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Abstract: We give a comprehensive treatment of the scalar potential for a D3-brane in a

warped conifold region of a compactification with stabilized moduli. By studying general

ultraviolet perturbations in supergravity, we systematically incorporate ‘compactification

effects’ sourced by supersymmetry breaking in the compact space. Significant contribu-

tions to the D3-brane potential, including the leading term in the infrared, arise from

imaginary anti-self-dual (IASD) fluxes. For an arbitrary Calabi-Yau cone, we determine

the most general IASD fluxes in terms of scalar harmonics, then compute the resulting

D3-brane potential. Specializing to the conifold, we identify the operator dual to each

mode of flux, and for chiral operators we confirm that the potential computed in the gauge

theory matches the gravity result. The effects of four-dimensional curvature, including the

leading D3-brane mass term, arise directly from the ten-dimensional equations of motion.

Furthermore, we show that gaugino condensation on D7-branes provides a local source

for IASD flux. This flux automatically and precisely encodes the nonperturbative con-

tributions to the D3-brane potential, yielding a promising ten-dimensional representation

of four-dimensional nonperturbative effects. Our result encompasses all significant con-

tributions to the D3-brane potential discussed in the literature, and does so in the single
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coherent framework of ten-dimensional supergravity. Moreover, we identify new terms with

irrational scaling dimensions that were inaccessible in prior works. By decoupling gravity in

a noncompact configuration, then systematically reincorporating compactification effects

as ultraviolet perturbations, we have provided an approach in which Planck-suppressed

contributions to the D3-brane effective action can be computed. This is the companion

paper to [1].

Keywords: Cosmology of Theories beyond the SM, AdS-CFT Correspondence, Flux

compactifications
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1 Introduction

Since the dawn of time, humankind has wondered, “what is the potential on the Coulomb

branch of the conifold gauge theory, and what are the consequences for models of D-brane

inflation?” In this paper, we continue this quest.

Recent observations [2] give striking support to the idea that there was a period of

inflation in the very early universe [3–5]. In a rather economical way, inflation explains both

the large-scale homogeneity of the universe and the small-scale inhomogeneities required

for the formation of galaxies [6, 7]. As a phenomenon in quantum field theory coupled to

general relativity, inflation is sensitive to ultraviolet physics: the inflationary dynamics is

controlled by Planck-suppressed contributions to the effective action (see e.g. [6–8]). This

strongly motivates pursuing realizations of inflation in an ultraviolet-complete theory, such

as string theory, and then computing these contributions in detail.

In practice, determining all of the significant Planck-suppressed contributions to the

effective action is highly nontrivial and requires a detailed understanding of the stabilization

of compactification moduli. Nevertheless, this undertaking is an essential prerequisite for

any explicit realization of inflation in string theory. It is therefore critical to identify

scenarios for inflation in string theory that enjoy a high degree of computability, so that

one can hope to compute all relevant Planck-suppressed contributions to the inflaton action.

D3-brane inflation in a warped throat geometry [9] has been the subject of considerable

research (for recent reviews, see e.g. refs. [7, 8, 10–12]). Much of the interest is due not to

any intrinsic elegance of the scenario, but rather to the prospect of explicit computations

of the inflaton action: the warped deformed conifold solution [13] provides a concrete arena

with a known metric and known background fluxes, and the effects of moduli stabilization,

e.g. in the scenario of [14], can be incorporated in detail [15, 16]. The essential simpli-

fication is that a finite warped region may be approximated by the noncompact warped

deformed conifold solution, for which the supergravity solution can be written explicitly;

similarly, the divisors responsible for Kähler moduli stabilization may be approximated by

noncompact divisors.
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Corrections to the noncompact approximation, i.e. contributions to the D3-brane ef-

fective action induced by objects and fields in the compact bulk, constitute the remaining

Planck-suppressed contributions to the inflaton action [17]. On general grounds, one ex-

pects that these ‘compactification effects’ can make order-unity corrections to the inflation-

ary slow-roll parameters, and must therefore be incorporated, or shown to be suppressed,

in any explicit realization of D3-brane inflation. Specifically, D-branes, orientifold planes,

fluxes, and quantum effects in the bulk may not preserve the same supersymmetry as a

D3-brane, and their effects on the D3-brane potential must then be included. The relevant

effects can be both perturbative and nonperturbative.

In this work, we provide a systematic treatment of these compactification corrections

to the D3-brane Lagrangian. We take the compact bulk to be a rather general solution of

type IIB supergravity, and then determine how the form of this solution in the ultraviolet

region of a finite throat affects the potential for a D3-brane well inside the throat.

Our strategy is to study a noncompact solution subject to general non-normalizable

deformations, as a computable proxy for a finite throat attached to a compact space.

The critical simplification is that a completely general solution in the ultraviolet is well-

approximated in the infrared by a solution parameterized by the handful of modes that

diminish least rapidly under radial rescaling. In the dual field theory, this is the familiar

statement that renormalization group flow filters out highly irrelevant perturbations, so

that the dominant effect in the infrared is controlled by the coefficients of the most relevant

modes. By careful study of these modes, one can determine the leading structure of the

D3-brane potential.

We identify the nonlinear interactions of imaginary anti-self-dual (IASD) three-form

fluxes as an important contribution to the D3-brane potential. In fact, under certain condi-

tions this can be the dominant effect in the infrared. To incorporate this effect, we provide

a general solution for IASD fluxes in the conifold. Our method extends to any Calabi-Yau

cone, yielding the three-form fluxes in terms of the scalar harmonics on the angular man-

ifold. Taking general IASD fluxes as sources, we compute the corresponding flux-induced

potential. We then include an additional contribution sourced by four-dimensional scalar

curvature, showing that the leading curvature correction gives rise to the well-known ‘eta

problem’ mass term of [9] (see also [18, 19]). The inclusion of the nonlinear effects of fluxes

and curvature is a substantial step beyond the linear treatment in our previous work [17].

Our analysis is simplified by a special property of D3-branes: a D3-brane couples only

to a particular scalar mode, which we denote by Φ−, and IASD flux G− is the dominant

source in the equation of motion for Φ−. We systematically expand around solutions in

which Φ− = G− = 0. Crucially, metric and dilaton fluctuations do not couple to D3-branes

at the order to which we work. Therefore, although the metric is distorted away from the

conformally Calabi-Yau metric of the leading order solution, we do not need to determine its

form in order to specify the D3-brane potential. Thus, although our solutions are genuinely

nonlinear in fluxes, they are far simpler than the most general solutions nonlinear in all

supergravity fields. Let us stress that our analysis rests on a double expansion: in small

fluctuations around solutions in which Φ− = G− = 0, and in the ratio of energy scales

between the ultraviolet, where the throat is perturbed by effects from the compact bulk,

and the infrared, where the D3-brane probes the supergravity background.

– 2 –
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The compactification effects studied here are most efficiently described in supergrav-

ity as perturbations to the ultraviolet region of the warped deformed conifold solution.

However, a nontrivial consistency check comes from representing these non-normalizable

perturbations, through the AdS/CFT correspondence [20–22], as perturbations to the La-

grangian of the dual conformal field theory (CFT). Building on the work of Ceresole et

al. [23], we provide the operator in the conifold CFT dual to each mode of flux. In our

earlier work [17], we considered corrections to the D3-brane potential from linearized per-

turbations of the CFT Kähler potential; here we incorporate contributions up to quadratic

order in the perturbations of the superpotential. In the case of chiral operators perturbing

the superpotential, we compute the potential on the CFT side and find agreement with the

supergravity result. For non-chiral operators, there is no reason to expect computability in

the strongly-coupled CFT, and we do not attempt to match the corresponding potentials.

Ultimately, our approach is strongly reminiscent of a four-dimensional effective field

theory analysis of the inflaton action. However, the field theory that governs the D3-

brane potential is strongly coupled. Several of the contributing operators have irrational

dimensions and cannot be studied effectively on the field theory side. Our method, which

is to consider the most general perturbations of the ultraviolet region of the supergravity

solution, effectively uses AdS/CFT to provide a tractable problem that realizes the spirit

of the four-dimensional effective field theory approach.

An additional goal of this work is a better understanding of nonperturbative contri-

butions to the D3-brane potential. When the Kähler moduli are stabilized nonperturba-

tively [14], a critical contribution to the D3-brane potential arises from nonperturbative

effects on branes wrapping suitable four-cycles [9, 24, 25]. In the special case in which the

dominant effect comes from a divisor that protrudes into the warped throat region, the

nonperturbative corrections to the D3-brane potential can be computed [15, 16]. However,

for general compactifications there will be non-negligible contributions from a variety of

divisors, not all of which enter the throat region. An outstanding open problem is how to

characterize these contributions.

We make progress in this direction by demonstrating that for any specified superpoten-

tial W for a D3-brane in a noncompact conifold geometry, there exists a ten-dimensional

supergravity solution in which the scalar potential for a probe D3-brane precisely matches

the scalar potential computed in the four-dimensional supersymmetric gauge theory with

superpotential W . This solution contains IASD three-form flux of Hodge type (1, 2), G(1,2),

and amounts to an explicit example of the general result [26] that a G(1,2) background in-

duces superpotential interactions for a probe D3-brane. We show that this relation persists

even in the presence of large distortions of the metric and dilaton sourced by the classical

backreaction of D7-branes. Perhaps more surprisingly, we demonstrate that for any speci-

fied superpotential for a D3-brane in a finite conifold region, the F-term potential computed

in four-dimensional supergravity can be geometrized by a particular ten-dimensional back-

ground of IASD fluxes.

Finally, we establish that gaugino condensation on D7-branes wrapping a four-cycle

Σ provides a source term, localized to Σ, for IASD flux. The ten-dimensional equation of

motion for the flux is corrected by a term proportional to the expectation value 〈λλ〉 of

– 3 –
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Figure 1. Three descriptions of D3-branes in warped throats: the ten-dimensional supergravity

perspective is explored in section 2, section 3 and section 4, the dual four-dimensional conformal

field theory is discussed in section 5, and connections to four-dimensional supergravity are made in

section 6 and section 7.

the gaugino bilinear, and the corresponding solution necessarily involves G(1,2) flux propor-

tional to 〈λλ〉. We demonstrate that a probe D3-brane in this flux background experiences

precisely the scalar potential computed in four dimensions with the gaugino condensate

superpotential. In this sense, the induced flux encodes four-dimensional nonperturbative ef-

fects in the ten-dimensional supergravity solution. This result constitutes progress towards

a geometric transition for D7-branes, in that it replaces four-dimensional nonperturbative

effects on D7-branes by certain bulk fluxes. However, our methods serve only to identify

terms in the supergravity solution to which a D3-brane is sensitive, and as noted above,

at leading order a D3-brane does not couple to perturbations of the metric.1 We leave for

the future the very interesting problem of identifying further probes of the geometry that

could guide the formulation of a complete geometric transition for D7-branes [28].

In summary, in this paper we present three distinct, but complementary descriptions of

the system of interest (see figure 1): i) ten-dimensional supergravity, ii) four-dimensional

gauge theory, and iii) four-dimensional supergravity. For an inflationary model, dynam-

ical four-dimensional gravity is of course crucial, so that only the last description, which

arises for a D3-brane probing a finite throat contained in a compact space, seems of

direct interest. However, we show that one can usefully consider a decompactification

limit in which a D3-brane probes a noncompact warped throat subject to suitable non-

normalizable perturbations. This theory is then connected by the AdS/CFT correspon-

dence to an approximately-conformal four-dimensional gauge theory subject to ultraviolet

perturbations of the Lagrangian. Furthermore, the sourcing of fluxes by gaugino conden-

sation provides a map from four dimensions to ten dimensions. We use the noncompact

ten-dimensional supergravity solution in order to determine the structure of the inflaton

potential in the compact case of interest. The internal consistency of these different ap-

proaches to computing the D3-brane potential, and the many cross-checks provided by

relating them, give us confidence that we capture the leading contributions.

1See [27] for an interesting related proposal that represents the nonperturbative superpotential in terms

of generalized complex geometry.
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For readers familiar with our prior work [15–17], we will now outline how the present

analysis incorporates and extends those results. In [15, 16] the D3-brane potential in-

duced by nonperturbative effects on a stack of D7-branes was studied in four-dimensional

supergravity. The D7-branes were assumed to descend far into the throat region and to

have limited support in the bulk, so that the effects computed explicitly in [15] would

dominate over additional contributions from the compact bulk. In [17] we began to re-

lax this assumption, studying more general contributions to the D3-brane action in the

framework of ten-dimensional supergravity. In the present work we study very general

compactification contributions to the D3-brane action and determine the full structure of

the D3-brane potential.

To compare these results, we write the D3-brane potential as

V =
∑

i

ciφ
∆ihi(Ψ) , (1.1)

where ci are constants, φ is the canonically-normalized field describing radial motion of the

D3-brane, and hi(Ψ) are functions of the angular directions on the conical geometry (see

section 3 for our conventions). In this notation, the four-dimensional supergravity result

of [16] implies that

∆ = 1 ,
3

2
, 2s , 2 ,

5

2
, 3 , . . . (1.2)

where 2s denotes a singlet term, and all other terms have nontrivial angular dependence.

In [17] we showed that a subset of these terms correspond to perturbations of the super-

gravity solution by certain scalar field harmonics on the conifold, with

∆H =
3

2
, 2 , 3 , . . . (1.3)

In this paper, we will show that the remaining terms correspond to nonlinear perturbations

sourced by fluxes,

∆G− = 1 , 2s ,
5

2
, . . . (1.4)

and by four-dimensional curvature R4,

∆R = 2s , 3 , . . . (1.5)

Moreover, we will identify the leading compactification effect that could not be captured

by the analysis of [16]: this is a flux perturbation dual to a non-chiral operator,

∆nχ =
√

28 − 5

2
≈ 2.79 . (1.6)

Such a contribution is generically present, but could not be found in [16], which incorpo-

rated only perturbations of the superpotential.

The outline of this paper is as follows: in section 2 we recall the basic fields and

equations of motion of type IIB supergravity. We define our approximation scheme for

studying non-normalizable perturbations of backgrounds with imaginary self-dual (ISD)

– 5 –
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fluxes. As a prerequisite for analyzing the flux-induced potential, we classify in section 3

all closed, IASD three-form perturbations on general Calabi-Yau cones. In section 4 we

then discuss the spectrum of contributions to the D3-brane potential sourced by UV de-

formations of AdS5 × T 1,1. In section 5 we explain how these results can be reflected in

the dual conformal field theory studied in [29]. First, we carefully identify the operators

dual to the perturbations of fluxes, building on [23]. We then perturb the CFT Lagrangian

by these operators, allowing for explicit breaking of supersymmetry, and show that in the

case of perturbations by chiral operators, the results agree with the gravity analysis. In

section 6 we relate our results to the nonperturbatively-generated D3-brane potential in

four-dimensional supergravity, showing that the effects of gaugino condensation on D7-

branes can be represented in ten dimensions by suitably-chosen IASD fluxes. Finally, in

section 7 we show that gaugino condensation on D7-branes actually sources IASD flux,

providing an intriguing link between ten-dimensional supergravity and four-dimensional

nonperturbative effects. We present our conclusions in section 8.

Two appendices contain computations supporting the results presented in the main

text: in appendix A we give the details of the classification of all closed, IASD three-form

flux perturbations on arbitrary Calabi-Yau cones, while in appendix B we extend some of

these results to cases with significant dilaton variations.

Throughout we use units where c = ~ = 1 and M2
pl = 1/8πG = 1.

A condensed presentation of some of the key results of this paper has appeared in [1].

2 Ten-dimensional supergravity

Our goal is to understand the effective action for D3-branes in a flux compactification.

Suppose that the entire compactification contains only ISD fluxes and that all local sources

saturate the inequalities described in [30]; we will refer to such a solution as an ISD

compactification. A D3-brane in an ISD compactification is known to feel no force at leading

order in gs and α′. However, the no-scale structure that forbids a D3-brane potential at

leading order simultaneously forbids a potential, again at leading order, for the breathing

mode of the compactification. Therefore, when the no-scale structure is ultimately broken

to achieve Kähler moduli stabilization, e.g. by nonperturbative effects, the D3-brane also

experiences a potential. We would like to describe the most general such potential in

ten-dimensional supergravity by systematically expanding around an ISD solution.

We will also make use of an expansion around the noncompact warped deformed coni-

fold solution [13]. Gluing a finite throat into a compact space requires suitable distortions

of the supergravity fields in the ultraviolet region of the throat. Some of these distor-

tions may involve only supergravity fields to which a D3-brane does not couple at leading

order, such as the dilaton and the unwarped metric. Examples of ISD compactifications

of precisely this sort are well-understood [30]. However, as explained above, in general

one expects that some of the distortions associated with attaching a throat into a com-

pact space with all moduli stabilized will require violations of the ISD conditions described

in [30]. Therefore, in this section we consider general non-normalizable perturbations of

ISD compactifications, allowing these perturbations to violate the ISD conditions.

– 6 –
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In section 2.1 we review the basic degrees of freedom of type IIB supergravity and

the equations of motions that the fields satisfy. We derive the equation of motion of the

D3-brane potential and show that it is sourced by IASD fluxes and by four-dimensional

Ricci curvature. In section 2.2 we explain that a filtering effect of the warped background

allows us to focus on a handful of corrections, those with the smallest scaling dimensions.

Then, in section 2.3, we describe the scheme by which we study perturbations around ISD

compactifications. (We present these corrections in more detail in the following sections,

section 3 and section 4.) Finally, in section 2.4, we describe some constraints on these

backgrounds that arise when one wishes to consider a compact model; the most basic

conditions arise from avoiding destabilization of the volume modulus of the compact space,

and from satisfying global tadpole constraints.

2.1 Equations of motion

Our starting point is the bosonic low-energy action for type IIB supergravity in Ein-

stein frame,

SIIB =
1

2κ2
10

∫
d10x

√
|g|

[
R10 −

∂Mτ∂
M τ̄

2 Im(τ)2
− G3 · Ḡ3

12 Im(τ)
− F̃ 2

5

4 · 5!

]

+
1

8iκ2
10

∫
C4 ∧G3 ∧ Ḡ3

Im(τ)
+ Slocal , (2.1)

where κ2
10 ≡ 1

2(2π)7α′4 is the ten-dimensional gravitational coupling (in the conventions

of [30]). Here, τ ≡ C0 + ie−φ is the axio-dilaton field and G3 ≡ F3 − τH3 is a combination

of the R-R and NS-NS three-form fluxes F3 ≡ dC2 and H3 ≡ dB2. The five-form F̃5 ≡
F5 − 1

2C2 ∧H3 + 1
2B2 ∧F3 is self-dual, F̃5 = ⋆10F̃5, where ⋆10 is the ten-dimensional Hodge

star operator. Finally, R10 is the ten-dimensional Ricci scalar and Slocal denotes localized

contributions from D-branes and orientifold planes.

For the warped line element, we take the ansatz2

ds2 = e2A(y)gµνdx
µdxν + e−2A(y)gmndymdyn . (2.2)

The metric gmn of the internal space will not be Calabi-Yau in the configurations of interest,

but it is useful to think of this metric as being Calabi-Yau at leading order in a certain

perturbative expansion, as we shall explain in section 2.3. For the five-form flux, we assume

F̃5 = (1 + ⋆10) dα(y) ∧
√
−detgµν dx0 ∧ dx1 ∧ dx2 ∧ dx3 . (2.3)

The warp factor e4A(y) and the scalar function α(y) in eqs. (2.2) and (2.3) will play crucial

roles in the potential felt by probe D-branes. The Einstein-frame action for a Dp-brane

wrapping a (p − 3) cycle Σ is the sum of Dirac-Born-Infeld (DBI) and Chern-Simons

(CS) terms,

SDp = −
∫

R4×Σ

dp+1ξ Tp
√−gind + µp

∫

R4×Σ

Cp+1 , (2.4)

2To determine the full effective action governing time-dependent solutions, a more general line element

is required [31, 32]. In this work we exclusively study the scalar potential as a function of the D3-brane

position, for which the much simpler line element (2.2) suffices.

– 7 –
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where gind is the metric induced on the Dp-brane, and

Tp = |µp|e(p−3)φ(y)/4 with |µp| = (2π)−p(α′)−(p+1)/2 . (2.5)

Notice the special status of D3-branes, whose action decouples from fluctuations of the

dilaton φ(y) and of the internal unwarped metric gmn(y). In these variables a D3-brane

experiences the potential

VD3 = T3

(
e4A − α

)
≡ T3Φ− . (2.6)

In the following we are therefore interested in perturbations of the scalar quantity Φ− ≡
e4A − α. We also define Φ+ ≡ e4A + α. Furthermore, it will be convenient to use the

following parametrization of the three-form fluxes:

G± ≡ (⋆6 ± i)G3 , (2.7)

where ⋆6 is the six-dimensional Hodge star operator on the internal manifold. Then,

G+ is the ISD component of the three-form flux G3, while G− is its IASD component.

Combining the external Einstein equations with the Bianchi identity for the five-form flux

(dF̃5 = H3 ∧ F3 + local) we find

∇2Φ− =
e8A+φ

24
|G−|2 + R4 + e−4A|∇Φ−|2 + Slocal , (2.8)

where R4 denotes the four-dimensional Ricci scalar, and ∇2 is constructed from gmn. This

result is a straightforward generalization of eq. (2.30) of [30], with the difference3 that here

we have allowed gµν to be the metric of a maximally-symmetric four-dimensional spacetime,

while with the more restrictive assumptions of [30], gµν = ηµν is required, and R4 = 0.

The equation of motion for the three-form flux is

dΛ +
i

2

dτ

Im(τ)
∧ (Λ + Λ̄) = 0 , (2.9)

where we have defined

Λ ≡ Φ+G− + Φ−G+ . (2.10)

This must be supplemented by the Bianchi identity, which in the absence of sources reads

dG3 =
1

2i
d(G+ −G−) = −dτ ∧H3 . (2.11)

2.2 UV perturbations and RG filtering

In an ideal world, one would determine the precise D3-brane potential in a fully-specified

compactification, in terms of fluxes, D-brane positions, and closed string moduli vevs.

With present methods this is difficult to achieve, except perhaps in a toroidal orientifold

setting such as [25, 33]. In this paper, our goal is to determine the general structure of the

potential arising from UV deformations of the background,

V (φ) =
∑

i

ci
φ∆i

M∆i−4
UV

, (2.12)

3We thank David Marsh and Gang Xu for discussions of this point.
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Figure 2. Compactification can induce very general UV perturbations of the warped conifold

solution, but in the infrared only the lowest-dimension perturbations contribute meaningfully to

the D3-brane potential.

where φ is the canonically-normalized field related to the D3-brane position and MUV is a

UV mass scale (related to rUV, the ultraviolet location at which the throat is glued into the

compact bulk; see figure 2). In terms of the parametrization of eq. (2.12), our primary task

is to compute the scaling dimensions ∆i, while leaving the coefficients of individual terms,

ci, undetermined. This undertaking is a necessary precursor to any calculation that does

obtain the Wilson coefficients in a concrete model. For comparison, in ref. [16] we argued

that in certain special circumstances, the dominant Planck-suppressed contribution to the

D3-brane potential comes from interactions with nonperturbative effects on a divisor in

the conifold. In the present paper, we are addressing the more general situation in which

multiple compactification effects make important contributions to the potential.

Our interest is in the leading terms in the potential for a D3-brane that is well-separated

from the UV cutoff rUV. The dominant terms come from the Kaluza-Klein modes with the

smallest AdS masses, i.e. the modes dual to the most relevant operators in the CFT. Highly

irrelevant perturbations are filtered out by the RG flow; in gravity language, these pertur-

bations are described by higher-order terms in a multipole expansion and are subleading

at long distances from rUV.

The dominant terms at small radial position r are, of course, those with the smallest

∆i in eq. (2.12). We choose to work to order r4 and consistently neglect higher-order terms.

Although we are formally expanding in small r, we also assume that the D3-brane is far

above the infrared location rIR where the duality cascade [13] terminates and the conifold

is deformed. That is, we take rIR ≪ r ≪ rUV.

Throughout this paper we restrict our attention to non-normalizable perturbations —

corresponding to deformations of the gauge theory Lagrangian — sourced by effects in the

compact bulk. However, perturbations by normalizable modes of the supergravity fields,
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corresponding to perturbations of the state of the dual CFT, can also make important

contributions to the D3-brane potential. For example, the Coulomb potential sourced by

an anti-D3-brane at the tip of the warped deformed conifold is described in supergravity

as a normalizable mode of Φ− [34] (cf. [35]) and plays an important role in D3-brane

inflation (see [17] for further details). We focus on non-normalizable perturbations because

these encode the effects of Planck-scale physics in the compact bulk, whereas normalizable

perturbations are dictated by the better-understood physics in the infrared. Extending

the analysis presented here to incorporate any given set of normalizable perturbations is,

however, entirely straightforward.

2.3 Perturbative expansion

We now define our perturbative expansion scheme. Our method is general and can be

performed in an expansion around any background in which Φ− = G− = 0, although we

will sometimes specialize to perturbations around the background AdS5 × T 1,1.

We consider perturbations of all fields,

X = X(0) +X(1) +X(2) + . . . , X ≡ {Φ−,Φ+, G−, G+, φ, gmn} , (2.13)

where X(0) is the background, X(1) is the first-order perturbation, X(2) is the second-order

perturbation, etc. We assume that all perturbations are small.4 Importantly, Φ− and G−
vanish in ISD backgrounds,

Φ
(0)
− = G

(0)
− = 0 . (2.14)

Let us now systematically expand the equations of motion in small perturbations.

Equation of motion for Φ
−
. For simplicity we begin by studying the noncompact limit

(Mpl → ∞) which extracts fluxes as the only source term in the equation of motion for Φ−,

∇2Φ− =
e8A+φ

24
|G−|2 + e−4A|∇Φ−|2 . (2.15)

We will incorporate the curvature contribution R4 for finite Mpl in section 4.2. Metric

perturbations propagate into perturbations of the Laplacian,

∇2 = ∇2
(0) + ∇2

(1) + . . . (2.16)

At first order in all perturbations we get

∇2
(0)Φ

(1)
− = 0 , (2.17)

while at second order we find

∇2
(1)Φ

(1)
− + ∇2

(0)Φ
(2)
− =

gs

96

(
Φ

(0)
+

)2∣∣G(1)
−

∣∣2 + 2
∣∣∇(0)Φ

(1)
−

∣∣2/Φ(0)
+ . (2.18)

Here, we have defined the string coupling gs = eφ(0) , where φ(0) = const is the asymptotic

background value of the dilaton. Clearly, the flux source term on the r.h.s. becomes impor-

tant only at second order. Therefore, we are faced with two very different regimes, both of

physical interest:

4For results in the case of large deviations of the metric and dilaton, see appendix B.
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• Case I

Φ
(1)
− 6= 0 (2.19)

In this case the linearized equation of motion (2.17) suffices to determine the leading

solution. We have analyzed this limit in [17].

• Case II

Φ
(1)
− = 0 (2.20)

In this case flux-induced second-order terms can be important. This limit is the focus

of the present paper. In the limit (2.20), the first-order equation (2.17) is identically

satisfied, and the second-order equation (2.18) simplifies to

∇2
(0)Φ

(2)
− =

gs

96
(Φ

(0)
+ )2

∣∣G(1)
−

∣∣2 . (2.21)

In section 5 we will provide a further physical justification for the perturbative expan-

sion scheme we have proposed. We will see that in a spurion analysis of supersymme-

try breaking in the compact bulk, perturbations of G− can arise at linear order in the

(small) spurion vacuum expectation value, while perturbations of the homogeneous

mode of Φ− require two spurion insertions. Therefore, it is natural to consider cases

in which Φ
(1)
− = 0 but G

(1)
− 6= 0.

In solving (2.21), one must in general include harmonic Φ
(2)
− perturbations, in addition

to the Φ
(2)
− solution sourced by the G

(1)
− flux. These terms are of comparable size in

concrete scenarios, such as that of [16], and indeed our techniques suffice to reproduce

the potential of [16] as a special case (see section 6.3).

Note that metric and dilaton perturbations do not appear in either of eq. (2.17) and

eq. (2.21): their effects on Φ− are subleading in both cases. Thus, although the metric

and dilaton must obey their own equations of motion, the corresponding solutions for these

fields are not required in order to determine the leading contributions to Φ−. Therefore,

we will not pursue explicit solutions of the metric and dilaton equations of motion in this

paper. We remark in passing that although we will take g
(0)
mn to be a Calabi-Yau metric,

the perturbed metric gmn will in general not be Calabi-Yau, cf. [36].

Flux equation of motion. Next we consider the flux equation of motion,

dΛ +
i

2

dτ

Im(τ)
∧ (Λ + Λ̄) = 0 , (2.22)

where

Λ ≡ Φ+G− + Φ−G+ . (2.23)

Since the Φ− equation (2.21) is second order in the fluxes, it suffices to solve (2.22) at first

order. We get

dΛ(1) = 0 , (2.24)

where

Λ(1) = Φ
(0)
+ G

(1)
− + Φ

(1)
− G

(0)
+ . (2.25)
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The flux-induced contributions to Φ− are only important when Φ
(1)
− = 0, so that we

may take

Λ(1) ≈ Φ
(0)
+ G

(1)
− . (2.26)

This is precisely the source term in eq. (2.21). We can therefore write

∇2
(0)Φ

(2)
− =

gs

96

∣∣Λ(1)

∣∣2 . (2.27)

IASD condition. In general, metric perturbations induce changes in the definition of

IASD fluxes, by perturbing the Hodge star operator. However, since Λ(0) = 0, the relevant

IASD condition at first order is

⋆
(0)
6 Λ(1) = −iΛ(1) , (2.28)

i.e. Λ(1) is IASD with respect to the background metric. Therefore, one does not need the

explicit form of the perturbed metric in order to determine the leading IASD flux solution,

a substantial simplification analogous to that occurring in eq. (2.21).

Equations (2.24), (2.27) and (2.28) form the basis for our exploration of flux-induced

corrections to the D3-brane potential in warped throats with UV deformations (section 3

and section 4).

2.4 Consistency requirements

Stability of the background. Let us comment on the stability of the throat solutions

in the presence of UV perturbations. We will ultimately allow non-normalizable pertur-

bations dual to relevant operators. The corresponding supergravity profiles grow in the

infrared, and given enough RG evolution, these modes could become uncontrollably large

perturbations of the proposed background solution. We will now argue that this insta-

bility is under control whenever the bulk supersymmetry breaking is small enough that

decompactification does not ensue (see also appendix A of ref. [17]).

The configuration of interest is a finite throat in a stabilized compactification, with

supersymmetry broken controllably in the bulk, and with a moduli potential that pro-

vides a finite barrier preventing decompactification. When this system is perturbed

so that a positive four-dimensional potential energy is induced, this energy shifts the

metastable minimum of the compactification toward larger volume. Sufficiently large per-

turbations create a decompactification instability. We will insist on studying configurations

that remain metastable and hence must impose an upper bound on the four-dimensional

potential energy.

As argued in [17], the requirement of metastability implies that the bulk supersymme-

try breaking is in fact not large in units of the infrared scale of the throat. A priori these

scales were completely unrelated, but demanding an adequate barrier in the moduli poten-

tial, and assuming that effects in the infrared region of the throat (e.g., an anti-D3-brane)

suffice to uplift to a de Sitter solution, one finds the condition [17],

Φ−(r) < Φ
(0)
+ (rIR) ≤ Φ

(0)
+ (r) . (2.29)

– 12 –



J
H
E
P
0
6
(
2
0
1
0
)
0
7
2

The consequence is that the relevant deformations, evaluated in the ultraviolet, have expo-

nentially small coefficients that are no larger than (MIR/MUV)2, for modes of flux Λ, and

no larger than (MIR/MUV)4 for harmonic modes of Φ−. The different scaling for these two

classes of modes may be understood to arise from the condition (2.20).

Quite generally, relevant perturbations of the form

δL = cM4−∆
UV O∆ , (2.30)

with c ≪ 1, lead to important instabilities after RG evolution to a scale Mcrit obeying
Mcrit
MUV

< c
1

4−∆ . Above we have argued that in the cases of interest, requiring metastability

implies that the coefficients (for operators dual to modes of flux, whose proper treatment

is the novelty in this paper) should obey c . (MIR/MUV)2. Then, for operators with

∆ > 2, the RG evolution does not persist long enough for the relevant perturbations to

have unit size.5

Constraints from compactness. Finally, let us briefly comment on the consistency of

our approach when global constraints are taken into account. It is well-understood that

beginning with a compact ISD solution [30], the addition of IASD fluxes alone, with no

other new ingredients, is inconsistent with the integrated Einstein equation and Bianchi

identity. A consistent compact solution containing both ISD sources (such as ISD fluxes,

D7-branes, and O3/O7 orientifold planes) and IASD fluxes requires some additional sources

in order to obey, e.g., eq. (2.30) of ref. [30]. These sources could be be additional classical

brane sources (for instance, anti-O3-planes), or may arise from quantum effects. In this

work we do not explicitly specify any additional sources in the ten-dimensional solution,

but anticipate that the contributions of nonperturbative effects will render these solutions

consistent, as is strongly suggested by the four-dimensional analyses of [14] et seq. The

situation is therefore precisely the same as in studies of supersymmetry breaking from an

anti-D3-brane, and of soft terms from IASD fluxes.

3 Fluxes in the conifold

One of the main results of this paper is a comprehensive treatment of the contributions

of IASD fluxes to the D3-brane potential. To this end, in this section we will present, in

closed form, the most general solution to the flux equations of motion,

dΛ = 0 , where ⋆6 Λ = −iΛ , (3.1)

on general Calabi-Yau cones, including the conifold. The classification of all closed, IASD

three-forms Λ on Calabi-Yau cones — eq. (3.1) — is a well-defined mathematical prob-

lem whose solution is presented in detail in appendix A. Here, we summarize the results,

first outlining the problem in terms of a harmonic expansion on the base manifold X5

(section 3.2), and then giving the flux solutions in closed form (section 3.3).

5There is e.g. an operator with ∆ = 3
2
, but it is dual to a harmonic mode of Φ− and hence its coefficient

should satisfy the stronger constraint c ≤ (MIR/MUV)4 [17]. The leading flux perturbation has dimension

∆ = 5
2

(see section 3).
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conifold bulkrUV

r
Ψ

X5

Figure 3. Schematic of the conifold geometry. The five angular coordinates on the base X5 = T 1,1

are denoted by Ψ = {θi, φi, ψ}. The geometry is noncompact, but we imagine that eventually this

space smoothly attaches to a compact bulk space at rUV; cf. figure 4.

In section 4 we will integrate the Φ− equation of motion,

∇2Φ− =
gs

96
|Λ|2 + R4 , (3.2)

incorporating four-dimensional curvature and the flux solutions of section 3 as sources.

3.1 The conifold

Although all of our results in principle apply to arbitrary Calabi-Yau cones, when comput-

ing spectral data we will specialize to the conifold. We therefore begin by briefly setting

our notation for the conifold (more details may be found in [16, 37]).

The conifold is a singular noncompact Calabi-Yau threefold defined in C
4 by the con-

straint equation
4∑

a=1

z2
a = 0 , za ∈ C . (3.3)

Eq. (3.3) describes a cone over the five-dimensional manifold T 1,1,

g(0)
mn dymdyn = dr2 + r2dΩ2

T 1,1 , (3.4)

where we have introduced the real coordinates r3 ≡
(

3
2

)3/2 ∑
a |za|2 and Ψ = {θi, φi, ψ},

with i = 1, 2.

A stack of N D3-branes placed at the singularity za = 0 backreacts on the geometry,

producing the ten-dimensional warped line element

ds2 = e2A(0)(r)ηµνdx
µdxν + e−2A(0)(r)(dr2 + r2dΩ2

T 1,1) , (3.5)

where

e−4A(0)(r) =
L4

r4
and L4 ≡ 27π

4
gsN(α′)2 . (3.6)

This ISD solution—AdS5 × T 1,1—is summarized in table 1. In the following we will study

small perturbations around this background.

An essential element of our solutions will be harmonic functions on the conifold, i.e. so-

lutions to the Laplace equation, ∇2f = 0. Expanding f in angular harmonics on T 1,1 [23],

we have

f(r,Ψ) =
∑

L,M

fLM

(
r

rUV

)∆f (L)

YLM (Ψ) + c.c. , (3.7)
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Fields AdS5 × T1,1

e4A Eq. (3.6)

α e4A

gmn Eq. (3.4)

Φ− 0

∂rφ 0

C0 0

G3 0

G− 0

G+ 0

Table 1. Supergravity fields and the AdS5 × T 1,1 solution.

∆f j1 j2 Rf
3
2

1
2

1
2 1

2 0 1 0

2 1 0 0

3 1 1 2√
28 − 2 1 1 0

Table 2. Spectrum of lowest-dimension harmonic functions on the conifold.

where fLM are constant coefficients, L ≡ (j1, j2, Rf ) and M ≡ (m1,m2) label the SU(2)×
SU(2) × U(1)R quantum numbers under the isometries of T 1,1, and the radial scaling

dimensions ∆f (L) are related to the eigenvalues of the angular Laplacian,

∆f (L) ≡ −2 +
√
H(j1, j2, Rf ) + 4 , (3.8)

where

H(j1, j2, Rf ) ≡ 6
[
j1(j1 + 1) + j2(j2 + 1) −R2

f/8
]
. (3.9)

Group-theoretic selection rules restrict the allowed quantum numbers [23]. The lowest

eigenvalues, i.e. smallest scaling dimensions, are shown in table 2. For chiral modes, j1 =

j2 = 1
2Rf , we have ∆f = 3

2Rf .

3.2 Harmonic expansion of flux perturbations

We begin with a harmonic expansion of flux perturbations on Calabi-Yau cones.

We recall that the (linearized) flux equation of motion in an AdS5 ×X5 background is

dΛ = d(e4AG−) = 0 , where G− = (⋆6 − i)G3 and e4A =
r4

L4
. (3.10)

This must be supplemented by the Bianchi identity,

dG3 = −dτ ∧H3 . (3.11)
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We solve eq. (3.10) by expanding the three-form G3 in harmonics on X5. We introduce the

Laplace-Beltrami operator ⋆5d which acts on two-forms on X5,

⋆5 d Ω2 = iδΩ2 . (3.12)

The eigenvalues δ are real and the spectrum is invariant under δ → − δ. When the dilaton

is constant, G3 is closed6 — cf. eq. (3.11) — and can therefore be expressed locally as a

sum of exact forms labeled by an index α,

G3 =
∑

α

d(rαΩ
(α)
2 ) . (3.13)

Since eq. (3.10) is linear, we can focus on a single exact form,

G3 = d(rαΩ
(α)
2 ) . (3.14)

There is no need to consider terms like d(r#dr ∧ Ω1) as these are gauge equivalent to

eq. (3.14).

For δ 6= 0, the IASD forms G− and the ISD forms G+ are given by

G∓ = −i α± δ

δ
rα

(
dΩ

(α)
2 ± δ

dr

r
∧ Ω

(α)
2

)
. (3.15)

The three-form G− in eq. (3.15) satisfies eq. (3.10) when

(α+ δ)(α+ 4 − δ) rα+4 dr

r
∧ dΩ

(α)
2 = 0 , (3.16)

which holds for α = δ − 4 and α = − δ. The form of the resulting linearized perturbation,

G3 = d(rδ−4Ω2 + r−δΩ2) , (3.17)

indicates that the two-form Ω2 corresponds, via AdS/CFT (see section 5), to an operator

of dimension ∆ = δ for δ > 2, and to an operator of dimension ∆ = 4− δ for δ < 2. We are

interested only in the non-normalizable mode r∆−4Ω2, which corresponds to a perturbation

of the field theory Lagrangian. Moreover, we notice that for δ < 2 the IASD three-form in

eq. (3.15) vanishes and the corresponding fluctuation (G− = 0, G+ 6= 0) does not affect a

probe D3-brane. Therefore, we restrict attention to the modes with δ > 2, for which one

has a non-normalizable perturbation containing IASD flux,

G3 = d(rδ−4Ω2) , (3.18)

G− = −2i
δ − 2

δ
rδ−4

(
dΩ2 + δ

dr

r
∧ Ω2

)
. (3.19)

The results above are general, i.e. valid for arbitrary Calabi-Yau cones, but not entirely

explicit. In any concrete example, such as the warped conifold, AdS5 × T 1,1, we still

need to obtain the eigenfunctions Ω
(α)
2 of the Laplace-Beltrami operator, as well as the

corresponding spectrum of eigenvalues δ. This is achieved most easily along a slightly

6We consider non-constant dilaton in appendix B.
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different route, as we explain in section 3.3. There we derive explicit solutions for three

series of IASD flux modes (k = I, II, III) with positive δk — eqs. (3.27), (3.29) and (3.32)

— for which the dimensions of the dual operators are ∆k = δk. We note that for each

series I, II, III with positive δI,II,III there is a complementary series I, II, III with negative

δI,II,III = −δI,II,III. The dimensions of the dual operators in Series I, II, III are

∆k = 4 + δk . (3.20)

These operators are dual to G+ perturbations, and are therefore of limited interest for our

considerations, whereas the operators in Series I, II, III are dual to mixtures of G− and G+

perturbations and give rise to a D3-brane potential.

For completeness, we remark that if X5 has a cohomologically nontrivial two-form with

δ = 0, the above harmonic analysis yields a special case with vanishing G3 flux. This mode

does not affect the potential of a D3-brane, but is nontrivial in the sense that it corresponds

to a perturbation by an operator in the field theory. For example, in the case of X5 = T 1,1

there is a single Betti two-form Ω2 = ω2 with

G3 = dω2 = 0 and G− = 0 . (3.21)

This mode changes the difference of the inverse coupling constants g−2
1 − g−2

2 in the

gauge theory.

3.3 Explicit flux solutions

In this section we give the explicit solutions for flux perturbations on arbitrary Calabi-

Yau cones (see appendix A for details). Furthermore, for the special case of the conifold

background we derive the spectral dimensions of the perturbations.

3.3.1 Building blocks

Our approach is simple. For any Calabi-Yau cone, we directly construct the most general

solution to eq. (3.1) using the Kähler form J , the holomorphic (3, 0) form Ω, and harmonic

functions f on the Sasaki-Einstein base X5 as building blocks. We will later specialize to

X5 = T 1,1, in which case the harmonic functions f are known in detail — cf. eq. (3.7).

The components of the Kähler form are

Jαβ̄ = igαβ̄ , (3.22)

where gαβ̄ ≡ ∂α∂β̄k is the Kähler metric. The holomorphic (3, 0) form has components

Ωαβγ = q ǫαβγ , (3.23)

where q is a holomorphic function satisfying qq̄ = det g.

Given these basic elements, we are ready to assemble the most general solution for

IASD flux on a Calabi-Yau cone.
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δI j1 j2 R Type

5
2

1
2

1
2

−1 chiral

4 1 1 0 chiral
√

28 − 1 1 1 −2 non-chiral

9
2

1
2

3
2

−1 non-chiral

9
2

3
2

1
2

−1 non-chiral
√

40 − 1 0 2 −2 non-chiral
√

40 − 1 2 0 −2 non-chiral

11
2

3
2

3
2

1 chiral

Table 3. Series I: lowest modes of (1, 2) flux.

3.3.2 Classification of fluxes

Three distinct types of closed, IASD three-forms can be constructed using the ingredients

of the previous section. We now describe these solutions, leaving detailed derivations to

appendix A.

Series I: (1, 2) flux. The first and simplest flux series is of Hodge type (1, 2) with

components,

(ΛI)αβ̄γ̄ = ∇α∇σf1 g
σζ̄ Ω̄ζ̄β̄γ̄ , (3.24)

where f1 is a harmonic function and ∇α denotes the covariant derivative with respect to

the Kähler metric. More compactly, this flux can be written as

ΛI = ∇∇f1 · Ω̄ . (3.25)

In appendix A we prove that ΛI is indeed closed and therefore satisfies the supergravity

equations of motion.

We stress that eq. (3.25) is valid for general Calabi-Yau manifolds. However, to quan-

tify the radial scaling of the flux solution for a concrete example we now specialize to the

conifold background. We note that the radial scaling of the flux solution descends from

the scaling dimension ∆f of the harmonic function f1, defined in eq. (3.8) in terms of the

quantum numbers j1, j2, Rf . The form ΛI has the same SU(2)× SU(2) quantum numbers

j1, j2 as f1, but the R-charge is R = Rf − 2. The R-charge is shifted by two because the

anti-holomorphic three-form Ω̄ has RΩ = −2. Given that gαβ̄ scales as r−2 and Ωαβγ scales

as r3, the three-form ΛI scales as

ΛI ∼ r4G− ∼ rδI , (3.26)

with

δI = 1 + ∆f = −1 +
√
H(j1, j2, R+ 2) + 4 . (3.27)

According to the AdS/CFT correspondence, δI is the dimension of the dual field theory

operator (see section 5). The dual operator is chiral if the function f1 is chiral, i.e. obeys

j1 = j2 = 1
2Rf . The lowest-dimension modes of Series I flux are given in table 3.
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δII j1 j2 R Type

7
2

1
2

1
2

1 chiral

4 0 1 0 non-chiral

4 1 0 0 non-chiral

5 1 1 2 chiral
√

28 1 1 0 non-chiral

11
2

1
2

3
2

1 non-chiral

11
2

3
2

1
2

1 non-chiral

11
2

1
2

3
2

−1 non-chiral

11
2

3
2

1
2

−1 non-chiral

Table 4. Series II: lowest modes of (2, 1)NP + (1, 2) flux.

Series II: (2, 1)NP + (1, 2) flux. The second flux series is a mixture of fluxes with

different Hodge types, non-primitive7 (2, 1), denoted (2, 1)NP, and (1, 2),

ΛII = (∂ + ∂̄)
(
f2 +

1

2
kα∂αf2

)
∧ J + ∂(∂̄f2 ∧ ∂̄k) , (3.28)

where kα = gαβ̄∇β̄k is holomorphic (see appendix A).

The R-charge of the three-form ΛII is the same as the R-charge of the harmonic function

f2, i.e. R = Rf , while the radial scaling (and hence the dimension of the dual field theory

operator) is shifted by two because Jαβ̄ = igαβ̄ ∼ r2, so

δII = 2 + ∆f =
√
H(j1, j2, R) + 4 . (3.29)

The lowest-dimension modes of Series II flux are given in table 4.

Series III: (3, 0) + (2, 1)NP + (1, 2) flux. The third flux series is a mixture of fluxes

with three different Hodge types, (3, 0), (2, 1)NP, and (1, 2),

ΛIII = (2h+ kα∂αh)Ω + (∂̄h · ω) ∧ J + ∂̄(∂̄f3 · ω) ∧ ∂̄k , (3.30)

where we have defined the following auxiliary forms,

ωᾱ
β ≡ Ωᾱ

βγk
γ , kγ ≡ gγζ̄∂ζ̄k , and h ≡ 3f3 + kα∂αf3 . (3.31)

The R-charge of the three-form ΛIII is R = Rf + 2 and its radial scaling dimension is

δIII = 3 + ∆f = 1 +
√
H(j1, j2, R− 2) + 4 . (3.32)

The lowest-dimension modes of Series III flux are given in table 5. This completes our

classification of all closed, IASD fluxes on the singular conifold.

7Let us remark that if our analysis were extended to a compact Calabi-Yau space, there would be no

non-primitive G(2,1) that is nontrivial in cohomology.
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δIII j1 j2 R Type

3 0 0 2 chiral

9
2

1
2

1
2

3 chiral

9
2

1
2

1
2

1 non-chiral

5 0 1 2 non-chiral

5 1 0 2 non-chiral

Table 5. Series III: lowest modes of (3, 0) + (2, 1)NP + (1, 2) flux.

Chiral modes. For chiral perturbations the harmonic functions f1, f2, and f3 are in fact

holomorphic functions. For holomorphic f2 and f3 the fluxes of Series II and III become a

pure (2, 1) mode and a pure (3, 0) mode, respectively; i.e.

Λ
(1,2)
I = ∇∇f1 · Ω̄, (3.33)

Λ
(2,1)
II = ∂f2 ∧ J , (3.34)

Λ
(3,0)
III = f3 Ω , (3.35)

where f1 ≡ f1, f2 ≡ f2 + 1
2k

α∂αf2 and f3 ≡ 6f3 + 5kα∂αf3 + kα∂α(kβ∂βf3) are holomorphic

functions related to f1, f2 and f3. The case of a pure (3, 0) mode has been considered

in [38].

Next, we discuss in detail the effects that these fluxes have on D3-branes.

4 Spectrum of the D3-brane potential

In this section we present the complete spectrum of corrections to the D3-brane potential

arising from compactification effects. In section 4.1 we compute the flux-induced corrections

sourced by the closed, IASD three-form flux perturbations Λ, constructed in appendix A

and reviewed in the previous section. In section 4.2 we include R4 curvature corrections

in the analysis. We summarize the leading correction terms and discuss their physical

significance in section 4.3.

4.1 Flux-induced corrections

As we explained above, in the noncompact limit (Mpl → ∞) the equation of motion for

Φ− contains only flux source terms,

∇2Φ− =
gs

96
|Λ|2 . (4.1)

We will discuss the contribution from four-dimensional curvature R4 for finite Mpl in

section 4.2.

4.1.1 Green’s function solution

The Green’s function solution to eq. (4.1) is

Φ−(y) =
gs

96

∫
d6y′G(y; y′) |Λ|2(y′) + ΦH(y), (4.2)
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where

∇2
y G(y; y′) = δ(y − y′) , (4.3)

and the homogeneous solution ΦH(y) is an arbitrary harmonic function, i.e. a solution of

∇2
y ΦH(y) = 0 , (4.4)

whose general form is given in eq. (3.7). The spectrum of the homogeneous solution was

studied in ref. [17] (see table 2):

∆H =
3

2
, 2 , 3 , . . . (4.5)

The Green’s function on the singular conifold was presented in refs. [15, 39],

G(y; y′) =
∑

L,M

YLM (Ψ)Y ∗
LM (Ψ′)gL(r; r′) , (4.6)

where

gL(r; r′) ≡ − 1

2∆(L) + 4





1
r′4

(
r
r′

)∆(L)
r ≤ r′

1
r4

(
r′

r

)∆(L)
r ≥ r′

. (4.7)

In eq. (4.7) the scaling ∆(L) is defined as in eq. (3.8). The D3-brane potential can always

be written in the form of eq. (4.2), but in the particularly interesting special case of chiral

perturbations, significant simplifications of the final answer can be achieved.

4.1.2 Chiral modes

In eqs. (3.33) – (3.35) we have seen that for chiral perturbations each flux series is of distinct

Hodge type. Hence, no mixed terms of the different flux series appear in the flux-squared

source term,

|Λ|2 = |ΛI|2 + |ΛII|2 + |ΛIII|2 , (4.8)

where

|ΛI|2 = 6 gαᾱgββ̄∇2
αβf1 ∇2

αβf1 , (4.9)

|ΛII|2 = 12 gαᾱ∇αf2 ∇αf2 , (4.10)

|ΛIII|2 = 6 |f3|2 . (4.11)

The flux-induced potential then becomes

Φ− =
gs

96

[
3gαᾱ∇αf1 ∇αf1 + 12|Re(f2)|2 + 6∇−2|f3|2

]
+ harmonic . (4.12)

4.1.3 General solution

In general, we should allow the functions fi to be harmonic rather than just holomorphic.

In this case the fluxes of Series II and III are not of pure Hodge type and the overlap

of flux modes from Series I, II, and III is nonzero and can lead to new terms in the D3-

brane potential.
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We now discuss the resulting spectrum of Φ− up to r4,

Φ− =
∑

δi,δj

r∆(δi,δj)h(δi,δj)(Ψ) , (4.13)

where h(δi,δj)(Ψ) are angular wavefunctions describing the overlap of the different flux

modes. The explicit forms of the functions h(δi,δj)(Ψ) can be inferred from eq. (4.6), but

we will not write them out here. Instead, we focus on the radial scaling dimensions in

eq. (4.13), which are

∆ ≡ δi + δj − 4 , (4.14)

where δi and δj are the scaling dimensions of the fluxes Λi and Λj . Using the scaling

dimensions in tables 3, 4, and 5 and recalling that for chiral modes the overlaps be-

tween different flux series vanish, we may infer the smallest scaling dimensions of the

flux-induced potential:

∆Λ = 1 , 2s ,
5

2
,
√

28 − 5

2
, · · · (4.15)

where the subscript on 2s denotes a singlet.

We notice that the square of a δ = 5
2 mode results in a linear term in the potential,

Φ− ∝ r. This is the same r-scaling as the leading term in the nonperturbatively-generated

D3-D7 potential of ref. [16]. We will expand on this correspondence in the following sec-

tions. In fact, in section 6 we will argue that the full nonperturbative potential of ref. [16]

can be “geometrized” by turning on appropriate fluxes.

The wavefunctions of the δ = 5
2 and δ = 3 modes have zero overlap since the corre-

sponding modes are chiral perturbations in different flux series, i.e.

h( 5
2
,3)(Ψ) = 0 . (4.16)

Hence, there is no ∆ = 3
2 contribution to the flux-induced potential.

The overlap of the δ = 5
2 chiral mode and the non-chiral δ =

√
28−1 mode (correspond-

ing to the leading contribution of an operator in a long multiplet) results in a potential

term with irrational scaling dimension
√

28 − 5/2 ≈ 2.79 . This term is not protected

by supersymmetry or by a global symmetry,8 and hence would be inaccessible in a field

theory analysis at large ’t Hooft coupling or in a four-dimensional supergravity analysis

such as [15, 16] in which only superpotential interactions are computed. In a general com-

pactification one expects this mode of flux to contribute to the D3-brane potential, and a

substantial advantage of the supergravity approach of this paper is the ability to capture

such terms.

4.2 Coupling to the Ricci scalar

The potential for a D3-brane in a noncompact warped conifold perturbed by non-

normalizable modes of IASD flux is given by the solution (4.2) of (4.1). However, a D3-

brane in a warped throat region of a compact space receives an additional contribution to

8In [17] we considered non-chiral operators with ∆ = 2, but these operators were related by supersym-

metry to global symmetry currents and hence were protected.
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its potential when the four-dimensional Ricci scalar is nonvanishing: one must then solve

∇2Φ− =
gs

96
|Λ|2 + R4 . (4.17)

In particular, if we assume that the four-dimensional theory is approximately de Sitter,

then the Ricci scalar is given by the Friedmann equation as

R4 = 12H2 ≈ 4

M2
pl

V =
4

M2
pl

(
V0 + T3Φ−

)
, (4.18)

where V0, a constant independent of the D3-brane position r, has been extracted from the

potential. We have incorporated the fact that the D3-brane potential T3Φ− contributes to

the four-dimensional energy density, but there may be additional contributions from other

sectors included in V0.

4.2.1 The eta problem

For simplicity we first study eq. (4.17) in the absence of IASD flux perturbations,

∇2Φ− = R4 . (4.19)

This case is sufficient to understand the appearance of a generic eta problem arising from

the curvature coupling of the inflaton in D3-brane models [9] (see also [18, 19]). Combining

eqs. (4.18) and (4.19) we find

∇2Q = λQ , λ ≡ 4T3

M2
pl

, (4.20)

where

Q(r,Ψ) ≡ Φ− +
V0

T3
. (4.21)

We solve eq. (4.20) by separation of variables,

Q(r,Ψ) =
∑

L

QL(r)hL(Ψ) , (4.22)

where the radial functions satisfy

d2QL

dr2
+

5

r

dQL

dr
− H(L)

r2
QL = λQL . (4.23)

Here, H(L) are the eigenvalues of the angular Laplacian defined in eq. (3.9). eq. (4.23)

may be solved exactly in terms of (modified) Bessel functions,

QL = x−2 [c1In(x) + c2Kn(x)] , (4.24)

where

x ≡
√
λr = 2

φ

Mpl
and n2(L) ≡ H(L) + 4 . (4.25)
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The functions In(x) = i−nJn(ix) and Kn(x) are modified Bessel functions of the first and

second kind, respectively. Kn diverges for small x, so we choose c2 = 0. The second

integration constant is fixed by the requirement Φ−(x = 0) ≡ 0 to be

c1 =
8V0

T3
. (4.26)

Hence, we find

V (φ) = V0 + T3Φ− = 2V0

M2
pl

φ2

∑

L

In(L)

(
2
φ

Mpl

)
hL(Ψ) . (4.27)

The leading terms in the potential follow from the small x expansion,9

In(x) =

(
x

2

)n ∞∑

k=0

(
x
2

)2k

k! Γ(n+ k + 1)
for n ∈ R . (4.28)

One finds that the leading contribution arises from the term with L = {0}, and takes the

form

I2(x) =
1

8
x2

(
1 +

1

12
x2 + · · ·

)
. (4.29)

This implies

Vs ≡ T3QL={0} = V0

(
1 +

1

3

φ2

M2
pl

+ · · ·
)
, (4.30)

and

η = M2
pl

V ′′

V
=

2

3
+ · · · (4.31)

The leading curvature correction therefore precisely explains the ‘eta problem’ mass term

found in [9]. Higher-order contributions from modes with non-trivial angular dependence

may be obtained from eqs. (4.27) and (4.28).

4.2.2 Higher-order corrections

Next, we include IASD flux perturbations in the analysis. The equation of motion for Φ−
now has the form

∇2Φ− = ρ(y) + λΦ− , (4.32)

where

ρ(y) ≡ gs

96
|Λ|2(y) +

4

M2
pl

V0 . (4.33)

One can easily verify that eq. (4.32) is solved by

Φ− =
∞∑

n=0

Φ
[n]
− , (4.34)

9The bound of ref. [40], x = 2 φ

Mpl
< 4√

N
< 1, in an AdS5 × X5 geometry with D3-brane charge N ≫ 1,

implies that x is a good expansion parameter.
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where

Φ
[0]
− (y) =

∫
d6y′G(y; y′) ρ(y′) + ΦH(y) , (4.35)

and

Φ
[1]
− (y) = λ

∫
d6y′G(y; y′) Φ

[0]
− (y′) , · · · , Φ

[n]
− (y) = λ

∫
d6y′G(y; y′) Φ

[n−1]
− (y′) .

(4.36)

Eq. (4.35) describes the solution in the absence of Ricci curvature — cf. eq. (4.2) — plus

the mass term of the previous section associated with the constant V0,

Φ
[0]
− =

∑

α

rαh[0]
α (Ψ) , with α = {∆Λ,∆H, 2s} , (4.37)

where h
[0]
α (Ψ) are angular wavefunctions determined by (4.35). Eq. (4.36) provides the iter-

ative inclusion of higher-order corrections induced by the Ricci curvature. Using eqs. (4.6)

and (4.37) to perform the Green’s function integrals in eq. (4.36), we find

Φ
[n]
− = (λr2)n

∑

α

rαh[n]
α (Ψ) , (4.38)

with angular wavefunctions h
[n]
α determined by the above. Evidently, eq. (4.34) is an

expansion in the dimensionless parameter x2 ≡ λr2 = 4 φ2

M2
pl
< 1 (see Footnote 9). The

iterative inclusion of curvature contributions effectively dresses each term in the potential

with factors r2n, n = 1, 2, · · · . We therefore infer from eqs. (4.5) and (4.15) that the

corrections induced by the coupling to the Ricci scalar are of the form Φ− ∼ r∆ with

∆R = 2s , 3 ,
7

2
, 4s , 4 , · · · (4.39)

4.3 Summary of supergravity perturbations

Let us briefly summarize the contributions to the D3-brane potential. The potential is

given by T3Φ−, where Φ− is a general solution (4.34) of the equation of motion (4.32). This

solution includes a homogeneous solution ΦH, which is an arbitrary harmonic function on

the conifold, and also includes inhomogeneous contributions sourced by |Λ|2 and by R4.

We are interested in the dominant terms in the infrared, i.e. the most relevant contri-

butions for a D3-brane far from the ultraviolet region where the throat is attached to the

compact bulk.10 We write the solution in terms of the canonical coordinate φ2 = T3r
2.

The leading terms from the homogeneous solution take the form [17]

VH(φ) = V0 + a3/2 φ
3/2h3/2(Ψ) + a2 φ

2h2(Ψ) + . . . , (4.40)

where hα(Ψ) are angular harmonics on T 1,1 and aα are constants. We have seen in sec-

tion 4.1 that the leading terms from the flux-sourced solution take the form

VΛ(φ) = b1 φ
1j1(Ψ) + b2 φ

2 + b5/2 φ
5/2j5/2(Ψ) + b2.79 φ

2.79j2.79(Ψ) + . . . , (4.41)

10Recall that we also assume that the D3-brane is well above any infrared deformations of the geometry

as occur e.g. in the warped deformed conifold solution [13].
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where the jα(Ψ) are angular functions determined by the analysis of section 4.1. The

singlet term b2φ
2 arises from the square of a single mode of flux, so b2 ≥ 0. Finally, the

leading term from the curvature-sourced solution, as obtained in section 4.2, takes the form

VR(φ) = c2 φ
2 + . . . , (4.42)

where c2 ≡ H2
0 = 1

3
V0

M2
pl

is a fixed coefficient. The Wilson coefficients a∆, b∆ and c∆ are

normalized at the UV cutoff, so it is convenient to extract the energy scaling as follows

{ a∆ , b∆ , c∆ } = { ã∆ , b̃∆ , c̃∆ } ·M4−∆
UV , (4.43)

so that ã∆, b̃∆ and c̃∆ are dimensionless coefficients.

Finally, the general form of the potential is

V (φ) = V0 + b1 j1(Ψ)φ1 + a3/2 h3/2(Ψ)φ3/2 +

(
c2 + a2 h2(Ψ) + b2 j2(Ψ)

)
φ2

+ b5/2 j5/2(Ψ)φ5/2 + b2.79 j2.79(Ψ)φ2.79 + . . . (4.44)

This is one of the main results of this paper.

Notice the disparate origin of the various competing terms in eq. (4.44): IASD fluxes,

harmonic perturbations of Φ−, and coupling to the four-dimensional spacetime curvature.

The curvature coupling was identified in ref. [9] and further investigated in refs. [18, 19].

The harmonic perturbations of Φ− were studied in ref. [17]. The flux contribution φ1,

which actually dominates at small φ, has not been previously identified in ten-dimensional

supergravity. Also novel is the contribution ∆ =
√

28 − 5
2 ≈ 2.79, which was inaccessible

in analyses such as [16] that incorporated only corrections to the superpotential. Clearly,

such a mode would be very difficult to guess in field theory, but as we see here it can make

an important contribution to the D3-brane potential.

We remark that the leading curvature contribution has a fixed coefficient, leading to

the generic eta problem. However, the other contributions have tunable Wilson coefficients

that in principle allow a small effective mass term if the different contributions locally cancel

against each other, as described in four-dimensional supergravity in [16, 41, 42]. The results

obtained above provide a dictionary between physical effects in the compactification and

specific terms in the inflaton potential, e.g. the linear term arises only from G(1,2) flux.

This characterization of the physical origin of each term is a necessary precursor to any

attempt at explicit fine-tuning of the potential.

5 Conformal field theory

Having understood the structure of the D3-brane potential induced by non-normalizable

perturbations of the supergravity solution, it is natural to ask whether additional insights,

or cross-checks, can be obtained by mapping these results into the dual conformal field

theory. As usual when applying the AdS/CFT correspondence at large ’t Hooft coupling,

the gauge theory is strongly coupled and most computations are far simpler in the gravity

picture. However, understanding the D3-brane potential on the gauge theory side will help
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us to make contact with four-dimensional reasoning, by clarifying the relation between our

analysis and a Wilsonian treatment in the four-dimensional effective theory.

We begin by reviewing the field content of the Klebanov-Witten (KW) theory and

listing all protected operators (section 5.1). We then discuss the operators dual to IASD

flux perturbations in more detail (section 5.2). We first present all chiral operators (sec-

tion 5.2.1), explicitly identifying three towers of operators as duals to the three series of

holomorphic flux. Next, we discuss the complete AdS/CFT spectroscopy (section 5.2.2)

including non-chiral operators. Finally, we present arguments that allow a comparison be-

tween the scalar potentials computed in the gauge theory and in supergravity (section 5.3).

5.1 Review of the KW CFT

A canonical class of examples of the AdS/CFT correspondence consists of N = 1 supercon-

formal gauge theories dual to string theory on AdS5 ×X5, where X5 is a Sasaki-Einstein

space [13, 29, 43]. These theories arise from the near-horizon limit of a stack ofN D3-branes

placed at the tip of a six-dimensional Calabi-Yau cone M6 with base manifold X5. The

supergravity results of the previous sections were general enough to capture all AdS5 ×X5

backgrounds. In principle, the gauge theory analysis could be formulated equally generally,

but in practice we will specialize our CFT results to the dual of AdS5 × T 1,1.

Basic symmetries and degrees of freedom. The CFT dual of AdS5 × T 1,1 is an

N = 1 supersymmetric Yang-Mills theory with gauge group G = SU(N) × SU(N) and

continuous global symmetries G = SU(2) × SU(2) × U(1)R (inherited from the isometries

of T 1,1) [29]. The matter content consists of two doublets of chiral superfields Ai and Bj

(i, j = 1, 2) which are in the (N , N̄) and (N̄ , N) of G and in the (2, 0, 1
2) and (0, 2, 1

2) of

G. Introducing the SU(N) vector superfields Vi, the chiral gauge field strength superfields

for the two gauge symmetries are

W (1)
α = D̄D̄(eV1Dαe

−V1) , (5.1)

W (2)
α = D̄D̄(eV2Dαe

−V2) . (5.2)

The W
(i)
α fields have dimension ∆ = 3

2 and R-charge R = 1, while the A and B fields have

∆ = 3
4 and R = 1

2 . The interactions are encoded in the superpotential

W ∝ ǫijǫkl Tr(AiBkAjBl) , (5.3)

with ∆ = 3 and R = 2. We now use these results to enumerate the low-dimension operators

in the CFT, following Ceresole et al. [23, 44].

Operators with protected dimensions. We are interested in determining the most

relevant operators in the CFT that contribute to the potential on the Coulomb branch. We

first consider operators whose dimensions are protected in the gauge theory; unprotected

operators generically acquire large anomalous dimensions in the limit of large ’t Hooft

coupling and have their dual description only in the full string theory, not in supergravity.

Later, in section 5.2.2, we will include the very interesting case of operators that appear

unprotected in the gauge theory analysis, but in fact have fixed — and in many cases,
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irrational — dimensions at large ’t Hooft coupling [45]. For simplicity we refer to such

operators as unprotected.

For the CFT in question there are three series of protected operators [23]:

1. Chiral

Sk = Tr(AB)k : ∆k =
3

2
k Rk = k , (5.4)

T k
α = Tr[Wα(AB)k] : ∆k =

3

2
+

3

2
k Rk = k + 1 , (5.5)

Φk = Tr[WαWα(AB)k] : ∆k = 3 +
3

2
k Rk = k + 2 . (5.6)

2. Conserved

Jk = Tr[J(AB)k)] : ∆k = 2 +
3

2
k Rk = k , (5.7)

Jk
αα̇ = Tr[Jαα̇(AB)k] : ∆k = 3 +

3

2
k Rk = k , (5.8)

Ik = Tr[JW 2(AB)k] : ∆k = 5 +
3

2
k Rk = k + 2 , (5.9)

where J = {Ja, Jb}, Ja ≡ AeV Āe−V , Jb ≡ BeV B̄e−V (with V ≡ V1 + V2), Jαα̇ ≡
WαLα̇, and Lα̇ ≡ eV W̄α̇e

−V .

3. Semi-conserved

L1,k
α̇ = Tr[Lα̇(AB)k] : ∆k =

3

2
+

3

2
k Rk = k − 1 , (5.10)

L2,k
α = Tr[WαJ(AB)k] : ∆k =

7

2
+

3

2
k Rk = k + 1 , (5.11)

L3,k
α̇ = Tr[Lα̇W

2(AB)k] : ∆k =
9

2
+

3

2
k Rk = k + 1 . (5.12)

The operators here are written a bit schematically: the trace is over the color degrees

of freedom, and we have suppressed the SU(2) × SU(2) flavor indices. Furthermore, the

KW theory has two gauge groups, and naively there should be two distinct series for the

operators T k
α and Φk, one with Wα = W

(1)
α and the other with Wα = W

(2)
α . However, the

commutators of the matter fields and Wα vanish in the chiral ring [46],

AW (1)
α −W (2)

α A ∼ W (1)
α B −BW (2)

α ∼ 0 . (5.13)

Hence, there is only one chiral mode with protected dimension, Tr[(W
(1)
α +W

(2)
α )(AB)k],

while the twisted mode Tr[(W
(1)
α −W

(2)
α )(AB)k] vanishes in the chiral ring and has infi-

nite dimension in the large N limit. Similarly, the chiral primary operator Φk should be

written as Tr[(W 2
(1) + W 2

(2))(AB)k]. Finally, there is an exceptional chiral operator with

protected dimension,

Tr[W 2
(1) −W 2

(2)] , (5.14)

that does not belong to any tower.
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We define the conformal dimension and R-charge of a supermultiplet as the conformal

dimension and R-charge of the bottom (θ = 0) component of the corresponding superfield.

The conformal dimensions and R-charges of descendants are then shifted in half-integer

and integer steps, respectively. In the following we will refer to the individual components

of a superfield by the notation

F = [F ]b + · · · + [F ]θnθ̄m θnθ̄m + · · · . (5.15)

This completes the bookkeeping required for this section.

5.2 CFT duals of IASD fluxes

Having enumerated the lowest-dimension protected supermultiplets of operators, we now

focus on the components of these supermultiplets that generate a potential on the

Coulomb branch.

5.2.1 Chiral operators

We consider first the three sets of chiral operators in eqs. (5.4) – (5.6):

OI = Tr(AB)k , (5.16)

Oα
II = Tr[Wα

+(AB)k] , (5.17)

OIII = Tr[W 2
+(AB)k] , (5.18)

where we have introduced the notation Wα
± ≡ Wα

(1) ±Wα
(2) and W 2

± ≡ W 2
(1) ±W 2

(2). The

integer k obeys k ≥ 1 for Series I and II and k ≥ 0 for Series III.

Our interest is in the components of the above supermultiplets that induce a D3-brane

potential, i.e. the components dual to Φ− and G− perturbations. The bottom component

of OI corresponds to a perturbation of Φ− [17]:

Φ− Operator ∆ R j1 j2

f [Tr(AB)k]b
3
2k k 1

2k
1
2k

while the top, middle and bottom components, respectively, of OI, Oα
II, and OIII are

dual to G− perturbations:

Flux Operator ∆ R j1 j2

∇∇f1 · Ω̄ [Tr(AB)k]θ2
3
2k + 1 k − 2 1

2k
1
2k

∂f2 ∧ J [Tr[Wα
+(AB)k]]θ

3
2k + 2 k 1

2k
1
2k

f3Ω [Tr[(W 2
+(AB)k]]b

3
2k + 3 k + 2 1

2k
1
2k

Evidently, these three towers of chiral operators are dual to the three series of ‘holo-

morphic’ flux perturbations found in section 3. A few comments are in order:

• Series I operators. The perturbations
∫
d2θOI = [OI]θ2 are superpotential perturba-

tions, consistent with the supersymmetry of the unperturbed CFT. These operators
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∆ j1 j2 R Operator Multiplet Type

3
2

1
2

1
2 1 [S1]b [Tr(AB)]b V.I chiral

2 0 1 0 [aJ0]b [TrJa]b V.I semi-long

2 1 0 0 [bJ
0]b [TrJb]b V.I semi-long

3 1 1 2 [S2]b [Tr(AB)2]b V.I chiral

Table 6. Matching between supergravity Φ
−

modes and CFT operators [17].

are dual to perturbations byG(1,2) fluxes in Series I, eq. (3.25), with holomorphic func-

tions f1 ∼ (AB)k. This is consistent with the results of [26], where it was found that

G(3,0) and non-primitive G(2,1) fluxes are incompatible with the original supersym-

metry of the ISD background, while G(1,2) flux generates superpotential interactions

for a D3-brane.

• Series II operators. The operators
∫
dθα Oα

II = [OII]θ are chiral but not supersym-

metric. They correspond to the non-primitive G(2,1) flux of Series II, eq. (3.28), with

holomorphic f2 ∼ (AB)k. This is in agreement with the result of [26, 47] where it

was shown that non-primitive (2, 1) flux couples the gaugino to the fermions from

the chiral superfields.

• Series III operators. Finally, the operators [OIII]b are mapped to fluxes in Series III,

eq. (3.30), with holomorphic f3 ∼ (AB)k. Again this is supported by the fact that

(3, 0) flux creates a mass term for the gaugino [26, 47].

5.2.2 Non-chiral operators

Next, we study generalizations of the chiral operators of the previous section:

OI = Trf1 , (5.19)

Oα
II = Tr[Wα

+f2] , (5.20)

OIII = Tr[W 2
+f3] , (5.21)

where fi ≡ fi(A,B, Ā, B̄) are harmonic, but not holomorphic, functions of the matter fields

A and B. The low-lying operators corresponding to Φ− and G− perturbations are collected

in tables 6 and 7.11

Let us make a few comments about each of these operators and their supermulti-

plet structure:

• OI = Trf1:

These superfields correspond to Vector Multiplet I of [23] (see table 7 of [23]). The

bottom components are operators made out of scalar fields only; they are dual to

perturbations that are certain combinations of the four-form potential C4 and the

11The subscripts ‘a’ and ‘b’ on Ja,b and fa,b indicate that these are functions of A only or of B only. The

dimensions of operators dual to fluxes are denoted by δ (rather than ∆) to agree with the notation used

in section 3.
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δ j1 j2 R Operator Multiplet Type Flux Series
5
2

1
2

1
2 −1 [S1]θ2 [Tr(AB)]θ2 V.I chiral I

3 0 0 2 [Φ0
+]b [Tr(W 2

(1) + W 2
(2))]b V.IV chiral III

7
2

1
2

1
2 1 [T 1

α]θ [Tr(Wα(AB))]θ G.I chiral II

4 0 0 0 [Φ0
−]θ2 [Tr(W 2

(1) − W 2
(2))]θ2 V.III chiral ⋆

4 0 1 0 [aL2,0
α ]θ [Tr(WαJa)]θ G.I+G.III semi-long II

4 1 0 0 [bL
2,0
α ]θ [Tr(WαJb)]θ G.I+G.III semi-long II

4 1 1 0 [S2]θ2 [Tr(AB)2]θ2 V.I chiral I√
28 − 1 1 1 −2 — [Tr(f)]θ2 V.I long I

9
2

1
2

1
2 3 [Φ1

+]b [Tr(W 2
(1) + W 2

(2))(AB)]b V.IV chiral III
9
2

1
2

1
2 1 [Φ̄1

+]b [Tr(W 2
(1) + W 2

(2))(AB)]b V.IV — III
9
2

1
2

3
2 −1 [aJ1]θ2 [Tr(Ja(AB))]θ2 V.I semi-long I

9
2

3
2

1
2 −1 [bJ

1]θ2 [Tr(Jb(AB))]θ2 V.I semi-long I

5 1 1 2 [T 2
α]θ [Tr(Wα(AB)2)]θ G.I chiral II

5 0 1 2 [aI0]b [Tr((W 2
(1) + W 2

(2))Ja)]b V.IV semi-long III
5 1 0 2 [bI

0]b [Tr((W 2
(1) + W 2

(2))Jb)]b V.IV semi-long III√
28 1 1 0 — [Tr(Wαf)]θ G.I+G.III long II√

40 − 1 0 2 −2 — [Tr(fa)]θ2 V.I long I√
40 − 1 2 0 −2 — [Tr(fb)]θ2 V.I long I
11
2

1
2

3
2 1 [aL2,1

α ]θ [Tr(WαJa(AB))]θ G.I+G.III semi-long II
11
2

3
2

1
2 1 [bL

2,1
α ]θ [Tr(WαJb(AB))]θ G.I+G.III semi-long II

11
2

1
2

3
2 −1 [aL̄2,1

α ]θ [Tr(WαJa(AB))]θ G.I+G.III — II
11
2

3
2

1
2 −1 [bL̄

2,1
α ]θ [Tr(WαJb(AB))]θ G.I+G.III — II

11
2

3
2

3
2 1 [S3]θ2 [Tr(AB)3]θ2 V.I chiral I

Table 7. Matching between supergravity G
−

flux modes and CFT operators.

trace of the metric (denoted by b in [23]). Such fluctuations induce Φ− perturbations

that contribute to the D3-brane potential at linear order, as discussed in our previous

paper [17] (see table 6 above). The θ2 components of OI are operators bilinear in

fermions with R-charge R−2, and correspond to the G− perturbations from Series I.

Here we disagree with table 7 of [23], which states that these operators are dual to

metric perturbations.

We may further consider the superfields

ÕI = Tr[W
2
+f1] , (5.22)

where W
2
+ ≡ W

2
(1) +W

2
(2). The θ̄2θ2 components of these superfields are operators

with dimensions ∆+4. As shown in section 3.2, these additional operators arise from

Series I G+ perturbations.

• Oα
II = Tr[Wα

+f2]:

These superfields correspond to Gravitino Multiplet I (table 3 of [23]). In particular,

the θ components correspond to G− perturbations from Series II, as can be confirmed

by comparing their dimensions ∆. This agrees with the field assignment in [23].
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We may further consider the superfields

Õα
II = Tr[WαW

2
+f2] . (5.23)

The θ̄2θ components of these superfields are operators with dimensions ∆ + 4, corre-

sponding to Series IIG+ perturbations. More generally, we note that these superfields

correspond to Gravitino Multiplet II (table 4 of [23]).

• OIII = Tr[W 2
+f3]:

These superfields correspond to Vector Multiplet IV (table 10 of [23]). The bottom

components, bilinear in the gauginos, correspond to G− perturbations from Series

III. The θ2 components instead correspond to the dilaton and RR scalar of type IIB

theory.

We may further consider the superfields

ÕIII = Tr[W 2
+W

2
+f3] . (5.24)

The θ̄2 components of these superfields are operators whose dimensions are higher

by 4 than those of the operators in the previous paragraph. As shown in section 3.2,

these additional operators arise from Series III G+ perturbations. We find that

the superfields (5.24) correspond to Vector Multiplet II (table 8 of [23]). The bottom

components correspond to metric deformations squashing the S1 fiber of T 1,1 relative

to the base [48, 49], while the θ2θ̄2 components correspond to well-known operators

of the form F 4f3 that appear as a combination of fluctuations of C4 and of the trace

of the metric. These fluctuations induce Φ+ perturbations. These assignments agree

with table 8 of [23]. However, in disagreement with that table we find that the θ2

and θ̄2 components of these superfields are dual to G+ perturbations.

In summary, we have matched the three series of flux modes with holomorphic f (see

section 3) to the three series of chiral operators. Similarly, the three corresponding series

of non-chiral operators obtained by taking fi ≡ fi(A,B, Ā, B̄) to be harmonic but not

holomorphic match the three series of flux modes with harmonic, but non-holomorphic f .

The apparent complexity of table 7 is therefore reduced to three distinct series of flux or

three different types of operator perturbations.

There is also one special case, denoted ⋆ in the table, which corresponds to the vanishing

three-form flux (3.21). This mode changes the difference between the complex coupling

constants g−2
1 − g−2

2 in the KW theory and hence corresponds to the top component of the

chiral operator (5.14). The corresponding bottom component Tr(λ2
1 − λ2

2), with R-charge

2 and dimension 3, corresponds to a traceless perturbation of the metric on T 1,1. As this

mode is not dual to a G− or Φ− perturbation, the operator Tr(λ2
1 − λ2

2) does not create a

D3-brane potential at quadratic order.

Notice that some of the non-chiral operators described above reside in long multiplets

and have irrational dimensions. In an analysis conducted exclusively in the gauge theory, it

would be rather difficult to determine the dimensions of these operators, but on the gravity
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side of the correspondence it is straightforward to identify these contributions. Moreover,

these long operators can have non-negligible effects on the Coulomb branch potential:

e.g. an interference term between fluxes dual to the long operator with δ =
√

28 − 1 and

the chiral operator with δ = 5
2 gives rise to a term in the scalar potential of the form

r
√

28− 5
2 , which can substantially affect the structure of the scalar potential.

5.3 Potential on the Coulomb branch

Having identified the leading operators dual to perturbations of Φ− and G−, we can now

write the leading perturbations to the CFT Lagrangian and compute the resulting potential

on the Coulomb branch.

5.3.1 Perturbed lagrangian and SUSY breaking

We begin by introducing an efficient representation for the perturbed Lagrangian in terms of

spurion fields. Some of the perturbations of interest are consistent with the supersymmetry

of the gauge theory, while others break this supersymmetry explicitly.12 To characterize

the bulk supersymmetry breaking, and more generally the bulk sourcing of perturbations

of the gauge theory, we introduce spurion fields X and Yα. We will take X to be a chiral

superfield external to the gauge theory, each of whose components will in general have a

nonvanishing expectation value,

X = [X]b + [X]θ θ + [X]θ2 θ2 ≡ x+ xαθα + FXθ
2 . (5.25)

Similarly, for Yα we have

Yα = [Yα]b + [Yα]θ θ + [Yα]θ2 θ2 ≡ yα + y θα + FYαθ
2 . (5.26)

The perturbations to the CFT Lagrangian involving chiral supermultiplets OI,Oα
II,OIII

may then be written as

∆L =

∫
d2θ

[
OIX + Oα

IIYα + OIIIX

]
+ c.c. . (5.27)

Among the resulting terms, some correspond to (the chiral subset of) G− perturbations,

∆Lflux = [OI]θ2 [X]b + [Oα
II]θ[Yα]θ + [OIII]b[X]θ2 + c.c. , (5.28)

while the remaining terms are not dual to G− perturbations and can be neglected for the

present purposes.

Similarly, the perturbations involving non-chiral supermultiplets OI,Oα
II,OIII may be

written as

∆L =

∫
d4θ

[
OIXX

† + Oα
IIYαX

† + OIIIXX
†
]

+ c.c. , (5.29)

12We must distinguish spontaneous breaking of supersymmetry in the conifold gauge theory from breaking

that is spontaneous in a larger supersymmetric theory, but appears as explicit breaking in the conifold gauge

theory. If dynamics in a distant region of the compactification (e.g. gauge dynamics on D-branes at some

local singularity distant from the conifold) leads to mass splittings in bulk supermultiplets, this spontaneous

breaking of supersymmetry will manifest itself as an explicit breaking of the supersymmetry of the conifold

gauge theory after we integrate out the distant physics.
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with the operators dual to G− taking the form

∆Lflux = [OI]θ2 [X]b[X
†]θ̄2 + [Oα

II]θ[Yα]θ[X
†]θ̄2 + [OIII]b[X]θ2 [X†]θ̄2 + c.c. , (5.30)

and the operators dual to harmonic Φ− modes taking the form

∆LΦ− = [OI]b[X]θ2 [X†]θ̄2 + c.c. . (5.31)

We remark that the spurion analysis presented here gives further justification for the

expansion scheme proposed in Case II in section 2.3. Chiral modes, including the leading

modes of G−, are proportional to a single power of the small spurion expectation values

[X]b, [X]θ, [X]θ2 , and [Yα]b, [Yα]θ, [Yα]θ2 , whereas the harmonic modes of Φ− [17] require

two spurion insertions. This motivates considering the case Φ
(1)
− = 0 in which harmonic

perturbations of Φ− are neglected at linear order, while perturbations of G− are retained

at linear order. The leading potential, Φ
(2)
− , then receives important contributions both

from harmonic Φ
(2)
− perturbations and from the particular Φ

(2)
− solution sourced by G

(1)
− ,

as in the analysis of section 4.

5.3.2 Scalar potential in the gauge theory

To give further evidence for the correspondence between the operators of this section and

the flux modes of the previous sections, let us discuss13 how one can arrive at the scalar

potential (4.12) in the gauge theory:

• The first term in (4.12), gαβ̄∂αf1∂β̄ f̄1, is simply the F-term potential due to the

superpotential perturbation
∫
d2θ f1, for holomorphic f1 ∼ (AB)k.14

• To derive the second term in (4.12), (Re f2)
2, we consider the chiral operator dual to

the flux in Series II as a superpotential correction,
∫
d2θOα

IIYα ∼ y [Oα
II]θα

. (5.32)

Utilizing the component expansion of Wα, we obtain a D-term of the form

yTr[(D(1) +D(2))f2] + c.c. , (5.33)

where f2 ∼ (AB)k. After the D fields are integrated out, the resulting potential is

proportional to (Re f2)
2. The exact proportionality coefficient depends on the cou-

pling constants at the IR fixed point, but at leading order in perturbations this can be

taken to be the KW value. Although the coupling (5.32) changes the renormalization

of the Kähler potential, there is no corresponding Kähler potential contribution to

the scalar potential at first or second order in y: because y is accompanied by only

one power of θ in Yα, terms from the Kähler potential
∫
d4θK(Yα, Ȳα, A,B, Ā, B̄)

that are linear or quadratic in y could contribute e.g. to fermion masses, but not to

the scalar potential.

13We thank Zohar Komargodski, Juan Maldacena and Nathan Seiberg for extensive discussions of these

issues.
14As explained in section 2.3, we consistently omit corrections to the inverse metric gαβ̄ , taking it to be

the unperturbed conifold metric gαβ̄

(0).
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• The third term in (4.12), ∇−2|f3|2, is more involved. This term corresponds to the

contribution of the operator OIII dual to flux in Series III, and is very difficult to

calculate in field theory, even for chiral OIII. The problem is that if we represent this

operator as a perturbation of the superpotential,
∫
d2θOIIIX, the scalar potential

will receive a new contribution proportional to Kähler potential corrections quadratic

in X.

Although we will not calculate the resulting potential in field theory, we can provide

an interesting consistency check. The perturbation
∫
d2θOIIIX (5.34)

gives rise both to

[OIII]θ2 [X]b (5.35)

and to

[OIII]b[X]θ2 = [OIII]b FX . (5.36)

The former is a perturbation of the gauge coupling function, and is well-known to

be dual to a perturbation of the axio-dilaton in supergravity, δτ = [X]bf3. How-

ever, (5.36) is a gaugino mass term and is dual to Series III flux. Supersymmetry

manifestly relates (5.35) and (5.36).

Next, we note that adding the interaction (5.34) changes the renormalization of the

Kähler potential, so that

K0(A, Ā,B, B̄) → K0(A, Ā,B, B̄) + δK(X, X̄,A, Ā, B, B̄) . (5.37)

We treat the chiral spurion X as a dynamical field with a large mass and a nonzero

vev acquired through the superpotential
∫
d2θ w(X). Before the coupling

∫
d2θOIIIX

is introduced, X does not couple to the KW theory, and has diagonal metric g
(0)

XX̄
.

After the coupling
∫
d2θOIIIX is introduced, the F -term potential for X,

VX = gXX̄

∣∣∣∣
∂w

∂X

∣∣∣∣
2

, (5.38)

acquires a correction because eq. (5.37) induces a change in the metric for X,

δV = −
∣∣∣∣
∂w

∂X

∣∣∣∣
2

(g
(0)

XX̄
)2

∂2

∂X∂X̄
δK . (5.39)

At the same time, there is a correction to the metric of the KW fields,

δgαβ̄ =
∂2

∂zα∂zβ̄
δK , (5.40)

where we have changed from A,B to the geometric notation zα for the coordinates

on the conifold. Therefore, supersymmetry provides a relationship between the per-

turbations to the metric and the potential,

∂α∂β̄ δV ∝ − δgαβ̄ , (5.41)
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where the unspecified constant of proportionality is positive. Moreover, from the

definition of the Ricci tensor, Rαβ̄ = −∂α∂β̄ log det g, we have

δRαβ̄ = −∂α∂β̄ ∇2δK . (5.42)

One then easily shows that

∂α∂β̄ ∇2δV ∝ δRαβ̄ . (5.43)

We will now verify that the supergravity solution implied by our analysis satisfies

the relationship (5.43), providing a strong consistency check. To do this, we compute

the perturbation of the Ricci tensor induced by the dilaton perturbation (5.35) and

show that this is related by (5.43) to the perturbed potential (4.12) computed in

supergravity in the presence of the flux perturbation (5.36). We recall that the

dilaton perturbation sources a perturbation of the metric via the Einstein equation

(cf. appendix B),

δRαβ̄ =
1

4(Im τ)2
∂αδτ ∂β̄δτ̄ . (5.44)

Substituting δτ ∝ f3 into eq. (5.44) and inserting δV = ∇−2|f3|2 into

eq. (5.43), we confirm that our result (4.12) obeys the relationship (5.43) required

by supersymmetry.

5.4 Summary of CFT perturbations

Let us recapitulate our results from the CFT viewpoint. The simplest and most important

perturbations, ∫
d2θTr(AB)k , (5.45)

are perturbations of the CFT superpotential. This tower of perturbations is dual to the

chiral subseries, in Series I, of G(1,2) flux perturbations. The k = 1 mode is relevant in

the RG sense, and is dual to the lowest-dimension (δ = 5
2) mode of flux; it is responsible

for the leading r1 contribution to the D3-brane potential. The bottom component of the

same supermultiplet is a linear Φ− perturbation, and corresponds to the r3/2 term of [17].

Non-chiral generalizations of Series I operators are of the form
∫
d2θ f1

∣∣∣∣
θ̄2=0

, (5.46)

for f1 a harmonic function of the matter fields A and B. The lowest-dimension non-chiral

operator of this form has irrational dimension
√

28 − 1. Adding it to the Lagrangian,

together with
∫
d2θTr(AB), leads to a term r

√
28− 5

2 ≈ r2.79 in the scalar potential.

Similarly, the Series II and III chiral operators are
∫
dθα [Wα

+Tr(AB)k] and [W 2
+Tr(AB)k]b , (5.47)

with the non-chiral extensions
∫
dθα [Wα

+f2]

∣∣∣∣
θ̄2=0

and [W 2
+f3]b . (5.48)
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The leading contributions to the D3-brane potential from chiral Series II and III modes

scale as r3 and r2, respectively. Furthermore, the leading non-chiral Series II mode (δ = 4)

can interfere with the leading chiral Series I mode (δ = 5
2) to give a term scaling as r5/2.

6 D3-brane superpotentials from fluxes

We have seen that perturbations of the supergravity solution by chiral modes of flux in

Series I,

(ΛI)αβ̄γ̄ = ∇α∇σf g
σζ̄ Ω̄ζ̄β̄γ̄ , (6.1)

with f a holomorphic function on the conifold, correspond to superpotential perturbations

in the CFT,

∆W ∼ f(A,B) . (6.2)

In this section we will apply this correspondence to derive a useful representation of non-

perturbative superpotentials in terms of fluxes.

6.1 Superpotentials in global supersymmetry

First, we observe that the D3-brane potential15 in global supersymmetry,

V = gαβ̄∇αW∇βW , (6.3)

is reproduced by the supergravity calculation in the corresponding flux background. Specif-

ically, given any holomorphic function W on the conifold, we turn on the flux

Λαβ̄γ̄ = ∇α∇σW gσρ̄ Ω̄ρ̄β̄γ̄ ≡ ∇∇W · Ω̄ . (6.4)

Solving (4.1) in the background (6.4), we obtain the desired potential,

T3Φ− = gαβ̄∇αW∇βW . (6.5)

Therefore, for any superpotential interaction added to the conifold gauge theory, there is a

G(1,2) flux that geometrizes this superpotential. This is implicit in the analysis of [50], in

which it was found that G(1,2) fluxes induce superpotential interactions for D3-branes. In

appendix B, we show that this correspondence can be extended to backgrounds with large

dilaton gradients and Ricci curvature sourced by D7-branes.

We now turn to an interesting application of this representation of superpotentials

by fluxes.

6.2 Superpotentials from D7-branes

In the presence of a nonperturbative superpotential on wrapped D7-branes, a D3-brane

feels a nontrivial potential [15]. In this section, we briefly review this result, then observe

that the corresponding potential can be represented in ten dimensions by a background of

three-form fluxes.

15For simplicity, in this subsection we take all derivatives to be with respect to the canonically-normalized

field φα ≡
√

T3zα.
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bulk CY

warped throat

D7D3

Figure 4. Schematic of a finite throat with an embedded stack of D7-branes wrapping a four-cycle.

The four-cycle is compact and resides partially in the bulk and partially in the throat. Gaugino

condensation on the D7-branes induces a potential for the D3-brane.

The scalar potential for a D3-brane in a compactification with nonperturbative moduli

stabilization has been analyzed in ref. [16]. The scenario of interest is a finite throat con-

taining a holomorphically-embedded stack of D7-branes (or Euclidean D3-branes), and this

configuration is approximated by a noncompact conifold containing D7-branes wrapping a

noncompact divisor (see figure 4).

The four-cycle Σ wrapped by the D7-branes is defined by the holomorphic embedding

condition

h(zα) = 0 , (6.6)

the simplest examples being the Kuperstein embedding [51, 52],

z1 = µ , (6.7)

and the Ouyang embedding [51],

z3 + iz4 = µ . (6.8)

The warped volume of the four-cycle, VΣ =
∫

d4y
√−ge−4A, determines the gauge coupling

of the D7-brane theory. D3-branes are local sources for Φ+ and hence contribute corrections

to VΣ. If the D7-brane gauge theory generates a gaugino condensate superpotential, then

the dependence of the four-cycle volume on the D3-brane position introduces a dependence

of the superpotential on the D3-brane position [15],

Wnp(zα) = A(zα)e−aρ , (6.9)

where ρ is the Kähler modulus associated with the overall volume of the four-cycle and

A(zα) is given by the embedding function h(zα) = 0,

A(zα) = A0 h(zα)1/Nc , (6.10)

with Nc the number of D7-branes and A0 a constant proportional to N2
c . The full super-

potential is then

W = W0 +Wnp(zα, ρ) , (6.11)
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with W0 the Gukov-Vafa-Witten flux superpotential [53], which is constant after sta-

bilization of the complex structure moduli. Finally, the Kähler potential is [32, 54]

K = −3 log[ρ+ ρ̄− γk(zα, z̄α)] (with γ a constant, cf. [16]). In terms of the above N = 1

data, one can derive the supergravity F-term potential VF [ρ, ρ̄, zα, z̄α] in the usual way.

6.3 Flux representation of nonperturbative superpotentials

We will now demonstrate that for any specified superpotential W (zα) for a D3-brane in

the conifold, cf. eq. (6.11), there exists a noncompact supergravity solution in which the

Born-Infeld plus Chern-Simons potential of a probe D3-brane precisely equals the F-term

potential VF [W (zα),K(zα, z̄α)] computed in four-dimensional supergravity withW (zα) and

K(zα, z̄α) as the input data.16 That is, given a superpotential W (zα), we will provide a

noncompact supergravity solution containing suitable IASD fluxes that geometrizes this

superpotential.

At leading order in an expansion in γk
σ = φ2

3M2
pl

, where σ ≡ 1
2(ρ + ρ̄), the F-term

potential is [16]

V =
κ2

12σ2

e−2aσ

γ

(
gαβ̄AαĀβ̄ + 2aγ(aσ + 3)AĀ − aγ(Āgαβ̄kβ̄Aα + c.c.)

)
+ harmonic .

(6.12)

We now exhibit the ten-dimensional supergravity solution in which a probe D3-brane ex-

periences the four-dimensional supergravity F-term potential (6.12) [16]. To accomplish

this we turn on fluxes in the first two series of section 3. We turn on (1, 2) flux of the form

Λ1 = ∇∇f1 · Ω̄ , (6.13)

with f1 a holomorphic function. In addition, we turn on a non-primitive (2, 1) flux of

the form

Λ2 = ∂f2 ∧ J , (6.14)

with f2 a holomorphic function. As we have shown in section 4, this leads to the potential17

Φ− =
V

T3
=
gs

32

[
gαβ̄∇αf1∇βf1 + 2|f2|2

]
+ harmonic . (6.15)

Comparing eq. (6.15) to eq. (6.12) suggests the matching conditions

f1 = c1A , (6.16)

f2 = c2A + c3k
βAβ , (6.17)

which yields

Φ− =
gs

32

[
|c1|2gαβ̄AαĀβ̄ + 2|c2|2AĀ + 2(c2c̄3 A kβAβ + c.c.)

]
, (6.18)

16In this discussion we will suppress the dependence on ρ for brevity, but one should keep in mind that

ρ is taken to be a dynamical field in the computation of VF .
17Notice that (Ref1)

2 and 1
2
|f1|2 are equal up to harmonic terms.
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once we drop the term proportional to |c3|2, which is subleading in the γk/σ and (aσ)−1 ex-

pansions employed in eq. (6.12).18

Choosing

c1 = c , (6.19)

c2 = c
√
aγ(aσ + 3) , (6.20)

c3 = −c aγ
2c2

, (6.21)

with

c2 ≡ κ2

σ2

e−2aσ

γT3

8

3gs
, (6.22)

we recover eq. (6.12). The omitted harmonic terms can, of course, be adjusted by adding

a harmonic piece to Φ−, no matter the flux background. Notice also that

∣∣∣∣
c3
c2

∣∣∣∣ =
1

2(aσ + 3)
≪ 1 . (6.23)

Finally, we remark that in the decompactification limit (Mpl → ∞ and γ → 0), Series I

flux dominates over Series II flux and the supergravity F-term potential reduces to the

rigid supersymmetry potential.

7 Towards a D7-brane geometric transition

As remarked in the introduction, an important open question in compactifications with

nonperturbatively-stabilized Kähler moduli is the computation of nonperturbative con-

tributions to the open string effective action. One can argue very generally that every

divisor supporting nonperturbative effects will contribute to the potential for a mobile D3-

brane [55]. When a coordinate chart containing the divisor is available, it is straightforward

to determine the superpotential, and this has been done from a variety of perspectives in

toroidal orientifolds [25] and in noncompact cones [15].19 In a more generic F-theory com-

pactification, the result of [55] still applies [56], but it is difficult to translate this fact into

a meaningful contribution to the potential for a D3-brane far from a given divisor.

It is therefore natural to pursue an understanding of nonperturbative effects on D7-

branes that more efficiently describes the potential for a D3-brane interacting with multiple

distant divisors, each bearing nonperturbative effects. We have suggested in the preced-

ing section that, for the purpose of determining the D3-brane potential, nonperturbative

effects on D7-branes can be represented by appropriately-chosen IASD fluxes. This re-

sult, however, is not completely satisfying, as the fluxes were engineered to achieve the

desired result, rather than emerging from the inclusion of local source terms in the equa-

tion of motion. We will now establish a much more interesting fact: nonperturbative effects

18The γk/σ expansion can be seen to be an expansion in powers of φ

Mpl
, with φ the canonically-normalized

scalar describing D3-brane motion. As shown in [40], this quantity is bounded from above by 2√
N

in an

AdS5 × X5 geometry with D3-brane charge N , and hence is a suitable expansion parameter.
19It has also been argued that this result can be encoded in a generalized complex geometry [27].
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on D7-branes source IASD fluxes.20 In particular, in a background containing D7-branes

wrapping a rigid four-cycle, gaugino condensation in the D7-brane theory corrects the ten-

dimensional equation of motion for the fluxes, by introducing a source term localized to

the four-cycle. The ten-dimensional solution in the presence of this source contains IASD

fluxes that geometrize, in the spirit of section 6, the nonperturbative superpotential of the

D7-brane theory.

For noncompact configurations, Series I flux suffices to geometrize the entire scalar

potential, while for compact spaces, Series II flux is also necessary, as shown in section 6.

In this section we restrict attention to the sourcing of Series I flux by gaugino condensation,

but we emphasize that the results obtained below are valid for compact spaces, with the

proviso that in such cases the D3-brane potential is not fully determined by Series I flux.

We make the further simplifying assumption that any dilaton gradients are small, in the

sense of section 2.3. This can be consistent with the classical backreaction of D7-branes, e.g.

four D7-branes coincident with an O7-plane have vanishing total charge and tension, and

hence source neither dilaton monodromies nor a deficit angle. We expect that the inclusion

of dilaton gradients constitutes a purely technical complication, and we anticipate that our

conclusions can be extended to general F-theory backgrounds. Although a calculation with

non-trivial dilaton is beyond the scope of the present work, in appendix B we have paved

the way for such a computation.

We begin in section 7.1 by outlining our general strategy, explaining how worldvolume

couplings of the gaugino can serve as source terms, and indicating the anisotropic regime

in which our methods are most reliably applied. Then, in section 7.2, we identify the

particular coupling of the gaugino that is responsible for sourcing G(1,2) flux. We provide

an indirect argument, via AdS/CFT, for the existence of such a coupling (section 7.2.1),

and then confirm this by direct computation in ten dimensions (section 7.2.2). We show

that the resulting G(1,2) flux is precisely what is required to geometrize the nonperturbative

superpotential in field theory.

7.1 4D fermion bilinears as 10D sources

First, we observe that the ten-dimensional equations of motion for the fluxes in principle

include source terms21 proportional to open string fermion bilinears. These terms are

dropped when considering classical solutions, but nonperturbative effects can induce an

expectation value for e.g. the D7-brane gaugino bilinear, 〈λλ〉 6= 0. Then, ten-dimensional

closed string fields that couple to λλ will obtain D7-brane-localized source terms when

gaugino condensation occurs. For example, a coupling of the schematic form22

δS ∼
∫

d8ξ
√−g G3 λλ (7.1)

could plausibly source bulk fluxes.

20We thank Juan Maldacena and Gonzalo Torroba for discussions on this topic.
21We thank James Gray for helpful discussions of this point.
22Here and in the following, λλ is shorthand for Tr(λαλα).
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warped throat unwarped cone

Planck brane
probe D3-brane

stack of D7-branes

G
−

G
−

rUV

Figure 5. Schematic of a configuration in which nonperturbative effects on D7-branes wrapping a

small four-cycle are represented, at long distances, by IASD fluxes G
−

.

Let us emphasize that we are proposing to solve the ten-dimensional equations of

motion for the fluxes, incorporating fermion expectation values that are nonvanishing as a

result of four-dimensional nonperturbative physics.23 This proposal, albeit unconventional,

is plausibly consistent, as we will explain in an example. Consider a stack of D7-branes

wrapping the base of a complex cone over a del Pezzo surface (see figure 5). Gaugino

condensation in the D7-brane gauge theory leads to a nonperturbative superpotential that

generates a potential for a D3-brane probing the cone. At radial distances that are large

compared to the size of the base, there should be a local supergravity solution describ-

ing this system. Any non-locality caused by the four-dimensional nonperturbative effects

should be confined to the region near the collapsed surface, and at larger distances the net

effect of gaugino condensation should be to source corrections to the ten-dimensional su-

pergravity solution. Equivalently, when the four-cycle is small compared to the remainder

of the internal space, then the nonperturbative effects will arise at an energy scale that is

large compared to the lowest Kaluza-Klein mass of the internal space. In such a case, it is

reasonable to study the ten-dimensional background fields incorporating four-dimensional

nonperturbative effects. We will restrict our attention to anisotropic configurations of

this sort.

7.2 D7-brane couplings to flux

We will now identify a specific D7-brane worldvolume coupling that causes gaugino con-

densation to source fluxes. In section 7.2.1 we will begin by using AdS/CFT to identify

the corresponding coupling in field theory. Then, in section 7.2.2, we will demonstrate

that the well-known tree-level coupling of D7-brane gauginos to flux [47] serves to source

G(1,2) fluxes that geometrize the gaugino condensate superpotential. The latter result is

more general and applies to any Calabi-Yau geometry; specifically, it is not restricted to

asymptotically AdS spaces.

7.2.1 Gauginos as a source for flux: field theory perspective

Four-dimensional supersymmetry requires that the gauge coupling function f of the D7-

brane gauge theory is a holomorphic function of the chiral superfields Φ,24

L ⊃ −
∫
d2θ f(Φ)WαWα + c.c. (7.2)

23For a related investigation in the heterotic string, see [57]. The backreaction of nonperturbative effects

on fluxes has also been considered in type IIB string theory in [58].
24To facilitate comparison with the results of [59] we absorb a factor of 1/32π2 in W αWα.
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compactification

8d

4d SUSY

AdS/CFT

δΦ+ G3λαλ
α

[δf ]θ2λαλ
α

δVΣF 2
µν ≡ [δf ]bF 2

µν

Figure 6. Indirect argument that a nonvanishing D7-brane gaugino bilinear λαλ
α sources G(1,2)

flux. The D7-brane gauge coupling depends on the D3-brane position via the perturbation δΦ+ [15]

(left edge). Four-dimensional supersymmetry relates this to a gaugino mass (bottom edge), which

in turn is related by AdS/CFT to a flux-gaugino coupling (right edge).

Expanding the superspace integral, one finds the usual gauge kinetic term, as well as the

gaugino mass term

λλ×
∫
d2θ f(Φ) = FΦ

∂f

∂Φ
λλ . (7.3)

Notice that the D7-brane gaugino mass depends on the F-components of the fields appear-

ing in f ; this is just the familiar statement that in four-dimensional supersymmetry, the

gaugino mass term is the F-component of the gauge kinetic function, Ff ≡ [f ]θ2 (bottom

edge of figure 6).

eq. (7.3) may also be viewed as a source for the F-term FΦ, and can be represented as

a superpotential contribution
∫
d2θW (Φ) with W (Φ) satisfying

∂W

∂Φ
= − ∂f

∂Φ
λλ . (7.4)

This is in agreement with the well-known expression for the gaugino condensate and its

relation to the superpotential [59],

W = Ncλλ and λλ ∼ e−f/Nc . (7.5)

Let us now specialize to the warped conifold in order to make use of the AdS/CFT

dictionary of section 5. The general chiral superfields Φ are therefore replaced by the local

coordinates zα (related to gauge-invariant combinations of A,B). We argued in section 5

that the F-term of the chiral fields is dual to G(1,2) flux of Series I. From eq. (4.12) we find

that the superpotential W and the defining function f1 of the Series I flux are related by

∂W

∂zα
= ζ

∂f1

∂zα
, (7.6)

where we have defined the dimensionful parameter

ζ ≡ T3

√
gs

32
, (7.7)
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and in (7.6) we have suppressed an undetermined phase. Comparing this with eq. (7.4),

we see that the gaugino condensate 〈λλ〉 in field theory must source G(1,2) flux in the bulk.

In fact, we can be more precise in predicting the form of the sourced flux. From [15, 55]

we know how f depends on the chiral superfields. For a D7-brane embedded along a divisor

that is defined by the holomorphic equation h(zα) = 0, the coupling constant is

f = 2πρ− log(h(zα)) . (7.8)

Combining the above results, we obtain a nontrivial prediction for the harmonic function

f1 (which defines the Series I flux),

∂f1

∂zα
= ζ−1λλ

∂ log h

∂zα
, (7.9)

up to an undetermined phase.

Our argument uses four-dimensional supersymmetry and the AdS/CFT dictionary to

deduce a coupling in four dimensions between the gauginos of D7-branes in a warped

throat, and CFT fields dual to G(1,2) fluxes in that throat. We expect that this coupling

in the four-dimensional theory arises from the dimensional reduction of a corresponding

eight-dimensional coupling between D7-brane fermions and G3. Moreover, it is reasonable

to expect, and we shall demonstrate, that such a coupling is present even in spaces that

are not asymptotically AdS. In the next section we will demonstrate that the coupling in

question is nothing but the tree-level gaugino mass term of [47].

7.2.2 Gauginos as a source for flux: bulk perspective

The tree-level couplings between D7-brane worldvolume fermions and the bulk fields have

been studied in [26, 47] by expanding the Born-Infeld plus Chern-Simons actions around

the D7-brane location. Ignoring the trivial Minkowski part and assuming constant dilaton,

the unique tree level coupling involving G∗
(0,3)λλ is [47],

L = 16 c0 ζ

∫

Σ

√
g G3 · Ω λ̄λ̄ + c.c. (7.10)

Here c0 ∼ O(1) is a dimensionless coefficient that could be obtained from a careful uplifting

to eight dimensions of the four-dimensional action of [47]. In the following we set c0 → 1,

but we emphasize that the matching of the overall coefficient in the analysis below would

require the computation of c0. Adding this local coupling (7.10) to the bulk action modifies

the flux equation of motion, and, as we shall show, links the gaugino expectation value 〈λλ〉
to the bulk flux G(1,2).

Before we proceed, let us recall some facts about divisor delta-functions.25 The divisor

Σ wrapped by the D7-branes is defined via the holomorphic embedding equation h = 0.

The Poincare-Lelong Equation then defines a delta-function two-form [60],

δ
(2)

αβ̄
=

1

π
∂α∂β̄ Re(log h) , (7.11)

25We thank Luca Martucci for discussions.
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which localizes the integral of any four-form F (4) onto Σ,

∫

M

F (4) ∧ δ(2) =

∫

Σ

F (4) . (7.12)

Eq. (7.11) is a generalization of the scalar delta-function, which may be obtained from (7.11)

by contraction with gαβ̄,

δ(0) = gαβ̄δ
(2)

αβ̄
=

1

2π
∇2Re(log h) . (7.13)

Eq. (7.13) was derived for conifold geometries in [15].

We use eq. (7.11) to transform the local action on Σ, eq. (7.10), into an integral over

the whole compactification manifold M ,

∫

Σ

√
g G3 · Ω λ̄λ̄ =

1

2!

∫

Σ

J ∧ J (G3 · Ω λ̄λ̄) =
1

2!

∫

M

J ∧ J ∧ δ(2) (G3 · Ω λ̄λ̄) . (7.14)

Using that 1
2!J ∧ J ∧ δ(2) = 1

3!J ∧ J ∧ J δ(0), we can then write

1

3!

∫

M

J ∧ J ∧ J (G3 · Ω λ̄λ̄ δ(0)) = −i
∫

M

G3 ∧ Ω (λ̄λ̄ δ(0)) . (7.15)

Next, using (7.15), we compare the variation of (7.10) with respect to C2 and B2,

− 16i ζ

∫

M

δG3 ∧ Ω (λ̄λ̄ δ(0)) + c.c. , (7.16)

to the variation of the bulk supergravity action,

− gs

4κ2
10

∫

M

δG3 ∧ Λ̄ + c.c. , (7.17)

where κ2
10 = 1

2(2π)7α′4 = π/T 2
3 . We obtain the modified equation of motion

dΛ = d

(
2π

iζ
Ω̄λλ δ(0)

)
, with ⋆6 Λ = −iΛ . (7.18)

To solve this equation we consider non-trivial IASD fluxes from Series I, II, and III. The

source term on the r.h.s. of (7.18) is a singular (1, 3) form, and therefore the defining

functions f1, f2, and f3 must be harmonic everywhere except on the divisor Σ. Consulting

eqs. (A.36) and (A.18), we see that Series III flux does not lead to a non-trivial (1, 3) form,

and that Series II flux leads to a combination of (1, 3) and (2, 2) forms. The only remaining

possibility, therefore, is Series I flux (3.24), which obeys (cf. eq. (A.14))

dΛ = d

(
1

2
∇2f1 Ω̄

)
. (7.19)
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Comparing eqs. (7.18) and (7.19), we obtain

∇2f1 =
4π

iζ
λλ δ(0) . (7.20)

The gaugino condensate λλ depends on the location of any D3-branes ẑα, but is a constant

with respect to the bulk coordinates zα. Solving eq. (7.20) then yields

f1 =
2

iζ
λλ Re(log h(zα)) , (7.21)

in agreement with eq. (7.9). This, in fact, is the bulk dual of the field-theory mechanism

of section 7.2.1.

To calculate the potential for a D3-brane we first calculate the flux G(1,2) using

eq. (7.21) and the form of the embedding function h(zα). Then we calculate Φ− using

eq. (4.12). At this step Φ− depends on the coordinates zα in the bulk, and also on the

location of the D3-branes through λλ(ẑα) ∝ 1
Nc
h(ẑα)1/Nc , cf. (6.10) [15]. Finally, we com-

pute the potential for the D3-brane by evaluating the D3-brane probe action T3Φ− at

the location of the D3-brane. The resulting potential is given by eq. (6.3), with W the

gaugino condensate superpotential (6.9). Therefore, the scalar potential takes precisely the

same form when calculated in four-dimensional supersymmetry or from the ten-dimensional

probe action in the flux background (7.21) sourced by gaugino condensation.

We remark in passing that our result is valid for any number of D3-branes. To illustrate

this point, let us consider a conifold region that contains Nc D7-branes wrapping the four-

cycle h(zα) = µ − z1, as well as Nf well-separated D3-branes. We further assume that

any adjoint chiral multiplets living on the D7-branes have obtained a high-scale mass from

appropriate ISD flux, so the low-energy effective theory on the D7-branes in the absence

of probe D3-branes is pure N = 1 supersymmetric SU(Nc) QCD. The D3-branes at finite

separation from the D7-branes correspond to massive flavors in the N = 1 super-Yang-

Mills theory on the D7-branes, and in this theory with mass matrix m for the flavors, the

superpotential is [59]

W = Ncλλ ∝ det(m)1/Nc = det
(
µ INf×Nf

− Ẑ1

)1/Nc

, (7.22)

in agreement with [15, 61]. The above superpotential describes an interaction among the

D3-branes sitting at locations specified by the eigenvalues of the matrix Ẑ1.

We note that our proposal for the long-distance supergravity description of the D7-

brane nonperturbative effects has certain similarities to the well-known geometric transi-

tion [13, 62, 63], for which it is now firmly established that nonperturbative dynamics on

a stack of D5-branes wrapping a small curve can be captured by a modified background

geometry and suitable G3 flux. However, at present our only method of probing the su-

pergravity solution sourced by the D7-brane nonperturbative effects is by examining the

potential of a probe D3-brane. Therefore, our speculations are necessarily limited for the

time being to the modes of Φ− (and hence, IASD fluxes) that nonperturbative effects

on D7-branes may produce. It would be interesting to identify additional probes of the

geometry around the D7-branes [28].
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Another ten-dimensional description of nonperturbative effects was given in [27], where

a generalized complex geometry was argued to encode the nonperturbative superpotential

in the decompactification limit. In our language this would correspond to the presence of

Series I flux. It would be interesting to understand the relation between the flux solution

described in this paper and the configuration studied in [27]; it is conceivable that the

ten-dimensional equations of motion relate these results.

7.3 Comments on noncommutativity

Our proposal provides a direct connection between the works of Cecotti et al. [64] and

Marchesano and Martucci [61]. In [64] it was observed that the noncommutative superpo-

tential induced on coincident D3-branes by three-form fluxes [47, 65] can solve a problem

in F-theory model-building by increasing the rank of the Yukawa matrix. However, in [61]

it was argued that a noncommutative superpotential should not appear at tree level in

a no-scale compactification, but should instead arise from nonperturbative effects on D7-

branes. We have argued here that nonperturbative effects on D7-branes can be represented

in ten-dimensional supergravity by suitable IASD fluxes. Therefore, our analysis provides

a concrete link between these approaches. To illustrate this point we briefly sketch how

one can arrive at the same answer for the noncommutativity parameter from either per-

spective. Marchesano and Martucci derived the noncommutativity parameter on a stack

of Nf D3-branes in the presence of nonperturbative effects on Nc D7-branes [61]26

θαβ ∝ ǫαβγh
Nf−1∂γh , (7.23)

where as before h = 0 defines the four-cycle wrapped by the D7-branes (or by a Euclidean

D3-brane), and special complex coordinates have been chosen such that the metric is

canonical, gαβ̄ = δαβ̄. On the other hand, Cecotti et al. [64] (see also [47]) showed that the

noncommutativity parameter arises from (1, 2) flux,

∇αθβ̄γ̄ ∝ Λ
(1,2)

αβ̄γ̄
. (7.24)

Our conjecture for relating nonperturbative effects on D7-branes to bulk IASD fluxes di-

rectly relates the results in (7.23) and (7.24). In our approach, the (1, 2) flux of (7.24)

is sourced by gaugino condensation on D7-branes in the presence of the Nf D3-branes,

and hence depends on their locations ẑα. Namely, for coincident D3-branes λλ ∝ hNf (ẑα),

and hence ∂αf1 ∝ hNf∂α log h(zβ). Comparing the expression (3.24) for the (1, 2) flux,

Λ
(1,2)

αβ̄γ̄
= ∇α∇σf1g

σζ̄ǫζ̄β̄γ̄ , with (7.24) we conclude that

θαβ ∝ ǫαβγ∂γf1 , (7.25)

in agreement with (7.23). It would be interesting to extend this analysis to include the

effects of a running dilaton by using the expression for the Series I flux from appendix B,

thereby generalizing the results of [64] and [47].

26For simplicity, [61] considered the case Nc = 1, corresponding to replacing the effect of gaugino conden-

sation on D7-branes by that of Euclidean D3-branes. To compare our result to [61] we also take Nc = 1.
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8 Conclusions

We have provided a comprehensive analysis of the structure of the scalar potential for a D3-

brane in a noncompact conifold background subject to arbitrary ultraviolet deformations,

in an expansion around the ISD solution with G− = Φ− = 0. This strongly constrains the

form of the effective action of a D3-brane in a finite warped throat attached to a compact

space. Our general analysis of ultraviolet deformations provides the gravity-side version of

a Wilsonian treatment of the D3-brane action, in that the perturbations of the supergravity

solution are dual to Planck-suppressed contributions to the D3-brane action. As is clear

from our description of these results in the dual CFT, strong coupling makes a complete

treatment on the field theory side extremely difficult.

Our investigation yielded a general solution for IASD fluxes in the singular conifold,

and can be extended to arbitrary Calabi-Yau cones given the scalar harmonics on the cor-

responding Sasaki-Einstein bases. For a given flux background, it is straightforward to

find the scalar potential, and for G(1,2) and G(2,1) fluxes parametrized by a holomorphic

function, we gave the result in closed form. In the remaining cases we provided an inte-

gral formula involving the flux density and the (known) Green’s function, which is easily

evaluated in any case of interest. Assembling these results, we presented the spectrum of

radial scaling dimensions for the leading correction terms, eq. (4.44).

We then systematically matched our non-normalizable flux solutions to sources for dual

operators in the corresponding CFT. This provided a nontrivial check of the completeness

of our results, as well as a useful perspective for comparing to four-dimensional field theory

analyses. We showed that for two out of three towers of chiral operators, the scalar potential

computed in the field theory matches that found in supergravity. For the third tower of

chiral operators, we argued that knowledge of the perturbed Kähler potential would be

necessary to compare to the supergravity result, but we did provide a consistency check

relating the scalar potential to the perturbations of the metric.

Next, we observed that the D3-brane potential specified by any given superpotential

W (zα) on the conifold can be geometrized, in the sense that there exists a ten-dimensional

supergravity solution in which a probe D3-brane experiences the supergravity F-term po-

tential dictated by W (zα). We have verified that for the rigid supersymmetry terms, this

correspondence persists even in the presence of large perturbations of the metric and dilaton

sourced by D7-branes.

Finally, we showed that gaugino condensation on D7-branes wrapping a four-cycle

sources IASD flux in ten dimensions. For the purpose of computing the potential of a space-

filling D3-brane, these fluxes serve as a useful dual representation of the nonperturbative

effects. Using AdS/CFT, we argued that a suitable gaugino coupling to flux must exist,

then demonstrated that in fact the well-known tree-level gaugino mass term [47] serves to

source IASD flux that is dual, in the above sense, to the nonperturbative superpotential.

This observation is similar to the D5-brane geometric transition [13, 62, 63], but we leave

a thorough investigation of this intriguing possibility as a subject for future work [28].

Our results have a range of applications. An important problem of general interest

in string theory is to determine Planck-suppressed contributions to the effective action in
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sectors that are sensitive to Planck-scale physics. In inflation, one needs to compute these

contributions in order to ensure that they do not spoil the inflationary dynamics, while in

particle physics scenarios with high-scale supersymmetry breaking, one needs to determine

the soft terms from gravity mediation in order to assess the flavor structure. Direct com-

putation of these effects in general compact models is prohibitively complicated. In this

work, by first decoupling gravity in a noncompact configuration, then systematically rein-

corporating compactification effects, we have provided an approach in which the structure

of the Planck-suppressed contributions can be computed.
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A IASD fluxes in Calabi-Yau cones

In this appendix we derive the solutions for imaginary anti-self dual (IASD) flux perturba-

tions on a general Calabi-Yau cone in terms of the scalar harmonics on the Sasaki-Einstein

base. These results provide the primary input for computing the flux-induced potential

felt by probe D3-branes.

Preliminaries. We are searching for closed, IASD three-forms Λ,

dΛ = 0 , ⋆6Λ = −iΛ . (A.1)
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We construct these forms using the Kähler form J and the holomorphic (3, 0) form Ω, as

well as harmonic functions f . The Kähler form is a (1, 1) form with components

Jαβ̄ = igαβ̄ , (A.2)

where gαβ̄ is the Kähler metric

gαβ̄ = ∂α∂β̄k . (A.3)

The holomorphic (3, 0) form has components

Ωαβγ = q ǫαβγ , (A.4)

where q is a holomorphic function satisfying qq̄ = det g. We will make use of the identity

1

2!
ΩαβγΩ̄ᾱβ̄γ̄g

ββ̄gγγ̄ = gαᾱ . (A.5)

Using these ingredients we construct IASD three-forms:

• We write the non-primitive (2, 1) component of the three-form Λ as the exterior

product of the Kähler form J and a holomorphic one-form P ,

Λ(2,1) = P (1,0) ∧ J (1,1) , or Λαβγ̄ = iP[αgβ]γ̄ . (A.6)

• We write the (1, 2) component of the three-form Λ as the contraction of the anti-

holomorphic (0, 3) form Ω̄ and a holomorphic (2, 0) form P ,

Λ(1,2) = P (2,0) · Ω̄(0,3) , or Λαβ̄γ̄ = P(ασ)g
σζ̄Ω̄ζ̄β̄γ̄ . (A.7)

Only the symmetric part of P gives an IASD form.

• Finally, the holomorphic (3, 0) form Ω is IASD.

The forms P will be constructed out of derivatives of harmonic functions f .

Series I: Three-Form of Type (1, 2). We construct the two-form P in eq. (A.7) out

of mixed covariant derivatives of a harmonic function f ,

P(ασ) = ∇α∇σf , (A.8)

where ∇2f = gρζ̄∇ρ∇ζ̄f = 0. Below we prove that the resulting three-form is closed.

Hence, we obtain the first three-form, ΛI = Λ(1,2),

ΛI = ∇∇f · Ω̄ , (A.9)

or

Λαβ̄γ̄ = ∇α∇σf g
σζ̄Ω̄ζ̄β̄γ̄ . (A.10)

1. The three-form ΛI defined in eq. (A.9) is closed.
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Proof. We aim to show that dΛI = (∂ + ∂̄)ΛI = 0. First, we consider the anti-holomorphic

derivative

(∂̄ΛI)αβ̄γ̄δ̄ = ∇[δ̄∇α∇σf g
σζ̄Ω̄ζ̄|β̄γ̄] ≡ Tα Ω̄β̄γ̄δ̄ , (A.11)

where

Tα ∝ gσζ̄∇ζ̄∇α∇σf . (A.12)

We can exchange the order of ∇ζ̄ and ∇α because the difference is proportional to

gσζ̄Rρ

σζ̄α
∇ρf = Rαβ̄ g

ρβ̄ ∇ρf , (A.13)

which vanishes because the cones we consider are Calabi-Yau manifolds with vanishing

Ricci tensor, Rαβ̄ = 0. Hence, we find

(∂̄ΛI)αβ̄γ̄δ̄ ∝ ∇α∇2f Ω̄β̄γ̄δ̄ = 0 , (A.14)

where we used that f is harmonic, ∇2f = 0.

Similarly, we can show that the holomorphic derivative of ΛI vanishes,

(∂ΛI)αβγ̄δ̄ = ∇[αPβ]ζΩ̄
ζ

γ̄δ̄
= 0 . (A.15)

To see this we use ∇[αPβ]ζ = ∇[α∇β]∇ζf , which vanishes because the holomorphic covariant

derivatives ∇α and ∇β commute; their commutator is the Riemann tensor, which has no

nontrivial components with only holomorphic indices if the metric is Kähler. We have

therefore shown that dΛI = (∂ + ∂̄)ΛI = 0.

Series II: three-form of type (1, 2) + (2, 1)NP. Our next ansatz for the two-form in

eq. (A.7) is

P(ασ) = ∇ζ̄∇(αfω
ζ̄
σ) , (A.16)

where

ωζ̄
σ ≡ Ωζ̄

σρk
ρ , kρ ≡ gρξ̄∂ξ̄k . (A.17)

The resulting three-form,

Λ
(1,2)
II = ∂∂̄f ∧ ∂̄k +

1

2
J ∧ ∂̄(∂ρfk

ρ) − 1

2
∇2f J ∧ ∂̄k , (A.18)

is not closed. However, it becomes closed when an appropriate (2, 1) piece is added,

Λ
(2,1)
II = ∂

(
f +

1

2
∂ρfk

ρ

)
∧ J , (A.19)

so that we have ΛII ≡ Λ
(1,2)
II + Λ

(2,1)
II ,

ΛII = (∂ + ∂̄)

(
f +

1

2
∂ρfk

ρ

)
∧ J + ∂(∂̄f ∧ ∂̄k) . (A.20)

2. The three-form ΛII defined in eq. (A.20) is closed.
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Proof. We aim to show that dΛII = (∂ + ∂̄)ΛII = 0. We will begin by showing that kσ is

holomorphic, i.e.

∂ζ̄k
σ = ∇ζ̄k

σ = gσρ̄∇ζ̄∇ρ̄k = 0 . (A.21)

To prove this, it suffices to prove that

∇m∇nk = gmn , (A.22)

where m,n are real indices. This result is easily checked for any cone with metric ds2 =

dr2 + r2dΩ2
X5

and Kähler potential k = r2

2 .

We now show that ∂̄Λ
(1,2)
II vanishes. Since kσ is holomorphic and Ω is covariantly

constant, we can extract ωζ̄
β from the covariant derivative of eq. (A.16). We find

∂̄[δ̄Λα|β̄γ̄] = Tα Ω̄β̄γ̄δ̄ , (A.23)

where

Tα ≡ 1

2
∇ζ̄∇σ̄∇αf Ωζ̄σ̄

ρk
ρ +

1

2
gρσ̄∇σ̄∇ζ̄∇ρf ω

ζ̄
α . (A.24)

Commuting ∇ζ̄ and ∇σ̄ with ∇α in the first term we find

∇ζ̄∇σ̄∇αf = ∇α∇ζ̄∇σ̄f −Rρ̄

ζ̄σ̄α
∇ρ̄f . (A.25)

The result is symmetric in the ζ̄ and σ̄ indices because

Rρ̄

ζ̄σ̄α
= ∂αΓρ̄

ζ̄σ̄
. (A.26)

Since Ωζ̄σ̄
ρ is antisymmetric in ζ̄ and σ̄, the first term in eq. (A.24) vanishes. The second

term vanishes because f is harmonic.

Before we calculate ∂Λ
(1,2)
II , let us rewrite eq. (A.16) in a slightly different form

P(ασ) = ∇ζ̄∇(αfω
ζ̄
σ) = ∇ζ̄∇αfω

ζ̄
σ + ∇ζ̄∇[αfω

ζ̄
σ] . (A.27)

After contracting eq. (A.27) with Ω̄ as in eq. (A.7) the first term gives

∇β̄∇αfkγ̄ −∇γ̄∇αfkβ̄ , (A.28)

while the second term should be proportional to P (0,1) ∧ J for some appropriate one-form

P (0,1),

∇ζ̄∇[αfω
ζ̄
σ]Ω̄

σ
β̄γ̄ = Pβ̄gαγ̄ − Pγ̄gαβ̄ . (A.29)

To find P (0,1) we contract eq. (A.29) with gαβ̄ . Because f is harmonic we find

Pγ̄ = −1

2
∇γ̄(∂ρfk

ρ) . (A.30)

If we combine this result with eq. (A.28) the resulting Λ
(1,2)
II acquires the simple form

Λ
(1,2)
II = ∂∂̄f ∧ ∂̄k +

1

2
J ∧ ∂̄(∂ρfk

ρ) . (A.31)
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We are now ready to calculate the holomorphic derivative ∂Λ
(1,2)
II ,

∂Λ
(1,2)
II = ∂∂̄

(
f +

1

2
∂ρfk

ρ

)
∧ J . (A.32)

This does not vanish, so we need to introduce a (2, 1) piece

Λ
(2,1)
II = ∂

(
f +

1

2
∂ρfk

ρ

)
∧ J , (A.33)

for which obviously ∂Λ
(2,1)
II = 0. We see that

∂Λ
(1,2)
II + ∂̄Λ

(2,1)
II = 0 . (A.34)

We have therefore shown that dΛII = (∂ + ∂̄)ΛII = 0, where ΛII ≡ Λ
(1,2)
II + Λ

(2,1)
II .

Series III: three-form of Type (1, 2) + (2, 1)NP + (3, 0). Our next ansatz for the

two-form in eq. (A.7) uses two derivatives acting on a harmonic function f ,

P(ασ) = ∇ζ̄∇ρ̄fω
ζ̄
αω

ρ̄
σ . (A.35)

The resulting (1, 2) form,

Λ
(1,2)
III = ∂̄(∂̄f · ω) ∧ ∂̄k , (A.36)

is not closed, but the three-form becomes closed when appropriate (2, 1) and (3, 0) pieces

are added,

Λ
(2,1)
III = (∂̄h · ω) ∧ J , (A.37)

Λ
(3,0)
III = (2h+ kξ∂ξh)Ω , (A.38)

where h ≡ 3f + kρ∂ρf .

Our final closed, IASD three-form therefore is ΛIII ≡ Λ
(1,2)
III + Λ

(2,1)
III + Λ

(3,0)
III ,

ΛIII = (2h+ kξ∂ξh)Ω + (∂̄h · ω) ∧ J + ∂̄(∂̄f · ω) ∧ ∂̄k . (A.39)

3. The three-form ΛIII defined in eq. (A.39) is closed.

Proof. We aim to show that dΛIII = (∂ + ∂̄)ΛIII = 0.

Contracting eq. (A.35) with Ω̄ we get

Λαβ̄γ̄ = ωζ̄
α

(
∇ζ̄∇β̄fkγ̄ −∇ζ̄∇γ̄fkβ̄

)
. (A.40)

The derivative ∂̄Λ
(1,2)
III vanishes because ωζ̄

α and kγ̄ can be extracted from the differentia-

tion and ∇δ̄∇ζ̄∇β̄f will vanish after antisymmetrization with respect to δ̄ and β̄ (see the

discussion following eq. (A.15)).

Next we consider ∂Λ
(1,2)
III . To simplify the expression we contract (∂Λ)αβγ̄δ̄ with Ω̄αβ

ρ̄

1

2
Ω̄αβ

ρ̄(∂Λ)αβγ̄δ̄ = gαᾱ∇α(∇ᾱ∇γ̄fkδ̄kρ̄) −∇α(∇ρ̄∇γ̄fk
αkδ̄) − [γ̄ ↔ δ̄] . (A.41)
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We expand the covariant derivatives and notice that many terms cancel. The first term in

eq. (A.41) is

gαᾱ∇α(∇ᾱ∇γ̄fkδ̄kρ̄) = gαᾱ∇α∇ᾱ∇γ̄fkδ̄kρ̄ + ∇δ̄∇γ̄fkρ̄ + ∇ρ̄∇γ̄fkδ̄ . (A.42)

The first term in eq. (A.42) vanishes because the metric is Ricci-flat and f is harmonic.

The second term vanishes after antisymmetrization with respect to γ̄ and δ̄, and only the

third term survives. Similarly, the second term in eq. (A.41) gives

∇α(∇ρ̄∇γ̄fk
αkδ̄) = −kα∇α∇ρ̄∇γ̄fkδ̄ − 4∇ρ̄∇γ̄fkδ̄ . (A.43)

The first term in eq. (A.43) can be simplified as follows: we will use the fact that Kähler

manifolds, for which

∂α(∇β̄∇γ̄k) = 0 , (A.44)

have the property

kαRαβ̄γδ̄ = 0 . (A.45)

Therefore, we see that kα∇α and ∇β̄ commute. eq. (A.43) then becomes

−∇ρ̄∇γ̄(∂αfk
α)kδ̄ − 4∇ρ̄∇γ̄fkδ̄ . (A.46)

Together with eq. (A.41) this gives

1

2
Ω̄αβ

ρ̄(∂Λ
(1,2)
III )αβγ̄δ̄ = −∇ρ̄∇γ̄(3f + ∂αfk

α)kδ̄ + [γ̄ ↔ δ̄] . (A.47)

To cancel this term we introduce the (2, 1) form

Λ
(2,1)
αβγ̄ = ∂ζ̄h

(
ωζ̄

αgβγ̄ − ωζ̄
βgαγ̄

)
, (A.48)

for some harmonic function h. We get

1

2
Ω̄αβ

ρ̄(∂̄Λ
(2,1)
III )αβγ̄δ̄ = ∇γ̄(∇ρ̄hkδ̄) −∇γ̄(∇δ̄hkρ̄) − [γ̄ ↔ δ̄] . (A.49)

The second term vanishes after antisymmetrization so that we find

1

2
Ω̄αβ

ρ̄(∂̄Λ
(2,1)
III )αβγ̄δ̄ = ∇ρ̄∇γ̄hkδ̄ − [γ̄ ↔ δ̄] . (A.50)

If we choose h ≡ 3f + ∂αfk
α this cancels eq. (A.47). However, the (2,1) form (A.48)

produces a non-trivial (3, 1) form after holomorphic differentiation,

Tδ̄ ≡ 1

6
Ω̄αβγ(∂Λ

(2,1)
III )αβγδ̄ = gαᾱ∇α(∇ᾱhkδ̄) −∇α(kα∇δ̄h) . (A.51)

Because h is harmonic the result is simply

Tδ̄ = −∇δ̄(2h+ kα∂αh) . (A.52)

To cancel this term we introduce the (3, 0) form

Λ
(3,0)
III = (2h+ kα∂αh)Ωαβγ . (A.53)

We have therefore shown that dΛIII = (∂ + ∂̄)ΛIII = 0, where ΛIII ≡ Λ
(1,2)
III + Λ

(2,1)
III +

Λ
(3,0)
III .
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B Including dilaton gradients

We established in section 2 that small perturbations of the dilaton and metric do not

contribute to the leading-order flux-induced potential for a D3-brane. However, many

interesting compactifications arising from F-theory contain substantial dilaton gradients

that cannot be treated perturbatively. If D7-branes are the only source for these dilaton

gradients27 then the axio-dilaton will be holomorphic, so that the equation of motion (2.9)

for the three-form flux reduces to

dΛ + ∂φ ∧ (Λ + Λ̄) = 0 , (B.1)

where the exterior derivative has been split into holomorphic and anti-holomorphic parts,

d = ∂ + ∂̄. Moreover, the internal space will not be Ricci-flat, but will obey28

Rαβ̄ = ∂αφ∂β̄φ , (B.2)

where Rαβ̄ is the Ricci tensor of the internal space. Finally, the Φ− equation of motion

takes the form

∇2Φ− =
eφ

96
|Λ|2 , (B.3)

where we call attention to the non-constant prefactor eφ.

In a general compactification, it is challenging to determine the metric and dilaton

in the presence of D7-brane sources (cf. e.g. ref. [66]). However, we will now show that

some of our considerations can be extended to D7-brane backgrounds without determining

the metric and dilaton explicitly. First, we will generalize the fluxes in Series I to D7-

brane backgrounds, solving eq. (B.1). Then, generalizing section 6.1, we will prove that

the global supersymmetry interactions encoded in an arbitrary holomorphic superpotential

W (za) can be geometrized by these fluxes. That is, in the globally-supersymmetric theory

arising on a D3-brane probing a noncompact cone containing D7-branes, for any specified

superpotentialW (za) there is a solution of the ten-dimensional equations of motion in which

fluxes in Series I give rise to this superpotential. Let us remark that for warped cones with

gauge theory duals, the AdS/CFT correspondence guarantees that such a supergravity

solution exists for any specified superpotential in the gauge theory; we will specify the

fluxes in this solution, in terms of the metric and dilaton.

We begin by presenting a solution of the flux equation of motion (B.1) in the presence

of non-constant dilaton perturbations, which we do not assume to be small. Given any

holomorphic function f , we turn on the (1, 2) flux

Λαβ̄γ̄ = gs e
−φ ∇α∇σf g

σρ̄ Ω̄ρ̄β̄γ̄ , (B.4)

and the (3, 0) flux

Λαβγ = gs∇σf gσρ̄ ∇ρ̄e−φ Ωαβγ . (B.5)

27The IASD flux G− discussed in this section sources a running dilaton if the combination G+ · G− is

non-zero, but this effect is subleading in our expansion scheme (see section 2.3).
28In this appendix we set κ10 ≡ 1.
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For constant dilaton, φ = const = − ln gs, this reduces to the flux in Series I, eq. (A.10).

For notational simplicity we now set gs ≡ 1 (or absorb it into the function f). One easily

verifies that this combination of fluxes solves eq. (B.1).

4. The fluxes in eqs. (B.4) and (B.5) satisfy eq. (B.1).

Proof. We now explain how we constructed the fluxes in (B.4) and (B.5) that solve (B.1).

First we establish a few useful identities. We assume that the background manifold is

complex, the metric gαβ̄ is Kähler, the axio-dilaton τ = C + ie−φ is holomorphic and the

metric is related to the dilaton through (cf. eq. (2.11) in ref. [66]),

det gαβ̄ = qq̄ e−φ , (B.6)

where q is the same holomorphic function appearing in Ωαβγ = qǫαβγ . Because the metric

is Kähler the following identity is satisfied

∂α

(
gαβ̄ det g

)
= ∂α

(
gαβ̄qe−φ

)
= 0 . (B.7)

(This identity ensures that ∇2 = 2gαβ̄∂α∂β̄.) Holomorphicity of τ implies the following

identities

∂ατ = −2i∂αφe
−φ , (B.8)

∂α∂β̄e
−φ = 0 , (B.9)

∂α∂β̄φ = ∂αφ∂β̄φ . (B.10)

The flux equation of motion is then eq. (B.1), and the expression (B.2) for the Ricci tensor

follows from Rαβ̄ = −∂α∂β̄ log det g and (B.6). We are now ready to prove that eq. (B.1)

is solved by eqs. (B.4) and (B.5).

Our goal is to construct an IASD three-form Λ that satisfies (B.1) and reduces to the

IASD (1,2) form of appendix A for constant dilaton,

Λφ=const

αβ̄γ̄
= ∂α

(
∂σfg

σζ̄ q̄ǫζ̄β̄γ̄

)
. (B.11)

Clearly, this form is closed if the dilaton is constant (see appendix A). Now we will try to

modify (B.11) to account for a running dilaton. Let us first notice that a (1,2) form will

produce (3,1), (2,2) and (1,3) terms in eq. (B.1). If we leave eq. (B.11) unchanged, then

∂Λφ=const = 0 and the (2,2) term ∂φ ∧ Λφ=const is not canceled. With this in mind we

change eq. (B.11) by an overall factor of e−φ,

Λ
(1,2)

αβ̄γ̄
= ∂α

(
∂σfg

σζ̄ q̄ǫζ̄β̄γ̄

)
e−φ . (B.12)

Now the (2,2) piece ∂φ ∧ Λ(1,2) is canceled by ∂Λ(1,2). However, the form in eq. (B.12) is

not closed with respect to ∂̄, leading to (1,3) and (3,1) terms in eq. (B.1). To cancel these

terms we introduce a (3,0) form

Λ
(3,0)
αβγ = ψ qǫαβγ , (B.13)
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with function ψ to be determined. Letting Λ ≡ Λ(1,2) + Λ(3,0), eq. (B.1) implies

two constraints

∂ᾱψ q + ∂βφ∂ᾱ

[
∂σfgσβ̄ q̄

]
e−φ = 0 , (B.14)

−∂β̄

[
∂α(∂σfg

σβ̄ q̄)e−φ
]

+ ∂αφ ψ̄ q̄ = 0 . (B.15)

Eq. (B.14) is easily solved if we notice that

∂βφ∂ᾱ

[
∂σfgσβ̄ q̄

]
e−φ = −∂βe

−φ∂ᾱ

[
∂σfgσβ̄ q̄

]
= ∂ᾱ

[
∂σfgσζ̄ q̄∂ζe

−φ
]
, (B.16)

where in the last step we used eq. (B.9). Thus eq. (B.14) is solved by

ψ = ∂σfgσβ̄∂β̄e
−φ . (B.17)

It turns out that eq. (B.15) is also solved by (B.17). To show this we rewrite the first term

in (B.15),

∂β̄

[
∂α(∂σfg

σβ̄ q̄)e−φ
]

= ∂β̄∂α

[
(∂σfg

σβ̄ q̄)e−φ
]
− ∂β̄

[
(∂σfg

σβ̄ q̄)∂αe
−φ

]
, (B.18)

= ∂α∂β̄

[
(∂σfg

σβ̄ q̄)e−φ
]

+ ∂β̄

[
(∂σfg

σβ̄ q̄)e−φ∂αφ
]
. (B.19)

Using eq. (B.7) we then notice that the first term in (B.19) vanishes,

∂β̄

[
(∂σfg

σβ̄ q̄)e−φ
]

= 0 , (B.20)

if f is harmonic. The second term in (B.19) can be simplified with the help of (B.10),

∂β̄

[
∂α(∂σfg

σβ̄ q̄)e−φ
]

= ∂σfg
σβ̄ q̄e−φ∂β̄∂αφ = ∂σfg

σβ̄ q̄e−φ∂β̄φ∂αφ . (B.21)

This proves that (B.17) solves (B.15) and hence, the fluxes in eqs. (B.4) and (B.5) satisfy

the equation of motion eq. (B.1) in the case of a running dilaton.

Next, we consider the potential of a probe D3-brane in the presence of the above

fluxes, specified by a holomorphic function f . This flux is dual to a perturbation of the

superpotential W ∝ f , and the corresponding potential should be

V = gαβ̄∇αW∇βW . (B.22)

Now we will show how eq. (B.22) will arise from eq. (B.3). To verify the solution, we must

show that

∇2 [ gαβ̄∇αf∇βf ] =
1

2 · 3!
eφ |Λ|2 , (B.23)

with Λ given by eqs. (B.4) and (B.5) and W 2 = T3
8 f

2. First, we have

∇2 [ gαβ̄∇αf∇βf ] = gρσ̄gαβ̄
(
2∇ρ∇αf∇σ∇βf + 2∇σ̄∇αf∇ρ∇β̄ f̄

)
+ (B.24)

+ gαβ̄∇2∇αf∇β̄ f̄ + gαβ̄∇αf∇2∇β̄ f̄ .
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The second term in (B.24) — gρσ̄gαβ̄∇σ̄∇αf∇ρ∇β̄ f̄ — vanishes because f is holomorphic.

The first term — gρσ̄gαβ̄∇ρ∇αf∇σ∇βf — is equal to 1
3!e

φ|Λ(1,2)|2. We therefore just need

to show that the last two terms combine into

2

3!
eφ|Λ(3,0)|2 = 2|∂αfg

αβ̄∂β̄φ|2 . (B.25)

To calculate ∇2∇αf we use real notation,

∇2∇kf = gij∇i∇j∇kf = gij(∇k∇i∇jf −Rl
jik∇lf) . (B.26)

The first term vanishes because f is harmonic and the second is equal to Rmkg
ml∇lf .

Hence, using (B.2),we obtain

gαβ̄∇2∇αf∇βf + c.c. = gαβ̄Rσ̄αg
σ̄ρ∇ρf∇βf + c.c. = 2|∂αfg

αβ̄∂β̄φ|2 . (B.27)

Comparing to (B.25), we conclude that (B.23) is satisfied.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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