

Open access • Posted Content • DOI:10.1101/2020.06.20.161323

D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity — Source link

Jieli Hu, Changlong He, Qingzhu Gao, Guiji Zhang ...+8 more authors Institutions: Laboratory of Molecular Biology Published on: 20 Jun 2020 - bioRxiv (Cold Spring Harbor Laboratory) Topics: Entry into host and Elastase inhibitor

Related papers:

- The D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity and decreases neutralization sensitivity to individual convalescent sera
- Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus.
- The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity
- A pneumonia outbreak associated with a new coronavirus of probable bat origin
- Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.

1	D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity
2	Running Title : D614G mutant spike increases SARS-CoV-2 infectivity
3	Jie Hu ^{1, #} , Chang-Long He ^{1, #} , Qing-Zhu Gao ^{1, #} , Gui-Ji Zhang ¹ [#] , Xiao-Xia Cao ¹ ,
4	Quan-Xin Long ¹ , Hai-Jun Deng ¹ , Lu-Yi Huang ¹ , Juan Chen ¹ , Kai Wang ^{1,*} , Ni
5	Tang ^{1,*} , Ai-Long Huang ^{1,*}
6	
7	¹ Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of
8	Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The
9	Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010,
10	China
11	[#] These authors contributed equally to this work.
12	
13	*Corresponding authors:
14	Ai-Long Huang, Ni Tang, Kai Wang, Key Laboratory of Molecular Biology for
15	Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department
16	of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical
17	University, Chongqing, China. Phone: 86-23-68486780, Fax: 86-23-68486780, E-
18	mail: ahuang@cqmu.edu.cn (A.L.H.), nitang@cqmu.edu.cn (N.T.),
19	wangkai@cqmu.edu.cn (K.W.)
20	

21 Abstract

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory 22 syndrome coronavirus 2 (SARS-CoV-2). The spike (S) protein that mediates 23 SARS-CoV-2 entry into host cells is a major target for vaccines and therapeutics. 24 Thus, insights into its sequence variations are key to understanding the infection 25 and antigenicity of SARS-CoV-2. A dominant mutational variant at position 614 of 26 the S protein (aspartate to glycine, D614G mutation) was observed in the SARS-27 CoV-2 genome sequence obtained from the Nextstrain database. Using a 28 pseudovirus-based assay, we identified that S-D614 and S-G614 protein 29 pseudotyped viruses share a common receptor, human angiotensin-converting 30 enzyme 2 (ACE2), which could be blocked by recombinant ACE2 with the fused Fc 31 region of human IgG1. However, S-D614 and S-G614 protein demonstrated 32 functional differences. First, S-G614 protein could be cleaved by serine protease 33 elastase-2 more efficiently. Second, S-G614 pseudovirus infected 293T-ACE2 34 cells significantly more efficiently than did the S-D614 pseudovirus, especially in 35 36 the presence of elastase-2. Third, an elastase inhibitor approved for clinical use blocked elastase-enhanced S-G614 pseudovirus infection. Moreover, 93% (65/70) 37 convalescent sera from patients with COVID-19 could neutralize both S-D614 and 38 S-G614 pseudoviruses with comparable efficiencies, but about 7% (5/70) 39 convalescent sera showed reduced neutralizing activity against the S-G614 40 pseudovirus. These findings have important implications for SARS-CoV-2 41 transmission and immune interventions. 42

43 **Keywords:** antiviral therapeutics, coronavirus, COVID-19, D614G mutation,

- 44 infectivity, neutralizing antibodies, pseudovirus, SARS-CoV-2, spike protein
- 45

46 Introduction

47	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel	
----	---	--

- coronavirus reported in 2019 that caused the recent outbreak of coronavirus
- disease 2019 (COVID-19)¹. By July 4, 2020, the World Health Organization (WHO)
- reported that 10.92 million people worldwide had been infected with SARS-CoV-2,
- and that 523 000 individuals had died of COVID-19. This pandemic has had a
- significant adverse impact on international, social, and economic activities.
- 53 Coronaviruses are enveloped, positive-stranded RNA viruses that contain the
- 54 largest known RNA genomes to date. The RNA genome of SARS-CoV-2 has been
- rapidly sequenced to facilitate diagnostic testing, molecular epidemiologic source
- tracking, and development of vaccines and therapeutic strategies². The mutation
- ⁵⁷ rate for RNA viruses is extremely high, which may contribute to their transmission
- and virulence. The only significant variation in the SARS-CoV-2 spike (S) protein is
- a non-synonymous D614G (aspartate (D) to glycine (G)) mutation³. Primary data
- showed that S-G614 is a more pathogenic strain of SARS-CoV-2 with high
- transmission efficiency³. However, whether the D614G mutation in the S protein
- affects viral entry and infectivity in a cellular model is still unclear.
- 63
- ⁶⁴ The S protein of coronavirus, the major determinant of host and tissue tropism, is a

65	major target for vaccines, neutralizing antibodies, and viral entry inhibitors ^{4,5} .
66	Similar to SARS-CoV, the cellular receptor of SARS-CoV-2 is angiotensin-
67	converting enzyme 2 (ACE2); however, the SARS-CoV-2 S protein has a 10- to
68	20-fold higher affinity for ACE2 than the corresponding S protein of SARS-CoV ^{6,7} .
69	Coronaviruses use two distinct pathways for cell entry: protease-mediated cell-
70	surface and endosomal pathways ⁸ . The S proteins of several coronaviruses are
71	cleaved by host proteases into S1 subunit for receptor binding and S2 subunit for
72	membrane fusion at the entry step of infection. Several cellular proteases including
73	furin, transmembrane protease serine 2 (TMPRSS2), and cathepsin (Cat) B/L are
74	critical for priming the SARS-CoV-2 S protein to enhance ACE2-mediated viral
75	entry ⁴ . Recently, Bhattacharyya et al. (2020) reported that a novel serine protease
76	(elastase-2) cleavage site was introduced into the S-G614 protein of SARS-CoV-
77	29. However, it is unknown whether the S-G614 protein can be processed and
78	activated by elastase-2 in a cellular model. The S protein plays a key role in the
79	evolution of coronaviruses to evade the host immune system. It is still uncertain
80	whether the D614G mutation affects the antigenic properties of the S protein.
81	Meanwhile, whether elastase-2 inhibitors and convalescent serum samples of
82	COVID-19 can block the infection of the D614G variant of SARS-CoV-2 remains
83	unknown.

In this study, we analyzed the S gene sequences of SARS-CoV-2 submitted to the
Global Initiative on Sharing All Influenza Data (GISAID) database. We examined

87	the expression and cleavage of S-D614 and S-G614 protein in cell lines. Using a
88	luciferase (Luc)-expressing lentiviral pseudotype system, we established a
89	quantitative pseudovirus-based assay for the evaluation of SARS-CoV-2 cell entry
90	mediated by the viral S protein variants. We also compared the neutralizing
91	sensitivity of the S-D614 and S-G614 protein pseudoviruses to convalescent sera
92	from patients with COVID-19. Our study provides further insights into the
93	transmission and immune interventions of this newly emerged virus.
94	
95	Results
96	D614G mutation of SARS-CoV-2 S protein was globally distributed
97	The S protein of SARS-CoV-2, which contains 1,273 amino acids, forms a trimeric
98	spike on the virion surface and plays an essential role in viral entry. We analyzed
99	the SARS-CoV-2 S protein amino acid sequence from viral genomic sequences in
100	the GISAID database. In line with prior reports, we found a globally distributed S
101	protein mutation, D614 to G614, which represented 64.6% of all the analyzed
102	sequences (Fig. 1 and Table 1). Among the top 10 most abundant non-
103	synonymous mutations observed in the S protein, the relative abundance of the
104	D614G mutant (the clade G) was the highest around the world, indicating that
105	G614 strain may be selectively advantageous. Since the S protein is critical to
106	coronavirus infection, we sought to explore the potential impact of the most
107	prevalent D614G mutation on the S protein structure, expression, and function.
108	Using the cryo-electron microscopy structure of S protein (PBD ID: 6ZGE)

determined by Wrobel et al.¹⁰, we analyzed the potential effects of the D614G 109 mutation. As shown in Fig. 1b, residue D614 is located at the C-terminal region of 110 the S1 domain, which directly associates with S2. On the one hand, residue D614 111 forms a hydrogen bond with backbone of G593 and a salt bridge with K854, and 112 then is capped by the folded 833-855 motif of chain B (Fig. 1c). D614G mutation 113 would abolish these interactions. This change may destabilize the locked 114 conformation to promote receptor binding domain (RBD) opening and potentially 115 increase virus-receptor binding and membrane fusion activities. On the other hand, 116 we observed that D614 is remarkably close to the N-linked glycosylation site N616 117 (Fig 1c). Thus, the D614G mutation may enhance the fitness of SARS-CoV-2 by 118 increasing S protein stability and participating in glycosylation. Further studies are 119 120 required to determine the structure of S-G614 protein.

121

122 **D614G mutation enhanced the cleavage of S protein variant by proteases**

As the D614G mutation is proximal to the S1 cleavage domain, we predicted 123 potential cleavage sites of proteases in S protein variants using PROSPER¹¹, and 124 identified a novel serine protease (elastase-2) cleavage site at residues 615-616 125 on the S1-S2 junction of the S-G614 protein (Fig. 2a, Supplementary information, 126 Table S2). To evaluate the expression and cleavage of SARS-CoV-2 S protein in a 127 human cell line, the codon-optimized S protein-expressing plasmids (pS-D614 and 128 pS-G614) were transfected into HEK 293T cells. The immunoblot analysis of 129 whole cell lysates revealed that both S-D614 and S-G614 proteins showed two 130

131	major protein bands (unprocessed S and cleaved S1 subunit), when allowed to
132	react with the monoclonal antibody targeting the RBD on the SARS-CoV-2 S
133	protein (Fig. 2b). However, the pS-G614-transfected cells showed a stronger S1
134	signal than pS-D614-transfected cells, indicating that the D614G mutation altered
135	the cleavability of the S protein by cellular proteases. Moreover, the elastase
136	inhibitor sivelestat sodium significantly decreased the S1 signal of S-D614 protein
137	(Fig. 2b). These data indicate that the D614G mutation of SARS-CoV-2 S
138	facilitates its cleavage by host serine protease elastase-2. The coronavirus S
139	protein must be cleaved by host proteases to enable membrane fusion, which is
140	critical for viral entry. Next, we sought to explore the impact of D614G mutation on
141	viral entry.

143 Evaluating viral entry efficacies between S-D614 and S-G614 pseudotyped

144 **lentiviral particles**

Lentiviral vectors can be pseudotyped with various heterologous viral 145 glycoproteins that modulate cellular tropism and entry properties¹². Due to the 146 highly pathogenic nature of SARS-CoV-2, infectious SARS-CoV-2 must be 147 handled in a biosafety level 3 (BSL-3) facility. We generated pseudotyped SARS-148 CoV-2 based on the viral S protein using a lentiviral system, which introduced a 149 Luc (luciferase) reporter gene for quantification of SARS-CoV-2 S-mediated entry. 150 Thereafter, pNL4-3.Luc.R-E- was co-transfected with pS-D614 and pS-G614 to 151 package the SARS-CoV-2 S pseudotyped single-round Luc virus in HEK 293T 152

153 cells.

154	The titers of S-D614 and S-G614 protein pseudotyped viruses were determined by
155	reverse transcriptase quantitative polymerase chain reaction (RT-qPCR)
156	expressed as the number of viral RNA genomes per mL, and then adjusted to the
157	same concentration (3.8 \times 10^4 copies in 50 $\mu L)$ for the following experiments. The
158	virus infectivity was determined by a Luc assay expressed as relative
159	luminescence units (RLU). HEK 293T cells expressing human ACE2 (293T-ACE2)
160	were used to test the correlation between ACE2 expression and pseudoviral
161	susceptibility. The vesicular stomatitis virus G (VSV-G) pseudovirus was used as
162	control. As shown in Fig. 3a, both HEK 293T and 293T-ACE2 cells could be
163	effectively transduced by VSV-G pseudovirus. However, the entry of S-D614 and
164	S-G614 pseudoviruses is highly dependent on its cellular receptor ACE2
165	expression. The 293T-ACE2 cells showed an approximately 250-fold and 530-fold
166	increase in Luc activity when transduced by S-D614 and S-G614 pseudoviruses
167	compared to HEK 293T cells, respectively (Fig. 3a). We then detected the
168	inhibitory ability of ACE2-Ig, a fusion protein consisting of the extracellular domain
169	(Met 1-Ser 740) of human ACE2 linked to the Fc region of human IgG1 at the C-
170	terminus ¹³ . Both S-D614 and S-G614 pseudoviruses were potently inhibited by
171	ACE2-Ig, and the IC $_{50}$ (the concentration causing 50% inhibition of pseudoviral
172	infection) values were 0.13 and 0.15 μ g/mL, respectively (Fig. 3b). To further
173	compare the viral entry efficiency meditated by S variants, we detected the Luc
174	activity at different time points post-infection. With the G614 S variant, the increase

175	in viral transduction over the D614 variant was 2.2-fold at 48 h post-infection. The
176	highest transduction efficiency (approximately 2.5×10^4 RLU) was observed 72 h
177	post-infection with the S-G614 pseudovirus, which was approximately 2.4-fold
178	higher than that of the S-D614 pseudovirus (Fig. 3c). These data suggest that the
179	D614G mutation in S protein significantly promotes viral entry into ACE2-
180	expressing cells, and ACE2-Ig efficiently blocks both wild-type and mutant S
181	pseudotype virus infection.
182	We next explored the mechanism by which S-G614 increased pseudoviral
183	infectivity. The proteolytic activation of S protein is required for coronavirus
184	infectivity, and the protease-mediated cell-surface pathway is critical for SARS-
185	CoV-2 entry ⁴ . Since we observed S-G614 could be more efficiently cleaved by the
186	host protease when exogenously expressed in 293T cells, we assumed that host
187	proteases may be involved in the enhancement of S-G614 viral entry. As shown in
188	Fig. 3d, when 293T-ACE2 cells were treated with 100 $\mu\text{g}/\text{mL}$ elastase before virus
189	infection, the RLU value in S-G614 pseudovirus-infected cells (6.9 \times 10 ⁴) was
190	about 3.1 fold higher than that of the S-D614 (2.2 \times 10 ⁴), indicating that residue
191	G614 facilitates elastase-induced viral entry. In addition, the clinically proven
192	serine protease inhibitor sivelestat sodium, which is active against elastase, dose-
193	dependently blocked S-G614-driven entry into 293T-ACE2 in the presence of 100
194	μ g/mL elastase (Fig. 3e). These data indicated that the infectivity of S-G614
195	pseudovirus containing an additional elastase-2 cleavage site is enhanced by
196	exogenous elastase; therefore, S-G614 pseudovirus is more sensitive to sivelestat

197 sodium than the S-D614 pseudovirus.

157	
198	We also tested two other protease inhibitors, camostat mesylate and E-64d, which
199	block host TMPRSS2 and CatB/L, respectively. In 293T-ACE2 cells lacking
200	TMPRSS2, the serine protease inhibitor camostat mesylate did not inhibit S-D614
201	or S-G614 pseudoviral infection (Fig. S1a), while the cysteine protease inhibitor E-
202	64d significantly blocked the entry of these two pseudoviruses, with IC $_{50}$ values of
203	0.37 μM and 0.24 μM for S-D614 and S-G614 pseudoviruses, respectively (Fig.
204	S1b). As expected, these protease inhibitors had no impact on VSV-G pseudovirus
205	infection. Together, these results suggest that S-meditated viral entry into 293T-
206	ACE2 cells deficient in TMPRSS2 is endosomal cysteine protease CatB/L-
207	dependent; therefore, S-D614 and S-G614 pseudoviruses showed similar
208	sensitivity to the CatB/L inhibitor E-64d in 293T-ACE2 cells.
209	
210	Neutralization effect of convalescent sera from patients with COVID-19
211	against S-D614 and S-G614 pseudoviruses
212	Neutralizing antibodies are important for prevention of and possible recovery from
213	viral infections. However, as viruses mutate during replication and spread, host
214	neutralizing antibodies generated in the earlier phase of the infection may not be
215	as effective later on ^{14,15} . To test whether D614G mutations could affect the
216	neutralization sensitivity of the virus, the neutralization activity of serum samples
217	from convalescent patients with COVID-19 against SARS-CoV-2 S-D614 and S-
218	G614 pseudoviruses were evaluated. To perform the neutralization assay, 50 μ L

pseudovirus $(3.8 \times 10^4 \text{ copies})$ was incubated with serially diluted sera. As shown 219 in Fig. 4a, the inhibition rate of sera from convalescent COVID-19 patients was 220 221 analyzed at a single dilution of 1:1000, among the 70 tested sera, 65 of them showed neutralizing activities against both S-D614 and S-G614 pseudoviruses 222 with comparable efficiencies. However, five sera samples (patients 1#, 7#, 40#, 223 42# and 52#) showed decreased inhibition rate against the S-G614 pseudovirus. 224 The serum from patient 1# failed to neutralize the S-G614 pseudovirus, even 225 though it neutralized about 30% of the S-D614 pseudovirus at a 1:1000 dilution. 226 227 Then, the inhibition curves and half-maximal inhibitory dose (ID₅₀) of sera samples from five convalescent patients and one healthy donor were analyzed. Sera from 228 patients 17# and 39#, which were able to neutralize both pseudoviruses to similar 229 230 degrees, showed similar ID₅₀ values (Fig. 4b). However, sera from patients 1#, 7#, 40#, 42# and 52# showed relative high neutralizing activity against the S-D614 231 pseudovirus with an ID₅₀ ranging from 729 to 1524, but showed decreased 232 233 neutralizing activity against the S-G614 pseudovirus with an ID₅₀ ranging from 216 to 367, indicating a 2.5- to 5.9-fold reduction in neutralizing titers (Fig. 4b). These 234 data indicate that most antisera (93%) from patients, likely infected with earlier 235 SARS-CoV-2 variant, can cross neutralize S-G614 variant, although D614G 236 mutation decreases the neutralization sensitivity to 7% convalescent sera. 237 238

239 Discussion

240 Pseudovirus-based assays have been widely used for the study of cellular tropism,

241	receptor recognition, viral inhibitors, and evaluation of neutralizing antibodies
242	without the requirement of BSL-3 laboratories. We constructed pseudotyped
243	SARS-CoV-2 based on the viral S protein using a lentiviral system, which
244	incorporated a Luc reporter gene for easy quantification of coronavirus S protein-
245	mediated entry. We investigated the major mutation in the S protein at position 614
246	and found that serine protease elastase-2 participates in the proteolytic activation
247	of the S-G614 protein, thereby enhancing viral entry into 293T-ACE2 cells (Fig. 5).
248	We demonstrated the potential role of the elastase-2 inhibitor sivelestat in blocking
249	S-G614 pseudovirus infection in the presence of elastase. Although S-D614 and
250	S-G614 variants could be similarly neutralized by most antisera, we found that the
251	S-G614 pseudovirus was more resistant to some neutralizing antisera than S-
252	D614 pseudovirus.

Several findings stand out in our study: First, we found that the entry efficiency of 254 S-G614 pseudotyped virus was about 2.4 times higher than that of the S-D614 255 pseudovirus when viral input doses were normalized, suggesting that D614G 256 mutation promotes the infectivity of SARS-CoV-2 and enhances viral 257 transmissibility. Since the pseudoviruses were employed in a single round of 258 infection assay, this seemingly small increase in entry activity could cause a large 259 difference in viral infectivity in vivo. Yao et al. (2020) reported that a patient-260 derived viral isolate ZJU-1, which harbors the D614G mutation, has a viral load 19 261 times higher than isolate ZJU-8 (harboring the S-D614) when Vero-E6 cells were 262

263	infected ¹⁶ . However, the ZJU-1 isolate contained two other non-synonymous
264	mutations in open reading frame 1a (ORF1a) and envelope (E) gene. Our results
265	also elucidated the cause of increased entry efficiency due to the D614G mutation
266	in the S protein of SARS-CoV-2. The S-G614 protein contains a novel serine
267	protease cleavage site, so it could be cleaved by host elastase-2 more efficiently.
268	Previously studies on SARS-CoV demonstrated that the protease-mediated cell
269	surface entry facilitated a 100- to 1,000-fold increase in efficient infection
270	compared to the endosomal pathway in the absence of proteases ¹⁷ .
271	
272	Second, we found that elastase-enhanced S-G614 pseudoviral infection could be
273	partially blocked by sivelestat sodium. Elastase-2, also known as neutrophil
274	elastase, plays an important role in degenerative and inflammatory diseases.
275	Sivelestat, a drug approved to treat acute respiratory distress syndrome (ARDS) in
276	Japan and South Korea, has a beneficial effect on the pulmonary function of
277	patients with ARDS and systemic inflammatory response syndrome ¹⁸ . About 10–
278	15% of patients with COVID-19 progress to ARDS ¹⁹ . Since sivelestat may not only
279	mitigate the damage of neutrophil elastase on lung connective tissue, but also limit
280	virus spread by inhibiting S protein processing, Mohamed et al. (2020) advocated
281	the use of sivelestat to alleviate neutrophil-induced damage in critically ill patients
282	with COVID-19 ²⁰ . Our <i>in vitro</i> results also indicate that sivelestat sodium or similar
283	neutrophil elastase inhibitors might be an effective option for treatment of COVID-
284	19 caused by SARS-CoV-2 harboring the D614G mutation.

285

286	Third, we observed that the S-G614 pesudovirus was more resistant to
287	neutralization by convalescent sera from patients, likely infected in mid- to late-
288	January when wild-type (D614) virus was mainly circulating in China. Koyama et
289	al. (2020) reported that D614G is located in one of the predicted B-cell epitopes of
290	SARS-CoV-2 S protein, and this is a highly immunodominant region and may
291	affect the effectiveness of vaccine with wild-type S protein ¹⁴ . D614 is conserved in
292	the S protein of SARS-CoV in 2003. Previous studies of SARS-CoV suggested
293	that the peptide $S_{597-625}$ is a major immunodominant peptide in humans and elicits
294	a long-term B-cell memory response after natural infection with SARS-CoV ²¹ .
295	Regions between amino acids 614 and 621 of SARS-CoV-2 S protein were also
296	identified as a B-cell epitope by different methods, and the change in D614G may
297	affect the antigenicity of this region ²² . In our study, we observed that 7% (5/70)
298	convalescent sera showed markedly different neutralization activities between S-
299	G614 and S-G61 protein pseudotyped viruses, indicating that the D614G mutation
300	reduces the sensitivity to neutralizing antibodies from some patients infected with
301	earlier SARS-CoV-2 variant. Whether these patients were at high risk of reinfection
302	with the S-G614 variant should be explored in further studies. It will also be
303	important to determine the breadth of the neutralizing capacity of vaccine-induced
304	neutralizing antibodies.

305

306 Recently, several groups also reported that S-G614 enhances viral infectivity

based on pseudovirus assays^{23–26}, but due to the small sample size, they found no
effect on the neutralization sensitivity of the virus^{23,24,26}. Given the evolving nature
of the SARS-CoV-2 RNA genome, antibody treatment and vaccine design require
further considerations to accommodate D614G and other mutations that may
affect the immunogenicity of the virus.

312

Our study had some limitations. First, 19 amino acids of S protein on the C-313 terminal were not included in order to improve the packaging efficiency of the 314 315 SARS-CoV-2 S protein pseudotyped virus, and this pseudovirus only recapitulates viral entry events. Therefore, additional assays with authentic SARS-CoV-2 316 viruses are required. Second, we only tested neutralizing antibodies against the S 317 318 protein. Previous studies on SARS-CoV indicated that only a small fraction of memory B cells specific for SARS-CoV antigens are directed against neutralizing 319 epitopes present on the S protein²⁷. Third, in addition to D614G, further studies on 320 321 other mutations in the S protein are needed to evaluate their impact on SARS-CoV-2 infectivity, pathogenicity, and immunogenicity. Further studies are needed 322 to determine the impact of these mutations on the severity of COVID-19. 323

324

In summary, we established a SARS-CoV-2 S protein-mediated pseudoviral entry
assay and explored the cellular entry of S-D614 and S-G614 pseudotyped viruses.
Our study provided evidence that the D614G mutation introduces an additional
elastase-2 cut site in the S protein, thereby promoting its cleavage and viral cell

329	entry, resulting in SARS-CoV-2 becoming more infectious. Importantly, the D614G
330	mutation reduced the sensitivity of the virus to serum neutralizing antibodies in 7%
331	convalescent patients with COVID-19. Our study will be helpful for understanding
332	SARS-CoV-2 transmission and for the design of vaccines and therapeutic
333	interventions against COVID-19.
334	
335	Materials and Methods
336	Plasmids. The codon-optimized gene encoding SARS-CoV-2 S protein (GenBank:
337	QHD43416) with C-terminal 19-amino acid deletion was synthesized by Sino
338	Biological Inc (Beijing, China), and cloned into the Kpnl and Xbal restriction sites
339	of pCMV3 vector (pCMV3-SARS-CoV-2-S-C19del, denoted as pS-D614). The
340	D614G mutant S-expressing plasmid (denoted as pS-G614) was constructed by
341	site-directed mutagenesis, with pS-D614 plasmid as a template. The HIV-1 NL4-3
342	ΔEnv Vpr luciferase reporter vector (pNL4-3.Luc.R-E-) constructed by N. Landau^{28}
343	was provided by Prof. Cheguo Cai from Wuhan University (Wuhan, China). The
344	VSV-G-expressing plasmid pMD2.G was provided by Prof. Ding Xue from
345	Tsinghua University (Beijing, China). The expression plasmid for human ACE2 was
346	obtained from GeneCopoeia (Guangzhou, China).
347	
348	Cell lines. HEK 293T cells were purchased from the American Type Culture
349	Collection (ATCC, Manassas, VA, USA). Cells were maintained in Dulbecco's
350	modified Eagle medium (DMEM; Hyclone, Waltham, MA, USA) supplemented with

351	10% fetal bovine serum (FBS; Gibco, Rockville, MD, USA), 100 mg/mL of
352	streptomycin, and 100 units/mL of penicillin at 37 $^\circ C$ in 5% CO2. HEK 293T cells
353	transfected with human ACE2 (293T-ACE2) were cultured under the same
354	conditions with the addition of G418 (0.5 mg/mL) to the medium. Elastase (from
355	porcine pancreas) was obtained from MACKLIN Biochemical Co. (Shanghai,
356	China).
357	

Antibodies and inhibitors. The anti-RBD monoclonal antibody against the SARS-358 CoV-2 S protein was kindly provided by Prof. Aishun Jin from Chongging Medical 359 University. Recombinant human ACE2 linked to the Fc domain of human IgG1 360 (ACE2-Ig) was purchased from Sino Biological Inc. Sivelestat sodium 361 362 (MedChemExpress, Monmouth Junction, NJ, USA) Camostat mesylate (Tokyo Chemical Industry, Tokyo, Japan), and aloxistatin (E-64d; MedChemExpress) were 363 dissolved in dimethyl sulfoxide (DMSO) at a stock concentration of 50 mM. 364 365 Sera samples. A total of 70 convalescent sera samples from patients with COVID-366 19 (at 2-4 weeks after symptom onset) were collected from three designated 367 hospitals in Chongging from February 1 to February 10, 2020 (Supplementary 368 information, Table S1). All sera were tested positive using magnetic 369 chemiluminescence enzyme immunoassay (MCLIA) kits supplied by BioScience 370 Co. (Tianjin, China)²⁹. Patient sera were incubated at 56 °C for 30 min to inactivate 371 the complement prior to experiments. 372

373

374 SARS-CoV-2 genome analysis

- The online Nextstrain analysis tool (https://nextstrain.org/ncov) was used to track
- the D614G mutation in SARS-CoV-2 genomes. All the 2,834 genomes sampled
- between Dec 20, 2019 and Jun 12, 2020 were visualized using the 'rectangular'
- layout. The mutations were labeled on branches.
- 379 All complete SARS-CoV-2 S gene sequences were downloaded from The National
- 380 Center for Biotechnology Information (NCBI) website
- (https://www.ncbi.nlm.nih.gov/sars-cov-2/) on Jun 1, 2020. We obtained 4,701 S
- coding sequences from NCBI, and after excluding partial and frameshift
- sequences, 4,649 completed S sequences were used for further analysis. All S
- nucleotide sequences were translated to amino acid sequences. The nucleotide
- and amino acid sequences of S were aligned with multiple sequence alignment
- 386 software MUltiple Sequence Comparison by Log-Expectation (MUSCLE)
- separately. The 'Wuhan-Hu-1' strain (NC_045512) was used to as the reference
- sequence, and the mutations were extracted using private PERL scripts.

389

390 Western blot analysis of SARS-CoV-2 S protein expression. To analyze S

protein expression in cells, S-D614- and S-G614-expressing plasmids were
 transfected into HEK 293T cells. Total protein was extracted from cells using radio
 immunoprecipitation assay Lysis Buffer (CoWin Biosciences, Beijing, China)
 containing 1 mM phenylmethylsulfonyl fluoride (Beyotime, Shanghai, China). Equal

395	amounts of protein samples were electrophoretically separated by 10% sodium
396	dodecyl sulfate polyacrylamide gel electrophoresis, and then transferred to
397	polyvinylidene difluoride membrane (Millipore, Billerica, MA, USA). The
398	immunoblots were probed with the indicated antibodies. Protein bands were
399	visualized using SuperSignal West Pico Chemiluminescent Substrate kits (Bio-
400	Rad, Hercules, CA, USA) and quantified by densitometry using ImageJ software
401	(NCBI, Bethesda, MD, USA).

403 **Production and titration of SARS-CoV-2 S pseudoviruses.** SARS-CoV-2

404 pseudotyped viruses were produced as previously described with some

405 modifications³⁰. Briefly, 5×10^6 HEK 293T cells were co-transfected with 6 µg each

of pNL4-3.Luc.R-E- and recombinant SARS-CoV-2 S plasmids (pS-D614 or pS-

407 G614) using Lipofectamine 3000 Transfection Reagent (Invitrogen) according to

the manufacturer's instructions. The S-D614 and S-G614 protein pseudotyped

viruses in supernatants were harvested 48 h after transfection, centrifuged, filtered

through a 0.45 μ m filter, and stored at -80°C. The pMD2.G was co-transfected

with the pNL4-3.Luc.R-E- plasmid to package the VSV-G pseudovirus.

The titers of the pseudoviruses were calculated by determining the number of viral

413 RNA genomes per mL of viral stock solution using RT-qPCR with primers and a

414 probe that target LTR³¹. Sense primer: 5'-TGTGTGCCCGTCTGTTGTGT-3', anti-

sense primer: 5'-GAGTCCTGCGTCGAGAGAGC-3', probe: 5'-FAM-

416 CAGTGGCGCCCGAACAGGGA- BHQ1-3'. Briefly, viral RNAs were extracted

417	using TRIzol (Invitrogen, Rockville, MD) and treated with RNase-free DNase
418	(Promega, Madison, WI, USA) and re-purified using mini columns. Then, the RNA
419	was amplified using the TaqMan One-Step RT-PCR Master Mix Reagents (Applied
420	Biosystems, Thermo Fisher). A known quantity of pNL4-3.Luc.R-E- vector was
421	used to generate standard curves. The S-D614 and S-G614 protein pseudotyped
422	viruses were adjusted to the same titer (copies/mL) for the following experiments.
423	
424	SARS-CoV-2 S-mediated pseudoviral entry assay. To detect S variant-mediated
425	viral entry, 293T-ACE2 cells (2×10^4) grown on 96-well plates were infected with
426	the same amount of S-D614 or S-G614 pseudovirus (3.8 \times 10 ⁴ copies in 50 μL).
427	The cells were transferred to fresh DMEM medium 8 h post-infection, and RLU
428	was measured 24-72 h post-infection using Luciferase Assay Reagent (Promega,
429	Madison, WI, USA) according to the manufacturer's protocol ³² .
430	
431	Neutralization and inhibition assays. The 293T-ACE2 cells (2×10^4 cells/well)
432	were seeded on 96-well plates. For the neutralization assay, 50 μ L pseudoviruses,
433	equivalent to 3.8 \times 10 ⁴ vector genomes, were incubated with serial dilutions of
434	sera samples from patients and normal human serum as a negative control for 1 h
435	at 37 °C, then added to the 293T-ACE2 cells (with three replicates for each
436	dilution). For the inhibition assay, the cells were pretreated with elastase for 5 min
437	and then infected with pseudotyped viruses in the presence of various
438	concentrations of sivelestat sodium. After incubation for 12 h, the medium was

439	replaced with fresh cell culture medium. Luciferase activity was measured 72 h
440	after infection and the percentage of neutralization was calculated using GraphPad
441	Prism 6.0 software (GraphPad Software, San Diego, CA, USA). Percentage of
442	RLU reduction (inhibition rate) was calculated as: 1- (RLU of sample sera-control
443	wells) / (RLU from mock control sera-control wells)) ×100%. The titers of
444	neutralizing antibodies were calculated as 50% inhibitory dose (ID $_{50}$).
445	
446	Statistical analyses. Statistical analyses of the data were performed using
447	GraphPad Prism version 6.0 software. Quantitative data in histograms are shown
448	as means \pm SD. Statistical significance was determined using ANOVA for multiple
449	comparisons. Student's <i>t</i> -tests were applied to compare the two groups.
450	Differences with P values < 0.05 were deemed statistically significant.
451	
452	Ethical approval. The study was approved by the Ethics Commission of
453	Chongqing Medical University (ref. no. 2020003). Written informed consent was
454	waived by the Ethics Commission of the designated hospital for emerging
455	infectious diseases.
456	
457	Acknowledgments
458	We would like to thank Prof. Cheguo Cai (Wuhan University, Wuhan, China) for

459 providing the pNL4-3.Luc.R-E- plasmid. We also grateful to Dr. Hongbing Jiang

460 (Washington University in St. Louis, St. Louis, MO, USA) for the suggestions. We

461	gratefully acknowledge the authors, originating and submitting laboratories of the
462	SARS-CoV-2 sequence data from GISAID. This work was supported by the
463	Emergency Project from the Science & Technology Commission of Chongqing
464	(cstc2020jscx-fyzx0053 to A-L.H.), the Emergency Project for Novel Coronavirus
465	Pneumonia from the Chongqing Medical University (CQMUNCP0302 to K.W.), the
466	Leading Talent Program of CQ CSTC (CSTCCXLJRC201719 to N.T.), and a Major
467	National Science & Technology Program grant (2017ZX10202203 to A-L.H.) from
468	the Science & Technology Commission of China.
469	
470	Author contributions
471	A-L.H., N.T., and K.W. conceived the project and supervised the study. J.H., C-
472	L.H., Q-Z.G. and G-J.Z. performed most experiments. J.H. and K.W. performed
473	serum neutralization assay. H-J.D. performed SARS-CoV-2 genome analysis. L-Y.
474	H. performed structural analysis of S protein. Q-X.L., J.C. and X-X. C. collected the
475	serum samples. J.H. and Q-Z.G. contributed to the statistical analysis. K.W. and
476	
	N.T. wrote the manuscript. All the authors analyzed the final data, reviewed and

Competing interests

480 The authors declare no competing interests.

483 **References**:

- Zhou, P. *et al.* A pneumonia outbreak associated with a new coronavirus of probable
 bat origin. *Nature* 579, 270–273 (2020).
- 486 2. Sanders, J. M., Monogue, M. L., Jodlowski, T. Z. & Cutrell, J. B. Pharmacologic Treatments
- 487 for Coronavirus Disease 2019 (COVID-19): A Review. *JAMA* (2020) 488 doi:10.1001/jama.2020.6019.
- Becerra-Flores, M. & Cardozo, T. SARS-CoV-2 viral spike G614 mutation exhibits higher
 case fatality rate. *Int J Clin Pract* (2020) doi:10.1111/ijcp.13525.
- 491 4. Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
- Blocked by a Clinically Proven Protease Inhibitor. *Cell* **181**, 271-280.e8 (2020).
- 493 5. Du, L. *et al.* The spike protein of SARS-CoV a target for vaccine and therapeutic
 494 development. *Nat Rev Microbiol* 7, 226–236 (2009).
- 495 6. Wrapp, D. *et al.* Cryo-EM structure of the 2019-nCoV spike in the prefusion
 496 conformation. *Science* 367, 1260–1263 (2020).
- 497 7. Walls, A. C. *et al.* Structure, Function, and Antigenicity of the SARS-CoV-2 Spike
 498 Glycoprotein. *Cell* 181, 281-292.e6 (2020).
- 8. Zhou, Y. *et al.* Protease inhibitors targeting coronavirus and filovirus entry. *Antiviral Res* **116**, 76–84 (2015).
- 9. Bhattacharyya, C. *et al.* Global Spread of SARS-CoV-2 Subtype with Spike Protein
 Mutation D614G is Shaped by Human Genomic Variations that Regulate Expression of
 TMPRSS2 and MX1 Genes. *bioRxiv* 2020.05.04.075911 (2020)
 doi:10.1101/2020.05.04.075911.

- 505 10. Wrobel, A. et al. Evolution of SARS-CoV-2 spike glycoprotein.
 506 https://www.researchsquare.com/article/rs-29398/v1 (2020) doi:10.21203/rs.3.rs507 29398/v1.
- 508 11. Song, J. *et al.* PROSPER: An Integrated Feature-Based Tool for Predicting Protease
 509 Substrate Cleavage Sites. *PLoS ONE* 7, e50300 (2012).
- 510 12. Sandrin, V. et al. Lentiviral vectors pseudotyped with a modified RD114 envelope
- 511 glycoprotein show increased stability in sera and augmented transduction of primary
- 512 lymphocytes and CD34+ cells derived from human and nonhuman primates. *Blood* **100**,
- 513 **823–832 (2002)**.
- 13. Lei, C. *et al.* Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant
 ACE2-Ig. *Nat Commun* **11**, 2070 (2020).
- 14. Koyama, T., Weeraratne, D., Snowdon, J. L. & Parida, L. Emergence of Drift Variants That
- 517 May Affect COVID-19 Vaccine Development and Antibody Treatment. *Pathogens* **9**, 324 518 (2020).
- 15. Shimizu, Y. K. et al. Neutralizing antibodies against hepatitis C virus and the emergence
- of neutralization escape mutant viruses. *Journal of Virology* **68**, 1494–1500 (1994).
- 521 16. Yao, H. et al. Patient-derived mutations impact pathogenicity of SARS-CoV-2. medRxiv
- 522 2020.04.14.20060160 (2020) doi:10.1101/2020.04.14.20060160.
- 17. Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M. & Taguchi, F. Protease-mediated
- 524 enhancement of severe acute respiratory syndrome coronavirus infection. *Proceedings*
- 525 of the National Academy of Sciences **102**, 12543–12547 (2005).
- 18. Okayama, N. et al. Clinical effects of a neutrophil elastase inhibitor, sivelestat, in patients

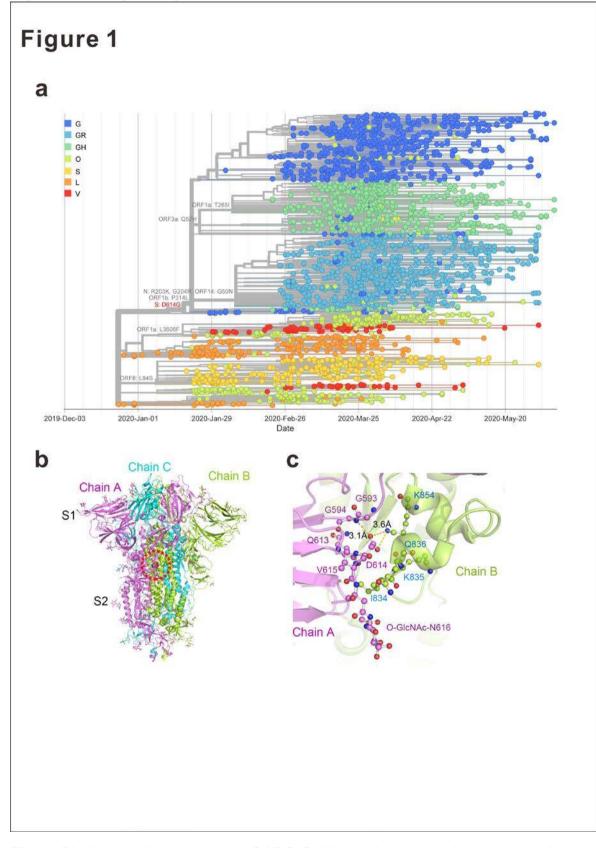
- 527 with acute respiratory distress syndrome. *J Anesth* **20**, 6–10 (2006).
- 528 19. Barnes, B. J. *et al.* Targeting potential drivers of COVID-19: Neutrophil extracellular traps.
- 529 *J Exp Med* **217**, (2020).
- 530 20. Mohamed, M. M. A. Neutrophil Elastase Inhibitors: A potential prophylactic treatment
- option for SARS-CoV-2-induced respiratory complications? 2 (2020).
- 532 21. Wang, Q. et al. Immunodominant SARS Coronavirus Epitopes in Humans Elicited both
- 533 Enhancing and Neutralizing Effects on Infection in Non-human Primates. ACS Infect Dis
- **2**, 361–376 (2016).
- 535 22. Kim, S.-J., Nguyen, V.-G., Park, Y.-H., Park, B.-K. & Chung, H.-C. A Novel Synonymous 536 Mutation of SARS-CoV-2: Is This Possible to Affect Their Antigenicity and 537 Immunogenicity? *Vaccines* **8**, 220 (2020).
- 23. Zhang, L. *et al.* The D614G mutation in the SARS-CoV-2 spike protein reduces S1
 shedding and increases infectivity. *bioRxiv* 2020.06.12.148726 (2020)
 doi:10.1101/2020.06.12.148726.
- 24. Ozono, S. *et al.* Naturally mutated spike proteins of SARS-CoV-2 variants show
 differential levels of cell entry. *bioRxiv* 2020.06.15.151779 (2020)
 doi:10.1101/2020.06.15.151779.
- 544 25. Daniloski, Z., Guo, X. & Sanjana, N. E. The D614G mutation in SARS-CoV-2 Spike
 545 increases transduction of multiple human cell types. *bioRxiv* 2020.06.14.151357 (2020)
 546 doi:10.1101/2020.06.14.151357.
- 547 26. Korber, B. *et al.* Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases
 548 infectivity of the COVID-19 virus. *Cell* (2020) doi:10.1016/j.cell.2020.06.043.

549	27. Traggiai, E. et al. An efficient method to make human monoclonal antibodies from
550	memory B cells: potent neutralization of SARS coronavirus. Nature Medicine 10, 871-
551	875 (2004).
552	28. Connor, R. I., Chen, B. K., Choe, S. & Landau, N. R. Vpr Is Required for Efficient Replication
553	of Human Immunodeficiency Virus Type-1 in Mononuclear Phagocytes. Virology 206,
554	935–944 (1995).
555	29. Long, QX. et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nature
556	Medicine 1–4 (2020) doi:10.1038/s41591-020-0897-1.
557	30. Ou, X. et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its
558	immune cross-reactivity with SARS-CoV. Nature Communications 11, 1620 (2020).
559	31. Geraerts, M., Willems, S., Baekelandt, V., Debyser, Z. & Gijsbers, R. Comparison of
560	lentiviral vector titration methods. BMC Biotechnol 6, 34 (2006).

561 32. Shang, J. *et al.* Cell entry mechanisms of SARS-CoV-2. *PNAS* (2020)
 562 doi:10.1073/pnas.2003138117.

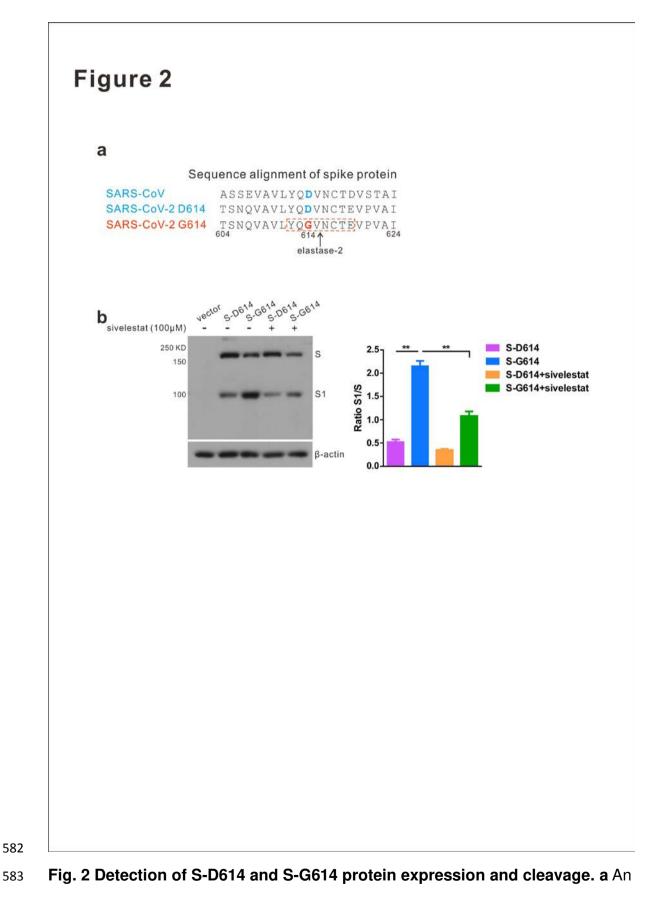
563

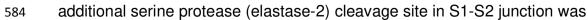
Mutations in Spike	No. of mutation	No. of wildtype	Total No. of	Mutation (%)	
Protein		sequences			
D614G	2995	1637	4632	64.659	
А829Т	37	4602	4639	0.798	
L5F	33	4614	4647	0.710	
H146Y	26	4594	4620	0.563	
P1263L	15	4631	4646	0.323	
V483A	12	4387	4399	0.273	
S939F	12	4626	4638	0.259	
R78M	10	4623	4633	0.216	
E583D	9	4639	4648	0.194	
A845S	9	4632	4641	0.194	


565 **Table 1. Mutations in spike protein of SARS-CoV-2.**

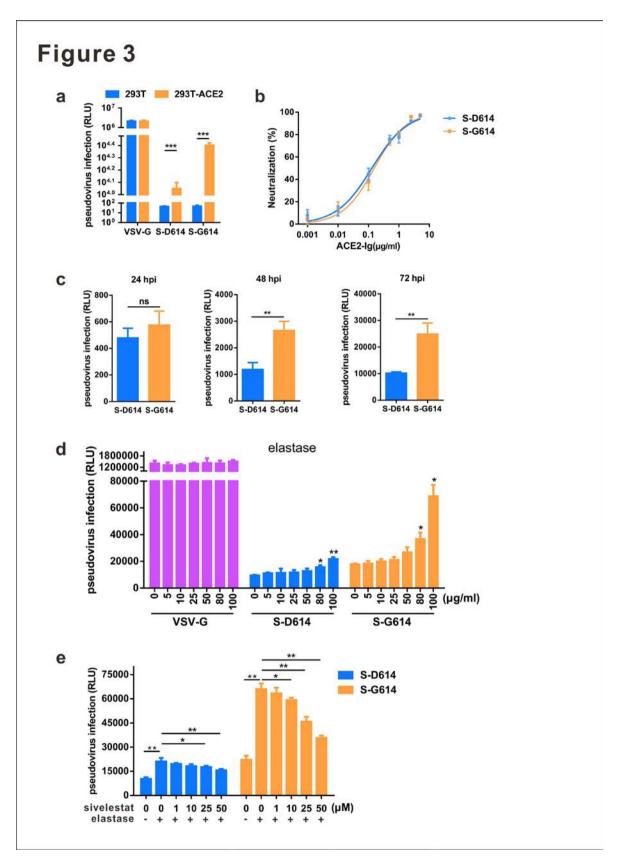
Top 10 abundant non-synonymous mutations observed in S protein of SARS-CoV-

567 **2**.


569

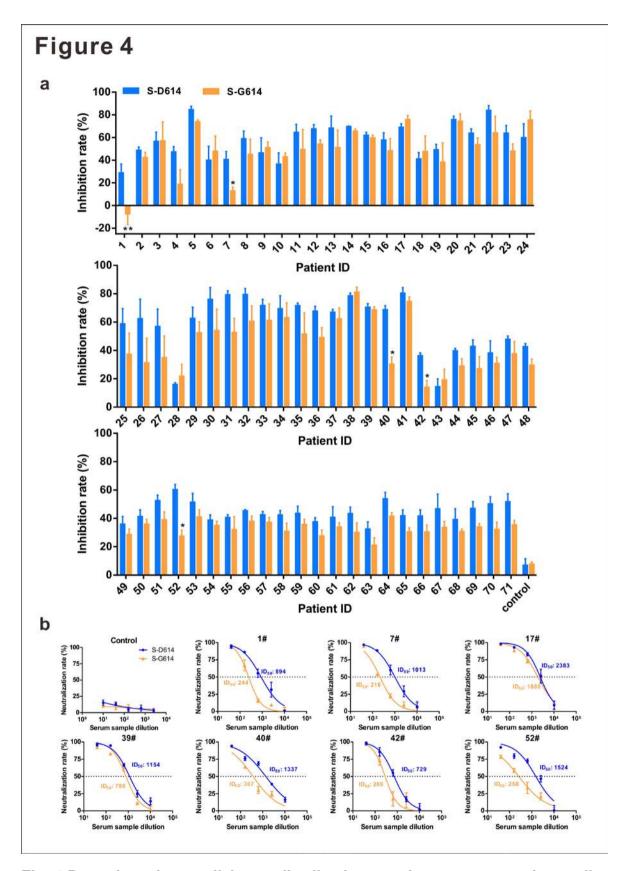


570 Fig. 1. Phylogenetic timetree of SARS-CoV-2 and structural features of its


spike (S) protein. a Phylogenetic analysis of SARS-CoV-2 sequences from

572	GISAID database. Prevalence of S-D614G genomes over time produced by the
573	Nextstrain analysis tool using GISAID dataset ($n = 2,834$ genomes samples from
574	January 2020 to May 2020). b Cartoon representation of the trimeric SARS-CoV-2
575	spike structure (PBD ID: 6ZGE). Three spike chains are colored in violet, lemon,
576	and aquamarine, respectively. D614 is located at the C-terminal of the S1 subunit
577	and is shown as violet spheres in the red dashed circle. ${f c}$ D614 involves the
578	interactions between two S chains. Residues are highlighted by violet or lemon
579	spheres and sticks. Yellow dashed lines indicate hydrogen bonds or salt bridges.
580	PyMOL software (Schrödinger, LLC) was used to generate all rendered structural
581	images.

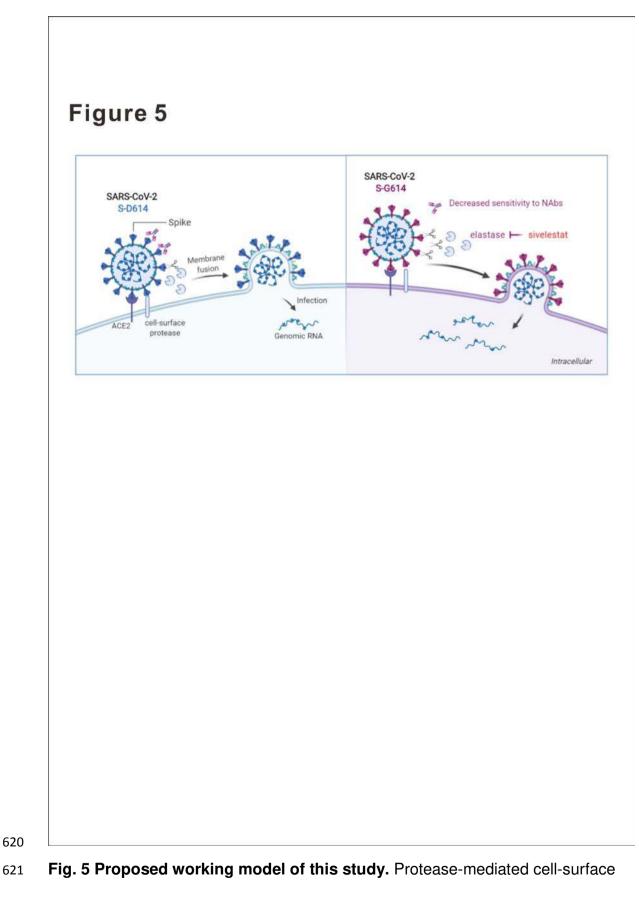
- identified in S-614G protein of SARS-CoV-2. **b** Detection of S protein expression
- in HEK 293T cells by Western blot using the anti-RBD (receptor-binding domain)
- 587 monoclonal antibody. Cells were transfected with pS-D614 or pS-G614 plasmids
- or with an empty vector and incubated with or without sivelestat sodium. To
- compare the S1 and S ratio, integrated density of S1/S was quantitatively
- analyzed using ImageJ software. $n = 3, \pm SD. **P < 0.01$.



591

593 HEK 293T and 293T-ACE2 (human angiotensin-converting enzyme 2) cells were

594	infected with lentiviruses pseudotyped with VSV-G and SARS-CoV-2 S protein
595	variants. Virus titers were quantified by RT-qPCR and adjusted to 3.8 \times 10^4 copies
596	in 50 μ L to normalize input virus doses. The relative luminescence units (RLU)
597	detected 72 h post-infection (hpi). b Inhibition of pseudoviral entry by ACE2-Ig.
598	Pseudoviruses were pre-incubated with ACE2-Ig and added to 293T-ACE2 cells,
599	then RLU was measured at 72 hpi. ${f c}$ Viral entry efficiency meditated by S variants.
600	The RLU was measured at 24-72 hpi. d-e D614G mutation facilitates elastase-2
601	induced pseudoviral entry. 293T-ACE2 cells were treated with elastase for 5 min
602	and then infected with pseudotyped viruses containing the S-D614 or S-G614
603	mutant in the presence of various concentrations of sivelestat sodium. RLU was
604	measured at 72 hpi. n = 3, \pm SD. *P < 0.05, **P < 0.01. ns, not significant.



606 Fig. 4 Detection of neutralizing antibodies in convalescent sera against spike

605

608	convalescent sera from 70 patients with COVID-19 against S-D614 and S-G614
609	pseudoviruses. A serum sample from healthy individual was tested as a negative
610	control. Convalescent sera were collected 2-4 weeks after symptom onset from
611	confirmed case patients (1#-70#). Sera was analyzed at a single dilution of
612	1:1000. RLU was measured at 72 hpi. We then compared the RLU of serum
613	neutralized sample to the control and calculated the inhibition rate. $n = 3, \pm SD.$ b
614	The inhibition curves for serum samples from seven convalescent patients and a
615	healthy donor. The initial dilution was 1:40, followed by 4-fold serial dilution.
616	Neutralization titers were calculated as 50% inhibitory dose (ID $_{50}$), expressed as
617	the serum dilution at which RLUs were reduced by 50% compared with virus
618	control wells after subtraction of background RLU in cell control wells.
619	

pathway is critical for SARS-CoV-2 entry and infection. D614G mutation introduces

- an additional elastase-2 cut site in the spike protein of SARS-CoV-2, thereby
- promoting its cleavage and enhancing viral entry into host cells. The elastase-2
- inhibitor sivelestat partially blocks S-G614 pseudovirus infection in the presence of
- elastase. Both S-D614 and S-G614 variants could be similarly neutralized by most
- antisera, however, S-G614 mutant is more resistant to neutralizing antibodies
- 628 (NAbs) from some patients infected with earlier SARS-CoV-2 variant.