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ABSTRACT

Motivation: DNA methylation is an important epigenetic modification

related to a variety of diseases including cancers. We focus on

the methylation data from Illumina’s Infinium HumanMethylation450

BeadChip. One of the key issues of methylation analysis is to detect

the differential methylation sites between case and control groups.

Previous approaches describe data with simple summary statistics

and kernel function, and then use statistical tests to determine the

difference. However, a summary statistics-based approach cannot

capture complicated underlying structure, and a kernel functions-

based approach lacks interpretability of results.

Results: We propose a novel method D3M, for detection of

differential distribution of methylation, based on distribution-valued

data. Our method can detect high-order moments, such as shapes

of underlying distributions in methylation profiles, based on the

Wasserstein metric. We test the significance of the difference

between case and control groups and provide an interpretable

summary of the results. The simulation results show that the

proposed method achieves promising accuracy and shows favorable

results compared with previous methods. Glioblastoma multiforme

and lower grade glioma data from The Cancer Genome Atlas show

that our method supports recent biological advances and suggests

new insights.

Availability: R implemented code is freely available from

https://github.com/ymatts/D3M/

https://cran.r-project.org/package=D3M.

Contact: ymatsui@med.nagoya-u.ac.jp

1 INTRODUCTION

DNA methylation is an epigenetic chemical alternation in which

a methyl group is attached to a 5-carbon of a cytosine (C)

base. It is closely related to gene expression, silencing, and

genomic imprinting, including oncogenesis. Typically, methylation

is explained as occurring in cytosine-phosphate-guanine (CpG)

sites. The methylation of promoter regions, in particular, silences

cancer suppressor genes (Baylin, 2005; Kulis and Esteller, 2010).

∗to whom correspondence should be addressed

We focus on the methylation data from Illumina’s Infinium

HumanMethylation450 BeadChip. One of the key issues for

methylation analysis is to detect differentially methylated sites,

i.e., a significant difference in methylation levels between the

case and the control groups at a site. When comparing groups,

we often summarize (or aggregate) data in summary statistics,

such as mean and variance, and then investigate the difference

between the groups. For example, IMA (Wang, et al., 2012)

detects the differentially methylated sites by T-test, Empirical

Bayes (EB) method or by Mann–Whitney–Wilcox (MWW) test.

DiffVar (Phipson, et al. 2014) detects the sites by testing significant

difference of variance. Other nonparametric approaches exist, such

as the Kolmogorov–Smirnov test (KS) or kernel-based approaches,

such as maximum mean discrepancy (MMD) (Gretton, et al.,

2012). In particular, since KS and MMD consider the underlying

distribution structure, they are better suited for use with complicated

distributions than methods based on summary statistics.

These approaches are effective in detecting typical differential

methylation sites, but are insufficient from some perspectives;

underlying distributions are complicated by being skewed, heavy-

tailed, and multimodal. In particular, since cancer cells include

heterogeneities, measurements of the methylation levels potentially

include complex distribution shapes. This observation indicates that

we need to consider the underlying structure. The disadvantage

of KS and MMD is infeasible interpretability of results because

they measure the maximum and kernel distances of distributions,

respectively, which are difficult to interpret corresponding to the

actual difference of underlying distributions.

We develop a method to detect differential methylation sites with

distribution-valued data (Irpino and Verde, 2014). Distribution-

valued data are an example of symbolic data analysis (Diday, 1989).

This framework can treat complex data such as functional (Ramsey

and Silverman 2005), tree (Wang and Marron, 2007), set, interval,

and histogram values (Bock and Diday, 2000). The proposed

method describes case and control groups using distribution

values. We measure the differences between distributions using

the Wasserstein metric. We detect the differential methylation sites

using a statistical test of significant differences of distribution

functions.

c© Oxford University Press 2015. 1
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2 METHODS

Our method is aimed at a distribution-based comparison of

methylation levels in two groups, through site-by-site resolution. We

construct distribution functions representing the two groups at each

site. Next, we compare the groups using a dissimilarity measure

and test statistical significance through site-by-site resampling. We

adopt an L2-Wasserstein metric (Ruesehen, 2011) as a dissimilarity

measure, a distribution function-based measure of statistical

distance. The advantage of this distance is the interpretability

of results because the distance can be decomposed into three

components, i.e., mean, variance, and distribution shape. This

fact leads to visualization of results using a Q-Q plot to interpret

the detected distribution difference including hypo- or hyper-

methylation status. In the following equation, we assume that input

data is a beta value that is the ratio between the methylated probe

intensity and the overall intensity (Du, et al., 2010). The definition

of i-th site beta value in Illumina methylation assay is as follows:

Betai =
max(zi,methy, 0) + α

max(zi,unmethy, 0) +max(zi,methy, 0) + α
(1)

where zi,methy and zi,unmethy are the intensity measured by i-th
methylated and unmethylated probes, respectively and α is constant.

2.1 Construction of objects

X(si) and Y (si) (i = 1, 2, . . . , S) represent the beta values in a

case group (e.g., cancer subjects) and a control group (e.g., normal

subjects) at a CpG site si. We represent the data as distribution

values by

Fi(x) = Pr{X(si) ≤ x};x ∈ [0, 1].

Gi(y) = Pr{Y (si) ≤ y}; y ∈ [0, 1]. (2)

In practice, let the beta value observations be xj(si); j =
1, 2, . . . , n and yj(si); j = 1, 2, . . . ,m following Fi(x) and

Gi(y), respectively, where n and m are the respective numbers

of observations at si. From the data, we construct the empirical

distribution functions;

F̂i(x) :=
1

n

∑

j=1

1(xj(si) ≤ x)

Ĝi(y) :=
1

m

∑

j=1

1(yj(si) ≤ y) (3)

where

1(a ≤ b) =

{

1 if a ≤ b
0 otherwise.

(4)

2.2 Dissimilarity measure for distributions

The Wasserstein metric is defined by the following:

dq(Fi, Gi) :=

∫

1

0

|F−1

i (u)−G−1

i (u)|qdu (5)

where 1 ≤ q ≤ 2 and F−1

i (x) and G−1

i (y) indicate quantile

functions.

In particular, in the case of q = 2, the metric can be decomposed

into three components that describe the distribution characteristics,

i.e., mean, variance, and shape (Irpino and Verde, 2014):

d2(Fi, Gi) =

∫

1

0

|F−1

i (u)−G−1

i (u)|2du (6)

= (µi − µ′

i)
2 + (σi − σ′

i)
2 + 2σiσ

′

i(1− ρi,i′)

where µi and σ2

i (respectively, µ′

i and σ′

i
2
) are mean and variance

of Fi(x) (respectively, Gi(y)), and ρi is the correlation index of the

points in the Q-Q plot of Fi and Gi.

The empirical estimator of the Wasserstein metric is given by

dq(F̂i, Ĝi) =

∫

1

0

|F̂−1

i (u)− Ĝ−1

i (u)|qdu. (7)

Technically, we use quantiles to compute the approximation of the

(7) for reducing computational costs. Let (Qi,1, Qi,2, . . . , Qi,K)
and (Q′

i,1, Q
′

i,2, . . . , Q
′

i,K) be k-quantiles of Fi(x) and Gi(y).

We calculate d2(F̂i, Ĝi) ≈
∑K

l=1
(Qk,l − Q′

k,l)
2 in the case of

q = 2, instead of evaluating the integral in (7). Here we simply

write di := d(F̂i, Ĝi).

2.3 Detection of differential methylation sites

We use the metric to investigate whether two distributions are

significantly different. We pose statistical hypotheses as follows.

Null hypothesis: Fi = Gi

Alternative hypothesis: Fi 6= Gi
(8)

We use resampling to construct a null distribution. From

the null hypothesis (8), we jointly permute the observations

(x1(si), x2(si), . . . , xn(si)) and (y1(si), y2(si), . . . , ym(si)) to

obtain the new distribution functions F̂ ∗

i (x) and Ĝ∗

i (y). Next, we

obtain the new distance d∗i = d2(F̂ ∗

i , Ĝ
∗

i ) according to (7).

Let D∗

i = (d∗i,1, d
∗

i,2, . . . , d
∗

i,Ball
) be all possible distances for

the permutation process. Then p-value is

Pall(di) =

∑Ball

b=1
1(d∗i,b ≥ di)

Ball

. (9)

Approximation of (9) uses the subset of D∗

i , d̃∗i,1, d̃
∗

i,2, . . . , d̃
∗

i,B

where B ≤ Ball :

Psub(di) =

∑B

b=1
1(d̃∗i,b ≥ di)

B
. (10)

In the simulation of section 3 and data analysis in section 4, we set

B = 10000.

The number of permutations B is closely related to the accuracy

of the p-value. However, resolution of Psub is limited to 1/B, if we

need the very small p-values. One solution is to perform a large

number of permutations, but it is computationally expensive. A

semi-parametric estimation of p-value is proposed by Knijnenburg

et al. (2009) to obtain more accurate p-values.
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We use an exponential distribution to estimate the distribution tail

as follows,

P (di) =











1

B

∑

j=1
1(d̃∗i,b ≥ di) for di < d

(min)
i

exp(−λi(di − d
(min)
i )) for di ≥ d

(min)
i

(11)

where λi is a scale parameter and d
(min)
i is a threshold that we set

to 99th percentile of null distributions. We estimate λi using data

above the threshold. Technically, we perform the semi-parametric

estimation only if Psub(di) reaches to zero.

2.4 Graphical representation of results

The graphical interpretation of the statistical test result is important.

One approach is to plot all the distribution (density) functions of

candidate sites, but this is infeasible for hundreds of sites. We use a

Q-Q plot with two distributions. It enables us to visualize many pairs

of distributions at a time, with the directions being easy to interpret.

In the actual example shown in section 4, we plotted 1,000 pairs of

differentially methylated distributions (Figure 3 (B)). We can see the

hyper-methylation with the most significant 1,000 sites (blue lines

in Figure 3 (B)).

3 SIMULATION

3.1 Simulation setting

We evaluated the proposed method with simulated datasets with

focus on single cytosine level in the case and control group. Our

simulation is intended for the detection of differential methylation

sites when there is cancer heterogeneity. Here, the cancer

heterogeneity is described by the multiple modes of distributions.

We conduct a statistical test for H0 : Fi = Gi ↔ H1 : Fi 6= Gi

under significance levels 5%, and we compare the results to those of

the other methods, i.e., DiffVar, MMD, KS, MWW and EB. We used

several packages; missMethyl (Phipson, et al., 2014), limma

(Ritchie, et al., 2015) written in R and mmd (Gretton et al., 2006)

(http://www.kyb.tuebingen.mpg.de/bs/people/ar

thur/code/mmd.zip) written in MATLAB. The setting of

missMethyl is default and mmdwith options alpha = 0.5 and

MMD METHOD = ’approxmoments’.

We describe the outline of the simulation as follows. The details

are described in supplemental file S1 and R codes are described

in S2. The data are generated by using two types of distributions.

The control and case groups are represented by normal and normal

mixture distributions, respectively. In each case (case 1–case 8),

there are 80 samples; 40 samples for case and control groups,

respectively. We performed the statistical test with each a method

for 50 times in every case (i.e., case 1–case 8) and evaluate averages

of a type I error and power. Besides we repeat this process for 100

times to assess the variances of the averages.

3.2 Simulation results

The results are shown in Table 2. In the first case, it is shown that

error rates of D3M, MMD, DiffVar, KS, EB, and MWW are close to

the significance levels, which indicates that they effectively control

type I errors.

case1 case2

case3 case4

case5 case6

case7 case8

Fig. 1. The beanplot of eight cases

Furthermore, we investigate the power for cases 2 – 8. KS test

and MMD show the relatively good performance such as case

2 where the only distribution shape is different. However, they

cannot capture the feature of case 8 where the majority of the two

groups are overlapped with each other although 15% of minority

of distribution exists. Besides, KS testing fails to detect case 6

where 15% of minority distribution is hyper-methylated. DiffVar

shows high power for cases where the variances differ, however,

it might capture the other distribution features for the cases with

equal variances (case 6), leading to uninterpretable results. EB

can appropriately distinguish only the mean difference. MWW can

detect case 4, and 7, but cannot detect cases in which the means

differ under non-normality. The proposed D3M provides preferable

results over the eight cases.

On one hand, from this simulation, most of all the distribution

features can be captured with D3M, which indicates that it works

well for the given situations and it can be applied to various cases

flexibly. On the other hand, a small sample situation should also be

examined. We conduct the simulation considering such a situation

3
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Table 1. Simulation models of eight cases

Fi = F2 F1 6= F2

case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8

µ1 = µ2 T T T F T F F F

σ1 = σ2 T T F T F T F F

s1 = s2 T F T T F F T F

Table 2. Hypothesis testing in each case (hypotheses are described under the method names). We focus on a probe and generate beta values, 40 samples each

in a case and a control group respectively. We apply six methods to this data and evaluate the p-value at the significance level, i.e., 5%. This process is repeated

50 times and returns the averages of type I error (%) and power (%). We represent the power in italics within top three. Furthermore, we also evaluate the

standard deviations of the averages; we repeated the process of the evaluating average of type I error and power a 100 times and then obtained the standard

deviations of the averages.

Type I Power

case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8

D3M mean 5.12 93.20 95.42 84.52 98.08 84.88 99.12 99.96

H0 : F1 = F2 H1 : F1 6= F2 sd 0.07 0.08 0.07 0.11 0.06 0.11 0.03 0.01

DiffVar mean 1.80 6.80 93.86 1.30 97.62 11.84 68.26 86.64

H0 : V(F1) = V(F2) H1 : V(F1) 6= V(F2) sd 0.04 0.08 0.08 0.04 0.06 0.10 0.14 0.17

MMD mean 4.40 100.00 11.62 9.66 73.50 93.08 16.36 51.74

H0 : F1 = F2 H1 : F1 6= F2 sd 0.07 0.00 0.10 0.10 0.14 0.08 0.11 0.17

KS mean 2.56 99.86 32.06 67.06 73.06 60.22 89.62 73.88

H0 : F1 = F2 H1 : F1 6= F2 sd 0.05 0.01 0.15 0.14 0.26 0.16 0.09 0.25

EB mean 4.94 0.66 5.18 87.92 0.10 78.50 87.36 96.76

H0 : E(F1) = E(F2) H1 : E(F1) 6= E(F2) sd 0.07 0.02 0.07 0.10 0.01 0.13 0.11 0.07

MWW mean 4.68 11.22 5.76 84.96 53.36 55.50 83.94 71.36

H0 : M(F1) = M(F2) H1 : M(F1) 6= M(F2) sd 0.07 0.10 0.07 0.12 0.21 0.16 0.12 0.20

and we show the details in supplemental file in S1 and R codes in

S2.

4 ACTUAL EXAMPLE

4.1 Datasets

We apply our method to methylation data of glioblastoma

multiforme (GBM) and lower grade glioma (LGG) from The Cancer

Genome Atlas (TCGA). GBM is the primary brain tumor that

progresses with malignant invasion destroying normal brain tissues

(TCGA, 2008), arising through two pathologically distinct routes,

de novo and as secondary tumors from LGG (Wiencke et al., 2006).

In this analysis, we compare the methylation levels in the LGG

and GBM groups, and then specify the differential methylation

sites. The detection of differential methylation levels is a clue

for revealing epigenetic mechanisms of development from LGG to

GBM. We focus on mean, variance, and shape differences using EB,

DiffVar, KS and D3M and compare the results.

Here we briefly describe the datasets and preprocessing as

follows. All the samples are hybridized to Illuminas Infinium

HumanMethylation450K arrays, including 485,577 CpG sites,

which is downloadable from TCGA portal sites. Each CpG

site contains 145 samples and 530 samples in GBM and

LGG, respectively. We remove CpG sites on the X and Y

chromosomes and SNP control probes(rs1–rs65). We also use

HumanMethylation450 v1.2 SNP Update Table to remove SNP

related probes by minor allele frequency ≤ 1%. As a result, we get

351,932 probes. Missing values in both groups are inferred using

R package pcaMethods (Stacklies, 2007) with pca functions since

DiffVar doesn’t accept missing values and the number of the probes

including missing values cannot be ignored. We remove the batch

effect using the ComBat function in SVA package (Leek, et al.,

2012) with default settings. We use batches having more than 2

samples. The details are described in R codes in S3. We finally

obtain 141 GBM samples and 530 LGG samples.

4.2 Analysis results

Significant differential methylation sites were identified as those

having false discovery rate (q-value) (Benjamini, et al.,1995) less

than 1%. The Venn diagram (Figure 2 (A)) shows the number of

detected probes from the perspective of mean, variance, and shape

difference of distributions using EB, DiffVar, KS, and D3M, and

279,008, 191,050, 297,493, and 255,317 sites are totally detected,

respectively. From Figure 2 (A), most of detected sites with the

shape difference are overlapped with the sites by the mean and the

variance differences, respectively. However, when focusing on top

1000 significant sites (Figure 2 (B)), the overlaps between them

become very small. This suggests that the “signal” of differential

methylation sites in terms of q-value is quite different from each

other. It is important for the further analysis, such as the pathway

analysis since we often use the filtered gene set, e.g., using top 1,000

significant sites.
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Among the detected sites, we investigated sites with the smallest

1,000 q-value. Heat map and Q–Q plots of the top 1,000 sites are

shown in Figures 3 (A) and (B). Comparing heat maps and Q–Q

plots, the methylation levels are easy to interpret in the latter. From

the Q–Q plot, we could see that the top 1,000 sites tend to be hyper-

methylated in LGG (with the reverse in GBM).

Among the top significant 1,000 pairs of distributions of GBM

and LGG, we can observe that there are mainly two patterns in

terms of the Q–Q plot. Then, we cluster the 1000 curves in

Q–Q plot into two classes; we consider input data as Zi =
(Qi,1, Qi,2, . . . , Qi,K , Q′

i,1, Q
′

i,2, . . . , Q
′

i,K)(i = 1, 2, . . . , 1000)

and define the dissimilarity as
√

(Zi − Zj)2 (i 6= j) where

Qi,k and Q′

i,k (k = 1, 2, . . . ,K) is k−th quantile in LGG and

GBM group, respectively. Then we apply the standard hierarchical

clustering (Clusters 1 and 2 in Figure 3 (A)). Typical distribution

examples in each cluster are shown in Figure 3 (C). Clusters 1 and

2 contain 626 and 374 sites, respectively.

Next, we perform enrichment analysis on gene sets in clusters 1

and 2. We used ingenuity pathway analysis (IPA) for 385 and 268

genes in clusters 1 and 2, respectively, and significantly enriched

pathways in each cluster using Fisher’s exact test. Table 4 shows five

pathways and related genes, ranked with q-values in each cluster.

The pathways in clusters 1 and 2 include significant pathways

in GBM, which have been previously reported even though we

do not include any information on GBM. The axonal guidance

signaling pathway in cluster 1 has been suggested as prompting the

cell invasion of GBM (Dominique, et al., 2007) and ERK/MAPK

Signaling is reported to be up-regulated in GBM (Liu et al. 2013).

The enrichments of Caveolar-mediated Endocytosis Signaling and

Calcium Signaling are studied in (Dong, et al., 2010;Polisetty et al.,

2012). The remaining pathways might be explained elsewhere. Our

prediction using D3M provides a hypothesis that DNA methylation

in these pathways might cause the phenotypical difference between

GBM and LGG.

We further focus on Wnt in Human Embryonic Stem Cell

Pluripotency pathway, and then compare the ranking based on p-

value by D3M with those by other methods. The activation of Wnt

family is closely related to cell differentiation of GBM (Rampazzo,

et al., 2013). In our analysis, there are 18 Wnt genes on the probes.

Among them, six Wnt genes (Wnt2, Wnt2b, Wnt3, Wnt4, Wnt7a,

and Wnt 9a) are included in top 1,000 significantly differentially

methylated probes using D3M.

We investigate the enrichment of the six Wnt genes in top 1,000

significant probes using Fisher’s exact test and we confirm the

enrichment of the genes (the details are described in section S-

3-2 in supplemental file S1). The six Wnt genes are included in

both the clusters 1 and 2, and the majority of the distribution is

hypo-methylated and the minority is hyper-methylated in GBM,

vice versa in LGG. This suggests that demethylation of Wnt in

some LGG might trigger the activation of Wnt family and prompt

transformation from LGG to GBM. The ranking of Wnt genes in

D3M, EB, KS, and DiffVar is shown in Table3.

5 DISCUSSION

Here, we summarize the advantages and disadvantages of D3M,

DiffVar as well as MMD. These methods are designed for detecting

differential methylation levels focusing on cancer heterogeneity,

Table 3. The ranking of the six Wnt gene probes in 351,932 probes. For

each method, the upper values are the absolute ranking among 351,932 of

the genes, and lower are the their percentages.

Wnt2 Wnt2b Wnt3 Wnt4 Wnt7a Wnt9a

D3M 342 549 591 829 641 887

(0.10) (0.16) (0.17) (0.24) (0.18) (0.25)

EB 22,541 12,914 3,246 1,811 135 20,747

(6.40) (3.67) (0.92) (0.51) (0.04) (5.90)

KS 4,754 91,240 50,174 41,589 41,066 84,248

(1.35) (25.93) (14.26) (11.82) (11.67) (23.94)

DiffVar 56,950 155,621 147,817 146,033 138,928 242,648

(16.18) (44.22) (42.00) (41.49) (39.48) (68.95)

which is caused by epigenetic instability and diversity. Cancer

heterogeneity can often be confused with outliers. For example,

DiffVar fails to detect simulation case 6 as differential methylation,

even though we set the variance, but not the mean and the shapes,

to be the same for the two groups. This is because DiffVar deals

with minority distributions as outliers and evaluates only those in

the majority.

In general, the significance of an outlier depends on the

context of analysis (Aggarwal, 2013). When an outlier arises from

measurement error not relevant to signals of interest, we must

remove them prior to analysis. In contrast, when an outlier arises

from an unusual event including new findings that we seek, we use

them for further analysis. In this case, cancer heterogeneity could

be regarded as an abnormal event compared with normal cases, and

thus must be included in the analysis.

MMD was originally developed as a distribution-free two sample

test based on a kernel. Both the Wasserstein metric and MMD

are family of integral probability metrics (Müller, 1997) designed

to capture not only such basic difference as those between the

means but also such higher-order differences as those between the

distribution shapes of the groups. From the simulation in section

3.1, we see that MMD shows good detection performance in cases

such as case 2 and 6. D3M shows good performance over all eight

8 cases. Specifically, D3M shows excellent performance in cases 7

and 8. Considering that case 8 is most frequently observed in actual

data, this result is preferable in applications.

In the study of sample size effect in section S-2-1, using the

same simulation model as in section 3.1, the result indicates that the

superiority of D3M to other methods are reduced compared to large

sample case, although all the methods decrease in power (Table S.3).

On the other hand, MMD retains its power in case 2 and case 6, and

so does D3M in case 7 and case 8.

We also investigate the power of D3M with other simulation

models using beta distributions considering small sample size in

section S-2-2 and S-2-3 in supplemental file S1. The result indicates

that EB and MWW detect differences well in the small samples

(n = 12, n = 20) and so do D3M and MMD in the moderate

sample sizes (n = 28, n = 36). In case of unbalanced sample sizes

between the case and the control groups (Table S.5), D3M and EB

shows the good detection powers.

D3M can be applied flexibly to differential methylation problems.

Simulation results indicate that D3M can detect not only shape

differences but also summary statistics differences as effectively as

EB and DiffVar, i.e., natural results from the decomposition (6).

This suggests that if we cannot obtain sufficient power using a
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Fig. 2. Venn diagram of detected sites at the significance level 1% (A) and of top significant 1000 sites (B).
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Fig. 3. Distributions of the top 1,000 significant probes. (A) The heat map of beta values with 141 LGG and 530 GBM samples at each probe respectively.

We jointly clustered quantiles of LGG and GBM probes into the two clusters based on the Wasserstein metric (i.e., we clustered curves in Q-Q plots of

the top significant probes into two clusters). (B) Q–Q plots of beta values between the LGG and GBM probes (blue lines). D3M detects the probes with

hyper-methylated LGG probes compared with GBM probes. Green lines are the top 1,000 insignificant probes (as negative controls). (C) The instances of

distributions with Clusters 1 and 2 shown in (A-1) and (A-2), respectively. The distributions appear to be highly heterogeneous especially in LGG probes.

D3M recognizes strongly heterogeneous distributions and detects such probes as top significant probes.
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Table 4. Pathways detected with the proposed method

Cluster Pathway −log(P -value) Genes

Cluster 1 Axonal Guidance Signaling 5.85 SLIT3, ITGB1, SEMA3G, MYL10, WNT3, FES, NRP2, BMP8A, UNC5B

WNT2B, PIK3R5, GNAI1, ITGA5, KEL, WNT7A, MAG, ADAM12

NTRK1, PRKAG2, WNT4, BMP7, NTN3, PRKCB

ERK/MAPK Signaling 4.09 ITGB1, DUSP9, PLA2G4B, PRKAG2, ITGA5, PIK3R5, RAPGEF4, ESR1

PPP2R5A, KSR1, JMJD7-PLA2G4B, PRKCB

Caveolar-mediated- 3.72 ITGB1, INS, CD48, ITGA5, ITGB8, JMJD7-PLA2G4B, PRKCB

Endocytosis Signaling

Human Embryonic Stem- 3.35 WNT7A, WNT3, BMP8A, SMAD3, NTRK1, WNT2B, PIK3R5, WNT4

Cell Pluripotency BMP7

Cluster 2 TREM1 Signaling 3.55 STAT5A, MPO, CASP1, NOD1, CCL3, ITGAX

Calcium Signaling 3.28 GRIN2A, TNNT3, ITPR2, CHRNB1, NFATC4, CAMKK2, PPP3CA

CAMKK2, PPP3CA, MEF2B

simple summary statistics approach, we have other options to add

shape information. If we would like to see the results of variance

and shape differences simultaneously, we remove the mean from

the data using X − E[X] in each group at a site before applying

D3M. This option is provided with R package D3M; in the function

D3M::d3m, the logical parameters of rm.mean and rm.var

exists. If we would like to see the variance and shape differences

at the same time, we just set the rm.mean=T and rm.var=F.

The statistical test of D3M relies on resampling and requires

computational time to calculate p-values. However, we could

reduce the resampling time using a semi-parametric approach

(Knijnenburg, et al., 2009).

A current limitation of D3M is that it deals with univariate

distributions. In a case of the study of large sample sizes, we

can deal with covariates, such as age and gender, but our method

currently does not incorporate them into the model, and the

user needs to remove the effects of covariates; for example,

using residuals with regression analysis, prior to the analysis.

The extension of D3M to multivariate distribution relies on

the estimation of the Wasserstein metric between the empirical

multivariate distributions. The approximation of the Wasserstein

metric between the multivariate distributions has been studied

recently in (Applegate, et al. 2011), and we could derive the null

distributions based on that approximation.

D3M does not support a spatial correlation in the current

form. The spatial information will enhance the power of detection

for differential methylated sites. This could be accomplished by

spatially weighted average of Wasserstein distance over a fixed

range of locus. These extensions of D3M will be covered in future

work.

6 CONCLUSION

In this study, we proposed a novel method, D3M, for detecting

differential methylation sites based on distribution-valued data.

We showed that distribution shape includes interesting information

other than that found using mean- and variance-based methods. A

simulation study indicated that D3M is capable to detect various

situations.

In the application to the GBM and LGG dataset in the TCGA

cohort, we identified 1,000 sites with the smallest q-values. Most

of the sites detected by D3M show strong heterogeneity and tend to

be hyper- and hypo-methylated in LGG and GBM, respectively, as

found in previous studies.

Since the GBM and LGG dataset contains a large number of

significantly different sites, including 279,008, 191,050, 297,493

and 255,317 sites for D3M, EB, KS, and DiffVar, respectively; at

the FDR ≤ 1%, it is difficult to understand the methylation levels at

these sites. In the future, it would be of interest to develop a method

that describes the diversity of methylation levels.
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