have implemented the method in GPAW,27,28 which is a
real-space DFT code that uses the projector-augmented
waves29,30 �PAW� formalism to represent the core electrons.
The self-consistent electron density is determined by an it-
erative diagonalization of the KS Hamiltonian and Pulay
mixing of the resulting density.31 For calculations on single
molecules we use the local-density approximation32 �LDA�
as well as revised Perdew-Burke-Ernzerhof �RPBE� �Ref.
33� to describe exchange and correlation effects. The LDA is
used because we compare to TDDFT results obtained using
the adiabatic local-density approximation �ALDA�,34 and
RPBE is used to see whether or not the generalized gradient
description improves results. For calculations on molecules
at surfaces we only use RPBE because this is designed to
perform well for molecules adsorbed on transition-metal sur-
faces.

The projection step described in Sec. II A can easily be
approximated within the PAW formalism if the atomic orbit-
als are chosen as partial waves; see Appendix for details.

For reasons of comparison we have also made a few
linear-response TDDFT �lrTDDFT� calculations. These have
been made using the OCTOPUS code,35,36 which is a real-
space TDDFT code using norm-conserving pseudopotentials
to represent core electrons.

III. MOLECULES ON SURFACES

The linear-expansion �SCF method is especially relevant
for molecules on metallic surfaces because the molecular
state, due to hybridization, is spread over many KS states,
i.e., it is necessary to write the resonant state as a linear
combination of KS states. In this section we will make a
detailed investigation of the 2� resonance of N2 on a ruthe-
nium �0001� surface. Furthermore we apply the proposed
method to several diatomic molecules on different metallic
surfaces and compare the results to other methods and ex-
periments. Finally we map out a part of the PESs for N2 on
ruthenium �0001� and use it to estimate how much energy
could possibly be put into molecular motion from an electron
hitting the resonance.

A. 2� resonance energy for N2 on ruthenium

The two top panels in Fig. 1 show the 2� resonance en-
ergy for N2 on a ruthenium �0001� surface as a function of
the system size, i.e., the surface unit cell and the number of
ruthenium layers.
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The resonance energy is the total-energy difference be-
tween a resonant calculation and a ground-state calculation,
both performed with atomic positions corresponding to the
minimum of the ground-state PES �vertical resonance ener-
gies�. We minimize the energy in the ground-state calcula-
tions by keeping all surface atoms frozen and found that the
nitrogen molecule is placed on top with the two nitrogen
atoms placed 2.084 and 3.201 Å above the surface. In the
resonance calculation the 2�y orbital of the N2 molecule has
been expanded on all KS states above the Fermi energy. This
expansion has been used as �res in Eq. �5�. Although an extra
electron is placed on the molecule we keep the total number
of electrons unchanged, such that the unit cell is neutral. This
is reasonable because a charged molecule will form an image
charge in the surface, keeping the entire system neutral.

The resonance energy is converged to within 0.1 eV at a
surface unit cell of �2,2�. The rather large variation in energy
for smaller unit cells is probably due to dipole interactions
between periodic images. This is confirmed by a simple es-
timation of the dipol-dipol interaction energies. The reso-
nance energy is not influenced significantly by the number of
layers in the ruthenium, indicating that the charge redistribu-
tion only occurs very near to the surface. That the charge
redistribution is local is confirmed by Fig. 2, which shows
the change in charge between the resonance calculation and
the ground-state calculation for four different surface unit
cells.

For the larger unit cells, where the resonance energy has
converged, a clearly localized image charge is seen below
the nitrogen molecule and above the first layer of ruthenium
atoms. The area with extra charge clearly resembles the 2�
orbital of nitrogen, indicating that the 2� orbital is well rep-
resented by the linear expansion of KS orbitals. Figure 2 also
reveals that some charges are redistributed within the mol-
ecule.

In order to get an estimate of the size of the charge redis-
tribution we also performed Bader decomposition37,38 on the
density found in the ground-state calculation and the reso-
nance calculation. The two bottom panels in Fig. 1 show the
extra charge assigned to the nitrogen molecule in the reso-
nance calculation compared to the ground-state calculation
as a function of system size. The converged value is close to
0.5 electron charge, i.e., only half of the electron is placed on
the nitrogen molecule according to the Bader decomposition.
This discrepancy could either be due to the ambiguity in the
way one chooses to assign charge to the atoms or a more
physical effect of charge going back into the surface when
extra charge is placed on the molecule. The former reason is
very likely, since the image charge is located very close to
the molecule.

In order to investigate the effect of charge going back into
the surface we start by considering the 2� orbital itself. Fig-
ure 3 shows the density of KS states and the projected den-
sity of states �PDOS� for the 2� orbital for the ground-state
calculation and the resonance calculation. In the ground-state
calculation a part of the long tail of the PDOS goes below
the Fermi energy, i.e., a small part of the 2� orbital is occu-
pied here. In the resonance calculation the PDOS has moved
upward in energy such that the tail no longer goes below the
Fermi energy, i.e., some charges go back into the surface as
charge is placed on the molecule. Similar effects are seen for
the other molecular orbitals as visualized in Fig. 4, which
shows the PDOS for the 3�, 4�, 1�, and 5� orbitals. Again
it is seen that all the PDOSs are shifted up in energy as more
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FIG. 1. �Color online� Upper row: The 2� resonance energy of
N2 molecule on a ruthenium surface. Lower row: The extra charge
on the N2 molecule in the resonance compared to a ground-state
calculation. Left panels are for two layers and different surface
cells, i.e., different N2 coverages. Right panels are for a �2,1� sur-
face cell and different number of layers. The extra amount of charge
is estimated using Bader decomposition �Refs. 37 and 38�.

(a)

(c)

(b)

(d)

FIG. 2. �Color� The change in charge distribution due to the
excitation. Green: more charge �0.01 a.u. contour�, red: less charge
�−0.01 a .u. contour�. The four figures are for four different surface
unit cells: �1,1�, �2,1�, �2,2�, and �4,2�. Gray atoms are ruthenium
and blue atoms are nitrogen. The periodic images of the atoms are
also shown, whereas the density changes are only shown in one unit
cell.
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charge is placed on the molecule. Almost the entire PDOSs
are still under the Fermi level, but small ripples can be seen
above the Fermi level, also contributing to the amount of
charge going back into the surface.

This backtransfer of charge is not an unwanted effect,
since we try to model the long-lived resonance state, i.e., the
reasonably localized peak in the PDOS in Fig. 3. The back-
transfer of charge is due to some on the energy scale very
delocalized bands, indicating a much shorter lifetime, i.e.,
the backtransfer is expected to happen on a much shorter
time scale than the decay of the resonance. It is however
clear from Figs. 3 and 4 that the charge backtransfer in this
case is far from the 0.5 electron indicated by the Bader de-
composition. We then conclude that the main part of the
discrepancy in this situation can be assigned to the ambiguity
in the way charge is assigned to the different atoms. We also
find that one gets significant different results by assigning
charge in a different manner, for example, by dividing the
charge by a flat plane midway between the surface and the
molecule.

B. Comparison with inverse-photoemission spectroscopy
experiments

In Table I we have tested the linear-expansion �SCF
method against inverse-photoemission spectroscopy mea-
surements and compared the results to spatially constrained
DFT and ordinary �SCF calculations. The modified �SCF
values are all calculated in exactly the same manner as for
N2 on ruthenium in Sec. III A. In all cases the molecules sit
on top, and all surface atoms were kept fixed during the
minimization of the molecular degrees of freedom. For the

(b)

(a)

FIG. 3. The density of states for a N2 molecule on a ruthenium
slab and the projected density of states on the 2� orbital of the N2

molecule. Top: Ground-state calculation. Bottom: Resonance
calculation.

FIG. 4. �Color online� Projected density of states �PDOS� on the
3�, 4�, 1�, and 5� orbitals of a N2 molecule sitting on a ruthenium
slab. The PDOSs are plotted for both the ground-state calculation
and the resonance calculation. The gray area indicates energies be-
low the Fermi level.

TABLE I. Comparison of the 2� resonance energies for differ-
ent diatomic molecules on different surfaces found by spatially con-
strained DFT, ordinary �SCF, our modified �SCF, and experi-
ments. The experimental results have been obtained from inverse-
photoemission spectroscopy measurements. All energies are in eV.
We have not included lrTDDFT calculations, since it is not appli-
cable to periodic systems.

System Constrained �SCF �SCF Experiment

DFT �orig.� �this work�

N2 on Ni�001� 2.2 3.5 4.0 4.4a

CO on Ni�001� 2.2 3.2 4.2 4.0a/4.5b

NO on Ni�001� 2.2 0.6 1.4 1.6a/1.5c

CO on Ni�111� 2.8 4.3 4.4 4.4c

NO on Ni�111� 2.7 0.5 1.4 1.5b

CO on Pd�111� 4.6 4.1 4.9 4.7d

CO on Pd step 2.8 3.2 4.5 4.0d

aJohnson and Hulbert �Ref. 39�.
bReimer et al. �Ref. 40�.
cReimer et al. �Ref. 41�.
dRogozik and Dose �Ref. 42�.
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Ni �001� surface we used three atomic layers, for the Ni
�111� and Pd surfaces we used two atomic layers. The posi-
tions of the molecules in their minimized position are given
in Table II. All resonance energies are vertical from the mini-
mum of the ground-state PES. The relevant resonance for all
the considered systems is the 2� resonance.

The spatially constrained DFT method was suggested by
Wu and Van Voorhis.18,19 In the calculations we perform here
we divide the space into two areas divided by the flat plane
mid between the surface and the lowest atom in the mol-
ecule. We the apply a potential V=V0�1+exp�

z0−z

�z ��−1, with
�z=0.2 Å and z0 being the z value of the dividing plane. V0
is varied until an extra electron is placed on the molecules
side of the dividing plane compared to the unconstrained
calculation. The energy is then calculated as described by
Wu and Van Voorhis.18,19 The results using the original
�SCF method have all been obtained by forcing an electron
in the KS orbital with the largest overlap with the 2� orbital.

The results obtained with our proposed modification of
the �SCF method are seen to agree quite well with the ex-
perimental results, better than the spatially constrained DFT
and the original �SCF methods. All the results obtained by
the original �SCF approach lie too low, which is due to the
fact that the large hybridization of the molecular orbitals
makes it impossible to place sufficient charge on the mol-
ecule. However, a significant problem with this method is
that PESs often become discontinuous if one chooses to oc-
cupy the KS orbital with the largest overlap with the molecu-
lar orbital, since this can be different orbitals at different
configurations.

The major problem with the spatially constrained DFT
method seems to be that it in some cases is a too strict cri-
terion to force an extra electron on the molecule, which re-
flects itself in similar resonance energies for CO and NO. We
find that the backtransfer of charge discussed in Sec. III A is
significant for adsorbed NO and essential to obtain the reso-
nance energies we find with the modified �SCF method.
This indicates that the spatially constrained DFT approach is
more suited for systems with a smaller coupling than one has
on the metallic surfaces considered here. The good agree-
ment between our modified �SCF method and experiments
indicates that this method is preferable for these kinds of

systems and that the backtransfer effect is indeed physically
reasonable.

C. Potential energy surfaces for N2 on ruthenium

In Fig. 5 we have mapped out a part of the potential
energy surfaces for a nitrogen molecule on a ruthenium
�0001� surface in the ground state and the 2�y resonances.
We limit ourselves to two dimensions, which at least is rea-
sonable in the ground state, since here it is well known that
the molecule sits vertically on an on-top site. In the reso-
nance state we have tried to rotate the molecule a small angle
around the surface atom in the x and y directions at several
points on the PES. In all cases this leads to an increase in
energy, i.e., it also seems reasonable to stay within the two
dimensions in the resonance state. Here we will only apply
the PES to a simple estimate of the possible energy transfer
into molecular motion from an electron hitting the resonance.
For a more detailed analysis it is necessary to include other
dimensions.

The ground-state PES looks as expected, with a small
barrier for desorption and a local minimum corresponding to
the adsorption configuration. The resonance PES has a
shifted minimum, which indicates that an electron hitting this
resonance could induce molecular motion, since a sudden
shift between the PESs would leave the system far away
from the minimum, such that the atoms would start to move.
The maximum possible energy gain assuming classical ion
dynamics from a single electron hitting the resonance can be
roughly estimated by following the black arrow in Fig. 5.
The system is most likely situated at the local minimum of
the ground-state PES when the electron hits the resonance.
The black arrow shows a possible trajectory of the system in

TABLE II. The positions of the molecules in the systems from
Table I. All positions are relative to the closest surface atom. The z
direction is normal to the surface. At the Pd step the CO molecule is
tilted over the step, which is the reason for the composant in the y
direction. All numbers are in Angstroms.

Surface Molecule Pos. of 1. atom Pos. of 2. atom

Ni�001� N2 N: �0,0,1.638� N: �0,0,2.798�
CO C: �0,0,1.456� O: �0,0,2.621�
NO N: �0,0,1.404� O: �0,0,2.580�

Ni�111� CO C: �0,0,1.774� O: �0,0,2.941�
NO N: �0,0,1.758� O: �0,0,2.935�

Pd�111� CO C: �0,0,1.904� O: �0,0,3.064�
Pd step CO C: �0,0.586,1.801� O: �0,0.844,2.934� 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
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FIG. 5. �Color� Potential energy surfaces �PES� for a nitrogen
molecule on a close-packed ruthenium surface in the ground state
and the 2�y resonance as a function of the distance between the two
nitrogen atoms and the distance from the surface to the center of
mass of the nitrogen molecule. The energies are in eV. The small
dots represent the points where the energy has been calculated in
order to generate the surfaces. The black arrow represents a possible
trajectory of the system in the resonance state �see text�.
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the resonance state until the resonance decays and the system
returns to the ground-state PES. The potential energy after
the electron event in this optimal situation is approximately
1.5 eV higher than before the event. This is seen to be more
than enough to desorb the molecule. A more detailed analysis
involving calculations of the possible vibrational excitations
and the probabilities of exciting them will be the topic of a
future publication. Such an analysis will have to take all six
degrees of freedom of the molecule into account.

The PESs show that the center of mass is shifted away
from the surface when the resonance is occupied. This may
seem counterintuitive since the charged molecule is attracted
to the generated image charge in the surface. However, the
resonance weakens the bond between the nitrogen atoms,
such that the distance between them increases, which shifts
the center of mass outwards as the lower atom is not free to
move closer to the surface. This effect is more significant
than the decrease in the ruthenium-nitrogen distance due to
the mentioned image charge effect.

IV. SMALL MOLECULES

In the following we present some small tests performed
on N2 and CO. These small systems have the advantage that
they make it possible to compare to more accurate linear-
response time-dependent density-functional theory calcula-
tions. When possible we also compare to experiments. The
only advantage of our modified �SCF compared to ordinary
�SCF for these molecules is the possibility of handling de-
generate states without getting convergence problems, i.e.,

the following should be viewed as a test of the �SCF ap-
proach rather than a test of our modification. We are espe-
cially interested in confirming the ability to predict the shift
of the minimum when going from the ground-state PES to
the excited-state PES, which we in Sec. III C argued is very
important when considering molecular motion induced by an
electron hitting a molecular resonance.

A. Excitation energies

We have used the linear-expansion �SCF in combination
with the multiplet sum method43 to calculate excitation ener-
gies for different excitations in the N2 and CO molecules.
The results are presented in Tables III and IV, respectively.
The 4� and 5� states are both represented by a single KS
orbital. The 1� and 2� states are both double degenerate, so
they are both represented as a linear combination of two KS
orbitals: 	��= 1

�2
	�KS,a�+ i 1

�2 	�KS,b�, where 	�KS,a� and 	�KS,b�
are the two degenerate KS orbitals. The imaginary unit i has
been included in order to get the correct angular momentum
of the excited states �� and ��. This would not be possible
using traditional �SCF, where one only has the freedom to
change occupation numbers of the KS states. Due to the
rotational symmetry of the density found from these states
the calculations do not suffer from any convergence difficul-
ties. That is not the case if one just occupies one of the
degenerate KS orbitals. Only the � states are included in the
1�→2� transitions in Tables III and IV, since the 	 states
cannot be estimated by the multiplet sum method.43 This is,
however, not a problem for the kinds of systems for which

TABLE III. Vertical excitation energies for the N2 molecule taken from the minimum-energy configura-
tion of the ground state. All theoretical results are obtained using LDA as the xc potential �and ALDA for the
xc kernel in the lrTDDFT calculations�.

State Transition ��KS
a TDDFTb �SCF �SCF Exp.c

�ALDA� �LDA� �RPBE�

a1� 9.23 8.75 8.58 9.31

5�→2� 8.16

B3� 7.62 7.55 7.52 8.04

Singlet-triplet splitting: 1.61 1.20 1.06 1.27

w1� 10.27 10.50 10.52 10.27

1�→2� 9.63

W3� 8.91 8.94 8.79 8.88

Singlet-triplet splitting: 1.36 1.56 1.73 1.39

o1� 13.87 11.97 12.40 13.63

4�→2� 11.21

C3� 10.44 10.37 10.61 11.19

Singlet-triplet splitting: 3.43 1.60 1.79 2.44

aKS eigenvalue differences.
bLinear-response calculations taken from Grabo et al. �Ref. 44�.
cComputed by Oddershede et al. �Ref. 45� using the spectroscopic constants of Huber and Herzberg �Ref. 46�.
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this method is intended, such as molecules on surfaces where
high-accuracy alternatives are still lacking.

In general the excitation energies found by the linear-
expansion �SCF method look quite good for the low-lying
excitations. The accuracy is only slightly worse than that of
lrTDDFT and significantly better than just taking KS eigen-
value differences. The singlet triplet splittings are also rather
close to the experimental values. The method however seems
to struggle a bit more in the higher lying 4�→2� transi-
tions. This could indicate that the method should only be
applied to low-lying excitations. Changing the exchange-
correlation functional from LDA to RPBE does not affect the
accuracy significantly although a small tendency toward bet-
ter performance is seen for the higher lying excitations. We
note, however, that the intended application of �SCF do not
include simple diatomic molecules, where more accurate
quantum chemical methods are available.

B. Excited potential energy surfaces

The shapes of the potential energy surfaces can in some
cases be more important than the exact height of them, i.e., a
constant error is not so critical. This is for example the case
when considering chemistry induced by hot electrons.5,49 In
order to get an idea of the accuracy with which the linear-
expansion �SCF method reproduces correct shapes of poten-
tial energy surfaces we have calculated the potential energy
surfaces for the ground state and two excited states in the N2
molecule. These are plotted in Fig. 6 together with results
from lrTDDFT calculations.

The small differences between the two ground-state
curves are due to the fact that they have been calculated with
two different codes. Both codes are real-space codes, but
gpaw uses the PAW formalism to represent the core electrons
whereas OCTOPUS uses norm-conserving pseudopotentials.
The calculations have been made with the same grid spacing

TABLE IV. Vertical excitation energies for the CO molecule taken from the minimum-energy configura-
tion of the ground state. All theoretical results are obtained using LDA as the xc potential �and ALDA for the
xc kernel in the lrTDDFT calculations�.

State Transition ��KS
a TDDFTb �SCF �SCF Exp.c

�ALDA� �LDA� �RPBE�

A1� 8.44 7.84 7.81 8.51

5�→2� 6.87

a3� 6.02 6.09 6.02 6.32

Singlet-triplet splitting: 2.42 1.75 1.79 2.19

D1� 10.36 10.82 10.73 10.23

1�→2� 9.87

d3� 9.24 9.72 9.55 9.36

Singlet-triplet splitting: 1.12 1.10 1.18 0.87

C1� 13.15 13.09

4�→2� 11.94

c3� 11.43 12.26 12.09 11.55

Singlet-triplet splitting: 0.89 1.00

aKS eigenvalue differences.
bLinear-response calculations taken from Gonis et al. �Ref. 47�.
cComputed by Nielsen et al. �Ref. 48�.

FIG. 6. �Color online� The energy as a function of bond length
for the N2 molecule in the ground state and two excited states. The
black lines correspond to �SCF calculations, the gray �online: light
blue� lines correspond to linear-response calculations. The linear-
response calculations have been made using OCTOPUS �Refs. 35 and
36�. The vertical lines indicate the positions of the minima.
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and unit-cell size and with the same exchange-correlation
potential �LDA/ALDA�.

The shapes of the potential energy surfaces found from
the two different methods are seen to be very similar. Espe-
cially the predicted positions of the minima are seen to agree
very well. The shifting of the minima toward larger bond
lengths is also the expected behavior, since an electron is
moved from a bonding orbital to an antibonding orbital.
When going to bond lengths beyond 2 Å we start having
problems with convergence problems in the �SCF calcula-
tions, since the 2� orbital ceases to exist. This is not a prob-
lem we have encountered in the systems with a molecule on
a surface.

The good agreement between �SCF and lrTDDFT prob-
ably reflects that �SCF and ignoring the history dependence
of the exchange-correlation potential in TDDFT are related
approximations. For example, the density obtained in �SCF
would be stationary if evolved in time with TDDFT.

C. Gradients

As mentioned in Sec. II C the Hellman-Feynman theorem
does not apply in the linear-expansion �SCF method. This is
verified by the calculations shown in Fig. 7. Here the ener-
gies of the ground state and two excited states in the N2
molecule are plotted as a function of the bond length. The
short thick lines indicate the gradient given by calculated
Hellman-Feynman forces. For the ground state the agree-
ment is as expected perfect, but for the excited states there is
a clear mismatch. Unfortunately this implies that it is com-
putationally heavy to do dynamics or minimizations in the
excited states.

V. SUMMARY

We have extended the �SCF method of calculating exci-
tation energies by allowing excited electrons to occupy linear
combinations of KS states instead of just single KS states.
This solves the problems encountered for molecules near sur-

faces, where the molecular orbitals hybridize, such that none
of the KS orbitals can be used to represent an extra electron
placed on the molecule. The method has been implemented
in gpaw27,28 and applied to several systems.

From calculated potential energy surfaces of N2 on a ru-
thenium surface we concluded that an electron hitting the 2�
resonance in this system can induce molecular dynamics due
to the different positions of the minima of the ground-state
PES and the resonance PES. Through a simple analysis we
found that one electron can optimally place 1.5 eV in the
atomic motion, more than enough to desorb the molecule.

We find good agreement between the model and inverse
photoemission experiments for several diatomic molecules
on different metallic surfaces. For the considered systems we
find significantly better agreement with experiments using
the modified �SCF method compared to spatially con-
strained DFT and traditional �SCF.

Finally we applied the method to N2 and CO in their gas
phases we found that excitation energies are estimated with
quite good accuracy for the lower lying excitations, compa-
rable to that of TDDFT. Especially the shape of the potential
energy surfaces and the positions of the minima agree well
with TDDFT results.
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APPENDIX: OVERLAPS USING PAW PSEUDOWAVE
FUNCTION PROJECTIONS

The projector augmented wave29 method utilizes that one
can transform single-particle wave functions 	�n� oscillating
wildly near the atom core �all-electron wave functions� into

smooth well-behaved wave functions 	�̃n� �pseudowave
functions� which are identical to the all-electron wave func-
tions outside some augmentation sphere. The idea is to ex-
pand the pseudowave function inside the augmentation
sphere on a basis of smooth continuations 	�̃i

a� of partial
waves 	�i

a� centered on atom a. The transformation is

	�n� = 	�̃n� + �
i,a

�	�i
a� − 	�̃i

a��
p̃i
a	�̃n� , �A1�

where the projector functions 	p̃i
a� inside the augmentation

sphere a fulfills

�
i

	p̃i
a�
�̃i

a	 = 1, 
p̃i
a	�̃ j

a� = �ij, 	r − Ra	 
 rc
a. �A2�

Suppose we have an atom adsorbed on a metal surface and
we wish to perform a �SCF calculation where a certain
atomic orbital 	a� is kept occupied during the calculation. If
the orbital is hybridized with the metal states we need to find
the linear combination which constitutes the orbital. This can

FIG. 7. �Color online� The energy as a function of bond length
for the N2 molecule in the ground state and two excited states. The
short thick lines indicate the size of the gradients.
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always be done if a sufficient number of unoccupied KS
orbitals is included in the calculation

	i� = �
n

cni	�n�, cni = 
�n	i� . �A3�

Since the partial waves are typically chosen as atomic orbit-
als we just need to consider the quantity


�n	�i
a� = 
�̃n	�i

a� + �
j,a�


�̃n	p̃j
a���
� j

a�	�i
a�

− 
�̃ j
a�	�i

a�� 
 
�̃n	p̃i
a� . �A4�

If we were just considering a single atom, the last equality

would be exact inside the augmentation sphere since the par-
tial waves would then be orthogonal and the pseudopartial
waves are dual to the projectors in Eq. �A2�. When more
than one atom is present there are corrections due to overlap
of partial waves from neighboring atoms and noncomplete-
ness of projectors/pseudopartial waves between the augmen-

tation spheres. However using 
�̃n 	 p̃i
a� is a quick and effi-

cient way of obtaining the linear combination, since these
quantities are calculated in each step of the self-consistence
cycle anyway. The method can then be extended to molecu-
lar orbitals by taking the relevant linear combinations of


�̃n 	 p̃i
a�.
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