
D2.5.2 Report on Query Language

Design and Standardisation

Jeff Z. Pan (UoM)

Enrico Franconi, Sergio Tessaris (FUB), Birte Glimm (UoM),

Wolf Siberski (L3S), Vassilis Tzouvaras, Giorgos Stamou, (ITI)

Ian Horrocks, Lei Li (UoM) and Holger Wache (VU)

Abstract.

EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB

Deliverable D2.5.2 (WP2.5)

In the progress of realising the Semantic Web, developing and supporting Semantic Web query

languages are among the most useful and important research problems. In [PFT+04], we have

provided a unified framework for OWL-based rule and query languages. In this report, we focus

on the problems of query answering for Semantic Web query languages (such as RDF, OWL DL

and OWL-E) in the OWL-QL specification.

Keyword list: description logics, ontology language, query language, RDF, OWL DL, OWL-E

Copyright c© 2005 The contributors

Document Identifier KWEB/2004/D2.5.2/v1.0

Project KWEB EU-IST-2004-507482

Version v1.0

Date Dec 16, 2004

State Final

Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-

munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator

Institute of Computer Science

Technikerstrasse 13

A-6020 Innsbruck

Austria

Contact person: Dieter Fensel

E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique Fédérale de Lausanne (EPFL)

Computer Science Department

Swiss Federal Institute of Technology

IN (Ecublens), CH-1015 Lausanne

Switzerland

Contact person: Boi Faltings

E-mail address: boi.faltings@epfl.ch

France Telecom (FT)

4 Rue du Clos Courtel

35512 Cesson Sévigné

France. PO Box 91226

Contact person : Alain Leger

E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)

Takustrasse 9

14195 Berlin

Germany

Contact person: Robert Tolksdorf

E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)

Piazza Domenicani 3

39100 Bolzano

Italy

Contact person: Enrico Franconi

E-mail address: franconi@inf.unibz.it

Institut National de Recherche en

Informatique et en Automatique (INRIA)

ZIRST - 655 avenue de l’Europe -

Montbonnot Saint Martin

38334 Saint-Ismier

France

Contact person: Jérôme Euzenat

E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /

Informatics and Telematics Institute (ITI-CERTH)

1st km Thermi - Panorama road

57001 Thermi-Thessaloniki

Greece. Po Box 361

Contact person: Michael G. Strintzis

E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)

Expo Plaza 1

30539 Hannover

Germany

Contact person: Wolfgang Nejdl

E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)

National University of Ireland

Science and Technology Building

University Road

Galway

Ireland

Contact person: Christoph Bussler

E-mail address: chris.bussler@deri.ie

The Open University (OU)

Knowledge Media Institute

The Open University

Milton Keynes, MK7 6AA

United Kingdom

Contact person: Enrico Motta

E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)

Campus de Montegancedo sn

28660 Boadilla del Monte

Spain

Contact person: Asunción Gómez Pérez

E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)

Institut für Angewandte Informatik und Formale

Beschreibungsverfahren - AIFB

Universität Karlsruhe

D-76128 Karlsruhe

Germany

Contact person: Rudi Studer

E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)

Chadwick Building, Peach Street

L697ZF Liverpool

United Kingdom

Contact person: Michael Wooldridge

E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)

Room 2.32. Kilburn Building, Department of Computer

Science, University of Manchester, Oxford Road

Manchester, M13 9PL

United Kingdom

Contact person: Carole Goble

E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)

Regent Court, 211 Portobello street

S14DP Sheffield

United Kingdom

Contact person: Hamish Cunningham

E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)

Via Sommarive 14

38050 Trento

Italy

Contact person: Fausto Giunchiglia

E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)

De Boelelaan 1081a

1081HV. Amsterdam

The Netherlands

Contact person: Frank van Harmelen

E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)

Pleinlaan 2, Building G10

1050 Brussels

Belgium

Contact person: Robert Meersman

E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this

document, even if they might not have directly contributed to writing parts of this document:

Centre for Research and Technology Hellas /Informatics and Telematics Institute

Free University of Bozen-Bolzano

Institut National de Recherche en Informatique et en Automatique

Learning Lab Lower Saxony

University of Manchester

University of Trento

Vrije Universiteit Amsterdam

4

Changes

Version Date Author(s) Changes

0.1 10.09.04 Jeff Z. Pan creation

0.2 06.11.04 Birte Glimm and Jeff Z. Pan added Chapter 3

0.3 13.11.04 Jeff Z. Pan and Wolf Siberski added Chapter 4

0.4 16.11.04 Vassilis Tzouvaras and Gior-

gos Stamou

added Chapter 5

0.5 21.11.04 Holger Wache added Chapter 7

0.6 21.11.04 Ian Horrocks and Lei Li added Chapter 6

0.65 09.12.04 Jeff Pan and Birte Glimm revised Chapter 4

0.8 13.12.04 Jeff Pan added Chapter 1 and 8

Executive Summary

In the progress of realising the Semantic Web, developing and supporting Semantic Web

query languages are among the most useful and important research problems. In [PFT+04],

we have provided a unified framework for OWL-based rule and query languages. In this

report, we focus on the problems of query answering for Semantic Web query languages

(such as RDF, OWL DL and OWL-E) in the OWL-QL specification.

Contents

1 Introduction 1

2 Querying the Semantic Web with Ontologies 3

2.1 Introduction . 3

2.2 RDF Model Theory revisited . 4

2.3 Querying with Ontologies . 6

3 OWL-QL 8

3.1 Introduction . 8

3.1.1 Queries . 9

3.1.2 Query-Answering Dialogues . 10

3.2 Reducing Query Answering to ABox Reasoning 12

3.2.1 Conjunctive Queries . 12

3.2.2 Query Graphs . 12

3.2.3 The Rolling-up Technique . 13

3.2.4 Optimisation Techniques . 16

3.3 An Implementation of an OWL-QL Server 17

3.3.1 Used Tools, Products and Languages 17

3.3.2 System Architecture . 18

3.3.3 Components . 19

3.4 Related Work . 31

3.4.1 The Stanford OWL-QL Server 32

3.4.2 The new Racer Query Language 34

3.5 Discussion . 35

3.5.1 The OWL-QL Specification . 35

3.5.2 OWL-QL Systems . 36

4 Querying with OWL-E-QL 38

4.1 Formal Semantics . 38

4.1.1 Datatypes and Datatype Predicates 38

4.1.2 OWL-E: Extending OWL with Datatype Expressions 39

4.1.3 Queries and Query Graphs . 40

4.2 Datatypes and Datatype Predicates in Web-related Query Languages . . . 42

iii

CONTENTS

4.2.1 Handling of variable constraints in existing query languages . . . 43

4.2.2 Built-in Functions/Predicates in current RDF query languages . . 44

4.2.3 RDF(S) Related Predicates . 44

4.2.4 Functions and operators for XML atomic types 45

4.3 An Extended Rolling-up Algorithm . 46

4.4 Reducing Query Answering in OWL-E-QL to Knowledge Base Satisfia-

bility in OWL-E . 49

4.4.1 Boolean Queries . 49

4.4.2 Acyclic Queries without Datatype Expression Atoms 49

4.4.3 Normally Acyclic Queries . 52

4.5 Summary . 54

5 A Fuzzy Extension 55

5.1 Introduction . 55

5.2 Queries and Uncertainty - State of the Art 56

5.3 Representing Queries Using Fuzzy Logic 58

5.4 Fuzzy OWL-QL . 61

5.5 Use case . 63

6 The Instance Store 65

6.1 Introduction . 65

6.2 Background and Motivation . 66

6.3 Description Logics . 67

6.3.1 The Description Logic SHF . 68

6.3.2 The Instance Store Notation . 69

6.4 The Role-Free Instance Store . 69

6.4.1 An Optimised Instance Store . 70

6.4.2 Implementation . 71

6.5 Empirical Evaluation . 72

6.5.1 Loading and Querying Tests . 73

6.5.2 Pseudo-individual Tests . 77

6.6 Query Answering with an Extended Instance Store 79

6.6.1 Preliminaries . 79

6.6.2 Precompleting an SHF ABox 81

6.6.3 Soundness and Completeness for Precompletion 86

6.6.4 Answering instance retrieval . 90

6.6.5 Answering instance retrieval without acyclic restriction 92

6.6.6 Query-oriented answering . 93

6.7 Related Work . 94

6.8 Discussion . 95

7 Optimising Instance Realisation — an Idea 97

7.1 A motivating example . 98

iv Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

7.2 The Representation Formalism . 100

7.3 Translating the Ontology into the Formalism 101

8 Conclusion 106

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 v

Chapter 1

Introduction

In the progress of realising the Semantic Web, developing and supporting Semantic Web

query languages are among the most useful and important research problems. In [PFT+04],

we have provided a unified framework for OWL-based rule and query languages. In this

report, we will

• fill the gap between the theoretical foundations of the unifying framework intro-

duced in [PFT+04] and the W3C work on the RDF semantics and the SPARQL

query language;

• investigate query answering within the OWL-QL formalism, in particular for queries

over OWL DL and OWL-E ontologies;

• study various optimisation techniques of combining DL reasoners with database, in

order to handle large data sets; and

• report our implementations of an OWL-QL server and a hybrid DL/Database sys-

tem called Instance Store.

The rest of the report is organised as follows. Chapter 2 provides a connection between

the theoretical foundations of the unifying framework introduced in [PFT+04] and the

W3C work on the RDF semantics and the SPARQL query language.

Chapters 3 to 5 investigate query answering within the OWL-QL formalism. Chap-

ter 3 presents the OWL-QL formalism, the basic rolling-up techniques to reduce OWL-

QL query answering to OWL DL knowledge satisfiability and an implementation of an

OWL-QL server. Chapter 4 presents the formal semantics for datatype expression en-

abled queries and shows how to reduce query answering in OWL-E-QL to knowledge

base satisfiability in OWL-E. Chapter 5 discusses a fuzzy extension of OWL-QL.

Chapter 6 and 7 study various optimisation techniques of combining DL reasoners

with databases. Chapter 6 provides an in-depth description of the algorithms and im-

1

1. INTRODUCTION

plementation of a hybrid DL/Database system called Instance Store. Chapter 7 presents

some early ideas on how to optimise instance realisation.

Chapter 8 concludes this report.

2 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

Chapter 2

Querying the Semantic Web with

Ontologies

2.1 Introduction

The main aim of this chapter to recast the RDF model theory in a more classical logic

framework, and to use this characterisation to shed new light on the ontology languages

layering in the semantic web. In particular, we will show how the models of RDF can be

related to the models of DL based ontology languages, without requiring any change on

the existing syntactic or semantic definitions in the RDF and OWL-DL realms.

We first introduce the notion of minimal models for RDF graphs, and we use this no-

tion to characterise RDF entailment. RDF minimal models can also be seen as classical

first order structures, that we call DL interpretations. These structures provide the seman-

tic bridge between RDF and description logics based languages. The intuition beyond DL

interpretations is that it singles out the concepts and the individuals from an RDF minimal

model – possibly in a polymorphic way when the same node is given both the meaning as

a class and as an individual. The natural DL interpretation is the one in which concepts

and individuals are disjoint. The class of RDF graphs which allow only for natural DL

models are called DL compatible.

Once we have characterised RDF graphs in terms of their minimal models, it is possi-

ble to understand the notion of logical implication between RDF graphs and DL formulas.

In particular, in this chapter we analyse the problem of querying RDF graphs with DL on-

tologies. We define the certain answer and the possible answer of a query to an RDF

graph given an ontology; this is based on the notion of natural DL interpretation of the

RDF graph. Finally, we prove an important reduction result. That is, given an RDF graph

S and a query Q, the answer set of Q to S (as defined by W3C) is the same as the certain

answer of Q to S given the empty KB. This shows a complete interoperability between

RDF and DLs. For example, in absence of ontologies, it would be possible to use OWL-

3

2. QUERYING THE SEMANTIC WEB WITH ONTOLOGIES

QL to answer queries to RDF graphs, or to use SPARQL to answer queries to ABoxes.

2.2 RDF Model Theory revisited

We first define the notion of minimal model for an RDF graph.

Definition 1 (Minimal Model)

A ground instantiation of an RDF graph S is obtained by replacing each bnode in S,

if any, with some URI. A restricted ground instantiation of an RDF graph S is obtained

by replacing each bnode in S, if any, with some element of the set of the URIs appear-

ing in S together with a set of fresh URIs – that is, not appearing elsewhere in S– in

correspondence to each bnode symbol in S.

An RDF minimal model IRDF of an RDF graph S is a restricted ground instantiation of

the graph.

Note that a minimal model is always finite if the RDF graph is finite, that a ground RDF

graph has a unique minimal model, and that a minimal model is a ground RDF graph.

As the following lemma shows, the minimal models of an RDF graph contain explic-

itly all the information entailed by the graph itself.

Lemma 2 (RDF entailment and minimal models)

1. An RDF graph S entails an RDF graph E (as defined in [Hay04a]), written S |= E ,

if and only if each minimal model of S contains some ground instantiation of E .

2. RDF entailment is NP-complete in the dimension of the RDF graphs.

3. RDF entailment is polynomial in the dimension of the graphs if E is acyclic or

ground.

The proof is based on a reduction to the problem of conjunctive query containment, and

by using the interpolation lemma in [Hay04a].

A DL interpretation of an RDF graph shows how models of RDF can be seen as

interpretations in classical logic.

Definition 3 (DL Interpretation of an RDF minimal model)

A DL interpretation of an RDF minimal model is a description logics (DL) interpretation

I(IRDF) = 〈∆, Λ, C, R, F, O, .I〉, where ∆ is an abstract domain, Λ is the union of all

XML schema datatype value spaces, C is a set of atomic concepts, R is a set of atomic

roles, F is a set of datatype features, O is a set of individuals, and .I is an interpretation

function giving the extension to concepts, roles, and features, such that:

4 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

C ⊆ URI-references \ RDF-vocabulary

R ⊆ URI-references \ RDF-vocabulary

F ⊆ URI-references \ RDF-vocabulary

O ⊆ URI-references \ RDF-vocabulary

∆ ⊇non-empty O

.I =



















for each C ∈ CCI = {o ∈ O | 〈o,rdf:type, C〉 ∈ IRDF}

for each R ∈ RRI = {〈o1, o2〉 ∈ O × O | 〈o1, R, o2〉 ∈ IRDF}

for each F ∈ FF I = {〈o, l2v(l)〉 ∈ O × Λ | 〈o, F, l〉 ∈ IRDF}

for each o ∈ OoI = o

Note that there may be several DL interpretations of a single RDF minimal model, de-

pending on which URI references are associated to concept names, to role names, to

datatype features, and to individuals.

An URI reference may be associated to more than one DL syntactic type: polymorphic

meanings of URIs are allowed. However note that, just like in the case of contextual

predicate calculus (as defined in [CKW93]), there is no interaction between the distinct

occurrences of the same URI as a concept name, or as a role name, or as a feature name,

or as an individual. This absence of interaction is required for classical first order DLs

such as OWL-lite or OWL-DL. For example, given the triple 〈ex:o,rdf:type,ex:o〉
within an RDF minimal model, it is possible to have a DL interpretation associated to it

where both C and O include the URI ex:o, and such that the individual ex:o is in the

extension of the concept ex:o.

The above definition of DL interpretation of an RDF minimal model is sloppy as far

as the role of datatypes is concerned. In fact, in a DL interpretation distinct datatypes

should be introduced explicitly. This can be easily induced by the structure of the lexical

form of the XML-schema typed literals themselves.

A DL interpretation of an RDF minimal model is datatype-free if the RDF literals are

also interpreted as individuals in O, and no Λ nor datatype features are given.

Definition 4 (DL compatible RDF graph)

Given an RDF minimal model IRDF, the sets Ĉ, R̂, F̂, Ô are defined as the minimum sets

such that:

for each 〈o,rdf:type, C〉 ∈ IRDF, then o ∈ Ô, C ∈ Ĉ;

for each 〈o1, R, o2〉 ∈ IRDF, then o1, o2 ∈ Ô, R ∈ R̂;

for each 〈o, F, l〉 ∈ IRDF and l is a literal, then o ∈ Ô, F ∈ F̂.

A natural DL interpretation of an RDF graph S is the DL interpretation of an RDF mini-

mal model of S where C = Ĉ, R = R̂, F = F̂, O = Ô.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 5

2. QUERYING THE SEMANTIC WEB WITH ONTOLOGIES

An RDF graph S is a DL compatible RDF graph if for some of its minimal models Ĉ, R̂,

F̂, Ô are mutually disjoint.

Note that checking whether an RDF graph is DL compatible and building a natural DL

interpretation takes polynomial time with respect to the dimension of the graph. Ground

DL compatible RDF graphs have a unique natural DL interpretation.

2.3 Querying with Ontologies

In the previous section we have characterised RDF graphs in terms of their minimal mod-

els. It is now possible to understand the notion of logical implication between RDF graphs

and DL formulas. We have thus achieved full semantic interoperability between the RDF-

like languages and the DL-like languages in the semantic web. In particular, in this section

we analyse the problem of querying RDF graphs with DL ontologies.

Definition 5 (Querying RDF graphs with DL ontologies)

Given an RDF graph S, consider the DL knowledge bases ΣS,i, each one with the same

TBox expressing some given ontology KB and with the ABox assertions as in the natural

DL interpretation associated to the ith minimal model of S. Given a first order query Q
over the alphabet of S without the RDF vocabulary, consider the set AS

Q, which includes

for each i the answer set of Q to ΣS,i (in agreement with the semantics as specified in the

Knowledge Web deliverable D2.5.1). The certain answer of Q to S given the KB is the

intersection of all the answer sets in AS
Q; a possible answer of Q to S given the KB is any

of the answer sets in AS
Q.

A special case of the theorem above is when we restrict the query to ground DL compat-

ible RDF graphs. This corresponds to querying the unique DL interpretation (trivially)

associated to the ground DL compatible RDF graph.

Theorem 6 (Querying RDF graphs with empty ontologies)

Given an RDF graph S and a first order query Q over the alphabet of S without the RDF

vocabulary, the answer set of Q to S (in agreement with the RDF entailment semantics,

as in Lemma 2) is the same as the certain answer of Q to S given the empty KB.

The problem of query answering with the empty KB is polynomial with respect to the

dimension of S.

The proof is based on a reduction to the problem of conjunctive query containment. Note

that in this case it is enough to encode as an ABox only the natural interpretation associ-

ated to the so called canonical model, i.e., the minimal model whose bnodes have been

associated to distinct fresh URIs.

Note that a special case of first order query – without the RDF vocabulary – is the case

of positive queries, which corresponds to an open formula in the form of a disjunction of

6 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

conjunctions of, possibly existentially quantified, non-RDF atoms. Positive queries can be

expressed in RDF as a disjunction of RDF graphs, with the proviso that the only allowed

RDF property is rdf:type, and that bnodes do not appear as objects of rdf:type
triples.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 7

Chapter 3

OWL-QL

Here we address the OWL Query Language (OWL-QL), how to reduce query answering

of OWL-QL into Knowledge Base Satisfiability and an implementation of an OWL-QL

server.

3.1 Introduction

The OWL-QL specification, proposed by the Joint US/EU ad hoc Agent Markup Lan-

guage Committee,1 is a language and protocol for query-answering dialogues using knowl-

edge represented in the Ontology Web Language (OWL). It is a direct successor of the

DAML Query Language (DQL) [Fik03], also released by the Joint US/EU ad hoc Agent

Markup Language Committee. Both language specifications go beyond the aims of other

current web query languages like XML Query [Boa03], an XML [Bra04] query language,

or RQL [KAC+02], an RDF [Bec04] query language, in that they support the use of in-

ference and reasoning services for query answering.

The OWL-QL specification suggests a reasoner independent and more general way for

agents (clients) to query OWL knowledge bases on the Semantic Web. The specification

is given on a structural level with no exact definition of the external syntax. By this it

is easily adoptable for other knowledge representation formats (such as RDFS and first

order logics), but on the semantic level OWL-QL is properly defined, due to the formal

definition of the relationships among a query, a query answer and the knowledge base(s)

provided by the specification (see [FHH03], page 10–11, Appendix Formal Relationship

between a Query and a Query Answer).

1See http://www.daml.org/committee/ for the members of the Joint Committee.

8

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

3.1.1 Queries

OWL-QL queries are conjunctive queries w.r.t. some knowledge bases (or simply KBs). A

query necessarily includes a query pattern that is a collection of OWL statements (axioms)

where some URI references [Ber98] or literals are replaced by variables. In a query,

the client can specify for which variables the server has to provide a binding (must-bind

variables), for which the server may provide a binding (may-bind variables) and for which

variables no binding (don’t-bind variables) should be returned. In this report, must-bind

variables, may-bind variables and don’t-bind variables are prefixed with “?”, “∼” and

“!”, respectively.

A client uses an answer KB pattern to specify which knowledge base(s) the server

should use to answer the query. An answer KB pattern can be either a KB, a list of KB

URI references or a variable (of the above three kinds); in the last case, the server is al-

lowed to decide which KB(s) to use. The use of may-bind and don’t-bind variables is one

of the features that clearly distinguish OWL-QL from standard database query languages

(such as SQL [ANS92]) and other web query languages (such as RQL [KAC+02] and

XML Query [Bra04]).

Here is an example of a query pattern and an answer KB pattern.

queryPattern: {(hasFather Bill ?f)}
answerKBPattern: {http://owlqlExample/fathers.owl}

Figure 3.1: A query example

Assume that the KB referred to in the answer KB pattern includes the following OWL

statements

SubClassOf(Person

restriction(hasFather someValuesFrom(Person)))

Individual(Bill type(Person)),

which assure that every person has a father that is also a person and that Bill is a person.

It could then be inferred that Bill has a father, but we can’t name him, so the OWL-QL

server can’t provide a binding and returns an empty answer collection. This is of course

different if f is specified as a may-bind (∼f) or don’t-bind (!f) variable, in both cases an

OWL-QL server should return one answer, but without a binding for ∼f resp. !f.

Assume now that the KB includes the additional statement that Mary has Joe as her

father and a query with a must-bind variable for the child (?c). The type of the variable

f for the father would change the answer set as follows:

queryPattern: {(hasFather ?c ?f)}
If f is a must-bind variable (?f), a complete answer set contains only persons

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 9

3. OWL-QL

whose father is known, in this example (hasFather Mary Joe) where Mary is a bind-

ing for ?c and Joe is a binding for ?f.

queryPattern: {(hasFather ?c !f)}
If f is a don’t-bind variable (!f), a complete answer set contains all known persons

since it is specified that all persons have a father, but without a binding for !f. In

this example (hasFather Mary !f), (hasFather Joe !f) and (hasFather Bill !f) should

be in the answer set.

queryPattern: {(hasFather ?c ∼f)}
If f is a may-bind variable (∼f), the complete and non-redundant answer set con-

tains all known persons since it is specified that all persons have a father, but a bind-

ing for ∼f is only provided in case the father is known. In this example (hasFather

Mary Joe), (hasFather Joe ∼f) and (hasFather Bill ∼f) should be in the answer set.

An optional query parameter allows the definition of a pattern that the server should

use to return the answers. This answer pattern necessarily includes the format of all

variables used in the query pattern. If no answer pattern is specified, a two item list whose

first item is the querys must-bind variables list and whose second item is the querys may-

bind variables list is used as the answer pattern. This is different to the DQL specification,

where, for the case that no answer pattern was specified, the query pattern is used as the

answer pattern.

Another option for a query is to include a query premise (a set of assumptions) to

facilitate “if-then” queries, which can’t be expressed otherwise since OWL does not sup-

port an “implies” logical connective. E.g., to ask a question like “If Bill is a person, then

does Bill have a father?” the query premise part includes an OWL KB or a KB reference

stating that Joe is a person and the query part is the same as in Figure 3.1. The server

will treat OWL statements in the query premise as a regular part of the answer KB and all

answers must be entailed by this KB.

3.1.2 Query-Answering Dialogues

To initiate a query-answering dialogue the clients sends a query to an OWL-QL server.

The server then returns an answer bundle, which includes a (possibly empty) answer set

together with either a termination token to end the dialogue or a process handle to allow

the continuation of the query-answering dialogue. A termination token is either end to

indicate that the server can’t for any reasons provide more answers or none to assert that

no more answers are possible. If a server is unable to deal with a query, e.g., due to

syntactical errors, a rejected termination token is sent in the answer. The specification

also allows the definition of further termination token, e.g., to provide information about

the rejection reasons.

Since an answer bundle can be very large and the computation can take a long time,

the specification also allows to specify an answer bundle size bound that is an upper bound

10 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

for the number of answers in an answer bundle. If the client specified an answer bundle

size bound in the query, the server does not send more answers then allowed by the answer

bundle size bound.

To continue a dialogue the client sends a server continuation request including the

process handle and an answer bundle size bound for the next answer bundle. A server

continuation must not necessarily be sent from the same client. The client can also pass

the process handle to another client that then continues the query answering dialogue.

If the server can’t deliver any more answers for a server continuation request, it sends a

termination token together with the probably empty answer set.

If the client does not want to continue the dialogue, the client can send a server ter-

mination request including the process handle. The server can use a received server ter-

mination request to possibly free resources. Figure 3.2 illustrates the query-answering-

dialogue.

Figure 3.2: The query-answering dialogue

The specification provides some attributes for a server to promote the delivered quality

of service or the so called conformance level. A server can guarantee to be non-repeating,

so no answers with the same binding are delivered. The strictest level is called a terse

server and only the most specific answers are delivered to the client. An answer is more

general (subsumes another) if it only provides fewer bindings for may-bind variables or

has less specific bindings for variables that occur only as values of minCardinality or

maxCardinality restrictions, e.g., if the KB is true for a binding of 4 for a maxCardinality

variable, then it will also be true for a binding of 5, 6, Since this demand is very high

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 11

3. OWL-QL

for a server that produces the answers incrementally, a less restrictive conformance level

is serially terse, where all delivered answers are more specific that previously delivered

answers. Finally servers that guarantee to terminate with termination token none are

called complete.

3.2 Reducing Query Answering to ABox Reasoning

In this section, we show that query answering of acyclic conjunctive queries (a formal

definition of which is presented in Section 3.2.2) can be reduced to ABox reasoning.

Before presenting the details of the reduction, we would like to mention two points here.

• Since there exist no efficient decision procedure for the SHOIQ(D+) DL, the

underpinning of OWL DL, we consider the SHIQ DL in this section.

• Please note that may-bind variables are a combination of distinguished (must-bind)

and non-distinguished (don’t-bind) variables and are therefore not treated in further

detail here. Therefore, in the following reduction we will not consider may-bind

variables.

3.2.1 Conjunctive Queries

A conjunctive query q is of the form q〈~x〉 ← conj(~x; ~y; ~z). The vector ~x consists of so

called distinguished or must-bind variables that will be bound to individual names of the

knowledge base used to answer the query. The vector ~y consists of non-distinguished or

don’t-bind variables, which are existentially quantified variables. The vector ~z consists

of individual names, and conj(~x; ~y; ~z) is a conjunction of atoms. An atom is of the form

v1:C or 〈v2, v3〉:r where C is a concept name, r is a role name and v1, v2, v3 are individ-

ual names from ~z or variables from ~x or ~y. The left hand side of the query, i.e., q〈~x〉 ←,

might be omitted, since it is clear from the prefixes which variables are distinguished ones.

Recall that must-bind variable names in a query are prefixed with ?, don’t-bind variables

are prefixed with !, individual names are not prefixed. Concept names are written in upper

case letters, while role and individual names are written in lower case.

3.2.2 Query Graphs

A conjunctive query q can be represented as a directed labelled graph G(q) := 〈V,E〉,
where V is a set of vertices, and E is a set of edges. The set V consists of the union of

the elements in ~x, ~y, and ~z. The set E consists of all pairs 〈v1, v2〉, such that v1, v2 ∈ V
and 〈v1, v2〉:r is an atom in q. A node v ∈ V is labelled with a concept C1 ⊓ . . . ⊓ Cn

such that, for each Ci, v:Ci is an atom in q. Each edge e ∈ E is labelled with a set of role

names {r — 〈v1, v2〉:r is an atom in q}.

12 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

The function L(v), v ∈ V returns the label for v. If L(v) is empty, the top concept

(⊤) is returned. The function L(e), e ∈ E returns a set of edge labels for e. The function

L−(e), e ∈ E returns a set of inverted edge labels, such that L−(e) = {r|r− ∈ L(e)}.

The function flip(G, 〈v1, v2〉), 〈v1, v2〉 ∈ E creates a new graph G′ := 〈V ′, E ′〉, with

V ′ := V , E ′ := (E \ {〈v1, v2〉}) ∪ {〈v2, v1〉}, and L(〈v2, v1〉) = L−(〈v1, v2〉). The

function pred(v1), v1 ∈ V returns a set of vertices {v1|v1, v2 ∈ V ∧ 〈v2, v1〉 ∈ E}.

Two vertices v1, v2 ∈ V are adjacent, if L(〈v1, v2〉) 6= ∅ or L(〈v2, v1〉) 6= ∅. The

vertex v1 ∈ V is reachable from v2 ∈ V , if v1 is adjacent to v2 or if there is a another

vertex v3 ∈ V such that v3 is adjacent to v1, and v2 is reachable from v3. The graph G(q)
is cyclic, if there is a v ∈ V , such that L(〈v, v〉) 6= ∅ or if there is a v′ ∈ V , such that v is

adjacent to v′ and if one element is removed from L(〈v, v′〉), v′ is still reachable from v.

q is an acyclic conjunctive query if G(q) is not cyclic.

3.2.3 The Rolling-up Technique

If a query contains only distinguished variables, one could replace all variables with in-

dividual names from the knowledge base and use a sequence of instantiation queries to

determine if the statement is true in the knowledge base. To compute a complete query

answer set with this approach, it is necessary to test all possible combinations of individ-

ual names. This is very costly, and furthermore, this approach is not applicable to queries

with non-distinguished variables.

In 2001 Tessaris [Tes01] proposed a rolling-up technique that can be used to eliminate

non-distinguished variables from a query. The technique is applicable to acyclic conjunc-

tive queries and the OWL-QL server implemented in Manchester uses this technique to

compute the query answers.

The basic idea behind the rolling-up technique is to convert individual-valued property

atoms into concept atoms. The rationale behind this rolling up can easily be understood

by the use of nominals. The individual-valued property atom 〈a, b〉: r can be transformed

into the equivalent concept atom a : ∃r.{b}. If we replace b with a non-distinguished

variable !y, the corresponding role atom 〈a, !y〉: r can be transformed into the equivalent

concept atom a : ∃r.⊤ because !y does not have to be bound to a named individual.

Furthermore, other concept atoms about the individual b (being rolled up) can be adsorbed

into the rolled up concept atom. For instance, the conjunction

〈a, b〉: r ∧ b: D

can be transformed into a: ∃r.({b} ⊓ D). Similarly, the conjunction

〈a, !y〉: r ∧ !y: D

can be transformed into a: ∃r.D because D is equivalent to ⊤ ⊓ D.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 13

3. OWL-QL

Queries with One Distinguished Variable

Using the rolling-up technique introduced above, we can reduce query answering of

queries with only one distinguished variables to retrieval (the problem of determining

the set of individuals that instantiate a given concept). The process is best illustrated

using the query graph G(q) of a query q (Figure 3.3). For the readers convenience the

distinguished variables are represented by a filled node (•), whereas non-distinguished

variables and individuals are represented by an unfilled node (◦).

Figure 3.3: A query and its query graph.

First of all, the query graph is transformed into a tree with the distinguished variable

as root. The function flip(G, e), e ∈ E is applied to change edge directions if neces-

sary to transform the graph into a proper tree. The left hand part of Figure 3.4 shows

the resulting tree. Then the rolling-up starts from the leaves of the tree. A leaf, e.g., !z,

is selected and the vertex and its incoming edge are replaced by conjoining the concept

∃L(pred(!z), !z).L(!z) to the label of pred(!z). The right hand part of Figure 3.4 shows

the result of the first rolling-up step. The ⊤ conjunct could be omitted without changing

the semantics. This step is applied to each leaf until only the distinguished variable at the

root is remaining. The label of the root node can now be used to retrieve the individual

names that are valid bindings for the distinguished variable. For this example these are in-

stances of the concept PERSON ⊓ ∃owns.⊤ ⊓ ∃loves.(⊤⊓∃haschild−.⊤).

?w:PERSON

!x

!y !z

owns

loves
haschild−

?w:PERSON

!x

!y:⊤⊓ ∃ haschild−.⊤

owns

loves

Figure 3.4: Two states of a query graph in the rolling-up process.

Queries with Individual Names

In a DL that supports the oneOf constructor, which allows the definition of a concept by

enumerating its instances, the rolling-up can use the individual name directly in the con-

14 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

cept expression. Nodes for an individual name can then be treated like a non-distinguished

variable with the concept {individual name} as label. For example, the query 〈?x〉 ←
〈?x, mary〉:loves is rolled-up into a retrieval query for instances of the concept

∃loves.{mary}. Unfortunately most reasoners do not support the oneOf construc-

tor, but it is still possible to deal with such queries using a so called representative con-

cept [Tes01]. The representative concept is a so far unused concept name, which is used

instead of the individual name, the ABox being extended with an assertion stating that the

individual is an instance of its representative concept. E.g., the query could be answered

by retrieving the concept instances of ∃loves.Pmary, after the assertion mary:Pmary

is added to the KB.

Boolean Queries

If the vector ~x is empty, i.e., the query contains no distinguished variables, the query an-

swer is true, iff the knowledge base entails the query with the non-distinguished variables

treated as existentially quantified. The boolean query q ← 〈acar, !x〉:ownedby ∧
!x:PERSON against the knowledge base in Example 1 should be answered with true,

since the existence of such a person is entailed by the KB.

Example 1

KB = {T , A}
T = {CAR ⊑ ∃ownedby.PERSON}
A = {acar:CAR}

We can arbitrarily select a non-distinguished variable and treat it as if it were a dis-

tinguished one and apply the rolling up techniques presented in previous sections. For

instance, the above query can be rolled up to !x:PERSON ⊓ ∃ownedby−.{acar}. If

!x would have been a distinguished variable, the query could have been answered with a

retrieval query, but here only the assertion must hold that such a thing exists. It must not

necessarily be named in the knowledge base.

To answer the query with true, we must prove that the negated rolled-up concept

causes an inconsistency in the knowledge base. This is equal to adding a statement that the

rolled-up concept implies bottom. In this example the knowledge base becomes indeed

inconsistent if we add a statement that there is no instance of the concept PERSON that

owns acar, i.e., adding the axiom (PERSON ⊓ ∃ownedby−.{acar}) ⊑ ⊥. Therefore

the query answer is true, otherwise the query answer would have been false.

Queries with Multiple Distinguished Variables

If a query contains multiple distinguished variables, the query can not be rolled-up into

a single DL retrieval query. To avoid a test of all possible combinations of individual

names, as necessary for the simple approach described in Section 3.2.3, the rolling-up

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 15

3. OWL-QL

technique is nevertheless helpful. To start the query answering process, one of the dis-

tinguished variables is selected as the root node, and all other variables are treated as

non-distinguished. The query graph is transformed into a tree and the rolling-up pro-

cess is applied as described above for the case with only one distinguished variable. The

retrieved individual names are candidates for the binding of the variable. This step is

repeated for all distinguished variables.

Not every combination of the retrieved candidates is possible, and to determine the

valid combinations further boolean tests are necessary. To avoid as many boolean tests as

possible further optimisations can be used at this point.

3.2.4 Optimisation Techniques

One promising approach is to use an iterative process that eliminates unsuitable combi-

nations as soon as possible. Consider, e.g., the query and its query graph in Figure 3.5,

where ?x has four candidates (i.e., x1 . . . x4), ?y has two candidates (y1, y2), and ?z has

ten candidates (z1, . . . , z10) after the rolling-up.

Figure 3.5: An example query with its query graph and candidates.

If we had not used the rolling-up to retrieve the candidates, the number of necessary

boolean tests would have been factorial in the number of named individuals in the KB.

With the rolling-up and boolean tests for all possible candidate combinations, the number

of tests is still the product of the number of candidates, i.e., 80 tests in this example.

An optimised strategy could start at the variable with the most candidates (i.e., ?z) and

retrieve the concept instances of ∃ s−.Py1
, where Py1

is the representative concept for y1.

In this way, one can determine which of the candidates for ?z are related to y1. This is

repeated for y2. By testing for valid pairs first, one can skip many unnecessary test, e.g.,

if y1 and z1 are not related, no tests for candidates of ?x are necessary. The process is

repeated for the variable with the next highest number of candidates (i.e., ?x). Compared

to the 80 boolean tests necessary before, this approach needs four retrieval queries to

determine the valid candidate combinations. However, how many retrieval queries are

necessary, depends on the number of candidates for the distinguished variables, but it is

clearly cheaper than a test of all candidates and much cheaper than a test of all individual

names in the KB.

Another optimisation could use structural knowledge about the roles in the KB to

exclude impossible candidate combinations even before the above tests are used. The

system developed in Manchester does not yet fully implement these optimisations.

16 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

3.3 An Implementation of an OWL-QL Server

3.3.1 Used Tools, Products and Languages

The implementation was realised in Java. The reason for this is that all other components

that are used in this project, e.g., the DAML+OIL to DIG converter or the DIG interface

classes, are also written in Java, and a rich number of frameworks for web services are

also available in Java. To realise such a project in the given amount of time also makes

it necessary to fall back on as much experience with tools and languages as possible,

otherwise too much time would be spent on familiarisation with new tools. Java was,

therefore, the best candidate for the implementation language, and the set up of other

tools was more or less easy.

As an application server Jakarta Tomcat2 with the Axis3 web service framework was

chosen. Axis is Apache’s most recent web service framework, and compared to its suc-

cessor Apache SOAP it supports the Web Service Description Language (WSDL). Ap-

plication developers can generate the Java classes for a web service client from a .wsdl

file.

JUnit4 served as a testing framework for the project and an Ant5 script deploys both

the client and the server application to the Tomcat web server and can also run the JUnit

tests to assert that the deployed files work as expected. For CVS versioning the savannah

project server of the Hamburg University of Applied Sciences was used. Apache’s log4J6

served as a logging framework. It is easy to use and provides several predefined cate-

gories, such as info, warning and error. A configuration file defines the verbosity and the

output medium on an application or on a per class level. During the development various

outputs were logged, but due to performance losses this is reduced to only error logging

in the final version of the prototype.

To parse the queries, a small parser was generated using JavaCC (Java Compiler Com-

piler),7 which is similar to the well known Lex/ Yacc programs or their successors Flex/

Bison.8 The differences to Lex/Yacc are that JavaCC produces Java code instead of C. Fur-

thermore it is a LL(k) parser generator, i.e., it parses top-down, while Yacc is a LALR(1)

parser generator that parses bottom-up. Top-down parsing is completely sufficient for

parsing the queries, and the use of a Java parser allows smooth interaction with the other

components.

The Description Logic reasoner Racer9 is used in this implementation.

2http://jakarta.apache.org/tomcat
3http://ws.apache.org/axis
4http://www.junit.org
5http://ant.apache.org
6http://logging.apache.org/log4j/docs
7https://javacc.dev.java.net
8http://dinosaur.compilertools.net
9http://www.sts.tu-harburg.de/∼r.f.moeller/racer

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 17

3. OWL-QL

3.3.2 System Architecture

OWL-QL was designed as an agent-to-agent communication protocol and the knowledge

bases used to answer a query may be distributed over various sources in the Semantic Web.

Due to this requirement a web service architecture was chosen for the project realisation.

Web services allow communication with different clients, i.e., a .NET application can

interact with the service or a client written in Java or anything else that supports HTTP as a

communication protocol. In addition, web services are self describing and their interfaces

can be explored by parsing their web services description language (WSDL) [CGM+04]

file.

Web services were favoured here over other middleware such as CORBA or Java RMI.

They are well standardised now and are able to use multiple high level protocols, such as

HTTP or SMTP, to communicate with a remote service and do not depend on a specific

programming language. Java RMI is in comparison only usable between Java applica-

tions, which is a clear limitation for an agent-to-agent communication protocol. CORBA

does not expose this restriction, but compared to web services it is not so easy to use.

Furthermore, much more efforts are currently made to extend web service standards and

frameworks or services such as registries to promote an available service. The rich set of

additional tools and services, like transaction services, concurrency control or authentica-

tion available for CORBA will surely also be available for web services in the future and

currently theses services are not needed for the realisation of a DQL server.

Part of this project is also an example web client that allows a user to send queries to

the server and then displays the answers as an HTML document.

Figure 3.6 shows the architecture of the implemented OWL-QL server, together with

the implemented client application. The OWL-QL server part is the main component

of this work and is responsible for the rolling-up process as explained in Section 3.2.3.

The web service offers three methods: one to initiate a query dialogue, one to request

more answers for a process handle of a formerly asked query and one to terminate a

query-answering dialogue. This component then interacts with the main OWL-QL server

and forwards the received parameters to the relevant methods of the OWL-QL server

component.

The reasoner could be any reasoner that supports the DIG [Bec03a] interface. This

implementation has been tested with Racer,10 since Racer implements all ABox reasoning

methods defined in the DIG interface.

The grey box symbolises other client applications such as a rich Java Swing GUI, a

.NET application, another web service that uses the DQL server as part of its service or

any other application that can use a web service.

The web service client and the server of the provided implementation are both located

on the same physical machine and therefore hosted by the same Tomcat instance. This is

10http://www.sts.tu-harburg.de/∼r.f.moeller/racer

18 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

HTTP

Webbrowser

Interface

DQL

Server

Web

Services

Server
Reasoner

Other

Clients

Tomcat Application Server

HTTP HTTP

SOAP

over HTTP

DIG

over HTTP

Servlet

Web Services

Client
Axis Axis

JSP

Figure 3.6: The chosen software architecture.

not necessary and can be changed easily.

3.3.3 Components

This section provides details of various component of the architecture.

The Web Service Interface

To start a query-answering-dialogue a client calls the query() method of the DQL web

service with the necessary parameters to answer the query (the query, the URL of a knowl-

edge base and optionally an answer bundle size bound and an answer pattern). A method

parameter for the premise is already implemented, but the values are currently ignored,

since the allowed time for the project made it necessary to focus on the main parts and

the premise can easily be added later without major changes to the query-answering al-

gorithm. The premise should be transferred to the reasoner before the queries are sent,

since statements in the premise have to be treated as if they were a normal part of the

knowledge base.

The web service interface also offers the method nextResults(), which allows

the request of further answers for a given process handle. The method terminate()
ends a query-answering-dialogue for a given process handle. Currently all answers are

produced for the first query call and if more answers are available than allowed by the

answer bundle size bound, the rest of the answers is stored on the server together with the

process handle.

Figure 3.7 shows a UML class diagram of the interface class that was used to create

the web service and Figure 3.8 shows the classes that are relevant for the web service.

All these classes are in the package dql.server.webservice. DQLService is

an implementation of the IDQLService interface and the classes AnswerSet and

QueryAnswer are types that are used to deliver query answers to a client.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 19

3. OWL-QL

The DQLService class is not the real implementation; the class follows the facade

design pattern and delegates the parameters to the corresponding components and delivers

query answers to the client.

Figure 3.7: The web service interface.

Figure 3.8: The web service package.

The OWL-QL Server Component

The main component is the class DQLServer. It passes the query to a query parser

component, the knowledge base to a converter (a component that converts DAML+OIL

or OWL to DIG statements) and forwards the converted knowledge base to the reasoner.

It also initiates the rolling-up process on the produced query graph and finally returns

the computed answers back to the DQLService class. The DQLServer class is not

responsible for storing answers in a cache, since this is not part of the query answering

process. Instead the DQLService facade class uses the class AnswerSetCache that

is responsible for storing and returning cached answers.

All parts that belong to the main component are stored in the package dql.server.

The UML deployment diagram in Figure 3.9 illustrates the components that are incor-

porated in the realisation of the service. The components labelled with library are not

developed as part of this project.

20 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

Figure 3.9: An UML deployment diagram of the OWL-QL service.

The Query Parser

The queries are currently not written in DAML+OIL or OWL, since only a subset of

these languages is supported (conjunctive queries) and the syntax of a query would be

very long in DAML+OIL or OWL. An extended version of the server could of course

allow a DAML+OIL or OWL query syntax and use a parser such as the one provided

with the Jena framework11 to read the queries.

The different types of variables are indicated by a prefix, as introduced in in the OWL-

QL specification: ! is the prefix to indicate a don’t bind variable and ? is the prefix for

must-bind variables. May-bind variables are currently not supported as already mentioned

in Section 3.1.1. To parse the query a small parser was implemented with JavaCC. JavaCC

needs a .jj file as input containing an EBNF grammar [Wir77, fSI96] together with actions

and token definitions as regular expressions. Table 3.1 shows the used EBNF grammar.

The non-terminals are query, term, crName, objectName and roleFiller and

the terminals are characters, like ’(’, or defined regular expression, denoted as <MB>,

<DB> and <ID> for a must-bind variable, a don’t-bind variable or an individual, concept

or role name respectively. The regular expression <STDCHAR> is used as shortcut. The

parser also builds the query graph as described in Section 3.2.2 while parsing a query.

To realise this, a graph object is instantiated before the parsing starts, and the actions

for the non-terminals contain corresponding Java method calls to add a node, a role or a

concept assertion to a node. The grammar file for JavaCC and all files that are generated

by JavaCC are in the Java package dql.server.parser. Table 3.1 shows the EBNF

grammar used to parse the queries.

11http://jena.sourceforge.net

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 21

3. OWL-QL

query → term ("," term)*
term → crName "(" objectName roleFiller ")"
crName → <ID>
objectName → <MB> | <DB> | <ID>
roleFiller → ("," objectName)?
<MB : ["?","#","a"-"z","A"-"Z","0"-"9","_"]

(":","#","a"-"z","A"-"Z","0"-"9","_")* >
<DB : ["!","#","a"-"z","A"-"Z","0"-"9","_"]

(":","#","a"-"z","A"-"Z","0"-"9","_")* >
<ID : ["#","a"-"z","A"-"Z","0"-"9","_"]

(":","/",".","?","-","#","a"-"z","A"-"Z","0"-"9","_")* >

Table 3.1: The EBNF grammar for the query parser.

Knowledge Base Loading

The knowledge bases are passed to the class DQLServer as URIs, so they could refer-

ence a file on the local file system or they could point to a knowledge base available over

the Hyper Text Transfer Protocol (HTTP) or the File Transfer Protocol (FTP). The URIs

must end with .daml for a DAML+OIL knowledge base or with .owl for an OWL knowl-

edge base. The OWL standard12 specifies three sublanguages, which are called OWL

Lite, OWL DL and OWL Full. Current Description Logic reasoners are not able to use

all features of OWL Full, which is the most expressive sublanguage of OWL. Knowledge

bases that contain such unsupported features are rejected by the DQL server.

Depending on the type of the ontology (DAML+OIL or OWL) they are passed to the

appropriate DIG converter. Both converters are libraries from the University of Manch-

ester and transform DAML+OIL or OWL into DIG statements. These statements are then

passed to the reasoner that is currently connected to the OWL-QL server.

Interaction with the Reasoner

The connection to a reasoner is established over the DIG Interface [Bec03a], which is a

standardised XML interface for Description Logics systems developed by the DL Imple-

mentation Group (DIG).13

A part of the DIG project is the Java API to communicate with DIG compliant reason-

ers, like Racer or FaCT++. All parts of the DIG project are available from the Sourceforge

home page.14

The OWL-QL Server tries to read the URL for the reasoner from a properties file that

is named dqlserver.properties and is located in the package dql.server.

12http://www.w3.org/TR/2004/REC-owl-features-20040210
13http://dl.kr.org/dig
14http://dig.sourceforge.net

22 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

If this property file is not accessible the OWL-QL server tries to connect to http://
localhost:8080 to see if a local reasoner is available there. If none of this works, all

query() method calls will cause an exception.

The class ExtendedResponse in the package dql.server implements methods

that facilitate the analysis of the reasoner’s response, e.g., to see if the knowledge base

loading was successful one has to call only one method with the reasoner response as a

parameter.

Currently all interactions with the reasoner are performed in a kind of batch mode, i.e.,

all requests (tell and ask) are collected for the first phase of the algorithm and if necessary

also for the second phase to check the candidates for must-bind variables and then sent

to the reasoner at once. This limits the network transportation overhead to a minimum,

since the reasoner may not necessarily run on the same physical machine as the OWL-QL

server.

The DIG interface was chosen since it offers an implementation independent way

for the communication with a reasoner. The standard becomes more and more accepted

and has currently been updated to version 1.1. This additional indirection, compared to

a direct connection to a reasoner over its proprietary interface, may cause longer query

answering times, but it was preferred since it allows an easy switch between all reasoners

that support the interface.

Recently the Jena framework has been extended to support the connection of OWL or

DAML+OIL knowledge bases to a DL reasoner over the DIG standard, so this framework

could be an alternative to the converters used here. The DQLServer class could build a

Jena model for the knowledge bases and use it to interact with the reasoner. Currently

the implementation is not yet included in an official Jena release and very little docu-

mentation15 is available along with a technical report about the experiences with the DIG

standard during the extension of Jena [Dic04], so this is only an alternative for a future

version of the OWL-QL server. It would also be necessary to test if a switch to Jena would

increase the performance, otherwise there is no need to change the components.

The Query Graph Component

All classes that belong to the graph representation of a query are bundled in the pack-

age dql.server.querygraph. Figure 3.10 shows an UML class diagram of these

classes.

The class Graph implements the rolling-up technique as described in Section 3.2.3.

The graph contains a list of its nodes and a node is represented by the Java class Node.

The nodes manage their relations to other nodes with an adjacent list. An adjacent list is

more applicable than a centrally managed matrix for the relations since the graph is build

incrementally while parsing the query. For each role assertion a directed edge is added

15http://jena.sourceforge.net/how-to/dig-reasoner.html

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 23

3. OWL-QL

Figure 3.10: The UML class diagram of the query graph classes.

from the outgoing node to its successor and vice versa, but the inverse direction is kept

separately, since it is only needed to traverse the graph and is not part of the query. The

class NodeIterator allows a convenient iteration over all related nodes. Although the

query is represented as a directed graph the term leaf is used here. This is explained by

the fact that the underlying undirected graph is per definition in tree form and a node is

called leaf here, if it is a leaf in the underlying undirected graph.

The method startRollingUp() initialises the rolling-up process. First all indi-

viduals are replaced by their representative concepts (see Section 3.2.3 for an explana-

tion), then all individual or don’t-bind leaves are rolled-up until only one node is left or

24 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

this process must stop since only must-bind variables are leaves. If only one node is left,

the query can be transformed to a boolean query or to a concept instance query. Otherwise

the rolling-up technique is used to compute candidates for the bindings of the must-bind

variables as described in Section 3.2.3.

After this first rolling-up phase the generated queries are sent to the reasoner. If the

query contains at most one must-bind variable the reasoner already returns the final query

answer, otherwise the reasoner returns candidates for the bindings of the must-bind vari-

ables. If at least one of the must-bind variables has no candidates for its binding, the

query has an empty answer set and the query-answering algorithm terminates. Otherwise

boolean queries for each possible candidate combination are sent to the reasoner to test

which combinations are valid answers.

Query Types

In this implementation all interactions with the reasoner are regarded as queries. There

are mainly two types of them: ask queries that want to know something from the reasoner,

e.g., which individuals are instances of a concept, and tell queries that pass information

to the reasoner, e.g., that an individual is an instance of a concept. The terms tell and ask

are also used in the DIG specification. Since there are different types of queries for tell

as well as for ask queries, the package dql.server.query contains different query

type classes arranged in an inheritance hierarchy, together with two interfaces that allow

users of the classes to interact with all (ask) queries in the same way. Tell queries are

only used for the representative concepts of individuals and to state that all representative

concepts are disjoint,16 i.e., the tell queries are derived directly from the abstract query

superclass, while ask queries are arranged in a deeper inheritance hierarchy under the

abstract class AskQuery. Figure 3.11 shows the type hierarchy without the subclasses

of the abstract class AskQuery for a better overview. The class AskQuery with its

subclasses is illustrated in Figure 3.12.

Query Answers

Query answers are returned in a set represented by the Java class AnswerSet. An an-

swer set contains at least one answer and at most as many answers as allowed by the

answer bundle size bound variable or all computed answers if the sizeBound variable is

zero or negative. Normally the Java class Integer with the value null would be more appli-

cable, but for a web service the class Integer and the primitive type int are both mapped

to the XML schema type xsd:int for transportation over the SOAP protocol and both

types are then unmarshalled to an primitive Java type int. Therefore, the DQLServer

16Current Description Logic reasoners impose the Unique Name Assumption (UNA) for individuals, and

the disjointness axiom keeps this for the representative concepts.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 25

3. OWL-QL

Figure 3.11: The UML class diagram of the query classes.

class works with Integer as preferred and the DQLService class, which is the web in-

terface facade, works with int and does the mapping to Integer.

In addition to the answers for a query an answer set also includes the termination

token or the process handle, whichever is appropriate.

On the server side the answers are stored in the class ServerAnswerSet. This

class can be stored in the answer set cache and provides a method to receive an answer

set of a specified size for delivery to the client. In this way it is easy to prepare the next

answer set for the specified size of a nextResults() request. In addition, the use of

a simpler answer set class as the return value of the web service avoided the implemen-

tation of special serializers and deserializers for the class. If the class complies with the

Java Bean Standard, which specifies that a class has to have an empty default constructor

and getVariable() plus setVariable() methods for each used instance variable

and nothing else, the default Java Bean serializer class can be used for serialization and

deserialization. This also saves time for the client implementers of the web service, since

they also need not implement a serializer.

A query can have two kinds of answer. If the query contained no must-bind variables

the returned answer set consists of only one answer with true as its value if all parts of the

query are entailed by the used knowledge base and false otherwise. The returned answer

contains no bindings in this case. If the query contained at least one must-bind variable

26 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

Figure 3.12: The UML class diagram of the AskQuery subclasses.

the answer set may contain more answers. Each answer contains one binding for each

must-bind variable. These bindings are stored in a map. If all must-bind variables in a

query are replaced by their binding, and all remaining don’t-bind variables are treated as

existentially quantified, the query must be entailed by the knowledge base used to answer

the query.

The classes ServerAnswerSet and AnswerSetCache both reside in the pack-

age dql.server (see Figure 3.13), while the classes AnswerSet and QueryAnswer
together with their interfaces are located in the dql.server.webservice package,

since they are delivered to the client of the web service. A UML class diagram for this

package was already given in Section 3.3.3 on page 20.

The Answer Set Cache

If a query has more answers than the server is allowed to return, the remaining answers

are stored in an answer set cache. The corresponding Java class is AnswerSetCache in

the package dql.server. The class is implemented as a singleton, to ensure that only

one instance is available in the system. This is necessary for two reasons:

1. Web services can’t guarantee (without extra efforts) that two requests from the

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 27

3. OWL-QL

Figure 3.13: The UML class diagram of the package dql.server.

same client are mapped to the same object on the server, i.e., if the query()

method is executed by one object this object need not be the one that also han-

dles a nextResults() request for the client. This makes it impossible to store

the answers in an instance variable. This behaviour is known as web sessions. In a

session the state of the application is saved on a per client basis. Web services can

be forced to support sessions, but a normal configuration does not support this.

2. The OWL-QL specification allows any client that has a valid process handle to

request more answers for this handle, even if the original query() request was

sent by another client. For this reason a normal web session would also not be

suitable.

With a singleton only one instance of a class is available and this instance stores

the answer sets and returns them on demand. When an answer set becomes empty it is

removed from the cache and if a client requests an answer set that is not in the cache an

28 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

empty answer set with an end termination token is returned.

A Query Processing Sequence

Figure 3.14 is an UML sequence diagram illustrating the collaboration of the components

during a query answering process. The actor DQL web service is also a software

component, namely the web service answering the query request, but the server itself is a

component with a clear boundary to the offered web service, i.e., the web service can be

seen as a client of the component.

Figure 3.14: The UML sequence diagram for query answering.

Several actions have been taken to improve performance. One optimisation is to exe-

cute fast tasks that may cause an end of the query-answering process as early as possible,

e.g., parsing a query is normally fast, since queries are much shorter than for example a

knowledge base and if there is a syntax error in the query none of the other components

need to be involved.

In two cases the process is finished after the first query phase. One case is, if at most

one must-bind variable was in the query, then the first reasoner response already includes

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 29

3. OWL-QL

the query answer. The other is, if the query is not entailed by the knowledge base. This

results in an empty candidate set for at least one must-bind variable or a returned false

value for a boolean query asking if a specified individual exists in the knowledge base or

is an instance of a given concept.

In all other cases a second interaction with the reasoner is necessary to verify all

possible combinations of the received binding candidates. This is the most costly part of

the implementation besides the loading time for a knowledge base that is determined by

the size of the knowledge base itself.

Error Handling

The specification defines that if for any reasons a server can not deal with a query it has

to return the termination token rejected in an empty answer set. In addition to this, the

provided implementation also defines a getErrorMessage()method that contains an

explanation of the caused error or failure.

Whenever an error occurs in the DQL server component, e.g., a syntax error in the

query or knowledge base or the reasoner may be unavailable for some reason, the error is

caught, logged and re-thrown with an appropriate description of the exception. The DQL

web service (that is the facade class DQLService) catches all exceptions, creates an empty

answer set with rejected termination token and the message of the caught exception, i.e.,

whenever the service is available the client will receive an answer set for its query and in

case of an error this answer set also provides an explanation.

Testing

JUnit17 is a regression testing framework to support developers in the software develop-

ment process. A good introduction into test driven software development is given by Kent

Beck [Bec02], one of the authors of JUnit. For each software unit the developer should

write a test that executes defined methods and asserts that defined conditions are met be-

fore and/or after a method has been executed. A regression test runs the unit tests of all

components. This can help to find possibly occurring side effects, after a change in one

of the components. If a tests does not result in a defined condition, the test fails and there-

fore also the whole test suite fails. For example the Eclipse IDE18 has a build in graphical

user interface for JUnit that signals green if all tests were executed as expected and red

otherwise and the used deployment tool Ant also supports the execution of JUnit tests as

part of a software build process.

For the server, tests were implemented for all larger components, which test different

methods against predefined results. The tests can be executed on demand and they are

17http://www.junit.org
18http://www.eclipse.org

30 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

also part of the defined Ant deployment process for the OWL-QL server components.

The tests help to assure that specified requirements for the software, e.g., defined by the

OWL-QL specification, are met and they save time, since it is not necessary to test every

class after a change again by executing the class’s main method with different examples.

The Client Interface

Another part of this implementation is a web service client. This was not specified as part

of the project, but is rather useful to demonstrate the system. In addition, it shows one

possibility of how the provided web service may be used.

The implementation is not described in much detail, since it is not of the realisation of

a DQL server, but the system architecture diagram on page 19 shows the general layout of

the client. It is mainly composed of one servlet19 that collects the parameters that a user

enters into an HTML form and passes the parameters to the DQL web service. All classes

needed for the interaction with the web service were build by the wsdl2java program

that is a part of the Jakarta Axis framework, see also Section 3.3.1. After the servlet

has received a result from the DQL web service the request is forwarded to a JavaServer

Pages (JSP)20 page. JSP are much easier to use for HTML output than a servlet, since a

servlet can generate output only by using Java’s PrintWriter classes while JSP can

conveniently switch between Java and HTML parts.

The figures on the following pages illustrate the client interface. Figure 3.15 shows

the front-end for the user. It allows to specify a local knowledge base file or the URL of

a knowledge base, the answer bundle size bound, the query and an answer pattern. It is

necessary to use the fully qualified names for concept, role and individual names as in

the knowledge base itself. The user can also specify a process handle and request more

answers for this. If there are answers stored for the process handle on the server the server

will return them.

Figure 3.16 shows the answer page. If the answer included a process handle to indicate

that the client can make further calls, the client can choose one of three options: to request

more answers (then the size bound for the next answer set must be given), to terminate

this request and hereby allow the server to free resources or to start a new call. If the

server has no more answers in its cache a termination token is returned and the user has

only the option to ask a new query. This is displayed in Figure 3.17.

3.4 Related Work

This section introduces other available systems to query OWL knowledge bases and high-

lights the differences to the system realised in Manchester.

19http://java.sun.com/products/servlet/whitepaper.html
20http://java.sun.com/products/jsp/whitepaper.html

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 31

3. OWL-QL

Figure 3.15: The DQL client start page.

3.4.1 The Stanford OWL-QL Server

The Knowledge Systems Laboratory (KSL) of the Stanford University provides an OWL-

QL implementation that supports DAML+OIL and OWL knowledge bases. The system

uses the first order logic theorem prover JTP21 [FJF03] to answer the queries. The OWL-

QL server is implemented as a wrapper around the theorem prover. A query consists of

DAML+OIL or OWL statements (in RDF triple notation) with URI references replaced

by variables. Compared to acyclic conjunctive queries, the supported query language is

therefore richer. Unfortunately the system does not answer all allowed queries. For some

queries the server simply terminates the communication with a client.

As an example, consider again the KB specified in Example 2. The query 〈?x〉 ←
?x:CAR ∧ 〈?x, !y〉:ownedby ∧ !y:PERSON is correctly answered with the binding

acar for ?x. However, the slightly modified query 〈?x〉 ← ?x:CAR∧ 〈?x, !y〉:ownedby
∧ !y:CAR, asking for a car that is owned by a car, is also answered with the binding acar
for ?x.

Example 2

21http://www.ksl.stanford.edu/software/JTP

32 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

Figure 3.16: A DQL client answer page with further answers available.

Figure 3.17: A DQL client answer page with termination token.

KB = {T , A}
T = {CAR ⊑ ∃ownedby.PERSON}
A = {acar:CAR}

The implementation was also tested with a second, more complicated query, see Ex-

ample 3, against the KB in Figure 3.18. The query asks for individuals that have an r
successor that is a C and has itself an r successor. The difficulty is that in this case there

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 33

3. OWL-QL

is no nameable instance of the concept C, but it can be inferred that either c1 or c2 is a

C. If !y is a don’t-bind variable, as in this case, the query has exactly one answer, namely

a1 as a binding for ?x and b1 as a binding for ?z. The Stanford’s OWL-QL server does

not find the correct answer tuple but ends the dialogue with termination token end and is

compliant with the specification in this case.

For the slightly modified query in Example 4, in which the individual name b1 is used

instead of the must-bind variable ?z, the KSL implementation provides a1, c1, and c2
as a binding for ?x. The last two answers are, however, incorrect.

Example 3

〈?x, ?z〉 ← 〈?x, !y〉:r ∧ 〈!y,?z〉:r ∧ !y:C

Figure 3.18: The knowledge base used for the queries in Example 3 and 4.

Example 4

〈?x〉 ← 〈?x, !y〉:r ∧ 〈!y,b1〉:r ∧ !y:C

It seems that the system has difficulties with non-distinguished variables, and queries

often cause unexpected results. The reasons for this behaviour could be due to the com-

munication with the used theorem prover or in the theorem prover itself. If the imple-

mentation is improved in this respect, however, it would provide a powerful and complete

implementation of the OWL-QL specification. For practical use, the system would benefit

from better error handling and error explanation and a detailed documentation would be

desirable.

3.4.2 The new Racer Query Language

The recently introduced new Racer Query Language (nRQL) [HMW04] is not geared

to the DQL specification, therefore it misses all the protocol specific elements, such as

termination tokens or the delivery of answers in a bundle with a specifiable size bound. In

addition nRQL does not support non-distinguished variables. Although nRQL is far away

from the OWL-QL specification, it is nevertheless a step towards better query support,

and it is therefore introduced here very briefly. The query language itself is very rich,

as it supports the retrieval of variable bindings in arbitrary concept and role expressions.

In contrast to the other systems introduced here, all variables are distinguished, even if

they are not included in the answer. For an example, the reader may again consider the

KB in Example 2 (page 33). The nRLQ query (retrieve (?x) (and (?x CAR)

34 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

(?y PERSON) (?x ?y ownedby))) returns all cars that are owned by a person.

Although only cars are in the answer, a named individual must exist in the KB that is

specified as owner of the car. As a result the query answer for this example is empty.

Another feature, which was added to nRQL, is negated query atoms, implemented

using a negation as failure semantics. This is contrary to the Open World semantics

normally used in DL systems (and also by RACER). nRQL uses the same operator (not)

for negated query atoms and for concept negation, which could probably lead to confusion

and the users have to be careful with the formulation of such a query. The nRQL query

(retrieve (?x) (not (?x PERSON))), using the negation as failure semantics,

therefore returns acar. Due to the Open World semantics for concept negation, the

modified query (retrieve (?x) (?x (not PERSON))) returns an empty answer

set, since RACER cannot prove that acar is not an instance of the concept person.

nRQL offers more features than the ones described here and for details the reader is

referred to the RACER documentation.22

3.5 Discussion

3.5.1 The OWL-QL Specification

In general, OWL-QL provides a flexible framework in conducting a query-answering

dialogue using knowledge represented in OWL. It allows the definition of additional pa-

rameters, delegation of queries to another server or the continuation of a query dialogue

by other clients that know a valid process handle. If the client specifies an answer bundle

size bound, the specification allows an OWL-QL server to compute all answers at once

or to compute the answers incrementally, as long as the answer set returned to the client

contains not more answers than specified by the answer bundle size bound. The specifi-

cation also allows the definition of further termination token, e.g. to provide information

about the rejection reasons.

The current version of OWL-QL, however, has the following limitations.

External Syntax The specification does not provide any exact syntax definition or a

specification of how to communicate the supported conformance level to a client and also

other mechanism like time-outs for a query are not specified. This is due to the focus on

providing an abstract specification on a structural level and to allow the various syntactical

preferences of the different web communities to fit the standard to their needs. An OWL-

QL server therefore has to provide this information in a documentation or in an XML

Schema [Bir01] [Tho01].

22The documentation, which includes a section about nRQL, is available from the RACER download

page: http://www.cs.concordia.ca/∼haarslev/racer/download.html

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 35

3. OWL-QL

Semantics As the external syntax has not (yet) been specified, the formal semantics

of OWL-QL is presented in a quite general way, and is only included as an appendix of

the specification. In particular, the fact that the relationship between the OWL model-

theoretic semantics and the OWL-QL semantics has not been specified is not very satis-

factory.

Boolean Queries The specification does not specify how to answer boolean queries,

i.e., queries with only don’t-bind variables or queries with an empty variable list. How to

implement a system that can answer queries with only don’t-bind variables is described

in Section 3.2.3. In the absence of variables query answering is identical to instance

checking. In both cases the answer set is empty, instead the answer to such a query is

either yes/true or no/false.

Query classes The OWL-QL specification does not introduce the query classes that

DQL provides. Since it is difficult for some reasoners to implement all of these require-

ments, DQL explicitly allows a partial implementation. A DQL server can restrict it-

self to special query classes, e.g. a server may only support queries that conform to

a pattern like ?x rdf:type C, where C is an DAML+OIL class expression, or ?x
daml:subClassOf ?y and reject all other queries. The server is then said to apply

to these query classes. Until now it is up to the implementer of an OWL-QL server to

provide a documentation of supported query classes and how, if at all, this is communi-

cated to a client. In a real agent-to-agent protocol, however, a client should be able to

determine the supported query classes and this is one of the issues a future specification

should address.

In short, for an implementer of an OWL-QL server, OWL-QL acts as a guide without

a concrete external syntax, a formal relationship with the OWL model-theoretic semantics

and proper means to communicate the supported query classes or the conformance level.

Until now every implementation has to fill (some of) these gaps and to provide a detailed

documentation of how these gaps have been filled.

3.5.2 OWL-QL Systems

Efforts are currently being made, to develop better query support for knowledge represen-

tation systems. The establishment of OWL as a W3C recommendation may also promote

the proposed OWL-QL specification23 and so encourage improvements for the currently

available systems or the development of new query answering systems.

So far, all introduced systems have some drawbacks. The Stanford implementation

covers all features defined by the OWL-QL specification, but delivers in some cases in-

correct answers and rejects some queries, without providing an answer. The Manchester

23http://ksl.stanford.edu/projects/owl-ql

36 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

implementation does not support all DQL features and is restricted to acyclic conjunctive

queries. Both systems are available as Java applications and the Stanford implementation

is also available as a servlet, while the Manchester implementation is also available as

a web service. Both provide a web client interface and are able to deal with OWL and

DAML+OIL knowledge bases.

nRQL provides richer query support, but is not meant as an OWL-QL implementation

and is therefore missing many DQL features. In addition, the restriction that a binding is

required for all variables, even for those not expected to appear in the answer set, would

make it difficult to formulate queries such as the one in Section 3.4 against the KB in

Figure 3.18. Apart from this, nRQL is easy to use, and the documentation provides a

good introduction to the new features of nRQL.

For all described systems there are still improvements possible. One main topic for

query answering systems is scalability. The query answering times for knowledge bases

with large amounts of individuals are still far away from the results achieved by databases.

For the implementation developed in Manchester, the boolean queries that are necessary

to check valid combinations of variable bindings, can cause major delays in case of many

candidates. The system would clearly benefit of a further optimisation of this phase in the

query answering process, some of which were discussed in Section 3.2.4.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 37

Chapter 4

Querying with OWL-E-QL

This chapter describes how to query with OWL-E-QL, which is an extension of OWL-QL

by using OWL-E as the ontology language and by enabling the use of datatype expression

in queries. As details of OWL-QL have already been addressed in Chapter 3, we only have

to cover: (i) what is OWL-E, (ii) what is the semantics of datatype expression enabled

queries, and (iii) how to provide reasoning services for query answering in OWL-E-QL.

As a side issue, we also include a short survey on the datatype predicates used in existing

Web-related query languages.

4.1 Formal Semantics

4.1.1 Datatypes and Datatype Predicates

Most existing ontology-related formalisms focus on either datatypes (such as RDF(S)

and OWL datatyping) or predicates (such as the concrete domain and the type system

approach). Pan ([Pan04]) presents a datatype group approach, which provides a unified

formalism for datatypes and datatype predicates.

In a datatype group, datatypes and datatype predicates serve different purposes. A

datatype d is characterised by its lexical space L(d), value space V (d) and lexical-to-value

mapping L2V (d). It can be used to represent its member values through typed literals.

A typed literals is of the form “v”ˆˆu, where v is a Unicode string, called the lexical

form of the typed literal, and u is a URI reference of a datatype. A datatype predicate

(or simply predicate) p is characterised by an arity a(p), or a minimum arity amin(p) if

p can have multiple arities, and a predicate extension (or simply extension) E(p). For

instance, >int
[20] is a (unary) predicate with a(>int

[20]) = 1 and E(>int
[20]) = {i ∈ V (integer) |

i > L2V (integer)(“20”)}. This example shows that predicates are defined based on

datatypes (e.g., integer) and their values (e.g., the integer L2V (integer) (“20”), i.e.,

20). Predicates are mainly used to represent constraints over values of datatypes which

38

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

Abstract Syntax DL Syntax Semantics

rdfs:Literal ⊤D ∆D

owlx:DatatypeBottom ⊥D ∅
u a predicate URIref u uD

not(u) u

if u ∈ DG , ∆D \ uD

if u ∈ ΦG \ DG , (dom(u))D \ uD

if u 6∈ ΦG ,
⋃

n≥1
(∆D)n \ uD

oneOf(“s1”ˆˆd1 . . . “sn”ˆˆdn) {“s1”ˆˆd1, . . . , “sn”ˆˆdn} {(“s1”ˆˆd1)
D} ∪ · · · ∪ {(“sn”ˆˆdn)D}

domain(v1, . . . , vn) [v1, . . . , vn] vD

1 × · · · × vD

n

and(P,Q) P ∧ Q PD ∩ QD

or(P,Q) P ∨ Q PD ∪ QD

Table 4.1: OWL-E datatype expressions

they are defined over.

On the other hand, datatypes and datatype predicates are closely related to each other.

Datatypes can be regarded as special predicates with arity 1 and predicate extensions

equal to their value spaces; e.g., the datatype integer can be seen as a predicate with arity

a(integer) = 1 and predicate extension E(integer) = V (integer). They are special

because they have lexical spaces and lexical-to-value mappings that ordinary predicates

do not have.

The reader is referred to [Pan04] for more details about the datatype group approach.

4.1.2 OWL-E: Extending OWL with Datatype Expressions

Although OWL is rather expressive, it has a very serious limitation; i.e., it does not support

customised datatypes and datatype predicates. It has been pointed out that many poten-

tial users will not adopt OWL unless this limitation is overcome [Rec04]. To overcome

these limitations, [PH04] proposes OWL-E, equivalent to the SHOIQ(G) DL, which

is a decidable extension of both OWL DL and DAML+OIL, which provides customised

datatypes and predicates; in fact, [Pan04] shows that all the basic reasoning services of

OWL-E are decidable.

OWL-E provides datatype expressions based on the datatype group approach [Pan04],

which can be used to represent customised datatypes and datatype predicates. Table 4.1

shows the kind of datatype expression OWL-E supports, where u is a datatype predi-

cate URIref, “si”ˆˆdi are typed literals, v1, . . . , vn are (possibly negated) unary supported

predicate URIrefs, P , Q are datatype expressions and ΦG is the set of supported predicate

URIrefs in a datatype group G. OWL-E provides some new classes descriptions, which

are listed in Table 4.2, where T, T1, . . . , Tn are datatype properties (where Ti ⊑*/ Tj, Tj ⊑*/ Ti

for all 1 ≤ i < j ≤ n),1 R is an object property, C is a class, E is a datatype expres-

sion or a datatype expression URIref, and ♯ denotes cardinality. Note that the first four are

1 ⊑* is the transitive reflexive closure of ⊑.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 39

4. QUERYING WITH OWL-E-QL

Abstract Syntax DL Syntax Semantics

restriction({T}
someTuplesSatisfy(E))

∃T1, . . . , Tn.E {x ∈ ∆I | ∃t1, . . . , tn.〈x, ti〉 ∈ TI (for all

1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED}

restriction({T}
allTuplesSatisfy(E))

∀T1, . . . , Tn.E {x ∈ ∆I | ∀t1, . . . , tn.〈x, ti〉 ∈ TI (for all

1 ≤ i ≤ m) → 〈t1, . . . , tn〉 ∈ ED}

restriction({T} minCardinality(m)

someTuplesSatisfy(E))

>mT1, . . . , Tn.E {x ∈ ∆I | ♯{〈t1, . . . , tn〉 | 〈x, ti〉 ∈ TI (for all

1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED} ≥ m}

restriction({T} maxCardinality(m)

someTuplesSatisfy(E))

6mT1, . . . , Tn.E {x ∈ ∆I | ♯{〈t1, . . . , tn〉 | 〈x, ti〉 ∈ TI (for all

1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED} ≤ m}

restriction(R minCardinality(m)

someValuesFrom(C))

>mR.C {x ∈ ∆I | ♯{y | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≥ m}

restriction(R maxCardinality(m)

someValuesFrom(C))

6mR.C {x ∈ ∆I | ♯{y | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≤ m}

Table 4.2: OWL-E introduced class descriptions

datatype group-based class descriptions, and the last two are qualified number restrictions.

4.1.3 Queries and Query Graphs

In this chapter, we consider acyclic conjunctive queries that allow datatype expressions.

Formally, a query q is of the form

~x: q ← conj(~x; ~y; ~z)

where conj(~x; ~y; ~z) is a conjunction of atoms, ~x is a set of distinguished (or must bind)

variables that will be bound to individual names of the knowledge base used to answer

the query, ~y is a set of non-distinguished (don’t-bind variables) that are existentially quan-

tified variables, and ~z consists of individual names or typed literals. Each atom has one

of the forms v1 : C,2 〈v2, v3〉 : r, 〈v4, v5〉 : s, 〈t1, . . . , tn〉 : E, where C is a concept de-

scription, r is an individual-valued property, s is a data-valued property, E is a datatype

expression, v1, . . . , v4 are individual names from ~z or individual-valued variables from ~x
or ~y, and v5 and t1, . . . , tn are typed literals from ~z or data-valued variables from ~x or ~y.

If conj(~x; ~y; ~z) is empty, the query returns true.

Here is an example query q1

?x: q1 ← 〈!y, ?x〉: hasParent ∧ !y: Male ∧ 〈!y, !z〉: birthY ear
∧ 〈!y, !w〉: marriedY ear ∧ !z: (=int

[1960] ∨ =int
[1962]) ∧ 〈!w, !z〉:>,

where ?x is a distinguished individual-valued variable, !y is a non-distinguished individual-

valued variable, !z, !w are non-distinguished data-valued variables, hasParent is an

individual-valued property, Male is a concept name, birthY ear and marriedY ear are

data-valued variables, ≥1940,≤1990 are unary datatype predicates and > is a binary datatype

predicate.

2We avoid the more common notation of C(v1) etc. because it is confusing when C is a complex

concept description.

40 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

A conjunctive query q can be represented by a directed labelled graph G(q), called

query graph, in which there is a normal vertex x for each individual, typed literal or vari-

able x in the query, and a normal edge r from a normal node x to a normal vertex y
for each property atom 〈x, y〉 : r in the query. Obviously, there are two kinds of nor-

mal vertices, viz. individual-valued vertices and data-valued vertices. For the readers

convenience the distinguished variables are represented by a filled vertex (•), whereas

non-distinguished variables and individuals are represented by an unfilled vertex (◦). Be-

sides normal vertices, a query graph can contain special vertices, called datatype vertices,

which represent datatype expressions. For each datatype expression atom 〈t1, . . . , tn〉: E
in a query, there exist datatype edges (represented by dotted lines) in G(q) which relate

data-valued vertices t1, . . . , tn to the datatype vertex E, labelled with the positions of

t1, . . . , tn in 〈t1, . . . , tn〉 : E. For instance, query (4.1.3) corresponds to the query graph

presented in Figure 4.1.

{} {Male}
• ◦ ◦ =int

[1960] ∨ =int
[1962]?x !y !z

◦ >
!w

hasParent birthY ear

marriedY ear 2
1

1

Figure 4.1: A Query Graph

A query graph G(q) is a tuple 〈Vn,En,Vd,Ed〉, where Vn is the set of all the normal

vertices, Vd is the set of all the datatype vertices, En is the set of all the normal edges and

Ed is the set of all the datatype edges. Each individual-valued vertex v ∈ Vn is labelled

with L(v), which is a set of concept descriptions. Datatype-valued vertices do not have

labels. Each normal edge e ∈ En is labelled with L(e) = r such that 〈start(e), end(e)〉: r
is a property atom in q, where start and end are functions that return the starting and

ending vertices of an edge, respectively. Each datatype vertex p ∈ Vd is labelled with

L(p) = E where E is a datatype expression. To simplify the presentation, we use L(p) to

represent a datatype vertex p in query graphs. Each datatype edge g ∈ Ed is labelled with

L(g), which is an integer and represents the position of start(g) in the corresponding

datatype expression atom of the query q.

Two vertices v1, v2 ∈ Vn∪Vd are adjacent, if L(〈v1, v2〉) 6= ∅ or L(〈v2, v1〉) 6= ∅. Let

v1, v2, v3 be vertices, a path connects two vertices and it is defined recursively as follows.

• if L(〈v1, v2〉) 6= ∅, the set {〈v1, v2〉:L(〈v1, v2〉)} is a path connecting v1 to v2;

• if the set φ is a path connecting v1 to v2, the set φ′ is a path connecting v2 to v3 and

φ ∩ φ′ = ∅, then φ ∪ φ′ is a path connecting v1 to v3;

• if φ is a path from v1 to v2, then it is a path from v2 to v1 as well.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 41

4. QUERYING WITH OWL-E-QL

A normal path is a path that all vertices on it are normal vertices. A (normal) cycle is

a (normal) path connecting a variable vertex to itself. A query graph G(q) is (normally)

cyclic if a sub-graph of it is a (normal) cycle. A query q is (normally) acyclic if G(q) is

not (normally) cyclic.

A datatype vertex p is local (w.r.t. a individual-valued vertex v) if all the related data-

valued vertices (by some datatype edges) of p are adjacent to v; in this case, we call v the

master individual-valued vertex of the datatype vertex p. A query q is said to be only with

local datatype expressions if each datatype vertex p is local w.r.t. some individual-valued

vertex v in G(q). In this chapter, we consider normally acyclic conjunctive queries only

with local datatype expressions.

4.2 Datatypes and Datatype Predicates in Web-related

Query Languages

The goal of this section is to give an overview of how to include constraint expressions in

query language for the Semantic Web context, and which kind of expressions should be

supported. This overview is built from two sources. One source are existing SW query

languages. As the SW shouldn’t be an island, we have also drawn information from

common query language of other areas, namely RDBMSs (SQL) and XML (XQuery).

RDF itself and all extensions (as RDFS, OWL) and query languages don’t specify

their own data model for atomic data (RDF literals), but reuse the work done in the XML

area, especially XML Schema [BE01].

We use the terminology from XQuery and XPath Data Model [FMM+04] to describe

literal values:

• An atomic type is a primitive simple type or a type derived by restriction from

another atomic type.

• the set of primitive types is listed in the specification (see Figure 4.2).

Of the XML Data Model, only atomic types and values can be used in the Semantic Web

context, list and union values aren’t allowed for RDF literals. This means that some of the

XQuery operators and functions are not applicable in the this context. On the other hand,

functions for RDF-related data types (RDF nodes, RDF collections) have to be provided.

[HBEV04] have described important features for RDF query languages. The follow-

ing of these are related to data types and built-in functions:

• direct support for collection-related functions

• support for XML Schema datatypes

42 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

Figure 4.2: XQuery Data Model Type Hierarchy (from [FMM+04]

• support for URI-related functions (e.g. namespace filtering)

• multi-language support

We will refer to these in the later sections

4.2.1 Handling of variable constraints in existing query languages

Essentially there are two approaches to handling variable constraints:

• Constraint expressions built-in functions return arbitrary atomic types, the result-

ing constraint expression(s) must be of type boolean.

SQL, XQuery and all SQL-like RDF languages (e.g. RDQL, RQL, SeRQL, SPARQL)

use (part of) a where clause to add such constraint expressions to a query.3

• Constraint predicates there are only built-in predicates, which are satisfied if the

arguments are in the relation specified by the corresponding constraint clause op-

erator (e.g. (sum ?x ?y ?z) is satisfied if ?x = ?y+?z. This approach is used by

rule-based RDF languages, e.g. SWRL, TRIPLE, QEL and DQL 4

3XQuery operators are just syntactic sugar to facilitate inline operators (e.g. in ’2+2’) additionally to

prefix expressions.
4DQL uses a knowledge base where some nodes are variables to specify a query. No built-in predicates

are part of the specification, only equality is supported (implicitly).

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 43

4. QUERYING WITH OWL-E-QL

These approaches are different in style and syntax, but equally powerful. A language

having n constraint predicates can be converted to a language with one constraint predicate

(’satisfied’) which is satisfied if the boolean argument equals ’true’ and n constraint clause

operators/functions. For example, the conjunctive constraint clause

(greaterThan ?x ?y) ∧ (sum ?x ?a ?b) ∧ (sum ?y ?c ?d)
could be translated to

(satisfied (?a+?b >?c+?d))
As the latter type of expressions is used in SQL and XQuery, as well as in all non-rule-

based RDF query languages, it seems reasonable to integrate such a syntactic approach

into rule-based languages as well (possibly as alternative syntax).

4.2.2 Built-in Functions/Predicates in current RDF query languages

In RDQL, a query consists of an RDF graph template specifying the structure of matching

subgraphs and additional constraints of the form <variable operator constant>. Equality

operators (=, !=), comparison operators (<, >) and a pattern matching operator for strings

(˜=) are available. There is no formal specification of these operators. Boolean operators

to construct more complex expressions are also provided.

SeRQL provides numeric comparison operators, string pattern matching and functions

for RDF node type checks (isResource, isLiteral). These can be combined using boolean

operators.

SPARQL SPARQL is based on RDQL, but it is planned to rely on XQuery operators

and functions instead of the ones provided in RDQL. Details are not yet provided ([PS04],

section 12).

SWRL built-in predicates are mostly based on corresponding XQuery functions and

operators. For primitive datatypes a selection of the most important XQuery expressions

are supported. Additionally, predicates regarding collections and URIs are provided.

4.2.3 RDF(S) Related Predicates

Support for Collections RDF as well as OWL have a notion of collections. While

current query languages allow to query these inderectly by referring to the graph structure

for representation of the collection, there is no direct support.

A query language should have the following functions related to collections:

• (member ?c ?x) satisfied if ?c is a collection and contains ?x.

• (union ?r ?c ?d), (intersection ?r ?c ?d), (subtraction ?r ?c ?d) the common set

operator and bind ?r to the respective resulting set.

For Sequences, the following operators are useful:

44 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

• (indexOf ?r ?c ?x) binds ?r to position of ?x in ?c.

• (concat ?r ?c ?d) binds r to the concatenation of ?c and ?d.

These operators should be able to work on linked lists (as used in OWL-DL) as well.

It is an interesting question how XQuery sequence support and RDF collections support

could be aligned.

Support for Resource Types A query may also require that an RDF node is of a specific

type. For example, this is necessary to return the transitive closure of all anonymous

resources connected to a non-anonymous resource. Following types exist:

• Literal.

• Resource

– Anonymous resource

– Non-Anonymous resource

A predicate (nodeType ?x ?t) is satisfied if ?t is one of these four type specifiers, and

?x is a resource of the requested type.

URI predicates While in general URIs are supposed to be opaque, in RDF it is of-

ten useful to split them into their namespace and local name parts. Thus, the following

functins should be provided:

• (namespace ?r ?u) binds ?r to the namespace part of uri ?u.

• (localname ?r ?u) binds ?r to the local name part of uri ?u.

4.2.4 Functions and operators for XML atomic types

XQuery already provides an extensive set of functions and operators on common atomic

types as string, numerics and date. The most promising approach seems to draw on these

efforts and take over at least the semantics of these functions as defined in [MME04].

We refer to this document and the SWRL specification [HPSB+04] regarding a suitable

subset of XQuery operators for the RDF context.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 45

4. QUERYING WITH OWL-E-QL

4.3 An Extended Rolling-up Algorithm

In general, query answering with datatypes is harder than that without datatypes. If a

datatype-free query contains only distinguished variables, one could replace all variables

with individual names from the knowledge base and check if the grounded query is log-

ically implied by the knowledge base. This is impossible for non-datatype-free queries

because there are infinite numbers of typed literals.

In this section, we extend the rolling up technique presented in [Tes01] to support

query answering with normally acyclic conjunctive queries with local datatype expres-

sions. The basic idea behind the rolling-up technique is to convert data-valued property

atoms and datatype expression atoms into concept atoms. Informally speaking, there are

three cases.

• No datatype expression atoms: The rationale behind this rolling up can easily be

understood by the use of the oneOf constructor for datatypes. The data-valued

property atom 〈a, “18”ˆˆxsd: integer〉 : age can be transformed into the equiva-

lent concept atom a: ∃age.{“18”ˆˆxsd: integer}, where {“18”ˆˆxsd: integer} is the

datatype containing only one value, i.e., the integer 18. Now let us consider the

data-valued property atom 〈a, !y〉: age where we have a non-distinguished variable

instead of a typed literal. Similarly, it can be transformed into the equivalent con-

cept atom a: ∃age.⊤D, where ⊤D is the datatype predicate that represents the whole

datatype domain.

• Datatype expressions with arity 1: A unary datatype expression atom with the

rolled up data-valued variable can be absorbed into the corresponding concept

atom. For instance, 〈a, !y〉 : age ∧ !y :<int
[20] can be transformed into the equiva-

lent concept atom a: ∃age. <int
[20].

• Datatype expressions with arbitrary arities: Similarly, a datatype expression

atom with arbitrary arity can be absorbed into the corresponding master concept

atom. For instance, 〈a, !y〉: income ∧ 〈a, !z〉: expense ∧ 〈!y, !z〉:> can be trans-

formed into the equivalent concept atom a: ∃income, expense. >. In this example,

the datatype predicate > is local w.r.t. the individual a.

In what follows, we present the rolling-up algorithm in more details. Given a query

graph5 G = 〈Vn,En,Vd,Ed〉 and an individual-valued vertex v ∈ Vn, the query graph

can be transformed into a normal tree (with root v0), in which the direction of each normal

edge points from the root v0 to the leaves. The directions of normal edges can be satisfied

by the application of the flip(G, 〈x, y〉) function when necessary. The flip(G, 〈x, y〉)
function returns a new graph G′ = 〈Vn

′,En
′,Vd

′,Ed
′〉 with Vn

′ = Vn,En
′ = (En \

5We will specify the kind of requirement for such a query graph later in the chapter.

46 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

〈x, y〉) ∪ 〈y, x〉,Vd
′ = Vd,Ed

′ = Ed, and L(〈y, x〉) = Inv(L(〈x, y〉)).6

The process can be illustrated using the query graph G1 of the query q1:

?x: q1 ← 〈!y, ?x〉: hasParent ∧ !y: Male ∧ 〈!y, !z〉: birthY ear
∧ 〈!y, !w〉: marriedY ear ∧ !z: (=1960 ∨ =1962) ∧ 〈!w, !z〉:>,

{} {Male}
• ◦ ◦ =1960 ∨ =1962
?x !y !z

◦ >
!w

hasParent birthY ear

marriedY ear 2
1

1

flip(G1, 〈!y, ?x〉) returns the following query graph G12, which contain a normal tree.

{} {Male}
• ◦ ◦ =1960 ∨ =1962
?x !y !z

◦ >
!w

hasParent− birthY ear

marriedY ear 2
1

1

As the resulting normal tree contains no datatype vertices, we should reduce type

literal atoms and datatype expression vertices.

The reduction of typed literal vertices and data-valued vertices can be satisfied by the

application of the function removeTL(G). Let t be a typed literal vertex representing

the typed literal “s”ˆˆu, d the datatype vertex t is adjacent to,7 L(d) = E, i the label

(integer) of the datatype edge connecting t and d. removeTL(G) rewrites the label of

d as E |
i=“s”ˆˆu, which is a parameterised datatype expression, and removes t and the

datatype edge connecting t and d. For instance, given the query graph G2 of the query q2

?x: q2 ← ?x: Person ∧ 〈?x, !y〉: age ∧ 〈!y, “18”ˆˆxsd: integer〉:> .

{Person}
• ◦ >
?x !y

“18”ˆˆxsd:integer

age 1

2

removeTL(G2) returns the following query graph G22.

{Person}
• ◦ >|2=“18”ˆˆxsd:integer?x !y

age 1

Note that the > predicate has the arity of a(>) = 2 and extension E(>) = {〈i, j〉 |
i > j and i ∈ V (integer) and j ∈ V (integer)}, while the parameterised predicate

6The function Inv(r) returns the inverse of a property r; e.g., Inv(love) = love− and Inv(love−) =
love.

7Here we assume that each typed literal vertex is adjacent to only one datatype vertex.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 47

4. QUERYING WITH OWL-E-QL

>|2=“18”ˆˆxsd:integer has arity a(>|2=“18”ˆˆxsd:integer) = 1 and E(>|2=“18”ˆˆxsd:integer) = {i |
i > L2V (integer) (“18”) and i ∈ V (integer)}.

The reduce of datatype expression vertices and data-valued vertices can be satisfied by

the application of the function removeDV (G). Let d be a datatype expression vertex, the

arity of L(d) is n, v the master individual-valued vertex of d, v1, . . . , vn the data-valued

vertices between v and d. removeDV (G) adds the concept description ∃s1, . . . , sn.E
into L(v), where si = L(〈v, vi〉), E = L(d), and removes the datatype vertex d and all

datatype edges connecting d and v1, . . . , vn. This step is applied on all datatype vertices in

the query graph. removeDV (G) then removes all the data-valued vertices and the normal

edges connecting them and corresponding individual-valued vertices. The resulting query

graph is a normal tree. For instance, removeDV (G12) returns the following normal tree

G13.

{}
{ Male,∃birthY ear.(=1960 ∨ =1962),

∃marriedY ear, birthY ear. > }
• ◦
?x !y

hasParent−

Finally, the rolling-up from the leaves of the normal tree to the root v0 can be satis-

fied by the application of the function removeLeaf(G). Let l be a leaf, v the adjacent

individual-valued vertex of l. removeLeaf(G) adds the concept description ∃r.C into

L(v), where r = L(〈v, l〉), C = C1 ⊓ . . . ⊓ Cn where C1, . . . , Cn ∈ L(l) (if L(l) = ∅,

C = ⊤; if l represents an individual a, C = {a}), and removes l and the normal edge

connecting v and l. This step is applied to each leaf until only the distinguished variable

at the root is remaining - here the order of the reduction of leaves is not important. For

instance, removeLeaf(G13) returns the following normal tree G14.

{∃hasParent−.(Male ⊓ ∃birthY ear.(=1960 ∨ =1962) ⊓ ∃marriedY ear, birthY ear. >)}
•
?x

Therefore, with the help of the rolling-up algorithm, query answering of query q1 is

reduced to the problem of retrieving all the instances of the concept description

∃hasParent−.(Male ⊓ ∃birthY ear.(=1960 ∨ =1962) ⊓ ∃marriedY ear, birthY ear. >).

In the rest of this chapter, when we say we roll up a vertex x of a query graph, we

mean we roll up the query graph into a normal tree with only one vertex x.

48 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

4.4 Reducing Query Answering in OWL-E-QL to Knowl-

edge Base Satisfiability in OWL-E

4.4.1 Boolean Queries

If there are no distinguished variables in a normally acyclic query, there are two possibil-

ities here:

1. There exist some non-distinguished variables in a query q. We can randomly pick up

a non-distinguished variable !x from q and and roll up !x. Hence, we can transform

the q into

q ← !x: C

where C is the conjunction of all the concept descriptions in the label of the individual-

valued vertex representing !x in the resulting query graph. Therefore, query answer-

ing of q is reduced to concept satisfiability of C.

2. There exist no non-distinguished variables in a query q. We can randomly pick up

an individual a from q and choose it as the root of the normal tree and apply the

rolling-up algorithm. Therefore, we can transform the q into

q ← a: C

where C is the conjunction of all the concept descriptions in the label of the individual-

valued vertex representing a in the resulting query graph. Therefore, query answer-

ing of q is reduced to instance checking a: C.

4.4.2 Acyclic Queries without Datatype Expression Atoms

In this section, we consider acyclic queries with only class atoms, individual-valued prop-

erty atoms and data-valued property atoms. We assume that the knowledge base is con-

sistent.

All Variables are Distinguished

Given a query q, the algorithm of answering queries in which all variables are distin-

guished consists of the following steps:

1. Roll-up each individual-valued variable ?vi in q and retrieve a set of individuals Oi

as candidates of ?vi. Let us take the following query q3 as an example:

〈?v1, ?v2, ?u1, ?u2〉: q3 ← 〈?v1, ?v2〉: brother ∧ 〈?v1, ?u1〉: age ∧ 〈?v2, ?u2〉: age.

We can roll up ?v1 and ?v2 and retrieve their candidates O1 and O2.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 49

4. QUERYING WITH OWL-E-QL

2. Get the valid candidate combinations. We construct a super-query q′ of q by remov-

ing all the datatype property atoms from q. Each candidate combination is tested

by the corresponding boolean query, which is constructed by replacing each distin-

guished variable in q′ with its corresponding candidate in the combination. Note

that if there are only datatype property atoms in a query, then all the combination

are valid. In the above example, the datatype property atoms-free super query q′3 of

q3 is

〈?v1, ?v2〉: q
′
3 ← 〈?v1, ?v2〉: brother.

If O1 = {a1, a2}, O2 = {b1, b2, b3}, we can test the candidate combination 〈?v1 →
a1, ?v2 → b1〉 by replacing ?v1 with a1 and ?v1 with b1 in the query q′3 and turn it

into a boolean query as follows:

q′′3 ← 〈a1, b1〉: brother.

If the above query returns true, then the candidate combination is valid; otherwise,

it is not.

If there exists no valid combination, the result of a query is an empty set; other-

wise, we proceed with step 3. We call objects in valid combinations c-valid (c for

combination) candidates of corresponding variables.

3. Get the values for all the data-valued variables. This can be done in two steps.

(a) Get the explicitly stated individuals and values pairs EIDPairs for each

data-valued variable ?ui. Let 〈?vi, ?ui〉 : s be a datatype property atom,

Objects(?vi) be the set of c-valid candidates of ?vi. For each c-valid can-

didate c ∈ Objects(?vi) of ?vi, if there exists any sub-property s′ of s such

that s′(c, t) is in the ABox, we store the mapping 〈?vi 7→ c, ?ui 7→ t〉 into

EIDPairs.

(b) Get the implicitly stated individuals and values pairs IIDPairs for each data-

valued variable ?ui that does not appear in EIDPairs. Let 〈?vi, ?ui〉 : s be

a datatype property atom, Objects(?vi) be the set of c-valid candidates of

?vi. For each c-valid candidate c ∈ Objects(?vi) of ?vi, we check the most

specific class D of c and see if D implies any fixed value for any sub-property

s′ of s. There can be several cases here:

i. there exist a sub-class ∃s′. =t of D, or

ii. there exist sub-classes ∃s′.d and ∀s′. =t of D,

iii. the variants of the above two cases that involves the use of inverse roles.

For instance, D implies some fixed value of s if ∃r.(∀r−.(∃s′. =t)) is a

sub-class of D.

Note that in some datatypes = t can have some variants too. For instance, in

the integer datatype, =int
[24] is equivalent to >int

[23] ∧ <int
[25].

50 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

Some Data-valued Variables are Non-distinguished

Now we consider the case when all individual-valued variables are distinguished, but

some of the data-valued variables are non-distinguished. In this query answering can be

achieved by rolling up the non-distinguished data-valued variables first. The function

removeDV (G) can be used to eliminate all the non-distinguished data-valued variables.

After this has been done, the procedure described above can be used to answer the query.

As an example, consider a slightly modified query from the example used in the pre-

vious section.

〈?v1, ?v2, ?u1〉: q4 ← 〈?v1, ?v2〉: brother ∧ 〈?v1, ?u1〉: age ∧ 〈?v2, !u2〉: age.

Here the data-valued variable !u2 is non-distinguished and can be eliminated by apply-

ing the function removeDV (G(q4)) once. As a result the concept expression of ∃age.⊤D

is conjoined with the label of the vertex ?v2. Now procedure described in the previous

section is applicable.

Some Individual-valued Variables are Non-distinguished

Here, a query may contain individual-valued variables that are existentially quantified,

but the knowledge base used to answer the query must not necessarily include a named

individual as a binding for the variable. Consider for example the knowledge base in

Example 5 and the query

〈?x, ?u〉: q5 ← 〈?x, !y〉: brother ∧ 〈!y, ?u〉: age.

Example 5

KB = {T , A}
T = {Male ⊑ ¬ Female

⊤ ⊑ ∀ brother.Male

⊤ ⊑ ∀ sister.Female

brother ⊑ sibling

sister ⊑ sibling}
A = {john:(=1 brother ⊓ =1 sister ⊓ =2 sibling)

〈john, francis〉: sibling
〈john, andrea〉: sibling
〈francis〉:(= age 20)

〈andrea〉:(= age 20)}

From the knowledge base we know that the individual named john has exactly one

sister and exactly one brother. In addition we know that andrea and francis are the names

of john’s siblings, but we do not know who is the brother and who is the sister. Neverthe-

less, we know that both are of the age 20 and therefore, the query has an answer in which

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 51

4. QUERYING WITH OWL-E-QL

john is a valid binding for the individual-valued variable ?x and 20 is a valid binding for

the data-valued variable ?u. However, if the specified age would have been different, the

query would have no answer, since there is no binding for ?u.

In this case there is no straight forward algorithm to retrieve the query answers. The

rolling up can be used to retrieve candidates. For this query the verification of valid com-

binations is unnecessary, since there is only one distinguished individual-valued property.

Queries with multiple distinguished variables will still need the verification of valid com-

binations. The third step, however, can only be applied, if the data-valued variables are

connected to distinguished variables. In this case, step three of the case where all variables

were distinguished can be used to derive the valid bindings for the data-valued variables.

If the data-valued variables are connected to undistinguished individual-valued variables,

some answers may be found by treating the individual-valued variables as distinguished

ones, without delivering the found bindings in the query answer. However, the answer for

the given example would not be returned. To retrieve also these answers, further reasoning

is necessary that we will investigate in future work.

4.4.3 Normally Acyclic Queries

All Variables are Distinguished

In addition to the already described case where all variables are distinguished, here we

cover scenarios where the query includes datatype expressions. The beginning of the

query answering process is the same as for the case where all variables are distinguished,

but there are no datatype expressions in the query. Firstly the candidates for the individual-

valued variables are retrieved and the valid candidate combinations are determined. In the

third step the values for the data-valued variables are retrieved. In addition to these steps,

a forth step is necessary to verify the valid combinations for the data-valued variables.

In the example query graph given in Figure 4.3, we could imagine to retrieve more

than one value ?u2. In this case the retrieved value for ?u1 has to be tested with all

retrieved values for ?u2 to see which are valid for the given datatype expression. In general

all combinations of candidates for the data-valued variables have to be tested, as it is

necessary for the individual-valued variables.

{} {}
• • •
?x ?y ?u1

◦ >
?u2

hasParent

birthY ear

marriedY ear 2
1

Figure 4.3: A Query Graph

52 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

Some Data-valued Variables are Non-distinguished

In this scenario we can retrieve and validate the candidates for the individual-valued vari-

ables as before. A different procedure is necessary, if not all data-valued variables are

distinguished. If all are non-distinguished, we can roll up all data-valued variables as

described in Section 4.3. In case some data-valued variables are distinguished and others

are not for a datatype expression, there are more steps necessary:

1. Validate that a solution is possible in the given knowledge base. To determine this,

one can treat all involved data-valued variables as non-distinguished and do the

rolling up as described.

2. Retrieve candidates for the distinguished data-valued variable. If there are no can-

didates the query has no answer.

3. The retrieved candidates have to be tested, to determine which are valid in com-

bination with the non-distinguished variables and candidates for other data-valued

variables. In this step the distinguished variables are replaced with a candidate.

Therefore, the resulting query is free of distinguished data-valued variables and the

can be handled as described in Section 4.3.

Some Individual-valued Variables are Non-distinguished

The process of determining valid bindings for a mixture of distinguished and non-distinguished

individual-valued variables has already been described in Section 3.2.3 of Chapter 3. Af-

ter determining the valid candidate combinations for the individual-valued variables, one

can imagine two situations.

• All data-valued variables are connected to a distinguished variable. In this case,

the bindings for the data-valued variables have to be retrieved and tested for each

candidate. The process is the same as described in the case of only distinguished

variables, since for the retrieval of valid bindings for the data-valued variables only

the candidates of the distinguished master individual-valued vertex are taken into

account.

• There are data-valued variables connected to non-distinguished variables. In this

case it is difficult to determine all valid query answers. The reasons for this have

already been described for the case where some individual-valued variables are

non-distinguished but the query did not contain datatype expression.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 53

4. QUERYING WITH OWL-E-QL

4.5 Summary

In this chapter, we discuss the query answering in OWL-E-QL. We show how the existing

rolling up techniques can be extended to support datatype expression-enabled queries.

We also provide a short survey on the datatype predicates used in Web-related query

languages.

54 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

Chapter 5

A Fuzzy Extension

5.1 Introduction

The representation of uncertainty and imprecision has received a considerable attention

in database and query services. The currents efforts are focused to extend the existed

knowledge formalisms to deal with the imperfect nature of real word information (which

is likely the rule and not the exception). The use of DLs in the context of the semantic

web points out the necessity of extending DLs with capabilities, which allow the treat-

ment of the uncertain and imperfect knowledge. In fact classical DLs are insufficient for

describing real retrieval situations, as the retrieval is usually not only a yes or no question:

(i) the representation of the knowledge which the system have access to is inherently im-

perfect; and (ii) the relevance of the content to a query can thus be established only up

to a limited degree. Because of this, we need a logic in which, rather than taking crisp

decisions whether a KB entails a query or not, we are able to enrich and rank the retrieved

objects according to how strongly the systems believes in their relevance to a query.

The choice of fuzzy set theory to extend DLs plays a twofold role: (i)it directly models

semantic-based retrieval, and (ii) it offers an ideal framework for more sophisticated query

processes. From a syntactical point of view fuzzy DLs provides fuzzy assertions, that is,

expressions of type 〈a, n〉, where a is a crisp assertion and n ∈ [0, 1]. We use the term

fuzzy simple assertion, fuzzy axiom, and a fuzzy Knowledge Base (KB) with the obvious

meaning. Then, 〈∃hasHeight.Height(i), .7) is a fuzzy simple assertion with intended

meaning “the membership degree of constant i to concept ∃hasHeight.Height is .7”.

From a semantics point of view, fuzzy logic captures the notion of imprecise concept, i.e.

a concept for which a clear and precise definition is not possible. Fuzzy concepts play a

key role in information retrieval. For instance, in the previous example the semantics are

that the person(i) is medium tall.

In D2.5.1 is presented the framework for extending DLs with fuzzy logic. It is pre-

sented a way to extend OWL with the notion of fuzzy assertions. The extension in the

current syntax of OWL that we propose is to add an assertion degree representing the

55

5. A FUZZY EXTENSION

degree that an OWL individual belongs to an OWL class or two OWL individuals in an

OWL relation. In addition to the fuzzy assertion extension, we propose a way to extend

the SWRL syntax with degrees of importance. The degree of importance is assigned in

the atoms of a SWRL rule representing the degree of importance of the atoms for the

activation of the rule. In this way, the atoms in the head of a rule can be activated with an

assertion degree depending the assertion degrees of the involved variables and the degrees

of importance of the atoms in the body of the rule. There are two main differences be-

tween the assertion degree and the degree of importance: i)they have different semantics

ii)they have different way of calculation. Basically, these degrees are used to manage two

different kinds of uncertainty as explained in the following section.

In this chapter is presented the way to extend the query languages based in DLs and

more specifically the OWL-Q Language, with fuzzy logic. We provide the syntactic

as well as the semantic extensions necessary for constructing fuzzy queries in OWL-

QL. OWL-QL is indented to be a candidate standard language and protocol for query-

answering dialogues among Semantic Web computational agents during which answering

agents may derive answers to questions posed by query agents.

The structure of this chapter is as follows: the first section presents a survey on past

and current work involved with fuzzy queries and extensions of query languages with

fuzzy logic. In the second section we analyse the two kinds of uncertainty that exist in

real life applications. Also, we sumurise the work done in the D2.5.1 for the extension of

OWL and SWRL with fuzzy operators. Finally, we present the notion of fuzzy entailment

for implementing fuzzy queries. In section 3, we describe the extensions in OWL-QL

necessary to realise fuzzy queries. Also we present the way to construct fuzzy assump-

tions. In the last section, we present a use case for better understanding the need of fuzzy

logic in query languages.

5.2 Queries and Uncertainty - State of the Art

As hardware becomes more powerful and as software becomes more sophisticated, it is in-

creasingly possible to make use of multimedia data such as images and video. If we wish

to access multimedia data through a database system a number of new issues arise. For

example a multimedia database might deal with pictures that have a complicated color-

ing pattern and also contains a number of shapes. These differences between multimedia

databases and traditional databases bread the need of extending the applicability of tradi-

tional databases; hence some new techniques have been proposed to deal with uncertain

or incomplete information [Zad65]. Fuzzy sets and fuzzy logics have been introduced

into database systems for this purpose [MK85].

Since then fuzzy databases were widely used and a lot of research was made in this

area. A fuzzy database library has been build by Omron Corporation [Cor92] and the

standard relational SQL has been extended to Fuzzy (relational) SQL [QWC+93]. Yang

56 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

and others [QCJ+95] stated that despite the fact that nested queries allowed users to

express their queries in a convenient way their evaluations were very inefficient if they

were implemented in a naive way as nested loops. They have extended and modified those

unnesting techniques for fuzzy databases and they also provided some new unnesting

techniques for fuzzy databases.

In many fuzzy databases [BF82, PH88, JZ86, DD90, SA90, MCG+93] in which the

meaning of a linguistic fuzzy set such as ”young”, is represented by a fuzzy set and thus its

membership function. So one membership function is used to interpret a fuzzy term under

all circumstances. Zhang et. al. [WCBN95] stated that similarly to real word a fuzzy term

must have several meanings among which one must be chosen dynamically according to a

given context, proposing that fuzzy databases systems must support multiple and dynamic

interpretation of fuzzy terms. They achieved that by a scaling process that was used to

transform a pre-defined meaning of a fuzzy term into an appropriate meaning in the given

context. Sufficient conditions were given for a nested fuzzy query with relative quantifiers

to be unnested for an efficient evaluation. They also proposed an attribute dependent

interpretation in order to model the applications in which the meaning of the fuzzy term

in an attribute must be interpreted with respect to values in other related attributes. For

this purpose two necessary and sufficient conditions for a tuple to have a unique attribute-

dependent interpretation were provided. They described an interpretation system that

allows queries to be processed based on the attribute-dependent interpretation of the data

and also two techniques grouping and shifting to improve the implementation.

Papadias et.al. [DND99]worked on the configuration similarity in the context of

Digital Libraries, Spatial Databases and Geographical Information systems. The queries

in these systems retrieved all databases configurations that matched an input descrip-

tion. Their approach introduced a framework for configuration similarity that takes into

account all major types of spatial constraints. They also defined appropriate fuzzy simi-

larity measures for each type of constraint to provide flexibility and allow the system to

capture real-life needs. Ending they also applied pre-processing techniques to explicate

constraints in the query.

Ending Morris and Jankowski [AP00] combined fuzzy sets and databases in multiple

criteria spatial decision making. Spatial decision making is a fundamental function of

contemporary Geographic Information Systems (GIS). One of the most fertile GIS devel-

opment areas is integrating multiple criteria decision models into GIS querying mecha-

nisms. The classic approach for this integration was to use Boolean techniques of MCDM

with crisp representations of spatial objects (features) to produce static maps as query an-

swers. They visually represented query results more precisely by implementing fuzzy

sets membership as a method for representing the performance of decision alternatives on

evaluation criteria, fuzzy methods for both criteria weighting and capturing geographic

preferences and fuzzy object oriented spatial databases for feature storage.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 57

5. A FUZZY EXTENSION

5.3 Representing Queries Using Fuzzy Logic

As previously described, fuzzy logic and queries have been combined in many ways to

manage uncertain and imprecise knowledge. Before we describe how to represent and im-

plement queries using fuzzy logic, we will define the two kinds of uncertainty that exist

in real-life applications. We will analyse the two kinds of uncertainty by demonstrating

an example of the use case presented in the last section. Let us consider that an advertise-

ment company requires a female model who is tall and thin. Since queries need artificial

precision, this query is formed as:

Query(“List all the female models, which are

over 175 cm and under 60 kilos”)

The query pattern is as follows:

Query Pattern {(hasSex ?p ?a)(type ?a female)∧(hasHeight ?p ?c)

(type ?c Height ≥ 175)∧(hasWeight ?p ?d)(type ?d Weight ≤ 60)}
Must-Bind Variables List: (?p)

Answer pattern {(hasSex ?p “Female” ∧ hasHeight ?p “over 175 cm”

∧ hasWeight ?p “under 60 kilos”)}
Answer1: (“Mary is a female model who is over 175 cm and is under 60 kilos”)

Answer2: (“Susan is a female model who is over 175 cm and is under 60 kilos”)

The above situation happens having a crisp query in a crisp KB. In a 700 models

database the answers that make the query true (entails the KB) are “Mary and Susan”.

However, after a closer look in the database, we can find out that there are more than 50

models that could satisfy to some degree this query if we didn’t have the crisp thresholds.

In a such conjunctive query, if one of the atoms of the query does not entails the KB

we get an empty answer. If, for example, the model “Adriana”, which satisfies the thin

sentence, but is under 1cm only in the height sentence, is rejected. The second type of

uncertainty is introduced when the query sentences are implemented with an equal degree

of importance. It could happen, for example, that the advertisement company is more

interested, for the model, to be tall than to be thin. This means, apart from limited query

answers, that we cannot rank the answers of the query according to the user needs. If, for

example, “Mary” is 185cm tall and 65 kilos and “Susan” is 185cm tall and 55 kilos and the

degrees of importance of the atoms is 1 and 0.5 for the weight and the height respectively,

then “Susan” should be ranked before “Mary”. To conclude, in the above example, is

clearly presented, the two kinds of uncertainty that exist real-life applications. Of course,

this is not always the case. There are as many queries that do not incorporate uncertainty.

The advantage of using fuzzy logic for managing these two kinds of uncertainty, is that

the crisp case is implemented as a subcase of the fuzzy case, which means that we fuzzy

logic does not replace the existed logic but extends it. In D2.5.1 we have proposed a way

to manage imprecise and uncertain knowledge by extending DL based Semantic Web

Languages (OWL) with fuzzy logic. In the next paragraph we sumurise this work.

58 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

The fuzzy DL is based on the definition of the fuzzy interpretation. A fuzzy interpre-

tation I consists of a non empty set ∆I and the mapping functions:

CI : ∆I −→ [0, 1]

RI : ∆I × ∆I −→ [0, 1]

assigning fuzzy sets to concepts and roles, respectively. For example if α ∈ ∆I then

AI(a) gives the degree that the object a belongs to the fuzzy concept A, i.e AI(a) = 0.8.

Table 5.1 summarises the syntax and the semantics of some constructors and termino-

logical and assertional axioms. The first column provides the name of the constructor, the

second its syntax and the third its semantics.

Table 5.1: Some Concept Constructors, Assertional and Terminological Axioms

Name Syntax Semantics (a ∈ ∆I)

Top ⊤ ⊤I(a) = 1
Bottom ⊥ ⊥I(a) = 0
Fuzzy Intersection C ⊓ D (C ⊓ D)I(a) = t(CI(a), DI(a))
Fuzzy Union C ⊔ D (C ⊔ D)I(a) = u(CI(a), DI(a))
Fuzzy negation ¬C (¬C)I(a) = c(CI(a))
Fuzzy Value Restriction ∀R.C (∀R.C)I(a) = infb∈∆I wt(R

I(a, b), CI(b))
Fuzzy existential quantifier ∃R.C (∃R.C)I(a) = supb∈∆I t(RI(a, b), CI(b))
Concept Inclusion C ⊑ D CI ⊆ DI(∀a ∈ ∆I | CI(a) ≤ DI(a))
Role Inclusion R ⊑ S RI ⊆ SI

(∀(a, b) ∈ ∆I × ∆I | RI(a, b) ≤ SI(a, b))
Concept Equality C ≡ D CI = DI

(∀a ∈ ∆I | CI(a) = DI(a))
Role Equality R ≡ S RI = SI(∀(a, b) ∈ ∆I × ∆I

| RI(a, b) = SI(a, b))
Concept Assertion C(a) (C(a))I(a) = CI(a) > 0
Role Assertion R(a, b) (R(a, b))I(a, b) = RI(a, b) > 0

The concepts and the roles in classical OWL are interpreted as crisp sets, i.e an in-

dividual either belongs to the set or not. However, many real-life concepts are vague in

the sense that they do not have precisely defined membership criteria. In fuzzy OWL an

individual belongs to a degree of confidence to the set (membership). This means that,

for example, the individual ”Peter” might belong to the degree of confidence of“0.8” to

the concept set“TallPerson”.

In fuzzy SWRL, a weight representing the degree of importance of the atoms of the

body of the rule, is added. A rule now means that if the antecedent atoms A1, A2, An

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 59

5. A FUZZY EXTENSION

are activated to the assertion degrees a1, a2, an ∈ [0, 1], and have degrees of importance

b1, b2, bn ∈ [0, 1] then the consequent hold to an assertion degree c ∈ [0, 1] that can be

computed from a1, a2, an and b1, b2, bn with the aid of fuzzy operators. For example:

If(hasSmallHeight ?p ?w, “0.4”)∧(hasLargeWeight ?p ?r, “0.8”)→(fatPerson ?p)

If the assertion degrees of p, w to the relation hasSmallHeight is a1 = 0.5(seefigure5.1)
and the assertion degrees of p, r to the relation hasLargeWeight is a2 = 0.9 then the p
must have assertion degree to the concept fatPerson, c = 0.8. The difference between

the assertion degrees and the degrees of importance is that the assertion degrees show

the membership values a1, a2, an of the variables included in the atoms A1, A2, An to the

concepts or relations they belong to, and the degrees of importance show how important

is each antecedent atom in order to detect the head atom.

The fuzzy extensions in DLs proposed in D2.5.1 and sumurised in the previous para-

graphs, present a way to manage the two kinds of uncertainty. These extensions were

based on the notion fuzzy assertion, and and not he notion of the degree of importance

in the atoms of a rule-axiom that shows the wight of each atom for the activation of the

head of the rule. A rule is distinguished from a query from the fact that a query uses more

variable bindings and has only head atoms. A query may have zero or more answers, each

of which provides bindings of URI references or literals to some of the variables in the

query pattern such that the conjunction of the answer sentences, produced by applying the

bindings to the query pattern and considering the remaining variables in the query pattern

to be existentially quantified, is entailed by a KB called the answer KB. A fuzzy query is

similar to the crisp query apart from the fact that the query answers may have a degrees

of importance, and the conjunction of the query answers are fuzzy entailed by a fuzzy KB

(a KB with fuzzy assertions). A crisp KB entails a query answer ψ

KB |= ψ,

iff every model of the KB also satisfies (is a model of) ψ. A fuzzy KB fuzzy entails a

query answer ψ

KBf |=f ψ,

iff every model of the fuzzy KB satisfies to some degree e ∈ (0, 1] ψ. Fuzzy entailment

occurs when

C ⊓ ¬C 6= ⊥,

which is the case for fuzzy concepts, or when

C ≡ D,

to some degree. In the D2.5.1 was defined only the notion of fuzzy assertion and not the

notions of fuzzy equality and fuzzy entailment, since it was difficult to understand where

these extensions are useful for.

60 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

5.4 Fuzzy OWL-QL

As previously described, in classical OWL-QL each binding in a query answer is a URI

references or a literal that either explicitly occurs as a term in the answer KB or is a

term in OWL. That is, OWL-QL is designed for answering queries of the form “What

URIs references and literals from the answer KB and OWL denote objects that make

the query pattern true?”. A variable that has a binding in a query answer is identified

in the query answer. OWL-QL supports existentially quantified answers by enabling the

client to designate some of the query variables for which answers will be accepted with

or without variables. That is, each variable that occurs in a OWL-QL query is considered

to be a must-bind, a may-bind variable or a don’t bind variable. Answers are required

to provide bindings for all the must-bind variables, may provide bindings for any of the

may-bind variables, and are not to provide bindings for any of the don’t-bind variables.

In fuzzy OWL-QL each binding in a query answer is, as in the classical OWL-QL, a

URI reference or a literal. The difference of fuzzy OWL-QL from the classical one, is

that is used a fuzzy KB (fuzzy Abox) to retrieve the answers, and therefore we can use

fuzzy concepts and fuzzy relations in the queries, such as “tallPerson, fatPerson, hasMedi-

umHeight” together with assertion degrees representing the membership value of the ob-

ject to the corresponding concepts and relations. In addition to the fuzzy assertion, the

user may assign degrees of importance to the query sentences denoting the influence that

a specific sentence must have in the query answer. For example, in the query “List all the

models that hasLargeHeight and hasMidleAge” the user might be more interested in the

height sentence than in the age sentence. In this case, the user can assign degree of impor-

tance 1 to the height sentence and 0.5 to the age sentence. In this way the query engine is

enabled to produce ranked answers according to the user needs. Finally, as described in

the previous section, a KB must entail all the query sentences, since they are conjunctive.

In the fuzzy case, the decision whether a KB entails a query sentence is not crisp (yes or

no). A fuzzy KB fuzzy entails a query sentence to a degree e ∈ (0, 1].

As in classical OWL-QL, in the a fuzzy OWL-QL query-answering dialogue is initi-

ated by a client sending a query to an OWL-QL server. A fuzzy OWL-QL query is an

object necessarily containing a query pattern that specifies a collection of fuzzy OWL

sentences in which some URI references are considered to be variables. The example

presented in the previous section has the form in fuzzy OWL-QL:

Query(“List all the female models, which are

tall and thin”)

The query pattern is as follows:

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 61

5. A FUZZY EXTENSION

Query Pattern {(hasSex ?p ?a)(type ?a female)∧(hasLargeHeight ?p ?c <0.8>)

(type ?c LargeHeight)∧(hasMediumWeight ?p ?d <0.5>)(type ?d MediumWeight)}
Must-Bind Variables List: (?p)

Answer pattern {(hasSex ?p “Female” ∧ hasLargeHeight ?p largeHeight

∧ hasMediumWeight ?p mediumWeight)}
Answer1: (“Mary is a female model who is 185cm tall (largeHeight=0.8)

and is 65 kilos (mediumWeight=0.4)

Answer2: (“Susan is a female model who is 175cm (LargeHeight=0.6)

and is 50 kilos (mediumWeight=0.9)

Answer3: (“Helen is a female model who is 170cm (LargeHeight=0.5)

and is 50 kilos (mediumWeight=0.9)

In this example we used the fuzzy relations “hasLargeHeight, hasMediumWeight”

and the fuzzy concepts “LargeHeight, MediumWeight” to manage the uncertainty intro-

duced by the concepts “Thin, Tall”. In this way, a person who is 183cm tall hasLarge-

Height=0.65 and hasMediumHeight=0.3, as depicted in figure 5.1. Also we have assigned

degrees of importance, 0.8 for the height sentence and 0.5 for the weight sentence. That

is, that the user is more interested for the model to be tall that thin. The answers are, in

the fuzzy case, ranked. The ranking value R ∈ [0, 1] is the calculated as:

R = Infωt[K, A],

where A correspond to the fuzzy relation that has the assertion degrees of a query sen-

tences, and K correspond to the fuzzy relation that has the degrees of importance and ωt

is a fuzzy implication (see D2.5.1). In the above example, the rank R for Answer1 can be

computed as:

K = [1.0 0.8 0.5], Amary =





1.0
0.8
0.4





Rmary = 0.8,

where ωt is the implication of the Product t-norm. Accordingly are computed Rsusan =
0.6 and Rhelen = 0.5. In this way, we do not restrict the query answer with crisp thresholds

and thus i)we get more answers and ii)the answers are ranked.

Classical OWL-QL facilitates the representation of “If Then” queries by enabling a

query to optionally include a query premise that is an OWL KB or a KB reference. When

a premise is included in a query, it is considered to be included in the answer KB. Fuzzy

OWL-QL can have a fuzzy query premise, which means that we can assign degrees of

importance to the query premise, and influence the ranking of the answers

Query(‘If C1 is LongHair and C1 is the typeOfHair of W1,

Then what is height of W1”)

Premise{(type C1 LongHair)(hasTypeOfHair C1 W1 <0.8>)}
Query Pattern: {(hasLargeHeight W1 ?x <0.6>)}
Must-Bind Variables List: (?x)

...

62 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

5.5 Use case

In order to understand the need of the proposed fuzzy logic extensions, we will demon-

strate a use case. Let us consider a casting company that has a large multimedia database

consisting of visual and textual information about person-models. This company has

a user interface for inserting the textual and visual characteristics of the models as in-

stances of a predefined ontology. It also provides a query engine to search for models

with special characteristics depending the context and the subject of the advertisement.

The visual characteristics of a model consist of the images of the models together with

some low-level information. Low-level information consist of the visual descriptors of an

image(MPEG-7 visual descriptors), which are used for visual queries. Visual queries are

included in the sense that a user can provide an image of a model and query for models

with similar low-level characteristics (colour, shape, etc.). In the textual case a user can

query the database providing high-level information about the models (such as the name,

the height, the type of the hair etc.). The textual characteristics are inserted by a domain-

expert manually in the database (KB), However, the visual characteristics are inserted

automatically using a visual descriptor extraction algorithm, which automatically analy-

ses the inserted image and stores as instances the values of the detected visual descriptors

in a visual descriptor ontology. The same algorithm analyse the visual query image. The

extracted visual descriptors are then form a query pattern, which is true if it is entailed by

the KB, as in the textual case.

In the following paragraphs we provide a sample of the Tbox, the Abox, a couple

of rules and a diagram showing how the assertion degrees are calculated, of the textual

information of the models.

Tbox

Woman ≡ Person ⊓ Female
Man ≡ Person ⊓ Male
CastingPerson ≡ Person ⊓ ∀HasPersonalInformation.PersonalInformation
⊓∀HasMeasurements.Measurements ⊓ ∀HasTypeOfHair.Hair
PersonalInformation ≡ ∀hasName.Name ⊓ ∀hasLastName.Name⊓
∀hasAge.Age
⊓∀hasDOB.DOB ⊓ ∀hasAddress.Adress ⊓ ∀hasMobilenumber.Number
Measurements ≡ ∀hasHeight ⊓ ∀hasWeight.Weight
⊓∀hasShoeSize.Size
Hair ≡ ∃hasHairQuality.HairQuality⊓
∃hasHairLength.HairLength ⊓ ∃hasHairColour.HairColour

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 63

5. A FUZZY EXTENSION

Small
 Medium
 Large

1

0

165

175
 185
 195

(cm)

183

0.3

0.65

VassilisHeight

Height

183(cm):mediumHeight=0.3

183(cm):largeHeight=0.65

Figure 5.1: The fuzzy partition of Height

Entry: no1

Personal Information

Name: Vassilis LastName: Tzouvaras Age: 29

Address: Hatzi 7 Mobile: 6937295722 D.O.B.: 07.08.75

Measurements

Height: 183cm Weight:90 ShoeSize: 44

Hair

Quality: good Length: short Style: frizy

Abox:

{〈no1 : CastingPerson = 1〉, 〈(no1, V assilis) : hasName = 1〉, 〈(no1, T zouvaras) :
hasLastName = 1〉, 〈(no1, 29) : hasAge = 1〉, 〈(no1, Hatzi7) : hasAddress =
1〉, 〈(no1, 6937295722) : hasMobilenumber = 1〉, 〈(no1, 183cm) : hasMediumHeight =
.3〉, 〈(no1, 183) : haslargeHeight = .65〉, 〈(no1, 34) : mediumWaste = 0.7〉, 〈(no1, 34) :
hasLargeWaste = 0.3〉, 〈(no1, 44) : hasMediumShoeSize = .9〉, 〈(no1, 44 : hasLargeShoeSize =
0.1〉, 〈(no1, Long) : hasLongHair = 0.3〉, 〈(no1, good) : hasQualityHair = 0.8〉, 〈(no1, frizy) :
hasTypeOfHair = 1}

Rule 1: IF hasMediumWeight AND hasLargeHeight(a, b) THEN ThinPerson(a)
Rule 2: If HasSmallHeight(a, c) AND HasLargeWeight(a, b) THEN FatPerson(a)

64 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

Chapter 6

The Instance Store

6.1 Introduction

One of the main features of the W3C’s OWL ontology language [DCv+02] is that there

is a direct correspondence between (two of the three “species” of) OWL and Description

Logics (DLs) [HPS03]. This means that DL reasoners can be used to reason about OWL

ontologies, and in particular to answer both class based queries (e.g., asking if the class

“Semantic Web researcher” is a subclass of the class “Computer Scientist”) and instance

retrieval queries (e.g., a query that asks for all the individuals in the ontology that are

instances of the class “person who works at a university whose research interests include

Semantic Web and Description Logics”).

Unfortunately, while existing techniques for TBox reasoning (i.e., reasoning about the

concepts in an ontology) seem able to cope with real world ontologies [Hor98, HM01a], it

is not clear if existing techniques for ABox reasoning (i.e., reasoning about the individuals

in an ontology) will be able to cope with realistic sets of instance data. This difficulty

arises not so much from the computational complexity of ABox reasoning, but from the

fact that the number of individuals (e.g., annotations) might be extremely large.

The so called Instance Store is a system that addresses this problem by using a hybrid

DL/Database architecture to answer queries against ontologies containing large numbers

of individuals. The idea behind the Instance Store is to provide efficient (but still sound

and complete) query answering by maximising the use of the Database and minimising

calls to the DL reasoner.

A prototype of the Instance Store has been implemented by researchers in the Infor-

mation Management Group at the University of Manchester. Currently the prototype can

only deal with a role-free ontology, i.e., an ontology that does not contain any axioms as-

serting role relationships (properties) between pairs of individuals, but work is underway

to extend the Instance Store to deal with arbitrary ontologies. In this chapter we will de-

scribe the functioning of the existing Instance Store, illustrate its performance with some

65

6. THE INSTANCE STORE

experimental results, and outline how the Instance Store design will be extended to deal

with arbitrary ontologies.

The remainder of the chapter is structured as follows: in Section 6.2 we motivate the

design of the Instance Store; in Section 6.3 we give some details of Description Logics

that will be needed in the later sections; in Section 6.4 we describe the architecture and

implementation of the role-free instance store; in Section 6.5 we present the results of

an empirical evaluation that we have carried out using the role-free instance store; in

Section 6.6 we describe how the Instance Store approach will be extended to deal with

arbitrary ontologies; and in Section 6.8 we conclude with a discussion.

6.2 Background and Motivation

Although the restrictions of the existing Instance Store may seem a rather severe, the

functionality provided turns out to be precisely what is required by many applications, and

in particular by applications where ontology based terms are used to describe/annotate and

retrieve large numbers of objects. Examples include the use of ontology based vocabulary

to describe documents in “publish and subscribe” applications [UCD+03], to annotate

data in bioinformatics applications [GO] and to annotate web resources such as web pages

[DEG+03] or web service descriptions [LH03] in Semantic Web applications. Indeed, we

have successfully applied the Instance Store to perform web service discovery [CDT04],

to search over the gene ontology [GO] and its associated instances (see below), and in an

application to guide gene annotation [BTMS04].

Using a database in order to support (a restricted form of) ABox reasoning is certainly

not new (see Section 6.7 for a discussion of related work), but to the best of our knowledge

the Instance Store is the first such system that is general purpose (i.e., can deal with

any ontology without customising the database schema), provides sound and complete

reasoning, and places no a-priori restriction on the size of the ontology.

In order to evaluate the Instance Store design, and in particular its ability to provide

scalable performance for instance retrieval queries, we have performed a number of ex-

periments using the Instance Store to search over a large (50,000 concept) gene ontology

and its associated very large number (up to 650,000) of individuals – instances of concept

descriptions formed using terms from the ontology. In the absence of other specialised

reasoners we have compared the performance of the Instance Store with that of RACER

[HM01b] (the only publicly available DL system that supports full ABox reasoning for an

expressive DL) and of FaCT [Hor98] (using TBox reasoning to simulate reasoning with a

role-free ABox).

66 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

6.3 Description Logics

Description Logics [BCM+03] are a family of knowledge representation formalisms evolved

from early frame systems [Min75] and semantic networks [Qui68]. DLs use an object ori-

ented modelling paradigm, describing the world in terms of individuals, concepts (classes)

and roles (relationships); they are distinguished from their ancestors by having a precise

semantics which enables the description and justification of automated deduction pro-

cesses.

The semantics of a DL is given in terms of interpretations. An interpretation I =
(∆I , ·I) consists of a non-empty set ∆I (the domain of the interpretation) and an inter-

pretation function ·I which maps every individual to an element of ∆I , every concept

to a subset of ∆I , and every role to a subset of ∆I × ∆I . Concepts may be either

atomic (i.e., a concept name) or concept expressions formed using the operators provided

by the DL. The interpretations of concept expressions must obey appropriate semantic

conditions, e.g., the interpretation of the conjunction C ⊓ D of two concepts C and D
must be equal to the intersection of the interpretations of the individual concepts, i.e.,

(C ⊓ D)I = CI ∩ DI . (See, e.g., [BCM+03] for full details.)

A DL knowledge base (KB) is a pair 〈T ,A〉, where T is a TBox and A is an ABox.

A TBox is a set of axioms of the form C ⊑ D, where C and D are concepts; an ABox is

a set of axioms of the form x : C or 〈x, y〉 : R, where x, y are individuals, C is a concept

and R is a role. An interpretation I satisfies a TBox axiom C ⊑ D when CI ⊆ DI ,

and it satisfies ABox axioms x : C and 〈x, y〉 : R when xI ∈ CI and 〈xI , yI〉 ∈ RI

respectively. An interpretation I satisfies a TBox T (ABox A) when it satisfies all of the

axioms in T (A); such an interpretation is called a model of T (A). An interpretation is a

model of a KB K = 〈T ,A〉 when it is a model of both T and A.

Given a KB K = 〈T ,A〉, basic reasoning tasks include:

Satisfiability: a concept C is satisfiable w.r.t. T (K) iff there exists some model I of T
(K) s.t. CI 6= ∅.

Subsumption: a concept C is subsumed by a concept D w.r.t. T (K) iff CI ⊆ DI in every

model I of T (K); we will write this as T |= C ⊑ D (K |= C ⊑ D).

Instantiation: an individual x is an instance of a concept C w.r.t. K iff xI ∈ CI in every

model of K; we will write this as K |= x : C.

Other reasoning tasks such as Classification (computing the subsumption partial ordering,

or hierarchy, of the atomic concepts in T) and Retrieval (computing the individuals in A
that instantiate a given concept) can be reduced to subsumption and instantiation respec-

tively. Realisation, the task of computing the most specific (w.r.t. subsumption) atomic

concepts in T that are instantiated by a given individual, can be reduced to a combination

of retrieval and classification, i.e., for an individual x and an atomic concept C in T , C

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 67

6. THE INSTANCE STORE

Description Syntax Semantics

atomic concept name A AI ⊆ ∆I

top ⊤ ∆I

bottom ⊥ ∅
conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

arbitrary negation ¬C ∆I\CI

existential restriction ∃R.C {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}
universal restriction ∀R.C {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}

Table 6.1: Syntax and Semantics of SHF concept expressions

realises x iff x is an instance of C and there is no atomic concept D 6= C in T such that

x is an instance of D and C subsumes D. Finally, two concepts C and D are equivalent,

written C ≡ D, iff C ⊑ D and D ⊑ C.

6.3.1 The Description Logic SHF

We will be particularly interested in the SHF Description Logic as this is the logic imple-

mented in the Instance Store. SHF is an extension of the basic DL AL [SSS91] to include

negation of arbitrary concepts, transitive roles, role hierarchy and functional roles. Given

a set of concept names (CN) and a set of role names (RN), concept expressions in SHF
are formed according to the following syntax rules:

C,D → ⊤ |⊥| A | ¬C | C ⊓ D | C ⊔ D | ∀R.C | ∃R.C

where A is a concept name, C and D are concept expressions, and R is a role name.

In addition we assume that the set F ⊆ RN of functional roles and the set R+ ⊆ RN
of transitive roles are disjoint, i.e., F ∩ R+ = ∅. Moreover, we impose the limitation that

there is no role P,Q such that P ∈ R+, Q ∈ F and P ⊑ Q. The semantics of SHF
concepts is shown in Table 6.1

In the most general case, SHF TBox axioms have the form:

C ⊑ D, R ⊑ S | C ≡ D, R ≡ S

where C,D are concept expressions and R,S are role names. Axioms of the first kind

are called inclusions, while axioms of the second kind are called equalities; an equality

can be seen as an abreviation for a symetrical pair of inclusion axioms, i.e., C ≡ D is an

abreviation for C ⊑ D and D ⊑ C.

Since role inclusion axioms and equality axioms contain role names only, a taxonomy

of role names can be built based on the inclusion and equality relations among the set of

68 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

role axioms, and a relation ¹ can be defined as a partial order on the transitive closure of

{R ⊑ S | R,S ∈ RN} ∪ {R ≡ S | R,S ∈ RN} ⊆ T to represent the role taxonomy.

6.3.2 The Instance Store Notation

We now introduce some new notation used, for convenience, in this paper. For a TBox T ,

an ABox A, and a concept C:

• C ↓T for the set of atomic concepts in T subsumed by C; these are the equivalents

and descendants of C in T .

• ⌈C⌉T for the set of most specific atomic concepts in T subsuming C; if C is itself

an atomic concept in T then clearly ⌈C⌉T = {C}.

6.4 The Role-Free Instance Store

An ABox A is role-free if it contains only axioms of the form x : C. We can assume,

without loss of generality, that there is exactly one such axiom for each individual as

x : C ⊔¬C holds in all interpretations, and two axioms x : C and x : D are equivalent to

a single axiom x : (C ⊓ D). It is well known that, for a role-free ABox, instantiation can

be reduced to TBox subsumption [Hol96, Tes97]; i.e., if K = 〈T ,A〉, and A is role-free,

then K |= x : D iff x : C ∈ A and T |= C ⊑ D. Similarly, if K = 〈T ,A〉 and A is

a role-free ABox, then the instances of a concept D could be retrieved simply by testing

for each individual x in A if K |= x : D. However, this would clearly be very inefficient

if A contained a large number of individuals.

An alternative approach is to add a new axiom Cx ⊑ D to T for each axiom x : D
in A, where Cx is a new atomic concept; we will call such concepts pseudo-individuals.

Classifying the resulting TBox is equivalent to performing a complete realisation of the

ABox: the most specific atomic concepts that an individual x is an instance of are the most

specific atomic concepts that subsume Cx and that are not themselves pseudo-individuals.

Moreover, the instances of a concept D can be retrieved by computing the set of pseudo-

individuals that are subsumed by D.

The problem with this latter approach is that the number of pseudo-individuals added

to the TBox is equal to the number of individuals in the ABox, and if this number is very

large, then TBox reasoning may become inefficient or even break down completely (e.g.,

due to resource limits).

The basic idea behind the Instance Store is to overcome this problem by using a DL

reasoner to classify the TBox and a database to store the ABox, with the database also

being used to store a complete realisation of the ABox, i.e., for each individual x, the

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 69

6. THE INSTANCE STORE

concepts that x realises (the most specific atomic concepts that x instantiates). The real-

isation of each individual is computed using the DL (TBox) reasoner when an axiom of

the form x : C is added to the Instance Store ABox.

A retrieval query Q to the Instance Store (i.e., computing the set of individuals that

instantiate a concept Q) can be answered using a combination of database queries and

TBox reasoning. Given an Instance Store containing a KB 〈T ,A〉 and a query concept

Q, retrieval involves the computation of the following sets of individuals for which we

introduce a special notation:

• I1 denotes the set of individuals in A that realise some concept in Q↓T ;

• I2 denotes the set of individuals in A that realise every concept in ⌈Q⌉T .

The Instance Store algorithm to retrieve the instances of Q can be then described as fol-

lows:

1. use the DL reasoner to compute Q↓T ;

2. use the database to find the set of individuals I1;

3. use the reasoner to check whether Q is equivalent to any atomic concept in T ; if

that is the case then simply return I1 and terminate;

4. otherwise, use the reasoner to compute ⌈Q⌉T ;

5. use the database to compute I2;

6. use the reasoner and the database to compute I3, the set of individuals x ∈ I2 such

that x : C is an axiom in A and C is subsumed by Q;

7. return I1 ∪ I3 and terminate.

Proposition 1 The above procedure is sound and complete for retrieval, i.e., given a

concept Q, it returns all and only individuals in A that are instances of Q.

The above is easily proved using the fact that we assume, without loss of generality, that

for each individual there is only one axiom associated to it.

6.4.1 An Optimised Instance Store

In practice, several refinements to the above procedure are used to improve the perfor-

mance of the Instance Store. In the first place, as it is potentially costly, we should try

to minimise the DL reasoning required in order to compute realisations (when instance

axioms are added to the ABox) and to check if individuals in I1 are instances of the query

concept (when answering a query).

70 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

One way to (possibly) reduce the need for DL reasoning is to avoid repeating com-

putations for “equivalent” individuals, e.g., individuals x1, x2 where x1 : C1 and x2 : C2

are ABox axioms, and C1 is equivalent to C2. Since checking for semantic equivalence

between two concepts would require DL reasoning (which we are trying to avoid), the

optimised Instance Store only checks for syntactic equality using a database lookup. (The

chances of detecting equivalence via syntactic checks could be increased by transforming

concepts into a syntactic normal form, as is done by optimised DL reasoners [Hor03], but

this additional refinement has not yet been implemented in the Instance Store.) Individ-

uals are grouped into equivalence sets, where each individual in the set is asserted to be

an instance of a syntactically identical concept, and only one representative of the set is

added to the Instance Store ABox as an instance of the relevant concept. When answering

queries, each individual in the answer is replaced by its equivalence set.

Similarly, we can avoid repeated computations of sub and super-concepts for the same

concept (e.g., when repeating a query) by caching the results of such computations in the

database.

DL reasoning can also be avoided when the query concept Q is not equivalent to any

atomic concept in T , but when Q is equivalent to the intersection of the concepts in ⌈Q⌉T ,

i.e., where

Q ≡ ⊓
C∈⌈Q⌉T

C.

In this case it is not necessary to compute I3, as the answer to the query is clearly I2, i.e.,

the set of individuals in A that realise every concept in ⌈Q⌉T .

Finally, the number and complexity of database queries also has a significant impact

on the performance of the Instance Store. In particular, the computation of I1 can be costly

as Q↓T may be very large. One way to reduce this complexity is to store not only the most

specific concepts instantiated by each individual, but to store every concept instantiated by

each individual. As most concept hierarchies are relatively shallow, this does not increase

the storage requirement too much, and it greatly simplifies the computation of I1: it is

only necessary to compute the (normally) much smaller set of most general concepts

subsumed by Q and to query the database for individuals that instantiate some member

of such set. On the other hand, the computation of I2 is slightly more complicated as

I1 must be subtracted from the set of individuals that instantiate every concept in ⌈Q⌉T .

Empirically, however, the savings when computing I1 seems to far outweigh the extra cost

of computing I2.

6.4.2 Implementation

We have implemented the Instance Store using a component based architecture that is

able to exploit existing DL reasoners and databases. The core component is a Java ap-

plication [isw] talking to a DL reasoner via the DIG interface [Bec03b] and to a rela-

tional database via JDBC. We have tested it with FaCT [Hor98] and RACER reasoners

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 71

6. THE INSTANCE STORE

and MySQL, Hypersonic, and Oracle databases.

initialise(Reasoner reasoner,
Database db, TBox t)

addAssertion(Individual i, Concept C)
retract(Individual i)
retrieve(Concept Q): Set〈Individual〉

Figure 6.1: Instance Store basic functionality

The basic functionality of the Instance Store is illustrated by Figure 6.1. The four

basic operations are initialise, which loads a TBox into the DL reasoner, classifies

the TBox and establishes a connection to the database; addAssertion, which adds

an axiom i : D to the Instance Store; retract, which removes any axiom of the form

i : C (for some concept C) from the Instance Store; and retrieve, which returns the

set of individuals that instantiate a query concept Q. As the Instance Store ABox can only

contain one axiom for each individual, asserting i : D when i : C is already in the ABox

is equivalent to first removing i and then asserting i : (C ⊓ D).

In the current implementation, we make the simplifying assumption that the TBox

itself does not change. Extending the implementation to deal with monotonic extensions

of the TBox would be relatively straightforward, but deleting information from the TBox

might require (in the worst case) all realisations to be recomputed.

6.5 Empirical Evaluation

To illustrate the scalability and performance of the Instance Store we describe the tests

we have performed using the gene ontology and its associated instance data. We also

illustrate how this compares with existing non-specialised ABox reasoning techniques by

describing the same tests performed using RACER and FaCT (the latter using the pseudo-

individual approach discussed in Section 6.4).

The gene ontology (GO) itself, an ontology describing terms used in gene products

and developed by the Gene Ontology Consortium [The00], is little more than three tax-

onomies of gene terms, with a single role being used to add “part-of” relationships. How-

ever, the ontology is large (47,012 atomic concepts) and the instance data, obtained by

mining the GO database [Go 03] of gene products, consists of 653,762 individual axioms

involving 48,581 distinct complex DL expressions using three more roles.

The retrieval performance tests use two sets of queries. The first set was formulated

with the help of domain experts and consists of five realistic queries that might be posed

by a biologist. The second set consists of six artificial queries designed to test the effect on

query answering performance of factors such as the number of individuals in the answer,

whether the query concept is equivalent to an atomic concept (if so, then the answer can

be returned without computing I3), and the number of candidate individuals in I2 for

72 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

which DL reasoning is required in order to determine if they form part of the answer. The

characteristics of the various queries with respect to these factors is shown in Tables 6.2

and 6.3.

Table 6.2: Query characteristics (realistic queries)

Query Equivalent to No. of Instances No. of “candidates”

Atomic Concept in Answer in I2

Q1 Yes 2,641 n/a

Q2 No 0 284

Q3 No 3 284

Q4 Yes 7,728 n/a

Q5 Yes 25 n/a

Table 6.3: Query characteristics (artificial queries)

Query Equivalent to No. of Instances No. of “candidates”

Atomic Concept in Answer in I2

Q6 No 13,449 551

Q7 No 11,820 116

Q8 No 12 603

Q9 No 19 19

Q10 Yes 4,543 n/a

Q11 Yes 1 n/a

The tests were performed using two machines M1 (Linux, 850MHz Intel Pentium

III, 256Mb RAM) and M2 (Windows 2000, 2.5GHz Intel Pentium IV processor, 512Mb

RAM). For the Instance Store we run version 1.2 on M1 with a MySQL-4.0.12 database

on M1 and connecting to a FaCT-2.34.13 reasoner running remotely on M2. For the

tests on RACER we run RACER-1.7.7 and for the pseudo-individual tests we used FaCT-

2.34.13, both on M2.

6.5.1 Loading and Querying Tests

In these tests, we compared the performance of the Instance Store with that of RACER

using the GO TBox and differently sized and randomly selected subsets of the GO ABox.

The Instance Store was first initialised with the GO TBox (it took FaCT approximately

1,020 CPU seconds to classify the TBox), then, for each ABox, we measured the time

(in CPU seconds) taken to load the ABox into the Instance Store and the time taken to

answer each of the queries.

In the case of RACER, we carried out the same tests in two different ways. In both

cases we first initialised RACER with the GO TBox (it took RACER approximately 1,620

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 73

6. THE INSTANCE STORE

CPU seconds to classify the TBox), then loaded the ABox. In the first form of the test, we

then used the realize-abox function to force RACER to compute a complete realisation of

the ABox before answering any queries; this is roughly equivalent to the Instance Store,

which effectively computes a complete realisation while loading the ABox. We timed

how long RACER took to to realise the ABox and, if the realisation was successfully

completed, how long it took to answer each of the queries. In the second form of the

test, we simply timed how long it took RACER to answer each of the queries without first

forcing it to realise the ABox.

Table 6.4: The Instance Store and RACER load and realise times (CPU seconds)

Number of Distinct Load & Realise (s)

Individuals Descriptions The Instance Store RACER

200 155 189 180

500 330 405 3,420

1,000 591 804 22,320

2,000 1,017 1,395 fault

5,000 2,024 2,906 fault

10,000 3,299 5,988 fault

20,000 5,364 11,057 fault

50,000 9,760 21,579 fault

100,000 15,147 33,456 fault

200,000 23,387 56,613 fault

400,000 35,800 96,503 fault

653,762 48,581 140,623 fault

The times taken by the Instance Store and by RACER to load and realise the various

ABoxes are shown in Table 6.4. The time take by the Instance Store to load the ABoxes

increases more slowly than their size: for ABox size 200, the Instance Store takes about

1s to add each individual axiom; by the time the ABox size has reached 400,000 this has

fallen to approximately 0.25s per axiom. In view of the equivalent individuals optimi-

sation employed by the Instance Store, however, it may be more relevant to consider the

time taken per distinct description: this increases from about 1s per description for the size

200 ABox (which contains 155 distinct descriptions) to approximately 3s per description

for the size 653,762 ABox (which contains 48,581 distinct descriptions).

The time taken by RACER to realise the smallest ABox is roughly the same as that

taken by the Instance Store. As the ABox size grows, however, the time taken by RACER

increases rapidly, and at ABox size 1,000 it is already taking approximately 22s per ax-

iom. For larger ABoxes, RACER broke down due to a resource allocation error in the

underlying Lisp system.

While the times taken by the Instance Store to load (and, in effect, to realise) the larger

ABoxes are quite significant, it is able to deal with the 653,762 axiom ABox, whereas

74 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

RACER failed to realise a 2,000 axiom ABox. Moreover, the load/realise operation only

needs to be performed once—an added advantage of the Instance Store is that the database

provides for persistence of the realised ABox. Depending on the nature of the application,

it may also be more normal for instance data to be added to the Instance Store over time

rather than all at once as in our experiment.

Tables 6.5 and 6.6 give the results for the Instance Store when answering each of the

five realistic queries and six artificial queries described in Tables 6.2 and 6.3. In addition

to the time taken (in CPU seconds) to answer the queries, the number of candidate indi-

viduals in I2 is also given as this is one of the major factors in determining the “hardness”

of the query: for each individual in I2, the Instance Store must use the DL reasoner to

determine if the individual instantiates the query concept. The time taken to answer these

queries is also plotted against the size of the ABox in Figure 6.2; note the logarithmic

scales on both axes.

Table 6.5: The Instance Store realistic query times (CPU seconds) and cardinality of I2

Number of Q1 Q2 Q3 Q4 Q5

Individuals IS |I2| IS |I2| IS |I2| IS |I2| IS |I2|

200 8.6 n/a 1.4 1 1.9 2 4.2 n/a 1.0 n/a

500 8.6 n/a 1.9 2 2.0 2 4.2 n/a 1.1 n/a

1,000 8.8 n/a 2.1 3 2.1 3 4.5 n/a 1.1 n/a

2,000 8.8 n/a 3.7 3 2.1 3 4.7 n/a 1.1 n/a

5,000 8.8 n/a 4.0 5 2.2 5 4.8 n/a 1.2 n/a

10,000 9.2 n/a 4.3 6 3.1 6 4.9 n/a 1.2 n/a

20,000 9.7 n/a 4.8 13 4.5 13 5.5 n/a 1.1 n/a

50,000 10.1 n/a 7.1 20 6.9 20 6.6 n/a 1.2 n/a

100,000 11.4 n/a 9.6 34 9.5 34 8.2 n/a 1.2 n/a

200,000 11.5 n/a 20.2 85 19.2 85 10.9 n/a 1.2 n/a

400,000 15.0 n/a 33.8 151 33.9 151 17.4 n/a 1.2 n/a

653,762 23.0 n/a 55.4 241 55.1 241 35.3 n/a 1.3 n/a

As can be seen, the time taken to answer queries becomes quite large when the num-

ber of individuals in I2 is large. In these cases, the time taken to check if these individuals

instantiate the query concept (roughly 0.2s per individual) dominates other factors. The

number of “distinct” individuals in the answer also has a significant impact on query an-

swering performance: when there are many such individuals, the database query required

in order to compute the complete answer set (i.e., retrieving the union of the equivalence

sets of these individuals) can be quite time consuming. In the case of Q9 with the largest

ABox, for example, the relevant database query takes 19.5s (out of a total of 25.7s).

When the query concept is determined to be semantically equivalent to an atomic

concept in the TBox, as is the case with Q1, Q4, Q5, Q10 and Q11, then no further DL

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 75

6. THE INSTANCE STORE

Table 6.6: The Instance Store artificial query times (CPU seconds) and cardinality of I2

Number of Q6 Q7 Q8 Q9 Q10 Q11

Individuals IS |I2| IS |I2| IS |I2| IS |I2| IS |I2| IS |I2|

200 2.4 2 2.1 3 1.6 1 2.0 1 1.7 n/a 1.8 n/a

500 2.6 4 2.1 3 2.0 3 2.1 1 1.7 n/a 1.8 n/a

1,000 3.0 8 2.3 3 2.0 3 2.1 1 2.2 n/a 1.9 n/a

2,000 3.4 9 2.4 4 2.2 4 2.3 1 1.8 n/a 1.7 n/a

5,000 4.5 15 3.0 7 2.9 9 2.5 1 1.9 n/a 1.9 n/a

10,000 7.1 32 4.2 13 6.0 21 2.5 1 1.8 n/a 1.8 n/a

20,000 10.9 58 5.4 19 11.5 38 2.9 1 2.1 n/a 1.7 n/a

50,000 17.4 101 7.3 31 23.8 81 3.3 1 1.9 n/a 1.8 n/a

100,000 27.3 164 8.9 45 31.9 147 5.2 2 1.7 n/a 1.8 n/a

200,000 44.4 273 13.1 64 40.1 268 7.9 7 1.9 n/a 1.8 n/a

400,000 70.9 416 16.4 85 68.1 430 15.8 11 1.9 n/a 1.9 n/a

653,762 111.8 551 22.1 116 104.0 603 25.7 19 1.9 n/a 1.9 n/a

Figure 6.2: The Instance Store realistic (above) and artificial (below) query times -v-

ABox size

reasoning is required. In these cases, the time taken to answer the query changes much

more slowly with ABox size, and is mainly determined by the answer size. With Q4, for

example, the time taken to answer the query rises to over 35s with the largest ABox, when

the answer contains 7,728 individuals.

Tables 6.7 and 6.8 give the results for RACER when answering the same sets of five

realistic and six artificial queries used to test the Instance Store, both in the case where the

ABox has been realised (R) and where it has not (N). Timings are only approximate, as

precise measurements were not possible when using the RACER server under Windows.

76 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

Table 6.7: RACER realistic query times (CPU seconds), realised (R) and not (N)

Number of Q1 Q2 Q3 Q4 Q5

Individuals R N R N R N R N R N

200 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

500 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

1,000 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

2,000 n/a ≈60 n/a ≈240 n/a ≈60 n/a ≈150 n/a ≈210

5,000 n/a ≈240 n/a ≈420 n/a ≈240 n/a ≈360 n/a ≈300

10,000 n/a ≈1,080 n/a ≈1,080 n/a ≈660 n/a ≈720 n/a ≈930

20,000 n/a fault n/a fault n/a fault n/a fault n/a fault

Table 6.8: RACER artificial query times (CPU seconds), realised (R) and not (N)

Number of Q6 Q7 Q8 Q9 Q10 Q11

Individuals R N R N R N R N R N R N

200 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

500 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

1,000 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

2,000 n/a ≈120 n/a ≈120 n/a ≈60 n/a ≈60 n/a ≈210 n/a ≈180

5,000 n/a ≈420 n/a ≈270 n/a ≈420 n/a ≈480 n/a ≈330 n/a ≈390

10,000 n/a ≈1500 n/a ≈1120 n/a ≈1020 n/a fault n/a ≈810 n/a ≈780

20,000 n/a fault n/a fault n/a fault n/a fault n/a fault n/a fault

In the cases where the ABox had been realised, queries were answered almost in-

stantly, but results are only available for the relatively small ABoxes that RACER was

able to realise (up to 1,000 individuals). In the cases where the ABox was not realised,

answers were again returned almost instantly for smaller ABoxes, but when the ABox

size exceeded 1,000 individuals the answer times increased dramatically, and for ABoxes

larger than 10,000 individuals (larger than 5,000 in the case of Q9) RACER again broke

down due to a resource allocation error in the underlying Lisp system.

It should be mentioned that the results for the Instance Store include significant com-

munication overheads (both with the database and DL reasoner), which was not the case

for RACER since queries were posed directly via the RACER command line interface.

6.5.2 Pseudo-individual Tests

As discussed in Section 6.4, one way to deal with role-free ABoxes is to treat individuals

as atomic concepts in the TBox (pseudo-individuals). To test the feasibility of this ap-

proach, and to compare it with the Instance Store, we again used the GO TBox and ABox,

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 77

6. THE INSTANCE STORE

and the realistic and artificial queries described above. In the pseudo-individual approach,

ABox axioms of the form x : C are treated as TBox axioms of the form Cx ⊑ C, and

retrieving the instances of a query concept Q means retrieving the pseudo-individuals

that are subsumed by Q. In order to make the comparison as fair as possible, we did

not use all of the individuals in the GO ABox, but only 48,581 individuals correspond-

ing to the distinct concept expressions used to describe individuals in the GO ABox—the

equivalence set optimisation described in Section 6.4.1 can obviously be used with the

pseudo-individual approach as well. The FaCT system was used in these tests as RACER

broke down when trying to classify the GO TBox augmented with the pseudo-individuals,

again due to a resource allocation error in the underlying Lisp system.

In order to get some idea as to how the pseudo-individual approach would scale with

increasing ABox (and hence TBox) size, we tried computing the concepts subsumed by

each query with the GO TBox alone (which contains 47,012 concept names) and with

the TBox augmented with the pseudo-individuals derived from the GO ABox (a total

of 95,593 concept names). The answers to these DL queries include normal TBox con-

cepts that are subsumed by the query concepts as well as any relevant pseudo-individuals,

but the answer could easily be filtered so as to leave only the pseudo-individuals. (An

alternative approach would be to add a concept PI to the TBox, representing pseudo-

individuals, and conjoin PI to both pseudo-individual axioms and subsumption queries

used to retrieve pseudo-individuals.) The results of these tests are given in Table 6.9. It is

important to note that they do not include the time required to expand answers to include

sets of equivalent individuals—as discussed above, this can be quite time consuming for

some queries (e.g., 19.5s in the case of Q9 with the largest ABox).

Table 6.9: Pseudo-individual query time (CPU seconds) and answer size

Query GO TBox GO TBox + ABox

Time Answer Size Time Answer Size

Q1 8.1 220 233.3 2,861

Q2 1.3 1 1.2 1

Q3 0.2 1 1.4 4

Q4 26.0 881 631.8 8,609

Q5 0.5 2 5.2 27

Q6 4.3 86 176.6 2,450

Q7 1.4 1 10.0 147

Q8 1.3 1 1.5 7

Q9 1.4 1 3.5 22

Q10 4.2 109 114.4 1,407

Q11 0.5 1 2.0 2

As can be seen from the results, the time taken to compute the answers to the queries

is heavily dependent on the size of the answers, and, in the case of Q4 with the pseudo-

78 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

individual augmented TBox, the time was over 600s. This is in contrast to the Instance

Store, where the size of answer had comparatively little effect on the time taken to an-

swer queries. For queries with relatively small answers, however, the pseudo-individual

approach was highly effective, even for queries that were time consuming to answer using

the Instance Store.

6.6 Query Answering with an Extended Instance Store

In this section we introduce an algorithm for instance retrieval in an SHF knowledge

base. The algorithm can be divided into two steps. The first step transforms a gen-

eral ABox into multiple new ABoxes, the second step is to use these newly constructed

ABoxes answer instance retrieval properly.

6.6.1 Preliminaries

As the Instance Store does not respect the Unique Name Assumption (UNA), two sepa-

rate individual names could be inferred to be identical. In the following, we present the

definitions which are used to detect syntactically whether two individual names represent

the very same element in a given ABox.

Definition 7 (SourceA(o,R), groupRoleA(o,RG)) Given an ABox A, an individual name

o, and a role name R in A, the relation SourceA(o,R) holds iff there is a role name

R′ ¹ R such that either o : ∃R′.C ∈ A or, for some individual name o′, 〈o, o′〉 : R′ ∈ A.

Given a set of role names RG={Ri | 1 ≤ i ≤ n}, and an individual name o in a KB

〈T ,A〉, the relation groupRoleA(o,RG) holds iff, for any two role names Rℓ and Rm in

RG, the following two conditions are satisfied:

• SourceA(o,Rℓ) and SourceA(o,Rm); and

• there exist a set of role names {L1, · · · , Ln−1} and a set of functional roles {F1, · · · , Fn}
in T , such that Rℓ ¹ F1, L1 ¹ F1, L1 ¹ F2, L2 ¹ F2, · · · , Li ¹ Fi, Li ¹
Fi+1, · · · , Ln−1 ¹ Fn, Rm ¹ Fn and SourceA(o, Li) for i = 1, · · · , n − 1.

Remarks : The groupRoleA(o,RG) implies all role names in RG are functional ones. It

also takes into account the possible interaction between the role hierarchy H and the func-

tional restrictions F . Basically, a set of role names RG are groupRoleA(o,RG) related

if they are either functional or have some functional super role, and there are assertions in

the ABox as shown in Definition 7 that force every Ri-successor oi of the individual name

o to be interpreted as the same element. This can be better understood by considering the

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 79

6. THE INSTANCE STORE

following role hierarchy situation in which the relation groupRoleA(o, {Rℓ, Rm}) holds:

For each of the role names Rℓ, L1, · · · , Ln−1, Rm, for all models I of 〈T ,A〉, oI has

successors oℓ, o1, · · · , on−1, om ∈ ∆I . By Definition 7, every role name has a functional

super role, the functional restriction therefore forces every two successors to be the same

element: oℓ and o1, o1 and o2, · · · , on−1 and om, which in turn forces all the successors to

be the same element. In particular, if groupRoleA(o, {Rℓ, Rm}), the Rℓ-successor oℓ of

oI is then forced to be the very same element as the Rm-successor om of oI .

Definition 8 (sameAsA(o1, o2)) Given an ABox A, two individual names o1 and o2, the

relation

sameAsA(o1, o2) in A holds if there exists some individual name o with 〈o, o1〉 : R,

〈o, o2〉 : S, and groupRoleA(o, Γ) with R,S ∈ Γ.

Definition 9 (label) Given an ABox A, the label L(x) of an individual name x in A is

defined as the conjunction of all concepts in the concept assertions about the individual

name x:

L(x) :=

{

⊓
{C|x:C∈A}

C if the set {C | x : C ∈ A} is not empty

⊤ otherwise

CLAIM: [1] Given a TBox T , an ABox A and an individual name o in A, for every

model I of 〈T ,A〉, oI ∈ L(o)I holds. Proof: Let o be an individual name in A with a

non-empty set {C1, · · · , Cn} = {C | o : C ∈ A}, and let I be a model of 〈T ,A〉. By

Definition 9, L(o) = C1 ⊓ · · · ⊓ Cn. Since I is a model of A, oI ∈ CI
i for all 1 ≤ i ≤ n.

Hence oI ∈ CI
1 ∩ · · · ∩ CI

n and, by the semantics, oI ∈ (C1 ⊓ · · · ⊓ Cn)I = L(o)I .

If {C | o : C ∈ A} is empty, by Definition 9, L(o) = ⊤. Hence oI ∈ ∆I = ⊤I =
L(o)I .

Given two individual names o1 and o2 in the ABox A, the relation reachable(o2, o1)
holds iff

〈o1, o2〉 : R in A. Let reachable+ be the transitive closure of reachable, i.e., reachable+(o2, o1)
means a directed “role assertion chain” from o1 to o2 can be found in the ABox.

Definition 10 ((a)cyclic ABox) An ABox A is cyclic iff there exists some individual name

o in A such that reachable+(o, o). An ABox that is not cyclic is called acyclic.

80 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

6.6.2 Precompleting an SHF ABox

The step of precompleting an SHF ABox is based upon a DL technique called precom-

pletion [Hol96, Tes97]. It extends the original ABox using a set of syntactic rules. When

no further rules can be applied, all information implicit in the role assertions has been

made explicit through adding more concept assertions and making equalities between in-

dividuals explicit. Note that, for the DL SHF , because of the non-determinism of its

precompletion rules, many different precompletions can be derived from a single ABox.

In the following we present a set of nondeterministic syntactic rules which extend the

original ABox. It will be shown that an interpretation I is a model of an ABox A iff it is

also a model of a precompletion of A derived using these rules.

To simplify the description of the algorithm, we assume that all concepts in the labels

of individual names are in negation normal form (NNF), where negation can appear only

in front of atomic concepts. Arbitrary SHF concepts can be transformed into equivalent

ones in negation normal form using De Morgan’s laws and rules including ¬¬C 7→ C,

¬∃R.C 7→ ∀R.¬C and ¬∀R.C 7→ ∃R.¬C [Hor97]. Moreover, we assume that all con-

cept axioms in the TBox are in the form ⊤ ⊑ C where C is an arbitrary concept ex-

pression. For DLs with negation, it is easy to show that any concept axioms of the form

C1 ⊑ C2 is equivalent to ⊤ ⊑ (¬C1 ⊔ C2) [Tes97].

Definition 11 (RepA) Given an ABox A, RepA is a set containing pairs of individual

names from A.

Definition 12 (precompletion rules) Given a knowledge base 〈T ,A〉 and a set RepA,

the precompletion rules for SHF are defined as follows:

1. →⊑ rule:

if o is in A, ⊤ ⊑ C ∈ T , and o : C 6∈ A, then add o : C to A.

2. →⊓ rule:

if o : C1 ⊓ C2 ∈ A, and either o : C1 6∈ A or o : C2 6∈ A, then add o : C1 and o : C2

to A.

3. →⊔ rule:

if o : C1 ⊔ C2 ∈ A, o : C1 6∈ A, and o : C2 6∈ A, then choose D=C1 or D=C2, and

add o : D to A.

4. →∃1 rule:

if o : ∃R.C ∈ A, 〈o, o′〉 : S ∈ A, groupRoleA(o, {R,S, · · · }), and o′ : C 6∈ A, then

add o′ : C to A.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 81

6. THE INSTANCE STORE

5. →∀1 rule:

if o : ∀R.C ∈ A, 〈o, o′〉 : S ∈ A, there exists a role name R′ ¹ R such that

groupRoleA(o, {R′, S, · · · }), and o′ : C 6∈ A, then add o′ : C to A.

6. →∀ rule:

if o : ∀R.C ∈ A, 〈o, o′〉 : S ∈ A, S ¹ R, and o′ : C 6∈ A, then add o′ : C to A.

7. →∀+ rule:

if o : ∀T.C ∈ A, 〈o, o′〉 : S ∈ A, there is a transitive role name R such that S ¹
R ¹ T , and o′ : ∀R.C 6∈ A, then add o′ : ∀R.C to A.

8. →sameAs rule:

if sameAsA(o, o′), then add (o, o′) to RepA and replace all occurrences of o in A
with o′.

Remarks : Since the →∀1 rule only works on functional roles, the →∀ rule can not be

merged with →∀1 rule. Since a transitive role can not be a sub-role of a functional role,

there is no need for a functional role version for →∀+ rule. The →sameAs rule does not

make →∀1 rule redundant—considering the following counterexample, o : ∃R′, o : ∀R.C,

〈o, o′〉 : S and groupRoleA(o, {R′, S}).

Definition 13 (T -precompleted ABox) Given a knowledge base 〈T ,A〉 and a set RepA,

the ABox A is called T -precompleted iff none of the precompletion rules can be applied.

Starting with the original ABox A and the empty set RepA, the precompletion rules

will non-deterministically generate one T -precompleted ABox. If a searching strategy is

applied upon these rules, however, multiple T -precompleted ABoxes can then be found.

Note that there may exist exponentially many

T -precompleted ABoxes A′,A′′, · · · generated due to the non-deterministic →⊔ rules.

Each of the T -precompleted ABoxes, however, can be generated using polynomial space

in the size of original A.

Definition 14 (leaf node) Given a T -precompleted acyclic ABox A, we call an individ-

ual name o a leaf node if, for any individual name x and role name R, 〈o, x〉 : R 6∈ A.

82 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

Definition 15 (extended label) Given an acyclic ABox A, the extended label L′(x) of an

individual name x in A is inductively defined as follows:

L′(x) :=

{

L(x) if x is a leaf node

L(x) ⊓ ⊓
〈x,x′〉 : R

∃R.L′(x′) otherwise

Remarks : The acyclicity condition in the above definition is to guarantee the termination—

due to the presence of cycles among role assertions, the extended label generation process

will not terminate.

Definition 16 (subconcept) The subconcept sub(D) of an SHF-concept D is the clo-

sure of the subexpression of D and is inductively defined as follows:

1. if D is of the form ¬C, ∀R.C or ∃R.C, then sub(D) = {D} ∪ sub(C);

2. if D is of the form C1 ⊓ C2 or C1 ⊔ C2, then sub(D) = {D} ∪ sub(C1) ∪ sub(C2);

3. otherwise sub(D) = {D}.

Definition 17 (consistent) An ABox A is consistent with respect to a TBox T , if there is

an interpretation that is a model of 〈T ,A〉.

Definition 18 (T -derivable) Given a TBox T and an ABox A, A′ is called T -derivable

from 〈T ,A〉 if A′ is T -precompleted, consistent, and obtained from 〈T ,A〉 and an empty

set RepA by application of the precompletion rules.

Lemma 19 Given a consistent T -precompleted ABox A, an individual name o in A, and

a role name R in A, the relation SourceA(o,R) holds iff, for every model I of 〈T ,A〉,
there exists some element y in ∆I such that (oI , y) ∈ RI .

Proof: “⇒” Let o be an individual name, let R be a role name in a T -precompleted ABox

A with

SourceA(o,R), and let I be a model of 〈T ,A〉. By Definition 7, there exists a role name

R′ ¹ R, such that either o : ∃R′.C or for some individual name o′, 〈o, o′〉 : R′ ∈ A.

Since I is a model of 〈T ,A〉, this implies oI ∈ (∃R′.⊤)I or (oI , o′I) ∈ R′I . Since

(∃R′.⊤)I ⊆ (∃R.⊤)I and R′I ⊆ RI , this implies that oI ∈ (∃R.⊤)I or (oI , o′I) ∈ RI .

Since oI ∈ (∃R.⊤)I implies that oI ∈ {a ∈ ∆I | ∃b.(a, b) ∈ RI}, we can see that, in

either case, there exists some element y such that (oI , y) ∈ RI .

“⇐” We prove this direction by proving its counterpositive, i.e., “Given a consistent

T -precompleted ABox A, an individual name o in A, and a role name R in A, if the

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 83

6. THE INSTANCE STORE

relation

SourceA(o,R) does not hold, then there exists a model I of 〈T ,A〉 such that, for any

element y ∈ ∆I , (oI , y) 6∈ RI .” Let o be an individual name, let R be a role name in a

T -precompleted ABox A, and let I be a model of 〈T ,A〉. We now show a witness model

I ′ of 〈T ,A〉 can be constructed based on I. We remove all (oI , y) tuples from RI and

R′I in A with R′ ¹ R (y is an arbitrary element in ∆I). Since the relation SourceA(o,R)
does not hold, we know that either o : ∃R′.C or for some individual name o′, 〈o, o′〉 : R′

with R′ ¹ R can not be found in A. Therefore, the resulting model I ′ is still a model of

〈T ,A〉. Since all (oI , y) tuples are removed during the construction of I ′, we have, for

any element y ∈ ∆I′

, (oI
′

, y) 6∈ RI′

.

Lemma 20 Given a consistent ABox A, an individual name o in A, and a role name set

Γ.

1. if the relation groupRoleA(o, Γ) holds, then every role name in Γ is functional, and

for every model I of 〈T ,A〉, Ri, Rj ∈ Γ, (oI , x) ∈ RI
i , (oI , y) ∈ RI

j , then x = y.

2. if A is T -precompleted, every role name Ri in Γ is functional, and for every model

I of 〈T ,A〉, for any Ri, Rj ∈ Γ, (oI , x) ∈ RI
i , (oI , y) ∈ RI

j , such that x = y, then

the relation groupRoleA(o, Γ) holds.

Proof: We shall prove the first claim first. Let o be an individual name, let Γ = {R1, · · · , Rn}
be a role name set in a consistent ABox A with groupRoleA(o, Γ), and let I be a model

of 〈T ,A〉. By Definition 7, all the role names Ri in Γ are thus functional because they

are either functional or have some functional super role (F1, · · · , Fn). Hence, for each of

these role names Ri, oI has at most one successor, say xi.

In the following, we are going to show that all xi, for 1 ≤ i ≤ n, are equal. Let

us arbitrarily choose two role names Rℓ and Rm from Γ. By Definition 7, there exist a

set of role names {L1, · · · , Ln−1} and a set of functional roles {F ′
1, · · · , F ′

n}, such that

Rℓ ¹ F ′
1, L1 ¹ F ′

1, L1 ¹ F ′
2, L2 ¹ F ′

2, · · · , Li ¹ F ′
i , Li ¹ F ′

i+1, · · · , Ln−1 ¹ F ′
n, Rm ¹

F ′
n. Moreover, for each Li, the relation SourceA(o, Li) holds by definition, which implies

that, for each Li, there exists an element yi in ∆I such that (oI , yi) ∈ LI
i (Lemma 19).

Since relations SourceA(o,Rℓ) and SourceA(o,Rm) also hold by definition, there exist

two element ℓ and m in ∆I such that (oI , ℓ) ∈ RI
ℓ and (oI ,m) ∈ RI

m.

Since (oI , ℓ) ∈ RI
ℓ , (oI , y1) ∈ LI

1 , RI
ℓ ⊆ F

′I
1 and LI

1 ⊆ F
′I
1 , we know {(oI , ℓ), (oI , y1)} ⊆

F
′I
1 . Due to the functionality of F

′I
1 , we can conclude that ℓ = y1. Similarly, we can apply

the same deduction to role name pairs L1 and L2, L2 and L3, · · · , Ln−1 and Rm, such that

y1 = y2, y2 = y3, · · · , yn−1 = m which obviously induces ℓ = m.

Analogously, the same arguments can be applied to any pair of role names Ri, Ri+1

84 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

in Γ. Therefore, for every model I of 〈T ,A〉, there exists only one element x in ∆I , such

that, for each role name Ri in Γ, (oI , x) ∈ RI
i .

We prove the second claim by proving its counterpositive, i.e., “Given a consistent

T -precompleted ABox A, an individual name o in A, and a functional role name set Γ, if

the relation groupRoleA(o, Γ) does not hold, then there exists a model I of 〈T ,A〉, and

there exists two role names Ri, Rj ∈ Γ with (oI , x) ∈ RI
i and (oI , y) ∈ RI

j , such that

x 6= y.”

Let A be a consistent T -precompleted ABox, let o be an individual name in A, let Γ
be a functional role name set, and let I be a model of 〈T ,A〉. We now show a witness

model I ′ of 〈T ,A〉 can be constructed based on I.

By precondition, there exists two role names Ri, Rj ∈ Γ with (oI , x) ∈ RI
i and

(oI , y) ∈ RI
j . If the element x 6= y, then the model I is the witness model and we

are done. If the element x = y, we first remove all (oI , x) tuples from RI
i and R′I

in A with R′ ¹ Ri. For each tuple we removed, we add (oI , z) to RI
i and R′I with

z ∈ ∆I and z 6= y, thus we constructed a new model I ′ of 〈T ,A〉. Since the relation

groupRoleA(o, Γ) does not hold, by Definition 7, we know that there exist at least a

pair of role names Ri, Rj ∈ Γ do not share their successors of oI as the same element.

Without loss of generality we assume Ri, Rj are such a pair of role names, therefore the

functionalities of Ri, Rj are not violated and the model I ′ is the witness model.

Lemma 21 Given a TBox T , an acyclic ABox A, and an individual name o in A, for

every model I of 〈T ,A〉, oI ∈ L′(o)I holds.

Proof: Let o be an individual name in an acyclic ABox A, and let I be a model of 〈T ,A〉.
We prove this lemma by structural induction on the extended label definition.

• BASIS: The individual name o is a leaf node. By Definition 15, L(o) = L′(o),
therefore L′(o)I = L(o)I . Since oI ∈ L(o)I holds by Claim 1, this implies that

oI ∈ L′(o)I .

• INDUCTION: Let L′(o) be an extended label built by the inductive definition as

follows:

L′(o) := L(o) ⊓ ⊓
〈o,xi〉 : Ri∈A

∃Ri.L
′(xi)

By the induction hypothesis, for every individual name xi with 〈o, xi〉 : Ri ∈ A, we

have xI
i ∈ L′(xi)

I . To show that oI ∈ L′(o)I , we have to show that oI ∈ L(o)I

and, for each 〈o, xi〉 : Ri ∈ A, oI ∈ (∃Ri.L
′(xi))

I . The first point follows from

Claim 1. For the second claim, let 〈o, xi〉 : Ri ∈ A. Then we have

oI ∈ {a ∈ ∆I | (a, xI
i) ∈ RI

i }

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 85

6. THE INSTANCE STORE

Since xI
i ∈ L′(xi)

I holds by induction assumption, it implies that

oI ∈ {a ∈ ∆I | (a, xI
i) ∈ RI

i } ⊆ {a ∈ ∆I | ∃b.(a, b) ∈ RI
i ∧ b ∈ L′(xi)

I} = (∃Ri.L
′(xi))

I

Therefore

oI ∈ L(o)I ∩
⋂

〈o,xi〉 : Ri∈A

(∃Ri.L
′(xi))

I

and thus oI ∈ L′(o)I .

Lemma 22 Given a consistent ABox A, and two individual names o1, o2 in A.

1. if the relation sameAsA(o1, o2) holds, then for every model I of 〈T ,A〉, oI1 = oI2 .

2. if A is T -precompleted, for every model I of 〈T ,A〉, and oI1 = oI2 , then (o1, o2) is

in RepA.

Proof: We shall prove the first claim first. Let o1, o2 be individual names in a consistent

ABox A with sameAsA(o1, o2), and let I be a model of 〈T ,A〉. By Definition 8, there

exists some individual name o with 〈o, o1〉 : R, 〈o, o2〉 : S, and groupRoleA(o, Γ) with

R,S ∈ Γ. Hence, by Lemma 20, oI1 = oI2 .

We prove the second claim by proving its counterpositive, i.e., “Given a consistent

T -precompleted ABox A, two individual names o1, o2 in A, if (o1, o2) is not in RepA,

then there exists a model I of 〈T ,A〉, such that oI1 6= oI2 .”

Let o1, o2 be individual names in a consistent T -precompleted ABox A, and let I be

a model of 〈T ,A〉. We now show a witness model I ′ of 〈T ,A〉 can be constructed based

on I. We assume that oI1 = oI2 , otherwise I is the witness model and we are done. We

take an element x ∈ ∆I with x 6= oI2 , and make oI1 = x. Since (o1, o2) is not in RepA, by

Definition 12, we know that the relation sameAsA(o1, o2) does not hold. By Definition 8,

we know that there does not exist some individual name o with 〈o, o1〉 : R, 〈o, o2〉 : S, and

groupRoleA(o, Γ) with R,S ∈ Γ. Since the functionalities of functional roles are not

violated, the resulting model I ′ is still a model of 〈T ,A〉 and it is the witness model.

6.6.3 Soundness and Completeness for Precompletion

This section presents the proof for soundness and completeness of the precompletion rules

we proposed in last section.

86 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

Proposition 2 The process of using the set of precompletion rules to extend the original

ABox always terminates, and each T -derivable ABox has a size which is polynomial with

respect to the size of the original knowledge base.

Proof: (Sketched). Termination of this process is an immediate consequence of the fol-

lowing observations. Let |Ind(A)| be the number of individual names in the ABox A and

|C(T)| be the number of concept axioms in the TBox T . The applicability of the →⊑ rule

is bounded by the number of |Ind(A)|*|C(T)|. The →⊓, →⊔, →∃1 , →∀1 and →∀ rules

always introduce concepts into labels which are subconcepts of the original ones. Be-

cause the number of subconcepts is polynomial w.r.t. the size of a given knowledge base,

only finitely many concept assertions can be added. The applicability of the →sameAs rule

is bounded by the number of sameAs related individual name pairs which is always less

than |Ind(A)| ∗ (|Ind(A)| − 1)/2. Therefore the process of applying the precompletion

rules will terminate after finitely many steps.

To obtain an upper bound on the size of each T -derivable ABox, we can use the

results from the termination analysis. The number of different concept assertions that can

be generated through →⊑, →⊓, →⊔, →∃1 , →∀1 , →∀ and →sameAs rules cannot exceed the

number of |Ind(A)|*|C(T)|, and this number is polynomial w.r.t. the size of the original

KB. The number of different concept assertions that can be generated using →∀+ rule

is bound by the number of transitive role names and role assertions in the original KB.

Therefore the size of each T -derivable ABox is polynomial with respect to the size of the

original KB.

Proposition 3 All the precompletion rules preserve consistency of the ABox, i.e., given a

TBox T , an ABox A, and a model I of 〈T ,A〉, if a precompletion rule is applicable, then

there exists an ABox A′ obtained after this rule application, such that I is also a model

of 〈T ,A′〉.

Proof: Suppose that I is a model of knowledge base 〈T ,A〉:

1. Let o be in A, let ⊤ ⊑ C ∈ T and let o : C 6∈ A. Then applying the →⊑ rule to A
yields A′=A ∪ {o : C}.

Since ⊤ ⊑ C ∈ T , we have ∆I ⊆ CI , and then oI ∈ CI . Therefore o : C is

satisfied by I, and thus I is also a model of 〈T ,A′〉.

2. Let o : C1 ⊓C2 ∈ A and let either o : C1 6∈ A or o : C2 6∈ A. Then applying the →⊓

rule to A yields A′=A ∪ {o : C1, o : C2}.

Since o : C1 ⊓ C2 ∈ A, we have oI ∈ (C1 ⊓ C2)
I . By the semantics (C1 ⊓ C2)

I =

CI
1 ∩ CI

2 , hence oI ∈ CI
1 ∩ CI

2 . Therefore o : C1 and o : C2 are satisfied by I, and

thus I is also a model of 〈T ,A′〉.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 87

6. THE INSTANCE STORE

3. Let o : C1 ⊔C2 ∈ A and let o : C1 6∈ A and o : C2 6∈ A. Then applying the →⊔ rule

to A yields A′=A ∪ {o : C1} or A′=A ∪ {o : C2}.

Since o : C1 ⊔ C2 ∈ A, we have oI ∈ (C1 ⊔ C2)
I . By the semantics (C1 ⊔ C2)

I =

CI
1 ∪ CI

2 , hence oI ∈ CI
1 ∪ CI

2 . If oI ∈ CI
1 holds, we add o : C1 to A; otherwise if

oI ∈ CI
2 holds, we add o : C2 to A. Hence we can apply the →⊔ rule such that I is

a model of 〈T ,A′〉 for A′ the resulting ABox.

4. Let o : ∃R.C ∈ A, let 〈o, o′〉 : S ∈ A, let groupRoleA(o, {R,S, · · · }), and let

o′ : C 6∈ A. Then applying the →∃1 rule to A yields A′=A ∪ {o′ : C}.

Since o : ∃R.C ∈ A, there exists an element x ∈ CI such that (oI , x) ∈ RI . Since

〈o, o′〉 : S ∈ A, we have (oI , o′I) ∈ SI . Since groupRoleA(o, {R,S, · · · }), we

have o′I = x by Lemma 20. Then we can see that o′I ∈ CI . Therefore o′ : C is

satisfied by I, and thus I is also a model of 〈T ,A′〉.

5. Let o : ∀R.C ∈ A, let 〈o, o′〉 : S ∈ A, let groupRoleA(o, {R′, S, · · · }) for some

role name R′ ¹ R, and let o′ : C 6∈ A. Then applying the →∀1 rule to A yields

A′=A ∪ {o′ : C}.

Since o : ∀R.C ∈ A, every element x with (oI , x) ∈ RI must be in CI . Since

groupRoleA(o, {R′, S, · · · }), there exists an element y in ∆I such that (oI , y) ∈
R′I (Definition 7 and Lemma 19). Since R′I ⊆ RI , we have (oI , y) ∈ RI and y ∈
CI . Since 〈o, o′〉 : S ∈ A, we have (oI , o′I) ∈ SI . Since groupRoleA(o, {R′, S, · · · }),
we have o′I = y by Lemma 20. Then we can see that o′I ∈ CI . Therefore o′ : C is

satisfied by I, and thus I is also a model of 〈T ,A′〉.

6. Let o : ∀R.C ∈ A, let 〈o, o′〉 : S ∈ A, let S ¹ R ∈ T , and let o′ : C 6∈ A. Then

applying the →∀ rule to A yields A′=A ∪ {o′ : C}.

Since o : ∀R.C ∈ A, every element x with (oI , x) ∈ RI must be in CI . Since

〈o, o′〉 : S ∈ A, we have (oI , o′I) ∈ SI . Since SI ⊆ RI ∈ T , we have (oI , o′I) ∈
RI and o′I ∈ CI . Therefore o′ : C is satisfied by I, and thus I is also a model of

〈T ,A′〉.

7. Let o : ∀T.C ∈ A, let 〈o, o′〉 : S ∈ A with a transitive role name R such that

S ¹ R ¹ T ∈ T , and let o′ : ∀R.C 6∈ A. Then applying the →∀+ rule to A yields

A′=A ∪ {o′ : ∀R.C}.

Since o : ∀T.C ∈ A, every element x with (oI , x) ∈ T I must be in CI . Since

〈o, o′〉 : S ∈ A, we have (oI , o′I) ∈ SI . Since S ¹ R ¹ T ∈ T , we have

SI ⊆ RI ⊆ T I which means (oI , o′I) ∈ RI . If there exists an element y in ∆I

such that (o′I , y) ∈ RI , then (oI , y) ∈ RI due to the transitivity of RI . Since

R ¹ T , the element y must be in CI . Therefore o′I ∈ (∀R.C)I and then o′ : ∀R.C
is satisfied by I, and thus I is also a model of 〈T ,A′〉.

8. Let sameAsA(o, o′) and o be in A. Then applying the →sameAs rule to A yields A′

which is obtained through replacing all occurrences of o in A with o′.

88 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

Since oI = o′I by Lemma 22, all newly generated concept assertions and role as-

sertions of o′ through replacements are satisfied by I, and thus I is also a model of

〈T ,A′〉.

Therefore, for every model I of 〈T ,A〉, if a precompletion rule is applicable, then there

exists an ABox A′ obtained after the rule application, such that I is still a model of

〈T ,A′〉.

Proposition 4 Given a TBox T , an ABox A and all ABoxes Apc
1 ,Apc

2 , · · · ,Apc
n T -derivable

from 〈T ,A〉.

1. If I is a model of 〈T ,A〉, then I is a model of 〈T ,Apc
i 〉 for some i;

2. If I is a model of 〈T ,Apc
i 〉 for some i, then there exists an extension I ′ of I that is

a model of 〈T ,A〉.

Proof: Let T be a TBox, let A be an ABox, let Apc
i be an ABox T -derivable from 〈T ,A〉,

and let I be a model of 〈T ,A〉. The first claim (soundness) can be proved by induction

on the process of applying precompletion rules:

• BASIS: For the basis, let A1 be a consistent ABox extended from the original ABox

A after one step application using some precompletion rule. Since I is a model of

〈T ,A〉 by assumption, we can apply the rule in a way such that I is still a model

of some 〈T ,A1〉 by Proposition 3;

• INDUCTION: Now assume n ≥ 1, let An+1 be a consistent ABox extended from a

consistent ABox An after one step application using some precompletion rule. By

induction, I is a model of 〈T ,An〉. By Proposition 3, we can apply the rule in a

way such that I is still a model of some 〈T ,An+1〉.

By Proposition 2, the process of using the set of precompletion rules to extend the original

ABox always terminate. Hence, after finitely many steps of precompletion rule applica-

tions, the precompletion rules can be applied in a way such that I is still a model of some

〈T ,Apc
i 〉.

We now prove the second claim (completeness). Let T be a TBox, let A be an ABox,

let Apc
i be an ABox T -derivable from 〈T ,A〉, and let I be a model of 〈T ,Apc

i 〉. We can

construct a new ABox Apc′

i as follows: for each individual name pair in RepA, recover

all the replacements of individuals names and add them to Apc′

i . We now construct a new

model I ′ for 〈T ,Apc′

i 〉 based on I, for each individual name o′i replaced by oi, if oIi = x
with x ∈ ∆I , make o

′I
i = x. By Lemma 22, the resulting model I ′ is still a model

of 〈T ,Apc′

i 〉. Since A is a subset of any constructed Apc′

i , if there exists a model I ′ of

〈T ,Apc′

i 〉, then it is also a model of 〈T ,A〉. Therefore, if I is a model of 〈T ,Apc
i 〉, then

there exists an extension I ′ of I that is a model of 〈T ,A〉.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 89

6. THE INSTANCE STORE

Now we can concentrate on the derived ABoxes and show how instance retrieval in A
can be realised using derived ABoxes.

6.6.4 Answering instance retrieval

An ABox is consistent if and only if it has a consistent derived ABox (Proposition 4).

When it comes to instance retrieval, computing instances of a given concept using only

one obtained consistent derived ABox is not sound—an individual is an instance of a

given concept in the original ABox if and only if it is instance of the given concept in

every consistent derived ABox. Taking this matter into account, the step of answering

instance retrieval, is therefore defined as follows:

Definition 23 (acyclic answering procedure) The acyclic answering procedure returns

x to query Q w.r.t. a TBox T and an acyclic ABox A if for each ABox A′ T -derivable

from A, the extended label L′(x) ⊑T Q in A′.

Proposition 5 Let T be a TBox, A be a consistent T -precompleted acyclic ABox, Q be a

concept. For every model I of 〈T ,A〉, oI ∈ QI iff L′(o) ⊑T Q.

Proof: “⇐” Let o be an individual name in a consistent T -precompleted acyclic ABox A,

let Q be a concept, and let I be a model of 〈T ,A〉. Since oI ∈ L′(o)I holds (Lemma 21),

and L′(o)I ⊆ QI holds, we can see that oI ∈ QI .

“⇒” Let o be an individual name in a consistent T -precompleted acyclic ABox A,

let Q be a query concept, and let I be a model of 〈T ,A〉. We prove this direction by

structural induction on the extended label definition:

• BASIS: The basis case is when the individual name o is a leaf node. By Defini-

tion 15, L(o) = L′(o). Since oI ∈ QI , we have L(o)⊓¬Q ⊑⊥. Since L(o) = L′(o),
we have L′(o) ⊓ ¬Q ⊑⊥. Therefore L(o) ⊑ Q.

• INDUCTION: We prove this step by proving its counterpositive, i.e., “If there exists

a model I of 〈T ,A〉, such that L′(o)I 6⊆ QI holds, then oI 6∈ QI holds.”

Let L′(o) be the extended label of o built by the inductive definition as follows:

L′(o) := L(o) ⊓ ⊓
〈o,xi〉 : Ri∈A

∃Ri.L
′(xi)

By assumption there exists a model I of 〈T ,A〉, such that L′(o)I 6⊆ QI holds. Then

we may assume there exist a model Î and an element a in ∆Î , with a ∈ L′(o)Î and

a 6∈ QÎ . In the following we show that it is possible to define the model Î in such

a way that a = oÎ .

90 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

Since a ∈ L′(o)Î , therefore a ∈ L(o)Î and a ∈ (∃Ri.L
′(xi))

Î ; that is, a ∈ {x ∈

L(o)Î | (x, b) ∈ RÎ
i ∧ b ∈ L′(xi)

Î}. The individual name o must suffice its concept

assertions and role assertions for every model including Î, therefore oÎ ∈ L(o)Î

and (oÎ , xÎ
i) ∈ RÎ

i ; that is, oÎ ∈ {x ∈ L(o)Î | (x, xÎ
i) ∈ RÎ

i }.

Following the result from the ⇐ direction, for some concept C, if for every model

I of 〈T ,A〉, L′(xi)
I ⊆ CI holds, then xI

i ∈ CI . Following our induction as-

sumption, if for every model I of 〈T ,A〉, xI
i ∈ CI holds, then L′(xi)

I ⊆ CI

holds. Because Î is also a model of 〈T ,A〉, we can conclude that L′(xi)
Î ⊆ C Î

iff xÎ
i ∈ C Î . Hence the element set {x ∈ L(o)Î | (x, b) ∈ RÎ

i ∧ b ∈ L′(xi)
Î} is

the same as {x ∈ L(o)Î | (x, xÎ
i) ∈ RÎ

i }. Therefore, the element a satisfies the

condition of being oÎ . Since we know that a 6∈ QÎ , oÎ 6∈ QÎ .

Lemma 24 Given a TBox T , an acyclic ABox A, ABoxes A1,A2, · · · ,An T -derivable

from A, and a concept Q, for every model I of 〈T ,A〉, oI ∈ QI iff oIi ∈ QIi holds for

every model Ii of every 〈T ,Ai〉.

Proof: “⇒” We prove this direction by contradiction. Thus assume that for every model

I of 〈T ,A〉, we have oI ∈ QI , and there exists one model Ii of some 〈T ,Ai〉 such that

oIi 6∈ QIi . Since there exists one model Ii for some 〈T ,Ai〉, we can see that there exists

a extension I ′
i of Ii that is a model of 〈T ,A〉 (Proposition 4). Since oIi 6∈ QIi w.r.t.

〈T ,Ai〉, we have oI
′

i 6∈ QI′

i w.r.t. 〈T ,A〉. Since for every model I of 〈T ,A〉 oI ∈ QI

must hold, we derived a contradiction.

“⇐” Analogously, this direction can be proved by contradiction as well. Thus assume

that for every model Ii of every 〈T ,Ai〉, we have oIi ∈ QI
i , and there exists one model I

of 〈T ,A〉 such that oI 6∈ QI . Since there exists one model I of 〈T ,A〉, we can see that

I is also a model of some 〈T ,Ai〉 (proposition 4). Since oI 6∈ QI w.r.t. 〈T ,A〉, we have

oI 6∈ QI w.r.t. some 〈T ,Ai〉. Since for every model Ii of every 〈T ,Ai〉 oIi ∈ QIi must

hold, we derived a contradiction.

Theorem 25 The acyclic answering procedure returns individual x to concept Q with

respect to a knowledge base 〈T ,A〉 (where A is acyclic) iff, for every model I of 〈T ,A〉,
oI ∈ QI .

Proof: Let o be an individual name in an acyclic ABox A, let Q be a concept, let L′(o)
be the extended label of o, let Ai be ABoxes T -derivable from A, and let I be a model

of 〈T ,A〉. We know that oI ∈ QI w.r.t. 〈T ,A〉 iff, for every model Ii of every 〈T ,Ai〉,

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 91

6. THE INSTANCE STORE

oIi ∈ QIi (Lemma 24). We also know that oIi ∈ QIi w.r.t. 〈T ,Ai〉 iff, L′(o)Ii ⊆ QIi

(Proposition 5). Therefore, oI ∈ QI w.r.t. 〈T ,A〉 iff, for every 〈T ,Ai〉, L
′(o) ⊑ Q.

This means that we now have an instance retrieval algorithm: the acyclic answering

procedure of Definition 23 provides an algorithmic way to compute the instance retrieval

answers in a knowledge base.

6.6.5 Answering instance retrieval without acyclic restriction

When the ABox is cyclic, the idea of doing instance retrieval using extended label is not

working anymore—the extended label generation process would not terminate because of

the presence of cycles among role assertions. In the following we introduce an algorithm

for retrieving instances in an SHF knowledge base without acyclicity restriction.

Definition 26 (locally-consistent) Given a T -precompleted ABox A and an individual

name x, A is locally-consistent w.r.t. x if the following two conditions are satisfied:

• L(x) is satisfiable w.r.t. T ; and

• if 〈x, y〉 : R ∈ A, then A is locally-consistent w.r.t. y.

Lemma 27 Given a T -precompleted ABox A, A is inconsistent iff there exists some in-

dividual name o in A and A is not locally-consistent w.r.t. o.

Definition 28 (boolean answering) Given T a TBox, A a consistent T -precompleted

ABox, x an individual name in A and Q a concept, the boolean answering returns True

for (x,Q, 〈T ,A〉) if there is no ABox T -derivable from A ∪ {x : ¬Q} that is locally-

consistent w.r.t. x.

Proposition 6 Let T be a TBox, A be a consistent T -precompleted ABox, Q be a con-

cept. For every model I of 〈T ,A〉, oI ∈ QI iff the boolean answering returns True for

(x,Q, 〈T ,A〉).

Given the above boolean query answering definition, the procedure for answering

instance retrieval queries without acyclic restriction is defined as follows:

Definition 29 (answering procedure) The answering procedure returns an individual

answer set

{x1, x2, · · · , xn} to query Q w.r.t. a TBox T and an ABox A if, for each ABox A′ T -

derivable from A, the boolean query answering returns True for (xi, Q, 〈T ,A′〉).

92 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

Theorem 30 The answering procedure returns individual x to concept Q with respect to

a knowledge base 〈T ,A〉 iff, for every model I of 〈T ,A〉, oI ∈ QI .

Remarks : Although the above answering procedure can be used to retrieve instances

in an SHF knowledge base without acyclicity restriction, it is not efficient—the boolean

query answering procedure only tests one individual name at a time. For implementation

purpose, in the next section, we propose the query-oriented answering procedure.

6.6.6 Query-oriented answering

Definition 31 (literal, quantifier form, Disjunctive Normal Form) An SHF concept is

considered to be a literal iff it is either a concept name or the negation of a concept name.

Given a role name R and a concept expression C, an SHF concept is considered to

be in quantifier form iff it is either in the form of ∀R.C or in the form of ∃R.C.

An SHF concept is considered to be in Disjunctive Normal Form iff it is a disjunction

of one or more conjunctions of one or more literals or one or more concept expressions

in quantifier form.

Given an SHF concept Q in Disjunctive Normal Form, without loss of generality we

assume that each disjunct is in the following form:

(⊓
1≤j≤mi

∃Sj.Vj) ⊓ (⊓
1≤k≤ni

Ck) ⊓ (⊓
1≤ℓ≤oi

∀Rℓ.Uℓ)

We now introduce some new notation used, for convenience, in the following query-

oriented answering procedure. For every disjunct Di of Q:

• {∃(Di)} for the set {∃Sj.Vj | 1 ≤ j ≤ mi}

• 6 ∃(Di) for the concept (⊓
1≤k≤ni

Ck) ⊓ (⊓
1≤ℓ≤oi

∀Rℓ.Uℓ);

Definition 32 (associatedA(o1, o2, R)) Given a role name R, two individual names o1

and o2 in the ABox A, IN the individual name set and RN the role name set in A, the

relation associated ⊆ IN×IN×RN is defined inductively as follows:

• BASIS: if there exists a role name S such that 〈o1, o2〉 : S in A and S ¹ R, then

associatedA(o1, o2, R);

• INDUCTION: if there exists a transitive role name S, an individual name o′ in A
and S ¹ R, associatedA(o1, o

′, S) and associatedA(o′, o2, S), then associatedA(o1, o2, R).

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 93

6. THE INSTANCE STORE

CLAIM: [2] Given a clash-free T -precompleted ABox A, two individual names o1,o2

and two role names S,R in A, if the relation associatedA(o1, o2, S) holds and S ¹ R,

then associatedA(o1, o2, R).

Proof: Let A be a clash-free T -precompleted ABox, let o1,o2 be individual names in A,

and let S,R be role names in A. This claim can be proved using the following basis and

induction steps:

• BASIS: The basis case is there exists a role name S ′ such that 〈o1, o2〉 : S ′ in A and

S ′ ¹ S. Since S ′ ¹ S ¹ R, we have associatedA(o1, o2, R).

• INDUCTION: Let associatedA(o1, o2, S) be the relation built by the inductive step

of the definition, from associatedA(o1, o
′, S ′) and associatedA(o′, o2, S

′) with S ′

a transitive role, o′ an individual name and S ′ ¹ S. Since S ′ ¹ S ¹ R, we have

associatedA(o1, o2, R).

CLAIM: [3] Given a clash-free T -precompleted ABox A, three individual names

o1,o2,o3 and a role name S in A, if the relations associatedA(o1, o2, S) and associatedA(o2, o3, S)
hold and S is a transitive role name, then associatedA(o1, o3, S).

Proof: Let A be a clash-free T -precompleted ABox, let o1,o2,o3 be individual names in

A, and let S be a role names in A. This claim follows directly from the inductive step

in the definition: if there exist a transitive role name S, three individual name o1,o2,o3 in

A and S ¹ S, associatedA(o1, o2, S) and associatedA(o2, o3, S) hold, then the relation

associatedA(o1, o3, S) holds.

Given a T -precompleted ABox A, a concept Q in disjunctive normal form, the in-

stance of Q is computed as shown in Algorithm 1. The retrieve(C) function1 in the

algorithm is taken from the Instance Store API [?] and it returns a set of individual names

to a given concept C. The

getSuccessors(x,R) function in the algorithm returns a set of individual names {y1, y2, · · · , yn},

for each yi, the relation associatedA(x,R, yi) holds in the ABox.

6.7 Related Work

As already mentioned, the idea of supporting DL style reasoning using databases is not

new. One example is [BB93], where an architecture and algorithms are presented which

can handle DL inference problems by converting them into a collection of SQL queries.

1Note that it only takes into account the individuals’ concept assertions and ignores their role assertions.

94 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

Algorithm 1 queryOrientedRetrieve(Concept Q) : Set

1: results← ∅
2: results← retrieve(Q)
3: for each Di ∈ Q do

4: candidateIndividualSet ← retrieve(6 ∃(Di)) \ results
5: for each x ∈ candidateIndividualSet do

6: for each ∃S.V ∈ {∃(Di)} do

7: successorSet = getSuccessors(x, S)

8: if isEmptySet(successorSet ∩ queryOrientedRetrieve(V)) then

9: candidateIndividualSet ← candidateIndividualSet \ x
10: Break

11: end if

12: end for

13: end for

14: results← results ∪ candidateIndividualSet
15: end for

16: return results

This approach is not limited to role-free ABoxes, but the DL language supported is much

less expressive, and the database schema must be customised according to the structure

of the given TBox.

Another example is the Parka system [ASH95]. Parka is not limited to role-free

ABoxes and can deal with very large ABoxes. However, Parka also supports a much

less expressive description language, and is not based on standard DL semantics, so it is

not really comparable to the Instance Store.

Finally, [Sch94] describes a “semantic indexing” technique that is very similar to the

approach used in the Instance Store except that files and hash tables are used instead of

database tables, and optimisations such as the use of equivalence sets were not considered.

6.8 Discussion

Our experiments show that the Instance Store provides stable and effective reasoning for

role-free ABoxes, even those containing very large numbers of individuals. In contrast,

full ABox reasoning using the RACER system exhibited accelerating performance degra-

dation with increasing ABox size, and was not able to deal with the larger ABoxes used

in this test. (It may be possible to fix this problem by changing system parameters, but

we had no way to investigate this.) The pseudo-individual approach to role-free ABox

reasoning was more promising, and may be worth further investigation. It does not, how-

ever, have the Instance Store’s advantage of ABox persistence, and it appears to be less

likely to scale to even larger ABoxes: it does not cope well with large answer sets, and is

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 95

6. THE INSTANCE STORE

inherently limited by the fact that DL reasoners (at least in current implementations) keep

the entire TBox in memory. Moreover, it is not clear how the pseudo-individual approach

could be extended to deal with ABoxes that are not role-free.

The acceptability of the Instance Store’s performance would obviously depend on the

nature of the application and the characteristics of the KB and of typical queries. It is

likely that the performance of the Instance Store can be substantially improved simply

by dealing with constant factors such as communication overheads—in the current im-

plementation, communication overheads between the Instance Store and the DL reasoner

account for nearly half the time taken to answer queries that require significant amounts

of DL reasoning to compute the answer (i.e., when I2 is large). It may also be possible

to improve the performance of the database, e.g., using techniques such as indexing and

clustering, or by reformulating queries.

As well as dealing with the above mentioned performance bottlenecks, future work

will include the investigation of additional optimisations and enhancements. Possible op-

timisations include semantic indexing feedback—adding new indexing concepts to the on-

tology for the purpose of query optimisation; description canonicalisation—canonicalising

the descriptions passed to the Instance Store, so that equivalent descriptions can be more

effectively identified; cardinality estimation—estimating the cardinality of the result (and

in particular of I2) before executing a query, and giving users the chance to refine queries

if the cost of answering them is likely to be very high; and result caching—caching the

results of queries and of DL subsumption tests in order to avoid DL reasoning when

answering subsequent queries. Possible enhancements include providing a more sophis-

ticated query interface with support for, e.g., conjunctive queries [Tes97].

As discussed in Section 6.6, we are currently engaged in extending the Instance Store

to deal with ABoxes that are not role-free. The impact that this will have on perfor-

mance is likely to be heavily dependent on the structure of the given ABox. In partic-

ular, the Instance Store is not likely to perform well with ABoxes that result in highly

non-deterministic precompletions. ABoxes that are highly interconnected and/or contain

many cyclical connections are also likely to have an adverse affect on performance. An

evaluation of the effectiveness of the extended Instance Store will therefore have to wait

for the completion of the prototype, and on the development of application ontologies

containing large numbers of individuals—currently these are in rather short supply, but

we hope that development of such ontologies will be encouraged by the existence of the

extended Instance Store.

Acknowledgements.

Thanks to Phil Lord for help with the implementation and to Chris Wroe for help with the

GO ontology and the formulation of realistic queries.

96 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

Chapter 7

Optimising Instance Realisation — an

Idea

In order to speed up the instance retrieval InstanceStore described in the previous chapter

restricts the expressiveness of the A-Box to instances without any relationship to other

instances in so-called role-free A-Box. The aim of this restriction is to be able to use

database technologies for answering description logic queries.

However, InstanceStore can use database functionality not for every query. If a query

is classified to the top element, for example, the proposed algorithm from InstanceStore

must fall back into the traditional query answering procedure where every instance is

checked deductively. This inference is known as the instance realisation. Instance real-

isation seems to be needed especially in the case where the query contains disjunctions

— an separating feature of description logics. It is obvious that in such cases instance

realisation is very inefficient even for very large sets of instances because every instance

must be checked.

In this chapter we discuss the opportunity to optimise instance realisation. In cases

where database technology can not be used the idea of our approach is different from

traditional methods, where a specific goal — the implication between instance and query

— is proven. Instead we propose a data-driven approach where all instances are assigned

to the most specific concepts based on the available knowledge in the A-Box before the

first query is sent to the system. The process of assigning instances to most specific

concepts continues during the query answering. In this way the system is continuously

optimised for instance realisation leading to a dynamic behaviour of the system.

In the following we explain this process using an example before we give details about

the underlying theory.

97

7. OPTIMISING INSTANCE REALISATION — AN IDEA

7.1 A motivating example

For the example the domain of family relationship is used. We assume that the reader is

familiar with the notion of description logics. Suppose the following small and simplified

ontology together with the instances is given:

Woman ≡ Human ⊓ Female
Man ≡ Human ⊓ Male

Mother ≡ Woman ⊓ ∃Child :Human
MotherOfOnlySons ≡ Woman ⊓ ∀Child :Man

Father ≡ Man ⊓ ∃Child :Human
Parent ≡ Mother ⊔ Father

Grandmother ≡ Mother ⊓ ∃Child :Parent
Granduncle ≡ Man ⊓ ∃ sibling :Grandmother

Ai = {Woman(anja), Child(anja, nils),Man(nils),
Father(fried), sibling(fried, anja)}

Given the A-Box Ai above we can directly conclude that anja must be a Mother
because she has a child, nils, and nils is a Human because every Man is a Human. Of

course, a normal description logic reasoner (DLR) will not deduce it at the moment. Only

if a query is sent to the system asking if anja belongs to Mother then the system will

answer with yes (and perhaps store this result in its internal database). But normally such

a query is a part of a sequence where the application tries to find out to which concepts

anja belongs. Apart from the question if anja belongs to Mother there must be further

queries if anja belongs to Man, Father, Grandmother, MotherOfOnlySons, etc.

This leads to a uniformed search where the application tries to find out the most specific

concept to which an instance belongs with the help of a sequence of queries. Furthermore

if the application wants to retrieve all instances of Mother, all (relevant) instances must

be checked if the could be assigned to Mother before a DLR can answer the instance

retrieval query. The uninformed search and instance retrieval in general makes instance

realisation inefficient.

Instead of testing we can reformulate the concept expressions into classification rules.

The rule for Mother would be:

Mother(X) ←− Woman(X) ∧ child(X,Y) ∧ Human(Y)

With such a rule we can directly conclude that anja is a Mother. All conditions are

satisfied, i.e. anja is a Woman, has as child nils (i.e. child(anja, nils)) and nils is at

least a Human. If similar rules exist for every concept and can be applied to the A-Box

knowledge, the application must not guess which the possible concepts of anja are.

The rules seem to be a direct translation of the concept definition into logical rules.

However, for the instance realisation it is not possible — and not needed — to translate

98 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

every (part of) concept definition into its corresponding logical rule. For example we

can never infer in Ai that anja is a MotherOfOnlySons. nils is her only son and the

conditions for a MotherOfOnlySons might be satisfied at the moment. But in future

anja can get further children perhaps including a daughter. Or in other words the open

world assumption (OWA) prevents the inference from the knowledge in the A-Box that

anja has only sons as children. The only way for instance realisation is to wait that anja
is assigned to concept term ∀Child : Man — implicitly or explicitly.1 Therefore the

concept definition MotherOfOnlySons can not be translated into the obvious logical

rule which can be used for instance realisation but into a simplified one where the concept

term ∀Child :Man is replaced by the concept instantiation FCM(X) and a new concept

definition FCM ≡ ∀Child :Man is added to the T-Box:

MotherOfOnlySons(X) ←− Woman(X) ∧ FCM(X)

The negation and the disjunction must be handled in the same way.

All the information that can be derived from A-Box Ai is now derived. But now the

dynamic behaviour of the proposed idea is considered. For this purpose the A-Box will

be extended to Ai+1:

Ai+1 = Ai ∪ {Father(nils)}

With new information about nils we can trigger that rules which are affected by this

new information:

Grandmother(X) ←− Woman(X) ∧ child(X,Y) ∧ Parent(Y)

Because nils becomes a Parent (to be precise, nils become a Father which is a

specialisation of Parent) we now know that anja must become a Grandmother. This

derived information can be added to the A-Box and again trigger some rules. We can now

conclude with the help of following rule

Granduncle(X) ←− Man(X) ∧ sibling(X,Y) ∧ Grandmother(Y)

that fried become a Granduncle because anja, his sibling, becomes a Grandmother.

This “chain reaction” imagines the great benefit of the data-driven, dynamic approach:

Every time when new information is arrived in the A-Box all consequences are tried to be

directly computed and as much as possible inferences from the data is derived.

1This is not completely true. The problem can also be solved if an operator is available which says that

no further instantiation of a role/property will exists in future.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 99

7. OPTIMISING INSTANCE REALISATION — AN IDEA

The rule-oriented approach can further be optimised. In order to safe tests we can

partly instantiate the rules even if not all knowledge for satisfying the conditions is present.

That parts which are already satisfied can be omitted indicating that these tests are al-

ready passed and must not checked again. For example with the A-Box Ai the rules for

Grandmother and for Granduncle can already be instantiated to

Grandmother(anja) ←− Woman(anja) ∧ child(anja, nils) ∧ Parent(nils)
=⇒ Grandmother(anja) ←− Parent(nils)

Granduncle(fried) ←− Man(fried) ∧ sibling(fried, anja) ∧ Grandmother(anja)
=⇒ Granduncle(fried) ←− Grandmother(anja)

Now anja seems to “wait” for nils to become itself a Parent in order to become a

Grandmother. fried is waiting for anja to become a Grandmother. However the rule

instantiation may imply that a lot of rules must be instantiated for one instance. With

large sets of instances a still larger set of instantiated rules must be stored and maintained

which may have a detrimental effect to the optimisation with rule instantiation.

This small example demonstrates two main characteristics of the proposed idea. First it

shows the data-driven behaviour. Instead of waiting for some queries the system directly

computes the most specific concepts to which an instance can belong and prevents some

uninformed search for the application which uses this system. Second it shows the dy-

namic behaviour. New information can (monotonically) be added when they appear and

the consequences are tried to be derived directly.

7.2 The Representation Formalism

After this motivating example the representation formalism for the data-driven instance

realisation will now be introduced. As already mentioned it has a strong relationship to

rule formalism. However, the dynamic nature should also be reflected by the formalism.

One adequate method to model dynamic behaviour is an event-driven approach. For the

instance realisation such an event indicates the arrival of new information either by the

application or by the instance realisation process itself. The new information that anja
becomes a Grandmother and fried a Granduncle are two examples for such system-

generated events.

System-generated events may also be interesting for the application which uses the

DLR. In order to keep informed about the new derived information the events can also be

sent to the application.2 Then the application will be informed by the DLR if an instance

was assigned to a more specific concept.

2Of course this functionality extends the current available interfaces like DIG.

100 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

In order to become a little bit more technical events are generated and consumed. For

both the following notation is introduced:

⌊.⌋ checks if the event has appeared. ⌊X : C⌋ looks for an instance X
which is associated to concept C. ⌊R(X,Y)⌋ is the corresponding event

check that the instances X and Y is related through R.

⌈.⌉ generates an event if not already generated in the past. ⌈X : C⌉ says

that instance X now belongs to C. ⌈R(X,Y)⌉ is the corresponding

event generator for the relation R.

Both notations can be combined to more complex event terms by the usual logical

connectives ∧ and ∨. Furthermore the logical implication Ã
3 can be used to connect

events in order to formulate conditions for event checking or generating. For example,

⌊R(X,Y)⌋ Ã ⌈Y : C⌉ says, that the event ⌈Y : C⌉ is only be generated if the instances

X and Y are related trough R, i.e. the event ⌊R(X,Y)⌋ was observed. Both complex

event terms constitute both sides of an event rule. To be more precise:

ψ ←− φ is an event rule which generates the events in ψ = ... ⊛ ⌈δ⌉ ⊛ ... when

the events in φ = ... ⊛ ⌊δ⌋ ⊛ ... are observed. ⊛ represents one of the

following connectives: ∧, ∨, or Ã.

The most interesting question now is how an ontology can be translated into this event-

based rule formalism. The translation will be explained in the next section.

7.3 Translating the Ontology into the Formalism

The event rules are generated from the terminological axioms in the ontology where every

axiom of the form C ≡ D or C ⊑ D will be translated into a set of rules. Before

the translation can begin the concept term must be transformed into disjunctive normal

form. Furthermore like for the negation normal form it is assumed that the negation is

propagated to the innermost terms, i.e. the negation only appears together with a concept

name.4, i.e. C ≡ D1 ⊔ ... ⊔ Dn resp. C ⊑ D1 ⊔ ... ⊔ Dn with Di = Di1 ⊓ ...Dimi
. For

the case of C ≡ D1 ⊔ ...⊔Dn the translation function τ forms for each combination of C
and Di an event rule τ⌈⌉(X : C) ← τ⌊⌋(X : Di) as shown in table 7.1.

C ⊑/≡ D τ(.) =

C ≡ D1 ⊔ ... ⊔ Dn τ⌈⌉(X : C) ← τ⌊⌋(X : D1), ..., τ⌈⌉(X : C) ← τ⌊⌋(X : Dn)
C ⊑ D1 ⊔ ... ⊔ Dn —

Table 7.1: Translation τ for axioms

If the events in the conditions τ⌊⌋(X : Di) of the event rule are observed then the events

3We use a different notion for implication in order to distinguish it from the rules
4The normal form preserves the satisfiability property and must not be visible for the application or an

user.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 101

7. OPTIMISING INSTANCE REALISATION — AN IDEA

τ⌈⌉(X : C) are generated for the common variable X . Which events must be observed

resp. generated is determined by the translation function τ⌈⌉(.) resp. τ⌊⌋(.) depending on

the variable X which is associated to Di resp. C.

For the case of C ⊑ D1 ⊔ ... ⊔ Dn no translation exists because the axioms only

defines necessary but not sufficient conditions D1 ⊔ ... ⊔ Dn that an instance X must

satisfy. Obviously only sufficient conditions can be translated into event rules (if you

conclude from D1 ⊔ ... ⊔ Dn to C).

Data-driven instance realisation has one great advantage in opposite to inferences like

satisfiability checking: it must not discuss all (hypothetical) cases during a proof by cases

but can derive on explicitly known facts. Because of the inherent open world semantics

a realisation of an instance to a more specific concept can only be done if all required

information is available in the A-Box. For example a constraint ∀R : C can never be

guaranteed by a data-driven instance realisation itself because a relation can be added

every time in the future which violates that concept term (see also section 7.1). To satisfy

this concept term the only way is to tell the A-Box explicitly that the concept term is

fulfilled. Because of the restricted A-Box formalism this can only be done for an instance

X if X belongs to a concept FRCnew (i.e. X : FRCnew) which is defined as FRCnew ≡
∀R :C.

FRCnew is a artificial concept definition added to the T-Box which normally is not

seen by an user or application. It is not expected that the user explicitly associate an

instance X to that concept FRCnew but to some subsumers of FRCnew. For example if

anja is told belonging to MotherOfOnlySons (i.e. anja : MotherOfOnlySons) and

MotherOfOnlySons is a specialisation of FRCnew ≡ ∀child :Man then we also know

that the concept term ∀child :Man is satisfied by anja.

Such artificial concept definitions will appear in several situations during the transla-

tion with τ⌊⌋(.) resp. τ⌈⌉(.). Table 7.2 shows the translation of concept terms by τ⌊⌋(.) and

defines the events which must be observed in order to satisfy an A-Box expression. C
and D are concept terms, CN is a concept name, R a role and F a attribute. Note that

currently the translation is restricted to ALC, an expressive but restricted subset of OWL

DL. The extension of the translation to OWL DL needs further investigation.

X : CN and X : C ⊓ D is translated in obvious way to ⌊X : CN⌋ and τ⌊⌋(X :
C) ∧ τ⌊⌋(X : D). Because the concept terms are not unfold (cf. [BMNPS02]) we must

ensure that an event ⌈X : EN⌉ which is generated for a specialisation EN of CN can

also be caught by ⌊X : CN⌋. Therefore the following event rules are virtually added to

the system:

⌈X : CN⌉ ← ⌊X : EN⌋ where EN,CN are concept names with EN ⊑ CN

For X : C ⊔ D and X : ¬C there is no possibility to check these conditions directly and

an artificial concept definition must be generated. When X is associated to a subsumer of

C ⊔ D resp. ¬C then the events can be caught. ∃R : C resp. ∃F : C are also translated

102 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

τ⌊⌋(.) = Remarks

X : CN ⌊X : CN⌋
X : C ⊓ D τ⌊⌋(X : C) ∧ τ⌊⌋(X : D)
X : C ⊔ D ⌊X : CODnew⌋ CODnew ≡ C ⊔ D
X : ¬CN ⌊X : DNnew⌋ DNnew ≡ ¬CN
X : ∃R :C ⌊R(X,Y)⌋ ∧ τ⌊⌋(Y : C)
X : ∃F :C ⌊F (X) = Y ⌋ ∧ τ⌊⌋(Y : C)
X : ∀R :C ⌊X : FRCnew⌋ FRCnew ≡ ∀R :C
X : ∀F :C ⌊X : FFCnew⌋ ∨ (⌊F (X) = Y ⌋ ∧ τ⌊⌋(Y : C)) FFCnew ≡ ∀F :C

Table 7.2: Event checking translation by τ⌊⌋(.)

obviously: two events must be observed telling that X is related to Y , i.e. ⌊R(X,Y)⌋
resp. ⌊F (X) = Y ⌋, and instance Y belongs to C, i.e. τ⌊⌋(Y : C). X : ∀R :C is translated

with help of an artificial concept definition but X : ∀F : C for the attribute/function F
can also be checked directly. In difference to the role R there is a number restriction for

attributes: they can only be instantiated for one value. So if there is such a value Y for

that attribute F and if this value Y belongs to the concept term C then ∀F :C is satisfied.

τ⌈⌉(.) = Remarks

X : CN ⌈X : CN⌉
X : C ⊓ D τ⌈⌉(X : C) ∧ τ⌈⌉(X : D)
X : C ⊔ D ⌈X : CODnew⌉ CODnew ≡ C ⊔ D
X : ¬CN ⌈X : DNnew⌉ DNnew ≡ ¬CN
X : ∃R :C —

X : ∃F :C ⌊F (X) = Y ⌋ Ã τ⌈⌉(Y : C)
X : ∀R :C ⌈X : FRCnew⌉ ∧ (⌊R(X,Y)⌋ Ã τ⌈⌉(Y : C)) FRCnew ≡ ∀R :C
X : ∀F :C ⌈X : FFCnew⌉ ∧ (⌊F (X) = Y ⌋ Ã τ⌈⌉(Y : C)) FFCnew ≡ ∀F :C

Table 7.3: Event generation translation by τ⌈⌉(.)

Table 7.3 defines how events are generated from complex terms by the translation

function τ⌈⌉(.). The first four conditions, X : CN , X : C ⊓D, X : C ⊔D, and X : ¬CN
now generate these events that may be observed by the event checking translation. But

it may surprise that the translation of X : ∃R : C will be empty. Because the role R has

no number restriction it is always possible to generate an instance which belongs to C.

The new generated instance can be absolutely independent from the instances Y which

are currently related with X trough R. Therefore no event must be generated for existing

instances. However, the attribute/function F has an implicit number restriction. Therefore

the translation of X : ∃F :C looks for the value Y of the function F and if Y exists then

an event is generated that Y now belongs to C; if the value Y does not exists then the event

will not be generated. A mixture is the translation for the ∀ constructor in X : ∀R :C and

X : ∀F :C. First they generate an event for the artificial concept definition in order to be

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 103

7. OPTIMISING INSTANCE REALISATION — AN IDEA

able to catch them. Second they generate events for all values Y of R and F if they exist.

The rules in table 7.1 are generated from the concept axiom and formulate conditions

D when an instance X can be classified to C. However these rules do not express all

possibilities for an instance realisation. Suppose that the A-Box Ai+1 in the example

of section 7.1 is further extended to Ai+2 by the information that anja has an further

child jens, i.e. Ai+2 = Ai+1 ∪ {Child(anja, jens)}. When we further add that anja
becomes a MotherOfOnlySons, i.e. Ai+3 = Ai+2 ∪ {anja : MotherOfOnlySons},

then we can conclude that jens must be a Man. However, we can extend the A-Box

in the opposite order, i.e. A′
i+2 = Ai+1 ∪ {anja : MotherOfOnlySons} and A′

i+3 =
A′

i+2 ∪ {Child(anja, jens)}, which also has as consequence that jens must be a Man.

Both ways of extensions demonstrate two further possibilities for instance realisation

based on events in the A-Box and are not covered by the rules in table 7.1. For the

extension of Ai+2 and Ai+3 the realisation of jens is triggered by the new information

about anja because jens is related to anja. In more general terms the new classification

of X to C lead to the realisation to some part of D. Now the events are propagated in the

opposite order from C to D. Such event rules are illustrated in table 7.4. For both kind of

axioms the same event rule is generated.

C ⊑/≡ D τ(.) =

C ≡ D1 ⊓ ... ⊓ Dn

C ⊑ D1 ⊓ ... ⊓ Dn

τ⌈⌉(X : D1) ∧ ... ∧ τ⌈⌉(X : Dn) ←− τ⌊⌋(X : C)

Table 7.4: Further translation τ for axioms

Please note that for this translation the concept term D must be transformed into a differ-

ent normal for, the conjunctive normal form.

The second way of extensions the realisation of jens is invoked by introducing a new

relationship Child to anja. Because of this new relationship in general anja and jens
may be subject of an instance realisation. The check that anja needs further refinement

is covered by the event rules in table 7.1. But the possibility of realisation for jens is not

checked by any rule. Therefore further rules are needed which are shown in table 7.5.

C ⊑/≡ D τ(.) =

C ⊑ D1 ⊔ ... ⊔ Dn τ⌈⌉(Y : E) ←− τ⌊⌋(X : C) ∧ ⌊f(X)=Y ⌋ with

C ≡ D1 ⊔ ... ⊔ Dn Di = ... ⊓ ∃f :E ⊓ ... and f is a property or

τ⌊⌋(X : C) ∧ ⌊R(X,Y)⌋ → τ⌈⌉(Y : E) with

Di = ... ⊓ ∀R :E ⊓ ... for roles and properties

Table 7.5: Further translation τ for axioms

The first two translations of an axiom are not surprising. They have their correspon-

dence in the logical translation. From a logical point of view the third translation is not

104 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

needed and redundant. But together with the event mechanism such rules are desirable.

The logical reason is that free variables in the heads of the rules are all-quantified. Instead

realising it with the help of the inference mechanism the third kind of rules is introduced

in order to simplify the implementation of the reasoning service.

With the artificial concept definitions some helper constructions are introduced which put

some additional knowledge into the subsumption hierarchy. The use that knowledge from

the subsumption hierarchy is characteristics for the proposed idea of optimising instance

realisation. The subsumption hierarchy must be computed by the normal description logic

reasoner — perhaps before any instance realisation can be performed. The a priori com-

putation can be interpreted as a pre-compilation of the knowledge base in order to perform

specialised reasoning, e.g. in this case instance realisation. Furthermore the need for a

complete DLR indicates that the proposed data-driven instance realisation is not suitable

to replace any normal DLR reasoning. Instead it can only optimise

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 105

Chapter 8

Conclusion

In this report, we have investigated the problems of query answering for Semantic Web

query languages (such as RDF, OWL DL and OWL-E) in the OWL-QL specification. Key

features of the OWL-QL specification are summarised in Section 3.1.

Theoretical results are mainly on query answering with RDF graphs and OWL-E on-

tologies. In Chapter 2, we recast the RDF model theory in a more classical logic frame-

work. Given an RDF graph S and a query Q, the answer set of Q to S (as defined

by [Hay04b]) is the same as the certain answer of Q to S given the empty KB. In other

words, an RDF graph can be transformed to a DL ABox; therefore, OWL-QL servers

(such as the one described in Chapter 3) can be used to support query answering w.r.t.

RDF graphs. In Chapter 4, we extend OWL-QL to OWL-E-QL, so as to support conjunc-

tive queries with datatype expression atoms. We have shown that, under certain restric-

tions, query answering w.r.t. OWL-E ontologies can be reduced to ABox reasoning (such

as knowledge base satisfiability, instance checking or instance retrieval).

In addition to the above theoretical results, we also present some implementation re-

sults. Chapter 3 escribes how to implement query answering for the SHIQ DL in an

OWL-QL server. As query answering can be reduced to ABox reasoning and instance

retrieval is the expensive problem (among the three ABox reasoning problems mentioned

above), we have further investigated optimisation techniques for instance retrieval based

on a hybrid DL/Database architecture (Chapter 6).

As for future work, we will further look at how to apply our result to support the

SPARQL language. In addition, we would like to investigate further implementation and

optimisation issues on query answering for Semantic Web query languages (such as RDF,

OWL DL and OWL-E) in the OWL-QL specification.

106

Bibliography

[ANS92] Information technology — database languages — SQL: ISO/IEC

9075:1992, 1992. New York.

[AP00] A.Morris and P.Jankowski. Combining fuzzy sets and databases in multiple

criteria spatial decision making. pages 103–116, 2000.

[ASH95] W. A. Andersen, K. Stoffel, and J. A. Hendler. Parka: Support for extremely

large knowledge bases. In G. Ellis, R. A. Levinson, A. Fall, and V. Dahl,

editors, Knowledge Retrieval, Use and Storage for Efficiency: Proceedings

of the First International KRUSE Symposium, pages 122–133, 1995.

[BB93] Alexander Borgida and Ronald J. Brachman. Loading data into description

reasoners. In Proc. of the ACM SIGMOD Int. Conf. on Management of

Data, pages 217–226, 1993.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,

Implementation and Applications. Cambridge University Press, 2003.

[BE01] Paul V. Biron and Ashok Malhotra (Eds.). XML schema part 2: Datatypes,

May 2001. http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-Wesley Pub

Co, Nov 8 2002.

[Bec03a] Sean Bechhofer. The DIG Description Logic interface: DIG/1.1. Technical
report, University of Manchester, Oxford Road, Manchester M13 9PL, Feb
7 2003. http://dl-web.man.ac.uk/dig/2003/02/interface.pdf.

[Bec03b] Sean Bechhofer. The DIG Description Logic Interface: DIG/1.1. URL http://dl-
web.man.ac.uk/dig/2003/02/interface.pdf, Feb 2003.

[Bec04] RDF/XML syntax specification. URL, Feb 10 2004. http://www.w3.org/TR/
2004/REC-rdf-syntax-grammar-20040210/.

[Ber98] RFC 2396: Uniform Resource Identifiers (URI): Generic syntax. URL, August 1998.

[BF82] B.P Buckles and F.E.Petry. A fuzzy representation of data for relational databases. Fuzzy

Sets and Systems, 7:213–226, 1982.

107

BIBLIOGRAPHY

[Bir01] XML schema part 2: Datatypes. URL, May 2 2001. http://www.w3.org/TR/
xmlschema-2/.

[BMNPS02] F. Baader, D. L. McGuiness, D. Nardi, and P. Patel-Schneider, editors. Description Logic

Handbook: Theory, implementation and applications. Cambridge University Press, 2002.

[Boa03] XQuery 1.0: An XML query language. URL, Nov 12 2003. http://www.w3.org/
TR/2003/WD-xquery-20031112/.

[Bra04] Extensible markup language (XML) 1.0 (third edition). URL, Feb 04 2004. http://
www.w3.org/TR/2004/REC-xml-20040204.

[BTMS04] M. Bada, D. Turi, R. McEntire, and R. Stevens. Using Reasoning to Guide Annotation

with Gene Ontology Terms in GOAT. SIGMOD Record (special issue on data engineering

for the life sciences), June 2004. To appear – available at http://www.cs.man.ac.
uk/∼dturi/papers/goat.pdf.

[CDT04] Olga Caprotti, Mike Dewar, and Daniele Turi. Mathematical service matching us-

ing Description Logic and OWL. Technical Report IST-2001-34145, MONET Consor-

tium, March 2004. Available at http://www.cs.man.ac.uk/∼dturi/papers/
monet onts.ps.

[CGM+04] Roberto Chinnici, Martin Gudgin, Jean-Jacques Moreau, Jeffrey Schlimmer, and San-

jiva Weerawarana. Web Services Description Language (WSDL) version 2.0 part 1:

Core language. URL, March 2004. http://www.w3.org/TR/2004/WD-wsdl20-
20040326.

[CKW93] Weidong Chen, Michael Kifer, and David Warren. HILOG: a foundation for higher-order

logic programming. Journal of Logic Programming, 15(3):187–230, February 1993.

[Cor92] OMRON Corporation. Fuzzy LUNA-Fuzzy Database System Library User’s Manual and

Fuzzy LUNA-Fuzzy Database Reference manual. 1992.

[DCv+02] Mike Dean, Dan Connolly, Frank van Harmelen, James Hendler, Ian Horrocks, Deborah L.

McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL web ontology lan-

guage 1.0 reference, July 2002. Available at http://www.w3.org/TR/owl-ref/.

[DD90] D.Li and D.Liu. A fuzzy prolog database system. 1990.

[DEG+03] Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant Jhingran, Tapas

Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A. Tomlin, and Jason Y. Zien.

Semtag and seeker: Bootstrapping the semantic web via automated semantic annotation.

In Proc. of the Twelfth International World Wide Web Conference (WWW 2003), 2003.

[Dic04] Ian Dickinson. Implementation experience with the DIG 1.1 specification. Technical

Report HPL-2004-85, Hewlett-Packard, Digital Media Systems Laboratory, Bristol, May

2004. http://www.hpl.hp.com/techreports/2004/HPL-2004-85.pdf.

[DND99] D.papadias, N.Karacapilidis, and D.Arkoumanis. Processing fuzzy spatial queries: A con-

figuration similarity approach. 1999.

[FHH03] Richard Fikes, Patrick Hayes, and Ian Horrocks. OWL-QL - a language for deductive

query answering on the semantic web. Technical report, Knowledge Systems Laboratory,

Stanford University, Stanford, CA, 2003.

108 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

[Fik03] DAML Query Language (DQL) abstract specification. URL, Apr 2003. http://www.
daml.org/2003/04/dql/.

[FJF03] Richard Fikes, Jessica Jenkins, and Gleb Frank. JTP: A system architecture and com-

ponent library for hybrid reasoning. Technical report, Knowledge Systems Laboratory,

Stanford University, Stanford, CA, 2003. ftp://ftp.ksl.stanford.edu/pub/
KSL Reports/KSL-03-01.pdf.

[FMM+04] Mary Fernndez, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and Nor-

man Walsh (Eds.). XQuery 1.0 and XPath 2.0 data model, Oct 2004.

http://www.w3.org/TR/2004/WD-xpath-datamodel-20041029/.

[fSI96] International Organization for Standardization and International Electrotechnical Commis-

sion (ISO/IEC). ISO/IEC 14977 : 1996(E), 1996. http://www.cl.cam.ac.uk/
∼mgk25/iso-14977.pdf.

[GO] GO project. European Bioinformatics Institute. http://www.ebi.ac.uk/go.

[Go 03] Gene Ontology Database, 2003. Available at http://www.godatabase.org/dev/
database/.

[Hay04a] Patrick Hayes. RDF semantics. Technical report, W3C, February 2004. W3C recommen-

dation, URL http://www.w3.org/TR/rdf-mt/.

[Hay04b] Patrick Hayes. RDF Semantics. Technical report, W3C, Feb 2004. W3C recommendation,

URL http://www.w3.org/TR/rdf-mt/.

[HBEV04] Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael Volz. A comparison of RDF

query languages. Oct 2004.

[HM01a] V. Haarslev and R. Möller. High performance reasoning with very large knowledge bases:

A practical case study. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJ-

CAI 2001), 2001.

[HM01b] Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the Int. Joint

Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in Artificial

Intelligence, pages 701–705. Springer, 2001.

[HMW04] Volker Haarslev, Ralf Möller, and Michael Wessel. RACER user’s guide and refer-

ence manual, version 1.7.19. URL, http://www.sts.tu-harburg.de/∼r.f.
moeller/racer/racer-manual-1-7-19.pdf, April 2004.

[Hol96] Bernhard Hollunder. Consistency checking reduced to satisfiability of concepts in termino-

logical systems. Ann. of Mathematics and Artificial Intelligence, 18(2–4):133–157, 1996.

[Hor97] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD thesis,

University of Manchester, 1997.

[Hor98] I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? pages 636–647,

1998.

[Hor03] I. Horrocks. Implementation and optimisation techniques. In Franz Baader, Diego Cal-

vanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors, The

Description Logic Handbook: Theory, Implementation, and Applications, pages 306–346.

Cambridge University Press, 2003.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 109

BIBLIOGRAPHY

[HPS03] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to description logic

satisfiability. In Proc. of the 2nd International Semantic Web Conference (ISWC), 2003.

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and

Mike Dean. SWRL: A semantic web rule language combining OWL and RuleML, Apr

2004. http://www.daml.org/2004/04/swrl//.

[isw] Instance Store website. http://instancestore.man.ac.uk.

[JZ86] J.Kacprzyk and A Ziolkowski. Data base queries with fuzzy linguistic quantifiers. IEEE

Trans Systems, Man and Cybernetics, 16:474–478, 1986.

[KAC+02] Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plexousakis, and

Michel Scholl. RQL: A declarative query language for RDF. In Proceedings of the eleventh

international conference on World Wide Web, pages 592–603. ACM Press, New York,

USA, May 7–11 2002.

[LH03] Lei Li and Ian Horrocks. A Software Framework For Matchmaking Based on Semantic

Web Technology. In Proc. of the Twelfth International World Wide Web Conference (WWW

2003), pages 331–339. ACM, 2003.

[MCG+93] M.Zhang, C.Yu, G.Wang, T.Phamand, and H.Nakajima. A relational modelfor imprecise

queries. International Symposium on Methodologies in Inteligent Systems, 1993.

[Min75] Marvin Minsky. A framework for representing knowledge. In Patrick J. Winston, editor,

The psychology of computer visions, pages 211–277. McGraw-Hill, New York, 1975.

[MK85] M.Zemankova and A. Kandel. Implementing imprecision in information systems. Infor-

mation Sciences, pages 107–141, 1985.

[MME04] Ashok Malhotra, Jim Melton, and Philip Wadler (Eds.). XQuery 1.0 and XPath 2.0

functions and operators, Jul 2004. http://www.w3.org/TR/2004/WD-xpath-functions-

20040723/.

[Pan04] Jeff Z. Pan. Description Logics: Reasoning Support for the Semantic Web. PhD thesis,

School of Computer Science, The University of Manchester, Oxford Rd, Manchester M13

9PL, UK, 2004.

[PFT+04] Jeff Z. Pan, Enrico Franconi, Sergio Tessaris, Giorgos Stamou, Vassilis Tzouvaras, Lu-

ciano Serafini, Ian Horrocks, and Birte Glimm. Specification of Coordination of Rule and

Ontology Languages. Technical report, The Knowledge Web project, June 2004.

[PH88] MGalibourg P.Bosc and G Hamon. Fuzzy quering with sql: Extensions and implementa-

tion aspects. Fuzzy Sets and Systems, 28:333–349, 1988.

[PH04] Jeff Z. Pan and Ian Horrocks. OWL-E: Extending OWL with Expressive Datatype Expres-

sions. Technical report, School of Computer Science, the University of Manchester, April

2004.

[PS04] Eric Prud’hommeaux and Andy Seaborne(Eds.). SPARQL query language for RDF, Oct

2004. http://www.w3.org/TR/2004/WD-rdf-sparql-query-20041012/.

[QCJ+95] Q.Yang, C.Liu, J.Wu, C.Yu, S.Dao, and H.Nakajima. Efficient processing of nested fuzzy

sql queries. In proceedings of the 11th International Conference on Data Engineering,

1995.

110 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0

D2.5.2 Report on Query Language Design and Standardisation IST Project IST-2004-507482

[Qui68] M. R. Quillian. Semantic memory. In Marvin Minsky, editor, Semantic Information Pro-

cessing, pages 216–270. The MIT Press, 1968.

[QWC+93] Q.Yang, W.Zhanng, C.Luo, C.Yu, and H.Nakajima. Unnesting fuzzy sql queries in fuzzy

databases. Workshop on Incompleteness and Uncertainty in Information Systems, pages

68–73, 1993.

[Rec04] A. Rector. Re: [UNITS, OEP] FAQ : Constraints on data values range. URL

http://lists.w3.org/Archives/Public/public-swbp-wg/2004Apr/
0216.html, Apr. 2004. Discussion in the public-swbp-wg@w3.org mailing list.

[SA90] S.Shenoi and A.Melton. An extended version of the fuzzy relational database model. In-

formation Sciences, 52:35–52, 1990.

[Sch94] A. Schmiedel. Semantic indexing based on description logics. In F. Baader, M. Buch-

heit, M.A. Jeusfeld, and W. Nutt, editors, Reasoning about structured objects: knowledge

representation meets databases. Proceedings of the KI’94 Workshop KRDB’94. CEUR

(http://ceur-ws.org/), September 1994.

[SSS91] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with complements.

Artificial Intelligence, 48:1–26, 1991.

[Tes97] Sergio Tessaris. Questions and answers: reasoning and querying in Description Logic.

PhD thesis, The University of Manchester, 1997. URLhttp://www.cs.man.ac.uk/
∼tessaris/papers/phd-thesis.ps.gz.

[Tes01] Sergio Tessaris. Questions and answers: reasoning and querying in Description Logic.

Phd thesis, University of Manchester, 2001.

[The00] The Gene Ontology Consortium. Gene ontolgy: Tool for the unification of biology. Nature

Genetics, 25(1):25–29, 2000.

[Tho01] XML schema part 1: Structures. URL, May 2 2001. http://www.w3.org/TR/
xmlschema-1/.

[UCD+03] Michael Uschold, Peter Clark, Fred Dickey, Casey Fung, Sonia Smith, Stephen

Uczekaj Michael Wilke, Sean Bechhofer, and Ian Horrocks. A semantic infosphere. In

Dieter Fensel, Katia Sycara, and John Mylopoulos, editors, Proc. of the 2003 International

Semantic Web Conference (ISWC 2003), number 2870 in Lecture Notes in Computer Sci-

ence, pages 882–896. Springer, 2003.

[WCBN95] W.Zhang, C.Yu, B.Reagan, and H Nakajima. Context -dependent interpretations of linguis-

tic terms in fuzzy relational databases. In proceedings of the 11th International Conference

on Data Engineering, 1995.

[Wir77] Niklaus Wirth. What can we do about the unnecessary diversity of notation for syntactic

definitions? Communications of the ACM archive, 20:822–823, November 1977.

[Zad65] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 111

