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Abstract—Big Data processing systems (e.g., Spark) have a number of resource configuration parameters, such as memory size,

CPU allocation, and the number of running nodes. Regular users and even expert administrators struggle to understand the mutual

relation between different parameter configurations and the overall performance of the system. In this paper, we address this challenge

by proposing a performance prediction framework, called d-Simplexed, to build performance models with varied configurable

parameters on Spark. We take inspiration from the field of Computational Geometry to construct a d-dimensional mesh using Delaunay

Triangulation over a selected set of features. From this mesh, we predict execution time for various feature configurations. To minimize

the time and resources in building a bootstrap model with a large number of configuration values, we propose an adaptive sampling

technique to allow us to collect as few training points as required. Our evaluation on a cluster of computers using WordCount,

PageRank, Kmeans, and Join workloads in HiBench benchmarking suites shows that we can achieve less than 5% error rate for

estimation accuracy by sampling less than 1% of data.

Index Terms—Performance modeling, Big data analytics, Adaptive sampling, Delaunay Triangulation.

✦

1 INTRODUCTION

Numerous Big Data frameworks have been introduced to
address the problem of organizing large-scale fault-tolerant
computation in a clustered environment (the cloud). The
general-purpose frameworks which have emerged, such as
Spark, [40], Hadoop [38], and MapReduce [9], are capable of
handling diverse Big Data analytics workloads. In a cloud
environment where resources are billed down to the second,
the costs of job inefficiencies rapidly become visible, and it is
becoming increasingly important for Big Data frameworks
to run jobs efficiently.

These modern Big Data frameworks are complex sys-
tems. They have many resource tuning knobs, such as mem-
ory, CPU/GPU allocation, the number of running nodes,
and other I/O considerations. With so many tuning knobs,
the end users (often non-technical people) submitting the
jobs are left clueless about the impact of each parameter
on the performance of the job and the overall performance
of the cluster. Furthermore, the choice of the configuration
parameters is highly dependant on the type of job, the
amount of resources available, and the input data size, etc.

Motivation and Challenges. Our work models the per-
formance topography of whole feature space. Figure 1 de-
picts the execution time of a Spark job (Kmeans cluster-
ing) with three varied parameters, including input data
size, the number of vcores (virtual CPU cores), and the
amount of memory. In contrast, tuning only finds one pa-
rameter value towards the (local) optimal performance of
the specific metric. Tuning to another goal often requires
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Fig. 1: 3D topography of the response surfaces for a Spark
job (Kmeans workload) with varied virtual CPU cores
(vcore) and memory with 5G, 10G, and 20G input data size.

retraining. Best parameters for runtime is not necessarily
cost-effective [35]. Unlike tuning, performance modeling
can determine the best resource provisioning (e.g., [7], [32])
towards different goals, e.g., shortest runtime [30], lowest
resource consumption [15], highest throughput [1], etc. It
is meaningful to build a topological model with a fewer
but important parameters to represent the performance
surface for further decisions, such as the best monetary cost
(determining optimal number of machines [35]) in Amazon

“pay-as-you-go” services1, fewer resource assignment but
deadline-guarantee in a competed cluster [7].

However, we are faced with challenges in building an
accurate prediction model and achieving enough samples
for training the model. There exist many excellent works
for performance modeling and tuning in different plat-

1. https://aws.amazon.com/ec2/pricing/on-demand/

https://aws.amazon.com/ec2/pricing/on-demand/
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TABLE 1: An overview of the comparison of state-of-the-art approaches. In usage, modeling builds the performance
topography of whole configuration space. However, tuning finds only one parameter value towards the (local) optimal
performance of the specific metric.

Approach Model Parameter Usage Comments

Ernest [35] Cost function Vcore Modeling Works for only one parameter

Alvaro [16] Regression models Parallelism Tuning Hard to pick model, (local) optimal finding

OtterTune [1] Guassian process Sets of parameters Tuning Possible overfitting, (local) optimal finding

CDBTune [42] Neural networks Sets of parameters Tuning Possible overfitting, (local) optimal finding

d-Simplexed Delaunay triangulation Sets of parameters Modeling Apply for multiple parameters and adaptive sampling
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Fig. 2: (a) An example Delaunay Triangulation constructed
from two-dimensional samples for the features memory
and vcore, and (b) runtime prediction using the feature
configurations for a Spark workload.

forms, such as Hadoop (e.g., [17], [30]), Spark(e.g., [16],
[35]), Database (e.g., [1], [11]). Table 1 compares the most
relevant state-of-the-art approaches. Alvaro [16], OtterTune
[1], and CDBTune [42] use several regressors to tune a set
of parameters. However, they train the models in the way
of maximizing one objective, i.e., predicting local optimal
performance. Therefore do not perform well on the whole
topology of the feature space. In contrast, Ernest [35] is de-
signed to predict any unknown parameters in the topology
but capable of predicting only vcore parameter.

Yet, these regression models either (Gaussian Process [1]
and multi-layer Neural Network [42]) face a deterioration
accuracy due to overfitting and require many samples for
model building or (Linear regression [16], Ernest [35]) are
simple but achieves unsatisfactory accuracy. We contribute
to apply a novel accurate model and develop an adaptive
sampling to mitigate the training cost, as follows.

Contribution 1 in § 4 – Delaunay Triangulation model. We
introduce a novel black-box method for modeling and pre-
dicting the performance of Big Data applications. We build
a bootstrap performance surface model, which accurately
predicts any unknown parameters. We take inspiration from
the field of Computational Geometry to construct a d + 1-
dimensional mesh (e.g., [13]) over a selected set of d features
with Delaunay Triangulation (DT) [10], which has wide
applications in the fields of computational geometry (e.g.
curved surface modeling [6]) and computer graphics (e.g.
path planning in automated driving [2].

In particular, DT partitions the d feature space into a
set of interconnected d-simplexes2. Such a piece-wise model
helps to avoid overfitting. Figure 2a illustrates an example

2. A Simplex is borrowed from computational geometry, denoting a
triangle-like object that can be extended to arbitrary dimensions.

mesh of 2-simplexes constructed from memory and CPU
core features. We first determine a simplex to which an
unknown feature configuration belongs to. Then we predict
the job execution time by calculating a hyperplane in d + 1
dimensional space by bringing in the runtime dimension as
shown in Figure 2b. In Figure 1, DT is required to construct a
mesh of 3-simplexes, or tetrahedrons for three features (i.e.,
vcore, memory, and data size) and predicts the runtime for
a Kmeans job.

Contribution 2 in § 5 – Adaptive sampling. The premise
for the above performance prediction is building the mesh
model. However, training the whole topography is extrav-
agant with a large parameter space, and randomly picking
samples does not guarantee the desired accuracy. Determin-
ing both the right fraction and the appropriate representa-
tives of the samples for building a model is not trivial. To
address this challenge, we integrate an adaptive sampling
framework with d-Simplexed. The sampling method boot-
straps with Latin Hypercube Sampling (LHS) (e.g., [25]),
which spreads widely in each feature dimension, and uses
fewer points to represent the whole range of feature values.
Based on experiments, we develop an approach to estimate
the utility of new candidate samples and select those sam-
ples which significantly improve the model.

Contribution 3 in § 6 – Comprehensive experiments.
The Delaunay Triangulation (DT) model and the adaptive
sampling algorithms (We name it d-Simplexed) are im-
plemented and comprehensively evaluated on the Spark
platform through benchmarking and synthetic workloads.
The empirical experiments show that d-Simplexed outper-
forms the state-of-the-art methods, such as Decision Tree
Regression (DTR) by Alvaro [28], Cost-based method (e.g.,
Ernest [35]), Gaussian Process (GP) in OtterTune [29], and
Multilayer Neural Network (NN) in CBDTune [42]. Also, the
proposed adaptive sampling method enables us to use fewer
samples to train the model and outperforms the baseline
sampling techniques, i.e., random and gridding sampling.
d-Simplexed exploits a few samples to achieve a very low
error prediction, and the error continues decreasing as the
samples increase. For example, we achieve 1.58% prediction
error by sampling 1% data points for the Kmeans workload.

The rest of the paper is structured as follows. In § 2,
we provide a background on Spark and some mathematical
primitives required to understand our method. In § 3, we
present the problem formally. § 4 and § 5 present our
contributions in modeling, prediction, and sampling for d-
Simplxed. In § 6, we analyze the empirical performance
results. We survey the related work in § 7, and conclude
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TABLE 2: Key Spark Executor Configuration Parameters

Executor Parameter Configuration Parameter

Count executor.instances

Executor Memory executor.memory

Executor Threads executor.cores

Our parameter Configuration Parameter

Memory executor.instances × executor.memory

Vcore executor.instances × executor.cores

this paper in § 8.

2 PRELIMINARIES

In this section, we lay the groundwork required to un-
derstand our method presented hereafter, including Spark
preliminaries and computational geometry primitives.

2.1 Spark Preliminaries

Spark [40] is a general-purpose cluster computing frame-
work. It was originally built to handle iterative Big Data
algorithms (e.g., Machine Learning workloads). It uses a
distributed memory abstraction called Resilient Distributed
Datasets (RDDs) [41] that enables parallel computation on
data and make such data exceptionally resilient to faults.

At runtime, Spark applications are split into tasks and
assigned running executors. The executors remain alive for
the duration of the job using multiple CPU threads running
received tasks in parallel. The size and number of executors,
as well as their available execution threads, are the key
performance indicators for any given job. A summary of the
relevant tuning parameters controlling them is presented in
Table 2. Spark runs on top of a cluster resource manager
such as Mesos [18] or YARN [34]. When submitting jobs to
the resource manager, users may specify the configuration
parameters from Table 2, and the resource manager will
manage the allocation.

2.2 Delaunay Triangulation Primitives

In the following, we introduce some basic terms and con-
cepts on Delaunay Triangulation (DT) from Computational
Geometry.

Convex Region. A convex region [26] is a region such
that, for every pair of points in the region, every point on
the straight line segment that joins the pair of points is
also within the region. We show an example in Figure 3a,
illustrating the convex and non-convex regions.

Convex Set. A convex set [26] represents the points inside a
convex region. In convex geometry, a convex set is a subset
of an affine space that is closed under convex combina-
tions [5].

Convex Hull. It is the fundamental construction of Compu-
tational Geometry. The convex hull [3] of a set of points is
the smallest convex set that contains the points.

Hyperplane. It is the generalization of a plane in three
dimensions to higher dimensions, i.e., any d subspace in
R
d+1.

Simplex. It is the generalization of a triangle to different
dimensions. In d dimensions, the concept of a triangle
becomes a d-simplex. For example in Figure 3b, a 2d triangle
is a 2-simplex, a 3d tetrahedron is a 3-simplex, and so on.

(a) (b)

Fig. 3: (a) Convex hull bounding a convex region (left) and
a non-convex hull bounding a non-convex region (right).
(b) A 1-simplex (line), 2-simplex (triangle) and 3-simplex
(tetrahedron). Delaunay Triangulation in R

d construct d-
simplexes.

Furthermore, each simplex is constructed of facets, which
form the boundary (i.e., min and max values) of the surface.
The number of facets in a simplex is a function of the
number of edges.

In our context, we construct the model by plotting a d

feature configuration of Spark into a d-dimensional space,
using DT to partition the feature space into a set of intercon-
nected d-simplexes, thereby forming a d+1-hyperplane over
the feature set. Unlike previous approaches (e.g., OtterTune
[1]), we build the DT performance model of the entire
feature space instead of searching local optima (Section 4).

3 PROBLEM STATEMENT

At the high level, we want to predict the runtime of a
Big Data analytics job with varied parameter configurations
given a set of historical (or sampled) data points. Intuitively,
the research problem of this paper is: how to develop a
performance model based on the sampled data to produce accurate
runtime predictions with given parameter configurations? More
formally, given a collection of n samples, a configuration
space F , a prediction model PM(·) returns the estimated

running time T̂ for F :

T̂ = PM(S, F ) (1)

where S = {〈Fi, Ti〉|1 ≤ i ≤ n}, and each configuration
Fi = {f1, f2, ..., fd} includes d features3 (parameters) and
the corresponding runtime is Ti. To evaluate the model in
our experiments, we use a metric called the Mean Absolute
Percentage Error (MAPE), which is the average of the Per-

cent Errors for a set of estimated runtimes (T̂ ) and actual
runtimes (T ):

MAPE =
100%

l

l∑

i=1

|
Ti − T̂i

Ti

| (2)

where l is the number of specific feature configurations to
be tested.

In general, this problem can be converted to a gen-
eral prediction problem with historical data (i.e. training
data), which can be solved by a statistics machine learning
method such as Gaussian Process (GP) [29] and Neural
Network [42]. However, as we will show in our evaluation
in § 6, these methods require massive training data points
for better prediction, and they are very costly to construct an
accurate performance model in our problem. In contrast, we
will develop a novel method for accurate runtime prediction
by building an effective estimation model which requires
much less training data.

3. Features can be not only system parameters (e.g., vcore and mem-
ory) but also job or input data information (e.g., data size).

3
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Fig. 4: d-Simplexed architecture. LHS, Boundary Samples and Adaptive Sampling in § 5. DT Modeling and Runtime
Modeling in § 4.1. Performance Prediction in § 4.2. Abbreviation: Utility (U(X)) of samples X , Running time (T ), Predicted
time (T ′), Memory (M ), vcore (V ), Point to be predicted (Po = 〈f1, f2〉), Plane to predict (Pl = β1x1 + β2x2 + β3).

Against our problem, we propose a framework, called d-
Simplexed, by using the Delaunay Triangulation (DT) model
to make the prediction for a given parameter configuration
and heuristic adaptive sampling to reducing samples for
training. Figure 4 shows our framework at a high level.
Correspondingly, a brief algorithm is also described in al-
gorithm 1. The main features are adaptive sampling, DT
modeling, and performance prediction. We present the DT
model and its prediction in the following section, then
introduce adaptive sampling that accelerates the modeling
in § 5.

4 DELAUNAY TRIANGULATION

The central task of the paper is to model the performance
(e.g., Kmeans performance mesh in Figure 1 and synthetic
workload performance mesh in Figure 11) of a job with a set
of parameters. There exist many methods for creating the
polygon mesh. In particular, a Delaunay triangulation [10]
is a triangulation DT(P) (where P is set of discrete points in
a plane) such that no point in P is inside the circumcircle
of any triangle in DT(P). Delaunay triangulation maximizes
the minimum angle of all the angles of the triangles in the
triangulation. The reasons for choosing the DT are three-
fold:

1) It prefers to form equilateral triangles as much as possi-
ble. Avoiding long and skinny triangles leads to a better
interpolation (prediction runtime for our case) of values
because the vertices of a long and skinny triangle tend to
be spread out far from each other [8].

2) It can easily be extended into higher dimensions meaning
that the model is not limited by the number of features
in our context.

Algorithm 1: d-SIMPLEXED: framework workflow

Input : Set of hitorical points F ′ with runtime data and
new configurations F

1 S ← boundary samples // initial in § 5

2 M ←initial prediction model from S

3 M ← Adaptive Sampling(F ′ − S,M) // refine the

model by algorithm 3

4 foreach F ∈ F do
5 T ← Prediction(M,F ) // by algorithm 2

6 T ← T ∪ T
Result: Prediction model M , Predicted runtimes T

3) It is well researched – many algorithms and tools have
been developed for creation and traversal of triangula-
tion (e.g., Flip [8] and QuickHull [3]).

The division of a 2-dimensional or d-dimensional shape into
a collection of discrete planes has wide applications in the
fields of computational geometry and especially computer
graphics (e.g. path planning in automated driving [2]). We
introduce the following main steps to build and use the
DT model to fit our problem of performance modeling and
prediction:

1) Triangulation: Given a set of d features (parameters)
{f1, f2, ..., fd}, e.g., {16 GB, 4 vcores}, we build the
Delaunay Triangulation model in R

d space;
2) Projection: From each d-simplex returned from a Delau-

nay Triangulation model, we use the running-times of
each of the (d+ 1) points to compute the hyperplanes;

3) Prediction: Given a new parameter configuration, we can
make the running-time prediction based on the model
constructed before.

4.1 Modeling

Triangulation. With d features selected, we generate a
DT mesh in R

d space. In two or three dimensions, DT
forms familiar meshes over the feature configuration space,
thereby connecting unknown points and enabling runtime
prediction. Figure 2 shows an example of a Delaunay Tri-
angulation over a 2-dimensional 〈memory, vcore〉 data set.
In higher dimensions, the idea works in the same way
except that it becomes more complex to visualize. Other
approaches (e.g., cost-based models [31], [35]) attempt to
fit a smooth function over a similar space. In contrast, we
split the space into regions using DT, instead of trying to
fit a single function to the whole data set. To efficiently
to employ DT, we apply Quickhull [3] algorithm. There
are many variations to the Quickhull algorithm, and the
one we implemented is the most generic. Quickhull runs
in Θ(n log n) with a worst-case complexity of O(n2). The
worst-case complexity occurs when points have unfavorable
(highly symmetric) distributions. In our framework, we do
not consider this to be a valid cause for concern, as our
sampling method in § 5 ensures that we pick distributed
asymmetric points, thereby avoiding the high-symmetry
pitfalls.
Projection. Following that we use d features together
with runtime to find a multivariate linear function repre-
senting a hyperplane in R

d+1 which is responsible for the
predictions of points contained in each region (d-simplex).

4
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Project to Paraboloid Compute Convex hull Project hull faces back to plane

Fig. 5: Example of how do Delauney Triangulation and
Convex Hull work by a parabola ( x2 + y2). (i) Compute
the convex hull of the point set in R

2+1 space (by lifting the
points to a parabola (x, y, x2 + y2)); (ii) project the convex
hull back into R

2 space, leaving the DT in R
2.

There is no requirement for the fitting function to be con-
tinuous; defining it piece-wise makes it easier and more
accurate. DT partitions the feature space into a series of
simplexes and we construct a hyperplane by bringing in
the runtime dimension for each simplex. This process is
best explained by stepping through in two and three di-
mensions, then extrapolating into higher dimensions. In
two dimensions, e.g. 〈f1, f2〉, DT generates 2-simplexes
(triangles), each naturally containing three points. For each
point 〈f1, f2〉, we add the runtime as the third dimension
(e.g. 〈f1, f2, runtime(f1, f2)〉), then compute the hyper-
plane containing these three points. In three dimensions,
e.g. 〈f1, f2, f3〉, DT creates 3-simplexes (tetrahedrons), each
containing four points as shown in Figure 3b. Next, we add
runtime in and then compute the hyperplane containing
each of the tetrahedron’s points. As we travel into higher
dimensions, the process remains the same. In other words,
in a model constructed with d features, we must lift it into
R
d+1 by including runtime in a separate step. We illustrate

the modeling in 1.

Example 1. To generate a DT mesh for a set of points in R
d

space, we utilize the relationship4 between DT in R
d and

a parabola in R
d+1. Figure 5, by a parabola (x, y, x2 +

y2), depicts the simplex and hyperplane relation in 2-
dimension (x, y). We first compute the hyperplane, i.e.,
the convex hull of the point set in R

2+1 space (by lifting
the points to a parabola), then project the convex hull
back into R

2 space (i.e. simplexes), leaving DT in R
2.

4.2 Prediction

Once we have the new configuration F = 〈f1, f2, ..., fd〉, we
can predict runtime based upon the features in the model.

4. Delaunay triangulation for parabola projection is detailed in http:
//www.cs.wustl.edu/∼pless/546/lectures/L13.html

Algorithm 2: PREDICTION

Input : Model M in R
d includes a set of d-simplexes and

attached R
d+1 hyperplanes; New configuration

F = 〈f1, f2, ..., fd〉
1 foreach si ∈M do // simplex si
2 if F ∈ si then // find the simplex

3 h← hyperplane(si) // Calculate parameter

values of hyperplane

4 T ← h(F ) // compute runtime by Equation 3

5 return T
Result: Predicted runtime T for configuration F

A formal procedure can be found in algorithm 2. Given
the computed DT model and new configuration F , the first
step is to determine which simplex a given point belongs
to. We then can calculate the hyperplane for prediction.
The generic scalar form of a hyperplane of d dimensions

is β0 =
∑d+1

i=1 βixi. By the known d+1 configurations of
the simplex and their runtimes, we can compute the hyper-
plane’s parameter {β0, ..., βd+1}. We define h(·) to return
runtime (e.g., xd+1) when given new configuration values
in Equation 3. When this simplex’s hyperplane is obtained,
we simply can plug the known configuration values into
Equation 3 to get the estimated runtime at that specific
configuration F .

T = xd+1 = h(x1, ..., xd) =
β0 −

∑d
i=1 βixi

βd+1
(3)

Note that this prediction algorithm relies heavily on
the assumption that any potential prediction values will lie
inside the convex hull of the model. This is precisely why
in the approach that we picked 2d boundary samples at the
extremes of the feature configuration space. This step en-
sures that any future predictions will fall inside the convex
hull, and thus have a simplex for prediction. Points lying
outside the convex hull (”outer-hull” points) are difficult to
predict because their values must be extrapolated from a
hyperplane inside the hull. By selecting boundary samples
at the beginning, we can avoid this situation as described in
the right following section.

As sample adds to DT model, DT will split the surface
into multiple regions, and model the surface locally and
linearly, avoiding overfitting with an upper error bound.
That is when every hyperplane covers a monotonic surface,
the prediction performance is with a bound as follows:

Lemma 1. If each hyperplane predicts a monotonic surface,
the MAPE of each hyperplane prediction bounds to:

MAPE ≤
Tmax − Tmin

2× Tmin

(4)

where Tmax and Tmin are the maximum and minimum
performance in the split surface(or hyperplane).

The proof idea is to calculate the maximum error be-
tween an arbitrary monotonic function and linear function
built by Tmax and Tmin.

5 ADAPTIVE SAMPLING

As mentioned in the earlier section, DT may perform poorly
when the feature space has an unfavorable or highly sym-
metrical distribution. Also, even finding an optimal param-
eter for the system is NP-hard [1,42]. To remedy this, we rely
on heuristic sampling. The baseline sampling techniques
in this situation are random sampling and grid sampling.
Random sampling selects points at random from the config-
uration space without replacement. Grid sampling (e.g., in
[33] sampling for database parameters) meanwhile divides
the configuration space into uniform grids and selects points
which lie at an equal distance from each other. Samples
gathered from these baseline sampling techniques may pro-
duce a sub-optimal model. The reason is that they may over-
sample in the regions where there is little change in the
runtime and under-sample in the regions where the runtime

5
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is highly dynamic. Consequently, in this paper, we introduce
a novel feedback-driven sampling technique to improve the
model’s performance by selecting more samples from the
place where the topography of the model is turbulent, i.e. to
avoid model overfitting by improving the errors addressed
in Lemma 1. To guarantee each hyperplane predicting the
monotonic surface, we heuristically discover sparse area
with less known parameters, while to lower the error bound,
we heuristically choose the area with huge performance
changes (define in Equation 6).

In particular, we split our sampling technique into two
phases. First, we select seed samples to initialize the model.
Second, we iteratively add samples by a utility-driven
method to improve the model in each step. The sample with
the highest utility, i.e., the highest potential to improve the
model’s prediction accuracy, is picked to update the model.

Initial Samples. We go through the following steps to
generate the seed samples:

1) Determine d features to include in the model and their
bounds, thereby forming the feature space for the model,
e.g, d features have 2d boundary samples. We normalize
the feature space ∈ [0, 1].

2) Use Latin Hypercube Sampling (LHS) [20] to select m

feature configurations. In the LHS technique, samples
are chosen in a way such that the complete range of
parameter values is fully represented. However, LHS
may generate bad spreads where all samples are spread
along the diagonal. Therefore, we maximize the mini-
mum distance between any pair of samples. Suppose we
have n samples, we will select the sample set X∗ such
that:

X∗ = arg max
{1<i<n}

min
{f

(xi
1)

1 ,..f
(xi

d
)

d
∈DLHS}

Dist(f
(xi

1)
1 , ..., f

(xi

d
)

d )

(5)

where x1 6= ... 6= xd, and Dist is a typical distance metric,
e.g., Euclidean distance.

3) Combine LHS samples with 2d boundary samples (taken
from the minimum and maximum points of each fea-
ture axis) to gather 2d + m seed samples for the initial
model. These seed samples will be excluded in adaptive
sampling. The reason for including boundary points is
to avoid outer-hull point prediction, which normally
performs unsatisfactorily.

Algorithm 3: ADAPTIVE SAMPLING

Input: Sample set: S; initial prediction model: M
1 repeat
2 DLHS ← LHS(S) // Equation 5

3 F(n+1) ← ∅ // next sample

4 UX ← 0
5 foreach X∗ ∈ DLHS do // U(X∗) from Equation 7

6 if UX < U(X∗) then
7 F(n+1) ← X∗

8 UX ← U(X∗)
9 M ← update(M,F(n+1), T (F(n+1))) // update model

with Quickhull [3]

10 S ← S − F(n+1)

11 until stopping condition is met
12 return M

Result: Prediction model: M
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Fig. 6: Illustration of Example 2. The next sample point to
pick is based on the current DT model. (a) Pick configuration
value 2. (b) Pick configuration value 5.

Adaptive Sampling. The adaptive sampling technique
is to select new points for improving the model accuracy.
We heuristically search the area with the greatest runtime
changes and more unknown configurations. We need more
samples from these areas where small changes in feature
values may result in significant changes in runtime. Such
heuristic helps accelerating the convergence of the model
in a turbulent surface, i.e. performance rapidly and non-
monotonically changing. We introduce a utility metric to
compute the distance between the predicted point and its
hyperplane. Intuitively, a higher utility value indicates a
larger distance to the points of its prediction hyperplane
and thus a higher potential improvement to the model.
Given samples X from LHS domain DLHS and n samples

S with d features, we achieve the predicted runtime ˆT (i)

by sample X(i) and its hyperplane S ′ ⊆ S with h sample

〈F
(i)
k , T (F

(i)
k )〉, 1 < k < h. The utility U(X(i)) of sample

X(i) is defined as follows:

U(X(i)) =
1

h

h∑

k=1

(
1

d+ 1
(

d∑

j=1

(f
(i)
k,j−X

(i)
j )2+(T (F

(i)
k )− ˆT (i))2))

(6)
where h is the number of points constructing its hyperplane.
The iterative sampling technique proceeds as follows until
a stopping condition has been met.

Our adaptive sampling is described in algorithm 3. The
algorithm adds sample in each iteration. Line 2 is to get new
m sample points DLHS using Latin Hypercube Sampling
across the entire feature space in every iteration. Line 5-8 are
to get the sample with the highest utility using the current
model to compute the utility U(·) of X∗ by Equation 6,
where for each X∗ in DLHS . Next, we rank all the samples
by utility and pick the largest U(X(i)) as the next sample to
add to the model (by Equation 7). The features of this new
sample F(n+1) is achieved as follows:

F(n+1) = arg max
X∈DLHS

U(X) (7)

Line 9 updates the model and Line 10 removes the added
sample from sample set. We define an explicit threshold of
prediction error as the stopping condition. In our empirical
experiments, we continue selecting more sampling points
into the model until an average error has been reached (e.g.,
MAPE≤ 5%). We provide an example to illustrate the idea
of picking the next point by the utility as follows.

6
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Example 2. Figure 6 depicts an example scenario with
synthetic data. Suppose three experiments have been
done, and the collected data points are shown in sub-
figure (a). Suppose the runtime is 3.5 for configuration
value 2 from points (1, 6) and (3, 1) by linear regression.
Based on the points (1, 6), (3, 1), we compute the utility
U = 3.625 for this candidate point 2 by Equation 6.
Similarly U = 2.005 for point 5. We choose point 2 to
be the next sample point for experiments, as the run-
time between 1 and 3 decreases steeply (by exploitation).
Further, suppose the actual runtime for configuration
value 2 is 4. Then we update the model as shown in sub-
figure (b). At that moment, we compute 1.25 and 2.005
utility for configuration value 2.5 and 5, respectively. We
choose the configuration value 5 as our next sample,
as the largest uncertainty of points between 3 to 7 (by
exploration).

It is noteworthy that the above sampling technique bal-
ances the conflicting tasks of exploration (understanding the
global surface of the model) and exploitation (going through
the regions, where the performances of the adjacent points
change fast) that arise in model building, which is non-
trivial to achieve.

6 EMPIRICAL EVALUATION

In this section, we present the empirical results and evaluate
our approach systematically. Experimental results show the
superiority of the d-Simplexed model and adaptive sam-
pling over the state-of-the-art models and baseline sampling
techniques. The detailed evaluations are the following.

6.1 Experiment Setup

6.1.1 Experiment Design

Compared state-of-the-art models. We compared the d-
Simplexed framework with baseline method Multivariate
Linear Regression (LR) [16], and state-of-the-art methods,
i.e., Decision Tree Regression (DTR) [16], Gaussian Process
(GP) [1], Ernest [35] and Multilayer Neural Network (NN)
[42] .
Compared samplers. We implemented adaptive sam-
pling, comparing with two baseline sampling techniques:
random, grid. The adaptive sampling helps to achieve the
next best samples for the d-Simplexed as well as the com-
pared models.
Evaluated workloads. Our evaluation consists of two
suites of workloads. The first suite of workloads, i.e., Word-
Count, PageRank, Kmeans clustering, Bayesian classifica-
tion, and SQL Join (described in Table 3), is from the
HiBench benchmarking [19]. The second suite of work-
loads, i.e., SingleWave, MultiWave, Kmeans4d (described in
§ 6.2.4), is the synthetic turbulent surface to simulate more
complex workloads for Spark or any other systems.

6.1.2 Experiment Setting

On the software side, we used Apache Spark v2.1.0 on top
of Hadoop v2.8.1. With Hadoop, we used HDFS as our
distributed file system, and YARN as our resource manager.
This is a typical open-source Spark software stack. From
the hardware side, our experiments were conducted on a
high performance computing cluster. The cluster consists of

over 10 Dell PowerEdge M610 servers, each having 32GB
of RAM, 2 Intel Xeon E5540 2.53GHz CPUs and 4 cores per
CPU, making 16 vcores available with hyperthreading. We
construct various experiment specific feature spaces from
the available resources in this cluster for our experiments.
We present runtimes as the average of three experimen-
tal runs. For each experiment, we randomly took 10% of
corresponding feature space samples as the test data for
computing accuracy.

6.1.3 Model Implementation

d-Simplexed is implemented as a Python project organized
as a set of modules. We implement Delaunay Triangulation
by using a Python wrapperfor the qhull5 library which
internally uses the Quickhull Algorithm ( [3]) to determine
the Convex Hull and resulting Delaunay Triangulation for
a set of points. The qhull library also contains useful
abstractions for the components in the triangulation, such as
determining if a simplex contains a point. Latin Hypercube
Sampling is developed in Python from scratch.

We implemented LR, DTR, and GP by scikit-learn6

with their default model settings. Ernest is trained by the
curve-fitting function from sklearn. We implemented Multi-
layer Neural Network (NN) (with three hidden layers) [42]
by Keras7 using TensorFlow [12] backend.

6.2 Experiment Results

6.2.1 Overview of Workload Evaluation

In this part, we show a high level comparison of differ-
ent prediction models for different workloads. Figure 7
shows the prediction accuracy of all workloads with 2%
training samples out of all configuration combinations. In
general, Delaunay Triangulation (DT) model with adaptive
sampling, i.e., d-Simplexed outperforms the multi-variable
Linear regression (LR), Gaussian Process (GP), Decision Tree
regression (DTR), Multi-layer Neural Network (NN) for
all evaluated workloads. d-Simplexed achieves less than 5%
MAPE for all HiBench workloads except Bayesian 11.281%.
In challenging SingleWave and MultiWave workloads, d-
Simplexed achieves 9.576% and 20.723% MAPE, respectively.

Among all the compared methods, DTR performs satis-
factorily, as DTR owns piece-wise regression function sim-
ilar to d-Simplexed. Also, GP and NN outperform LR in
the case of Kmeans, Bayesian and synthetic workloads (i.e.,
SingleWave & MultiWave), since the performance of these
workloads change abruptly (usually non-linear changing)
with feature values. No surprise, GP and NN are more
suitable than LR in these non-linear curves fitting. In con-
trast, LR outperforms GP in the case of WordCount and
Join workloads, as the performance of these two workloads
is flatter, i.e., slight performance change as the parameters
change.

We next show the detailed evaluation concerning vari-
ous prediction models, features, sampling techniques, and
complex workloads.

5. http://qhull.org/
6. https://scikit-learn.org/
7. https://keras.io
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Fig. 7: Overall workload Mean Absolute Percentage Error (MAPE) of d-Simplexed agianst multi-variable Linear regression
(LR), Gaussian Process (GP), Decision Tree regression (DTR), and multi-layter Neural network (NN). 2% of samples are
trained. (The lower the better.) More than 50% MAPE is cut for better presentation.

TABLE 3: Settings and evaluations of Hibench Workloads, i.e., Kmeans, WordCount, PageRank, Bayesian, and Join with
multi-variable Linear regression (LR), Gaussian Process (GP), Decision Tree regression (DTR), multi-layter Neural network
(NN), Delaunay Triangulation (DT) with random sampling (DT-RD), DT with grid sampling (DT-GD), and DT with
adaptive sampling (d-Simplexed). The results are the Mean Absolute Precision Error (MAPE) with 1% of samples. d-
Simplexed achieves the best performance against other methods. Configuration space: start value - step size - end value

Workload Data size Config space LR GP DTR NN DT-RD DT-GD d-Simplexed

Kmeans 80G M:40-2-240 V:60-1-160 9.379 28.017 5.645 27.218 2.91 2.51 1.58
WordCount 80G M:40-2-240 V:60-1-160 8.93 10.256 5.085 40.772 2.086 4.665 2.071
PageRank 80G M:40-2-240 V:60-1-160 23.914 50.076 14.765 73.218 4.354 10.763 3.053
Bayesian 14G M:10-1-120 V:10-1-120 85.36 66.111 26.646 68.481 20.091 345.045 15.768
Join 17.3G M:10-1-120 V:10-1-120 3.278 20.357 1.833 2.391 2.674 0.954 0.367
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Fig. 8: Comparison of the d-Simplexed against Multivariate
Linear Regression (LR), Gaussian Process (GP), Ernest, De-
cision Tree regression (DTR), multi-layter Neural network
(NN) for the Kmeans workload. d-Simplexed achieves the
best MAPE with 200 samples.

6.2.2 Model Evaluation

The first set of experiments compares d-Simplexed with
adaptive sampling (algorithm 3), against other state-of-the-
art methods, namely Multivariate Linear Regression (LR)
and Gaussian Process (GP), Ernest, Decision Tree regression
(DTR), and multi-layter Neural network (NN).

We first consider input data size and vcore as the fea-
tures, since Ernest only tolerates these two features. We com-
pare all the models with variable data sizes (10GB-40GB)
and numbers of vcores (20-50v). The unit size of each step
is 1GB data and 1 vcore. Figure 8 shows the experimental
results against Kmeans workload. d-Simplexed is the best
among these six models in terms of Mean Absolute Percent-
age Error (MAPE) Equation 2 and convergence because of its
property of local and piece-wise modeling and prediction.
Ernest is better than LR because Ernest consists of not only
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Fig. 9: Comparison of the d-Simplexed against Multivariate
Linear Regression (LR), Gaussian Process (GP), Decision
Tree regression (DTR), multi-layter Neural network (NN)
for Kmeans, WordCount, PageRank, and Bayesian work-
loads. d-Simplexed achieves the best MAPE.

linear but also logarithm terms which better capture the
performance properties. GP and NN flip around, which
is typical behavior of over-fitting globally, as the samples
increase. Since Ernest does not include other features, we
exclude it in the rest cases.

We now select memory and vcore as the features, since
these two parameters are common yet challenging deci-
sion to make in the cloud environment (e.g., Amazon on-
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Fig. 10: Comparison of sampling techniques with Delau-
nay Triangulation; Random Sampling, Grid Sampling, and
Adaptive Sampling. Adaptive sampling excels in discover-
ing the samples to improve the model. The dashed line is
the 5% MAPE line.

demand price). Table 3 shows the detailed evaluations
of HiBench workloads against state-of-the-art methods in
terms of MAPE. 1% of the training samples are used in
this evaluation. d-Simplexed is the best against other meth-
ods concerning MAPE. It achieves less than 5% MAPE in
Kmeans, WordCount, PageRank, and Join workloads and
15.768% MAPE in the Bayesian workload.

Figure 9 depicts the more detailed MAPEs for methods
with workloads, as sample size increases. Specifically, LR
performs poorly in (a) Kmeans and (d) Bayesian workloads
since a linear model faces difficulty in capturing non-linear
behavior. In contrast, GP and NN models work relatively
better than LR in these two workloads. However, they have
the problem of over-fitting for the data as more feature
points are loaded into the model. However, GP and NN
perform unsatisfactorily for (b) WordCount and (c) PageR-
ank workload. DTR splits configuration space piece-wisely,
resulting in satisfactory MAPE. Nevertheless, DTR uses an
average value to represent the local model instead of a linear
regressor like in d-Simplexed, and therefore, poorly catches
the surface of local configuration space. Unfortunately, we
found d-Simplexed sometimes does not yield the best at the
beginning phase. For example, GP and DTR outperform d-
Simplexed in Figure 9(d) with fewer samples (≤40). This is
because non-linear regressors have a better regression than
the fewer linear surfaces in d-Simplexed.

As the samples increase, d-Simplexed outperforms them.
There are two reasons. First, when new sample points are
added, the d-Simplexed model prefers to fit them locally,
that is, their placement only impacts a few adjacent sim-
plexes, rather than the entire model (in the case of LR,
GP and NN). Second, d-Simplexed uses utility function (in
Equation 6) to judiciously pick the next point, which contin-
uously improves the model as the sample size increases.

6.2.3 Sampling Evaluation

The second set of experiments compares the performance
of Delaunay Triangulation (DT) with random and grid
sampling. In each sampling approach, initially, we select 4
boundary points and 4 seed samples retrieved using LHS
sampling, giving 8 samples to create the initial model with.
For each sampling technique, the model is then iteratively
improved by adding new samples 1-by-1 and evaluating the
MAPE at each step.

Table 3 shows the detailed evaluations of d-Simplexed
against DT with random sampling (DT-RD) and DT with
grid sampling (DT-GD) in terms of MAPE. d-Simplexed
achieves the best MAPE among three samplings. Figure 10
plots more detailed steps for three sampling techniques with
the Kmeans, PageRank, Bayesian, and Join workloads. It
shows that adaptive sampling achieves the relatively better
MAPE among three techniques, given the same number
of samples after certain points, meaning that the adaptive
approach can be used to build a more accurate performance
model. Particularly in the Bayesian workload, grid sampling
achieves more than 60% MAPE with even more than 200
samples. This is because the performance surface of the
Bayesian changes rapidly in small value area while grid
sampling keeps sampling in the global space.

The performance of random sampling is unsatisfactory,
especially when the model has a few sampling points. This
is because, with a few points in the model, there is a
high probability that the next selected random point will
fall in a region which has a small performance change,
i.e, a small contribution to predicting the critical turning
point of performance. Grid sampling is better than random
sampling, and it performs well at the beginning phase, as
it evenly distributes the chance of picking points for the
model. In contrast, adaptive sampling selects the points
that continuously improve the accuracy of the model. The
adaptive sampling technique avoids picking points in the
regions where there are little changes in performance (by
Equation 6). This behavior is especially pronounced, where
adaptive sampling zooms-in on the critical region of the
model which has a steep performance change, while grid
and random sampling use a static strategy to pick points
randomly or uniformly.

6.2.4 More Evaluation Results

The third set of experiments challenges d-Simplexed with
more complex synthetic workloads and with more input
features. We describe in detail as follows.

Synthetic Workload In this set of experiments, we sought
to analyze the performance of models against a synthetic
workload. The purpose of these experiments is to simulate
more complex or arbitrary workloads from Spark or any
other systems. Specifically, we create a synthetic 120×120
=14400 point 〈f1, f2〉 surface to demonstrate the model’s
flexibility under a hypothetical runtime condition, where the
runtimes have massive turbulence as shown in Figure 11.
We assume that some workloads (e.g., with dependent
parameters [1], [11]) may exhibit such behavior, and it is
an interesting surface to challenge with our model.

We evaluated d-Simplexed for synthetic surfaces against
the state-of-the-art models and presented the results in Fig-
ure 12. LR perform unsatisfactory, as its linear fitting is not

9
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Fig. 11: Synthetic workload with a massive turbulent surface
illustrated in three dimensions.
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Fig. 12: Comparison of the models for synthetic turbulent
surface, d-Simplexed achieves satisfactory and convergent
accuracy as samples increase while LR and GP make the
model overfit. The dashed lines are in 5% and 20% MAPE
line.

suitable for the turbulent non-linear surface. GP and NN are
much better than LR, nevertheless, they still cannot achieve
a huge error, especially in a more complex multi-wave work-
load. The reason is that GP and NN consider the surface
as a whole and cannot adapt to the local flexibility. What’s
worst, with additional samples, LR and GP may overfit the
samples, thus deteriorate the models. On the contrary, DTR
and d-Simplexed keeps discovering the unknown regions
and continuously improving the model as they split con-
figuration space piece-wisely, avoiding overfitting. Thanks
to the utility function in adaptive sampling and a better
regressor in d-Simplexed, d-Simplexed outperforms DTR.
Due to the complex surface, we finally achieve less than
10% and 20% MAPE with 2.36% samples for the synthetic
data with the single wave and multiple waves, respectively.

More Input Features In this part, we additionally inves-
tigate the performance of d-Simplexed with 3 input features.
We setup 3-parameter (i.e., vcore (21-50), memory(21-50G),
and data size(11-40G)) with 30·30·30 experiments. Figure 13
shows that d-Simplexed outperforms the state-of-the-art
methods in a higher dimension situation too.

It is noteworthy that the number of required experiments
grows exponentially [42], as the number of features in-
creases. For example, when the total dimension is three and
we have two feature parameters (e.g., CPU and memory)
each with 30 values, then we need 900(=30·30) ground truths
to verify the model. However, adding one more dimension,
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Fig. 13: (a) Comparison of the prediction models for Kmeans
workload with 4 dimension model; Multivariate Linear Re-
gression (LR), Gaussian Process (GP), and d-Simplexed. d-
Simplexed reaches less than 5% error by 0.80% configuration
spaces. The dashed lines are in 5% and 20% MAPE line. (b)
Training cost for one round modeling and prediction for
1.5% samples. d-Simplexed requires less than one second
for both training the model and making prediction.

e.g., data size with a granularity of 30, will need 27000(=303)
ground truths to verify the model. Since running all 27000
experiments of workload would be a nightmare, we only
run partially needed experiments, i.e., 400 samples run and
320 (0.5% of all) test results. It is worth noting that only 238
( 0.80% of all) samples are required for DT to achieve less
than 5% MAPE.

Training overhead Figure 13(b) shows the training over-
head of all the models for running Kmeans workload in
Figure 13(a). LR and DTR require relatively low cost for
training model and making prediction due to its simpler
model in nature. GP and NN need more significant time
on training the model parameters. Although d-Simplexed
requires more training and prediction time than LR and
DTR,it yields better performance in accuracy and still just
requires less than 1 second for both training the model and
making prediction from 400 samples.

6.3 Evaluation Summary

We highlight our main findings in the experiments as fol-
lows:

- d-Simplexed, by using 1% of samples, achieves less than
5% MAPE in Kmeans, WordCount, PageRank, and Join
workloads and 15.768% MAPE in the Bayesian workload,
outperforming all the state-of-the-art models (i.e., Ernest,
LR, GP, DT, and NN).

- The proposed adaptive sampling method enables us to
use fewer samples to train the model, outperforming basic
sampling techniques, i.e., random and gridding sampling.

- d-Simplexed outperforms the state-of-the-art models (i.e.,
LR, GP, DT, and NN)) both in more challenging synthetic
workloads and with more (3) input features.

7 RELATED WORK

MapReduce and Hadoop Performance Prediction. Re-
cently, there have been emerging efforts to predict the per-
formance of MapReduce and Hadoop jobs. The basic cost
models for these two frameworks are introduced in [24],
[39]. These approaches require complex instrumentation
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of the frameworks for fine-grained modeling of the jobs.
Among such methods, StarFish [17] and MRTuner [30] use
the derived models to set the optimal values of the features.
ARIA [36] models job execution time concerning the number
of mappers and reducers from historical traces. HP [37]
extends this model with a scaling factor to estimate the job
execution time using simple linear regression. Khan et al.
[21] proposed a non-parametric prediction model based on
Locally Weighted Linear Regression and built on a large set
of historical Hadoop job traces. AROMA [23] depends on
historical traces and applies clustering to identify the jobs
with similar behavior, and then applies pattern matching
to find the optimal resources for a job. ALOJA-ML [4] is
another machine learning-based framework for predicting
the execution time of Hadoop machine learning jobs. The
framework maintains a large collection of job execution
time and resource configurations. Ernest [35] constructs
prediction models by executing jobs with a fraction of the
input data. Our method proposed in this paper relies on
a small amount of historical job execution traces to derive
the prediction models with Delaunay Triangulation. Also,
our method is applicable to Hadoop and MapReduce frame-
works.

Database Performance Prediction. Database systems have
many mature tools and guidelines for physical design tun-
ing (e.g., index selection, materialized view generation).
However, they do not provide a performance model with
the varied configuration parameters, because they depend
on the query optimizer’s cost models, which do not capture
the effects of many important parameters. There a few
works have been done on the prediction model with various
configuration parameters in modern database systems. For
example, MDN [22] (Mixture Density Network) is a black-
box model that feeds the historical traces of Hive queries
with features and performance to a neural network which
can predict the execution time of a new job. ParaTimer [27]
predicts the progress of running parallel database queries
that are expressed as Pig Scripts which together resembles a
DAG of MapReduce jobs running in parallel.

Database Sampling Techniques. Traditional database sam-
pling deals with the problem of sampling from a large
dataset, and their main purpose is to estimate the cardinality
of query results (or intermediate results). In contrast, our
sampling strategy in § 5 aims to draw samples from a
response surface that is never materialized fully. Another
related paper iTuned [11] relies on Gaussian Process (GP)
to decide the next sampling points. While our method
d-Simplexed shares the main goal for adaptive sampling
to build an accurate performance model, the application
scenarios and algorithms differ.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we studied the problem of predicting the
performance of Big Data analytics platforms with a small
amount of historical traces. We demonstrated how a geo-
metric interpolation method: Delaunay Triangulation could
be used to model the feature configurations for predicting
the runtime of the analytics jobs. We proposed a sampling
strategy to select data points judiciously for faster and ac-
curate model construction. Finally, we performed empirical

experiments to demonstrate the superiority of our method
over the-state-of-art approaches.

Exciting follow-up research can be centered around the
implementation of parameter tuning algorithms based on
the prediction model proposed in this paper. In addition,
we intend to explore the extension of the d-Simplexed
framework to handle various large-scale machine learning
platforms. Consider, for instance, the problem of building
an accurate performance model on TensorFlow [12] or Sys-
temML [14].
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