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Abstract—Data access control is an effective way to ensure
data security in the cloud. However, due to data outsourcing
and untrusted cloud servers, the data access control becomes
a challenging issue in cloud storage systems. Existing access
control schemes are no longer applicable to cloud storage systems,
because they either produce multiple encrypted copies of the
same data or require a fully trusted cloud server. Ciphertext-
Policy Attribute-based Encryption (CP-ABE) is a promising
technique for access control of encrypted data. However, due
to the inefficiency of decryption and revocation, existing CP-
ABE schemes cannot be directly applied to construct data
access control scheme for multi-authority cloud storage systems,
where users may hold attributes from multiple authorities. In
this paper, we propose DAC-MACS (Data Access Control for
Multi-Authority Cloud Storage), an effective and secure data
access control scheme with efficient decryption and revocation.
Specifically, we construct a new multi-authority CP-ABE scheme
with efficient decryption, and also design an efficient attribute
revocation method that can achieve both forward security and
backward security. We further propose an extensive data access
control scheme (EDAC-MACS), which is secure under weaker
security assumptions.

Index Terms—Access Control, CP-ABE, Decryption Outsourc-
ing, Attribute Revocation, Multi-authority Cloud.

I. INTRODUCTION

Cloud storage is an important service of cloud computing
[1]. It allows data owners to host their data in the cloud and
rely on cloud servers to provide “24/7/365” data access to
users (data consumers). Data access control is an effective
way to ensure the data security in the cloud. However, due to
the data outsourcing, the cloud server cannot be fully trusted
to provide data access control service, which means existing
server-based access control methods are no longer applicable
to cloud storage systems. To achieve data access control on
untrusted servers, traditional methods usually encrypt the data
and only users holding valid keys are able to decrypt. Although
these methods can provide secure data access control, the key
management is very complicated when more users are in the
system. Data owners also have to stay online all the time to
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deliver keys to new users. Moreover, for each data, there are
multiple copies of ciphertexts for users with different keys,
which will incur high storage overhead on the server.

Ciphertext-Policy Attribute-based Encryption (CP-ABE)
[2]–[6] is regarded as one of the most suitable technologies
for data access control in cloud storage systems, because it
gives the data owner more direct control on access policies
and does not require the data owner to distribute keys. In
CP-ABE scheme, there is an authority that is responsible for
attribute management and key distribution. The authority can
be the registration office in a university, the human resource
department in a company, etc. The data owner defines the
access policies and encrypts data under the policies. Each user
will be issued a secret key according to its attributes. A user
can decrypt the ciphertexts only when its attributes satisfy the
access policies.

In cloud storage systems, a user may hold attributes issued
by multiple authorities and the owner may share data with
users administrated to different authorities. For instance, in
an E-health system, the medical data may be shared only
with a user who has the attribute of “Doctor” issued by a
hospital and the attribute “Medical Researcher” issued by a
medical research center. Some CP-ABE schemes [7]–[10] have
been proposed for such multi-authority systems. However, due
to the inefficiency of computation, they cannot be directly
applied to construct the data access control scheme. Basically,
there are two operations in access control that require efficient
computation, namely decryption and revocation.

Revocation Efficiency: Data access in cloud storage sys-
tems is not static, as as employees are hired/fired or pro-
moted/demoted, it will be necessary to change the attributes of
users. To guarantee the security of attribute revocation, there
are two requirements: 1) Backward Security: The revoked user
(whose attributes are revoked) cannot decrypt new ciphertexts
that require the revoked attributes for decryption; 2) Forward
Security: The newly joined users who have sufficient attributes
are also able to decrypt the previously published ciphertexts.
To achieve these two requirements, a trivial method is to re-
encrypt all the data. But it incurs a high computation overhead
as the amount of data is massive. This motivates us to develop
a new method that can efficiently deal with the attribute
revocation of users.

Decryption Efficiency: In CP-ABE systems, the users need
to decrypt the data by using their secret keys. However,
nowadays, users usually use their mobile devices (e.g., smart
phones, tablets etc.) to access the cloud data, and the computa-
tion abilities of mobile devices are not as powerful as the one
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of PCs. This motivates us to outsource the main computation
of decryption into the cloud server, while still keep the data
privacy against the cloud server.

In this paper, we first construct a new multi-authority CP-
ABE scheme with efficient decryption and propose an efficient
attribute revocation method for it. Then, we apply them to
design an effective access control scheme for multi-authority
cloud storage systems. The main contributions of this work
can be summarized as follows.

1) We propose DAC-MACS (Data Access Control for
Multi-Authority Cloud Storage), an effective and secure
data access control scheme for multi-authority cloud
storage systems, which is secure in the random oracle
model and has better performance than existing schemes.

2) We construct a new multi-authority CP-ABE scheme
with efficient decryption. Specifically, we outsource the
main computation of the decryption by using a token-
based decryption method.

3) We also design an efficient immediate attribute revoca-
tion method for multi-authority CP-ABE scheme that
achieves both forward security and backward security.
Moreover, it incurs less communication cost and com-
putation cost during the attribute revocation.

Compared with the previous conference version [11], we
highly improve the security of DAC-MACS and make it more
practical for multi-authority cloud storage systems. Specifi-
cally, we mainly address the security weakness caused by the
collusion between non-revoked users and the corrupted AA.
We first give a straightforward solution by making a security
assumption that all the non-revoked users will not send their
received update keys to the revoked user. We further remove
this assumption and propose an extensive data access control
scheme (EDAC-MACS) that can achieve the same security
goal. In EDAC-MACS, the revoked user will not be able to
get illegal data access even with the help of any corrupted
AA and non-revoked user. Without such assumption, EDAC-
MACS is more practical to be implemented in multi-authority
cloud storage systems. We also provide the security analysis
of EDAC-MACS and prove that it is secure under weaker
security assumptions.

The remaining of this paper is organized as follows. We
first define the system model, framework and security model
in Section II. Then, we propose a new multi-authority CP-
ABE scheme with efficient decryption and revocation, and then
apply it to construct DAC-MACS in Section III. In Section
IV, we analyze DAC-MACS in terms of both the security
and the performance. We further extended our DAC-MACS
to be secure under weaker assumptions in Section V. Section
VI gives the related work. Finally, the conclusion is given in
Section VII and the detailed security proof is described in the
Appendix.

II. SYSTEM MODEL AND SECURITY MODEL

A. System Model

We consider a cloud storage system with multiple author-
ities, as shown in Fig.1. The system model consists of five
types of entities: a global certificate authority (CA), attribute
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Fig. 1. System Model of DAC-MACS

authorities (AAs), cloud server (server), data owners (owners)
and data consumers (users).

CA. The CA is a global trusted certificate authority in the
system. It sets up the system and accepts the registration of all
the users and AAs in the system. For each legal user, the CA
assigns a global unique user identity to it and also generates a
global secret/public key pair for this user. However, the CA is
not involved in any attribute management and any generation
of secret keys that are associated with attributes.

AA. Every AA is an independent attribute authority that is
responsible for issuing, revoking and updating user’s attributes
according to its role or identity. Each AA is responsible for
generating a public attribute key for each attribute it manages
and a secret key for each user reflecting their attributes.

Server. The cloud server stores owners’ data and provides
data access service to users. It also helps users decrypt
ciphertexts by generating decryption tokens and helps owners
update ciphertexts when an attribute revocation happens.

Owners. Before outsourcing the data, each owner first
encrypts the data with content keys by using symmetric
encryption techniques. Then, the owner defines the access
policies over attributes from multiple AAs and encrypts content
keys under the policies. They do not trust on the server to do
data access control. Instead, they assume that the server may
give the data to all the users in the system. But, the access
control happens inside the cryptography. That is only when
the user’s attributes satisfy the access policy defined in the
ciphertext, the user is able to decrypt the ciphertext.

Users. Each user is assigned with a global user identity from
the CA and can freely query ciphertexts from the server. To
decrypt a ciphertext, each user may submit their secret keys
issued by some AAs together with its global public key to the
server and ask for a decryption token. The user then uses the
received decryption token to decrypt the ciphertext along with
its global secret key. Only when the user’s attributes satisfy the
access policy defined in the ciphertext, the server can generate
the correct decryption token. The secret keys and the global
user’s public key can be stored on the server; subsequently,
the user does not need to submit any secret keys if no secret
keys are updated for further decryption token generation.
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B. Framework

Definition 1 (DAC-MACS). The framework of DAC-MACS
contains the following phases:

Phase 1: System Initialization
This phase consists of the following algorithms:
• CASetup(1λ )→ (MSK,SP,(skCA,vkCA)). The CA setup

algorithm takes no input other than the implicit security
parameter λ . It outputs the master key MSK, the system
parameter SP, a pair of signature and verification key
(skCA,vkCA) of the CA.

• UserReg(SP,skCA, Infou)→ (uid,GPKuid ,GSKuid ,
Cert(uid)). The user registration algorithm takes the
system parameter SP, the CA’s signature key skCA and the
user information Infou (e.g., name, birthday etc.) as in-
puts. It authenticates the user and assigns a global unique
user identity uid to the user. It outputs the user identity
uid, a pair of global public/secret key (GPKuid ,GSKuid)
and a certificate Cert(uid) which is signed by the CA.

• AAReg(InfoAA) → (aid). The attribute authority regis-
tration algorithm takes the information of an attribute
authority InfoAA as input. It authenticates the AA and
outputs a global authority identity aid for this AA.

• AASetup(SP,aid) → (SKaid ,PKaid ,{VKxaid ,PKxaid}).
The attribute authority setup algorithm takes the system
parameter SP and the global authority identity aid
as inputs. It outputs a pair of secret/public authority
key (SKaid ,PKaid), the set of version keys and public
attribute keys {VKxaid ,PKxaid} for each attributes x.

Phase 2: Secret Key Generation
• SKeyGen(SKaid ,SP,{PKxaid},Suid,aid ,Cert(uid)) →
SKuid,aid . The secret key generation algorithm takes
as inputs the secret authority key SKaid , the system
parameter SP, the set of public attribute keys {PKxaid},
a set of attributes Suid,aid that describes the secret key,
and the certificate of user uid. It outputs a secret key
SKuid,aid for the user uid.

Phase 3: Data Encryption
• Encrypt(SP,{PKk}k∈IA ,{PKxk}

k∈IA
xk∈SAk

,m,A)→ CT. The
encryption algorithm takes as inputs the system parameter
SP, a set of public keys {PKk}k∈IA from the involved au-
thority set IA, a set of public attribute keys {PKxk}

k∈IA
xk∈SAk

,
the data m and an access structure A over all the selected
attributes from the involved AAs. The algorithm first en-
crypts the data m by using symmetric encryption methods
with a content key κ . Then, it encrypts the content key κ

under the access structure A and outputs a ciphertext CT.
We will assume that the ciphertext implicitly contains the
access structure A.

Phase 4: Data Decryption
The data decryption phase consists of Decryption Token

Generation by cloud servers and Data Decryption by users
with the following algorithms:
• TKGen(CT,GPKuid ,{SKuid,k}k∈IA)→ TK. The decryp-

tion token generation algorithm takes as inputs the ci-
phertext CT which contains an access structure A, user’s
global public key GPKuid and a set of user’s secret keys

{SKuid,k}k∈IA . If the user uid holds sufficient attributes
that satisfy the access structure A, the algorithm can
successfully compute the correct decryption token TK for
the ciphertext CT.

• Decrypt(CT,TK,GSKuid) → m. The decryption algo-
rithm takes as inputs the ciphertext CT, the decryption
token TK and the user’s global secret key GSKuid . It first
decrypts the content key and further uses the content key
to decrypt the data. It outputs the data m.

Phase 5: Attribute Revocation
This phase contains three steps: Update Key Generation

by AAs, Secret Key Update by Non-revoked Users1 and
Ciphertext Update by Servers.
• UKeyGen(SKaid ,{u j},VKx̃aid ) → (KUK j,x̃aid ,CUKx̃aid ).

The update key generation algorithm takes as inputs the
secret authority key SKaid , a set of user’s secret {u j}
and the previous version key of the revoked attribute
VKx̃aid . It outputs both the user’s Key Update Key
KUK j,x̃aid ( j ∈ SU , j 6= µ, x̃aid ∈ S j,aid) and the Ciphertext
Update Key CUKx̃aid .

• SKUpdate(SKuid,aid ,KUKuid,x̃aid ) → SK′uid,aid . The
user’s secret key update algorithm takes as inputs the
current secret key SKuid,aid and its key update key
KUKuid,x̃aid . It outputs a new secret key SK′uid,aid .

• CTUpdate(CT,CUKx̃aid )→ CT′. The ciphertext update
algorithm takes as inputs the current ciphertext CT and
the ciphertext update key CUKx̃aid . It outputs a new
ciphertext CT′.

C. Security Assumption of Each Entity
In DAC-MACS, we have the following assumptions:
• The CA is trusted, but it is not allowed to decrypt any

ciphertexts.
• Each AA is also trusted, but it can be corrupted by the

adversary.
• The server is semi-trusted (curious but honest). It will not

deny service to any authorized users, and will correctly
execute the tasks assigned by the AA. But it is curious
about the data content or the received messages.

• Users are dishonest and may collude to obtain unautho-
rized access to data.

• All the non-revoked users will not give the received
update keys to the revoked user2.

D. Decisional q-parallel Bilinear Diffie-Hellman Exponent
Assumption

We recall the definition of the decisional q-parallel Bilinear
Diffie-Hellman Exponent (q-parallel BDHE) problem in [5] as
follows. Let a,s,b1, · · · ,bq ∈ Zp be chosen at random and g
be a generator of G. If an adversary is given

~y = (g,gs,g1/z,ga/z, · · · ,g(aq/z),ga, · · · ,g(aq), ,g(a
q+2), · · · ,g(a2q),

∀1≤ j≤q gs·b j , ga/b j , · · · ,g(aq/b j), ,g(a
q+2/b j), · · · ,g(a2q/b j),

∀1≤ j,k≤q,k 6= j ga·s·bk/b j , · · · ,g(aq·s·bk/b j)),

1Users who hold the revoked attribute but have not been revoked.
2We will remove this assumption in the extensive data access control

scheme (EDAC-MACS) in Section V.
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it must be hard to distinguish a valid tuple e(g,g)aq+1s ∈ GT
from a random element R in GT .

An algorithm B that outputs z ∈ {0,1} has advantage ε in
solving q-parallel BDHE in G if∣∣∣Pr[B(~y,T = e(g,g)aq+1s) = 0]−Pr[B(~y,T = R) = 0]

∣∣∣≥ ε.

Definition 2. The decisional q-parallel BDHE assumption
holds if no polynomial time algorithm has a non-negligible
advantage in solving the q-parallel BDHE problem.

E. Security Model

We now describe the security model of DAC-MACS by
the following game between a challenger and an adversary.
The security model allows the adversary to query for any
secret keys and update keys that cannot be used to decrypt
the challenge ciphertext. Similar to [10], we assume that the
adversaries can corrupt authorities only statically, but key
queries are made adaptively. Let SA denote the set of all the
authorities. The security game is defined as follows.

Setup. The system parameters are generated by running the
CA setup algorithm. The adversary specifies a set of corrupted
attribute authorities S′A ⊂ SA. The challenger generates the
public keys by querying the AA setup oracle, and generates the
secret keys by querying the secret key generation oracle. For
uncorrupted authorities in SA−S′A, the challenger sends only
the public keys to the adversary. For corrupted authorities in
S′A, the challenger sends both public keys and secret keys to
the adversary.

Phase 1. The adversary makes secret key queries by
submitting pairs (uid,Suid) to the challenger, where Suid =
{Suid,k}k∈SA−S′A

is a set of attributes belonging to several
uncorrupted AAs. The challenger gives the corresponding
secret keys {SKuid,k} to the adversary. The adversary also
makes update key queries by submitting a set of attributes
S′aid . The challenger gives the corresponding update keys to
the adversary.

Challenge. The adversary submits two equal length mes-
sages m0 and m1. In addition, the adversary gives a challenge
access structure (M∗,ρ∗) which must satisfy the following
constraints. We let V denote the subset of rows of M∗ labeled
by attributes controlled by corrupted AAs. For each uid, we let
Vuid denote the subset of rows of M∗ labeled by attributes that
the adversary has queried. For each uid, we require that the
subspace spanned by V ∪Vuid must not include (1,0, . . . ,0).
In other words, the adversary cannot ask for a set of keys
that allow decryption, in combination with any keys that can
obtained from corrupted AAs. The challenger then flips a
random coin b, and encrypts mb under the access structure
(M∗,ρ∗). Then, the ciphertext CT∗ is given to the adversary.

Phase 2. The adversary may query more secret keys and
update keys, as long as they do not violate the constraints
on the challenge access structure (M∗,ρ∗) and the following
constraints: None of the updated secret keys (generated by
the queried update keys and the queried secret keys3) is able

3There is another reason that makes the queried secret keys cannot decrypt
the challenge ciphertext. That is at least one of the attributes in the previous
queried secret keys may be not in the current version.

to decrypt the challenged ciphertexts. In other words, the
adversary is not able to query the update keys that can update
the queried secret keys to the new secret keys that can decrypt
the challenge ciphertext.

Guess. The adversary outputs a guess b′ of b.
The advantage of an adversary A in this game is defined as

Pr[b′ = b]− 1
2 .

Definition 3. DAC-MACS is secure against static corruption
of authorities if all polynomial time adversaries have at most
a negligible advantage in the above security game.

Definition 4. DAC-MACS is collusion resilience if no poly-
nomial time adversaries can decrypt the data by combining
attributes of different users together, when each individual user
cannot decrypt the data only with its own attributes.

III. DAC-MACS: DATA ACCESS CONTROL FOR
MULTI-AUTHORITY CLOUD STORAGE

This section first gives an overview of our scheme. Then,
we describe DAC-MACS which consists of five phases.

A. Overview

Although the existing multi-authority CP-ABE scheme [10]
proposed by Lewko and Waters has high policy expressiveness
and has been extended to support attribute revocation in [12],
it still cannot be applied to access control for multi-authority
cloud storage systems due to the inefficiency of decryption
and revocation. Thus, the main challenge is to construct a
new underlying multi-authority CP-ABE scheme that supports
efficient decryption and revocation.

To design a multi-authority CP-ABE scheme, the most
challenging issue is how to tie different secret keys together
but still prevent the collusion attack. Similar to [7], in DAC-
MACS, we separate the authority into a global certificate
authority (CA) and multiple attribute authorities (AAs). The
CA sets up the system and assigns a global user identity uid
to each user and a global authority identity aid to each attribute
authority. The global unique uid can tie secret keys issued by
different AAs together for decryption, and the global unique
aid can distinguish attributes issued by different AAs. Thus,
by using uid and aid, the collusion attack can be resisted.
However, different from [7], the CA in DAC-MACS is not
involved in any attribute management and the creation of
secret keys reflecting the user’s attributes. DAC-MACS also
requires all the AAs to generate their own public keys which
can be used to encrypt data together with the global public
parameters, instead of only using the system unique public
key for data encryption. This solves the security drawback in
[7], i.e., it prevents the CA from decrypting the ciphertexts.

To achieve efficient decryption on the user, we propose
a token-based decryption outsourcing method. We apply the
decryption outsourcing idea from [12] and extend it to multiple
authority systems by letting the CA generate a pair of global
secret key and global public key for each legal user in the
system. During the decryption, the user submits its secret keys
issued by AAs to the server and asks the server to compute
a decryption token for the ciphertext. The user can decrypt
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the ciphertext by using the decryption token together with its
global secret key.

To solve the attribute revocation problem, we assign a
version number for each attribute, such that for each attribute
revocation, only those components associated with the revoked
attribute in secret keys and ciphertexts need to be updated.
When an attribute is revoked from a user, the corresponding
AA will generate a new version key for this revoked attribute,
and computes an update key containing a Ciphertext Update
Key (CUK) and several user’s Key Update Keys (KUKs). With
the KUKs, each non-revoked user can update its secret key to
the current version, while the revoked user cannot update its
secret key even using other users’ update keys, since each
KUK is associated with the uid (Backward Security). The
ciphertexts can also be updated to the current version with
the CUK, such that the newly joined users who have sufficient
attribute are also able to decrypt the previous published data
(Forward Security). Moreover, all the users only need to hold
the latest secret key, rather than all the previous secret keys. To
improve the efficiency, we delegate the workload of ciphertext
update to the server by using the proxy re-encryption method.

B. System Initialization

This phase consists two steps: CA Setup and AA Setup.
1) CA Setup: Let SA and SU denote the set of attribute

authorities and the set of users in the system respectively. Let
G and GT be the multiplicative groups with the same prime
order p and e :G×G→GT be the bilinear map. Let g be the
generator of G. Let H : {0,1}∗→G be a hash function such
that the security is in the random oracle.

The CA runs the CA setup algorithm, which takes a security
parameter as input. The CA first generates a pair of signature
and verification key (skCA,vkCA). Then, it chooses a random
number a ∈ Zp as the master key MSK of the system and
compute the system parameter as

SP= (g,ga,G,GT ,H).

The CA accepts both User Registration and AA Registration:
• User Registration

Every user should register itself to the CA during the
system initialization. The CA runs the user registration
algorithm UserReg which takes the system parameter and
the user information as inputs. If the user is legal in
the system, it assigns a global user identity uid to this
user, and generates the global public key GPKuid = guuid

and the global secret key GSKuid = zuid by randomly
choosing two numbers uuid ,zuid ∈ Zp. The CA also
generates a certificate Cert(uid) which contains an item
SignskCA(uid,uuid ,g1/zuid ). Then, the CA sends the global
public/secret key pair (GPKuid ,GSKuid) and the certificate
Cert(uid) to user uid.

• AA Registration
Each AA should also register itself to the CA during the
system initialization. The CA runs the AA registration
algorithm AAReg by taking the information of AA as
input. If the AA is a legal authority in the system, the CA
first assigns a global authority identity aid to it. Then, the

CA sends both its verification key vkCA and the system
parameter SP to this AA.

2) AA Setup: Each AAk(k ∈ SA) runs the AA setup algo-
rithm AASetup. Let SAk denote the set of all attributes man-
aged by this authority AAk. It chooses three random numbers
αk,βk,γk ∈ Zp as the secret authority key SKk = (αk,βk,γk).
For each attribute xk ∈ SAk , the authority generates a public
attribute key as

PKxk = (gvxk H(xk))
γk

by implicitly choosing an attribute version key as VKxk = vxk .
The AAk also computes the public authority key as

PKk =

(
e(g,g)αk , g

1
βk , g

γk
βk

)
.

All the public attribute keys and public authority keys are
published on the public bulletin board of AAk.

C. Secret Key Generation by AAs

For every user U j( j ∈ SU ), each AAk(k ∈ SA) first au-
thenticates whether this user is a legal user by verifying
its certificate by using the verification key vkCA. If the user
is not legal, it aborts. Otherwise, the AAk assigns a set of
attributes S j,k to this user according to its role or identity in
its administration domain. Then, the AAk runs the secret key
generation algorithm SKeyGen to generate the user’s secret
key SK j,k.

The algorithm takes as inputs the secret authority key SKaid ,
the system parameter SP, the set of public attribute keys
{PKxaid}, a set of attributes Suid,aid that describes the secret
key, and the certificate of user uid. It chooses a random number
t j,k ∈Zp and computes SK j,k as

SK j,k = ( K j,k = g
αk
z j ·gau j ·g

a
βk

t j,k , L j,k = g
βk
z j

t j,k
, R j,k = gat j,k ,

∀xk ∈ S j,k : K j,xk = g
βkγk

z j
t j,k · (gvxk ·H(xk))

γkβku j ),

where j ∈ SU and k ∈ SA.

D. Data Encryption by Owners

Before outsourcing data m into the cloud, the owner en-
crypts the data by running the data encryption algorithm
Encrypt. It takes as inputs the system parameter SP, a set
of public keys {PKk}k∈IA from the involved authority set IA,
a set of public attribute keys {PKxk}

k∈IA
xk∈SAk

, the data m and an
access structure (M,ρ) over all the selected attributes from the
involved AAs. Let M be a l× n matrix, where l denotes the
total number of all the attributes. The function ρ associates
rows of M to attributes.

The algorithm first divides the data into several data com-
ponents as m = {m1, · · · ,mn} according to the logic granu-
larities. For example, the personal data may be divided into
{name, address, security number, employer, salary}. It then
encrypts data components with different symmetric content
keys {κ1, · · · ,κn} by using symmetric encryption methods,
where κi is used to encrypt mi(i = 1, · · · ,n).

Then, it defines an access structure Mi and encrypts each
content key κi(i = 1, · · · ,n) under this access structure. For
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simplicity, the rest of this paper only considers one component
m and one content key κ . The encryption algorithm chooses
a random encryption exponent s ∈ Zp and chooses a random
vector ~v = (s,y2, · · · ,yn) ∈ Zn

p, where y2, · · · ,yn are used to
share the encryption exponent s. For i = 1 to l, it computes
λi =~v ·Mi, where Mi is the vector corresponding to the i-th
row of M. Then, it randomly chooses r1,r2, · · · ,rl ∈ Zp and
computes the ciphertext as

CT= ( Enκ(m), C = κ · (∏
k∈IA

e(g,g)αk)s, C′ = gs, C′′ = g
s

βk ,

∀i = 1 to l : Ci = gaλi · ((gvρ(i)H(ρ(i)))γk)−ri ,

D1,i = g
ri
βk , D2,i = g

− γk
βk

ri , ρ(i) ∈ SAk ).

In real systems, if the data m is divided into n components,
the ciphertext CT also consists of n components CT =
{CT1, · · · ,CTn}.

E. Data Decryption by Users (with the help of Cloud)

All the legal users in the system can freely query any
interested ciphertexts from the cloud server. But only when
the user’s attributes satisfy the access structure embedded in
the ciphertext, he/she is able to decrypt the content keys and
further use them to decrypt the data. This phase consists of two
steps: Token Generation by Cloud Server and Data Decryption
by Users

1) Token Generation by Cloud Server: The user U j( j ∈
SU ) sends its secret keys {SK j,k}k∈SA to the server and asks
for a decryption token for the ciphertext CT. Only when the
attributes the user U j possesses satisfy the access structure
defined in the ciphertext CT, the server can successfully
compute the correct decryption token TK.

The server runs the token generation algorithm TKGen,
which takes as inputs the ciphertext CT (which contains an
access structure A), user’s global public key GPK j and a set
of user’s secret keys {SK j,k}k∈IA . Let I = {IAk}k∈IA be the
whole index set of all the attributes involved in the ciphertext,
where IAk ⊂ {1, · · · , l} is the index subset of the attributes
from the AAk, defined as IAk = {i : ρ(i) ∈ SAk}. Let NA = |IA|
be the number of AAs involved in the ciphertext. It chooses a
set of constants {wi ∈Zp}i∈I and reconstructs the encryption
exponent as s = ∑i∈I wiλi if {λi} are valid shares of the secret
s according to M.

The algorithm computes the decryption token TK as

TK= ∏
k∈IA

e(C′,K j,k) · e(R j,k,C′′)−1

∏
i∈IAk

(
e(Ci,GPK j) · e(D1,i,K j,ρ(i)) · e(D2,i,L j,k)

)wiNA

=
e(g,g)au jsNA ·∏k∈IA e(g,g)

αk
z j

s

e(g,g)u jaNA ∑i∈I λiwi

= ∏
k∈IA

e(g,g)
αk
z j

s
.

It outputs the decryption token TK for the ciphertext CT and
sends it to the user U j.

2) Data Decryption by Users: Upon receiving this decryp-
tion token TK, the user U j can use it to decrypt the ciphertext

together with its global secret key GSK j = z j as

κ =C/TKz j .

Then, the user can use the content key κ to further decrypt
the data as

m = Decκ(Encκ(m)).

F. Efficient Attribute Revocation

Suppose an attribute x̃k of the user Uµ is revoked from the
AAk. The attribute revocation includes three phases: Update
Key Generation by AAs, Secret Key Update by Non-revoked
Users and Ciphertext Update by Cloud Server. The secret
key update can prevent the revoked user from decrypting
the new ciphertexts which are encrypted by the new public
attribute keys (Backward Security). The ciphertext update can
also guarantee that the newly joined user who have sufficient
attributes can still access the previous published data (Forward
Security).

1) Update Key Generation by AAs: The correspond-
ing authority AAk runs the update key generation algorithm
UKeyGen to compute the update keys. The algorithm takes
as inputs the secret authority key SKk, the current attribute
version key vx̃k and the user’s global public keys GPK j. It
generates a new attribute version key VK′ x̃k = v′x̃k

. It first
calculates the Attribute Update Key as AUKx̃k = γk(v′x̃k

−vx̃k),
and then applies it to compute the user’s Key Update Key as

KUK j,x̃k = gu jβk·AUKx̃k

and the Ciphertext Update Key as

CUKx̃k = βk ·AUKx̃k/γk.

Then, the AAk updates the public attribute key of the revoked
attribute x̃k as PK′ x̃k = PKx̃k ·g

AUKx̃k and broadcasts a message
for all the owners that the public attribute key of x̃k is updated.
Then, all the owners can get the new public attribute key from
the public board of AAk.

2) Secret Key Update by Non-revoked Users: For each
non-revoked user U j( j ∈ SU , j 6= µ) who holds the revoked
attribute x̃k, the AAk sends the corresponding user’s key update
key KUK j,x̃k to it. Upon receiving KUK j,x̃k , the user U j runs
the key update algorithm SKUpdate to update its secret key
as

SK′ j,k = ( K′j,k = K j,k, L′j,k = L j,k, R′j,k = R j,k,

K′j,x̃k
= K j,x̃k ·KUK j,x̃k , ∀x ∈ Su,x 6= x̃ : K′j,k = K j,k ).

Note that each KUK j,x̃k is associated with the uid, so that they
are distinguishable for different non-revoked users. Thus, the
revoked user Uµ cannot use any other user’s update keys to
update its secret key.

3) Ciphertext Update by Cloud Server: The AAk sends
a ciphertext update key CUKx̃k to the server. Upon receiving
the CUKx̃k , the server runs the ciphertext update algorithm
CTUpdate to update all the ciphertexts which are associated
with the revoked attribute x̃k. It takes inputs as the current
ciphertext CT and the CUKx̃k . It only needs to update several
components of the ciphertext, which are associated with the
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TABLE I
COMPREHENSIVE COMPARISON OF CP-ABE WITH ATTRIBUTE REVOCATION SCHEMES

Scheme Authority Computation Revocation
Message (|p|)

Revocation Security Revocation
Controller

Ciphertext
UpdaterEncrypt Decrypt∗ Backward Forward

Hur’s [13] Single O(tc + lognu) O(tu) O(nnon,x log nu
nnon,x

) Yes Yes Server† Server†

DACC [14] Multiple O(tc) O(tu) O(nc,x ·nnon,x) Yes No Owner Owner
DAC-MACS Multiple O(tc) O(1) O(nnon,x) Yes Yes AA Server‡

∗: The decryption computation on the user; †: The server is fully trusted; ‡: The server is semi-trusted.

x̃k. The new ciphertext CT′ is published as

CT′ = ( Enκ(m), C = κ · (∏
k∈IA

e(g,g)αk)s, C′ = gs, C′′ = g
s

βk ,

∀i = 1 to l :

i f ρ(i) 6= x̃k : Ci = gaλi · ((gvxk H(xk))
γk)−ri ,

D1,i = g
ri
βk , D2,i = g

− γk
βk

ri ,

i f ρ(i) = x̃k : C′i =Ci ·D
CUKx̃k
2,i ,

D1,i = g
ri
βk , D2,i = g

− γk
βk

ri ).

DAC-MACS requires to update only a few components
which are associated with the revoked attribute, while the other
components are not changed. This can greatly improve the
efficiency of attribute revocation.

The ciphertext update not only can guarantee the forward
security of the attribute revocation, but also can reduce the
storage overhead on users (i.e., all the users only need to hold
the latest secret key, rather than to keep records on all the
previous secret keys).

IV. ANALYSIS OF DAC-MACS
This section provides a comprehensive analysis of DAC-

MACS, followed by security and performance analysis.

A. Comprehensive Analysis

Let |p| be the size of element in the groups with the prime
order p. Let tc be the total number of attributes in a ciphertext
and tu be the total number of attributes of a user. Let nu denote
the number of users in the system. For the revoked attribute
x, let nnon,x be the number of non-revoked users who hold
the revoked attribute and let nc,x be the number of ciphertexts
which contain the revoked attribute.

Table I shows the comparison among our DAC-MACS and
two existing schemes, all of which relied on the ciphertext re-
encryption to achieve the attribute revocation. From the table,
we can see that DAC-MACS incurs less computation cost
for the decryption on the user and less communication cost
for the revocation. In DAC-MACS, the attribute revocation is
controlled and enforced by each AA independently, but the
ciphertexts are updated by the semi-trusted server, which can
greatly reduce the workload on owners. For the security of
attribute revocation, DAC-MACS can achieve both forward
security and backward security. The cloud server in our system
is required to be semi-trusted. Even if the cloud server is not
semi-trusted in some scenarios, the server will not update the

ciphertexts correctly. In this situation, the forward security
cannot be guaranteed, but our system can still achieve the
backward security, i.e., the revoked user cannot decrypt new
ciphertexts that requires the revoked attributes for decryption.

B. Security Analysis

Under the security model we defined in Section II, we prove
that DAC-MACS is provable secure and collusion resilience,
as concluded in the following theorems:

Theorem 1. When the decisional q-parallel BDHE assump-
tion holds, no polynomial time adversary can selectively break
DAC-MACS with a challenge matrix of size l∗ × n∗, where
n∗ < q.

Proof: Suppose we have an adversary A with non-
negligible advantage ε = AdvA in the selective security game
against our construction and suppose it chooses a challenge
matrix M∗ with the dimension at most q−1 columns. In the
security game, the adversary can query any secret keys and
update keys that cannot be used for decryption in combination
with any keys it can obtain from the corrupted AAs. With
these constraints, the security game in multi-authority systems
can be treated equally to the one in single authority systems.
Similarly, we can build a simulator B that plays the decisional
q-parallel BDHE problem with non-negligible advantage. The
detailed proof is described in the full version of this paper
[11].

Theorem 2. DAC-MACS is secure against the collusion attack
of users.

Proof: In DAC-MACS, each user in the system is as-
signed with a global unique identity uid, and all the secret
keys issued to the same user from different AAs are associated
with the uid of this user. Thus, it is impossible for two or more
users to collude and decrypt the ciphertext. Moreover, due to
the unique aid of each AA, all the attributes are distinguishable,
even though some AAs may issue the same attribute. This can
prevent the user from replacing the components of a secret
key issued by an AA with those components from other secret
keys issued by another AA.

Privacy-Preserving Guarantee Due to the decryption out-
sourcing, the server can get the users’ secret keys. However,
the server still cannot decrypt the ciphertext without the
knowledge of the users’ global secret keys. Moreover, the
ciphertext update is done by using the proxy re-encryption
method, thus the server does not need to decrypt the ciphertext.
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TABLE II
COMPARISON OF STORAGE OVERHEAD

Entity DACC [14] DAC-MACS
AAk 2na,k|p| (na,k +3)|p|

Owner (nc +2
NA
∑

k=1
na,k)|p| (3NA +1+

NA
∑

k=1
na,k)|p|

User (nc,x +
NA
∑

k=1
na,k,uid)|p| (3NA +1+

NA
∑

k=1
na,k,uid)|p|

Server (3tc +1)|p| (3tc +3)|p|

nc: total number of ciphertexts stored on the cloud server;
nc,x:number of ciphertexts contain the revoked attribute x;
tc: total number of attributes in the ciphertext.

C. Performance Analysis

We conduct the performance analysis between our DAC-
MACS and Ruj’s DACC scheme under the metrics of Storage
Overhead, Communication Cost and Computation Cost.

1) Storage Overhead: The storage overhead is one of the
most significant issues of the access control scheme in cloud
storage systems. Suppose there are NA AAs in the system. Let
|p| be the element size in the G,GT ,Zp. Let na,k and na,k,uid
denote the total number of attributes managed by AAk and
the number of attributes assigned to the user uid from AAk
respectively. We compare the storage overhead on each entity
in the system, as shown in Table II.

In DAC-MACS, the storage overhead on each AAk consists
of the version number of each attribute and the secret authority
key, while in DACC it consists of secret keys for all the
attributes. The public parameters contribute the main storage
overhead on the owner. Besides, DACC also requires the owner
to hold the encryption secret for every ciphertext in the system,
because the owner is required to re-encrypt the ciphertexts.
This incurs a heavy storage overhead on the owner, especially
when the number of ciphertext is large in the system. The
storage overhead on each user in DAC-MACS comes from
the global secret key issued by the CA and the secret keys
issued by all the AAs. However, in DACC, the storage overhead
on each user consists of both the secret keys issued by all
the AAs and the ciphertext components that associated with
the revoked attribute. That is because when the ciphertext is
re-encrypted, some of its components related to the revoked
attributes should be sent to each non-revoked user who holds
the revoked attributes. The ciphertexts contribute the main
storage overhead on the server (here we do not consider the
component of data encrypted by symmetric content keys).

2) Communication Cost: The communication cost of the
normal access control is almost the same between our DAC-
MACS and Ruj’s DACC scheme. Here, we only compare
the communication cost of attribute revocation, as shown
in Table III. It is easily to find that the communication
cost of attribute revocation in Ruj’s scheme is linear to the
number of ciphertexts which contain the revoked attributes.
Due to the large number of ciphertext in cloud storage system,
Ruj’s scheme incurs a heavy communication cost for attribute
revocation.

TABLE III
COMPARISON OF COMMUNICATION COST FOR ATTRIBUTE REVOCATION

Operation DACC [14] DAC-MACS
Key Update N/A nnon,x|p|

Ciphertext Update (nc,x ·nnon,x +1)|p| |p|

nnon,x is the number of non-revoked users holding x;
nc,x is the number of ciphertexts containing x.

3) Computation Cost: We simulate the computation time
of encryption, decryption and ciphertext re-encryption/update
in our DAC-MACS and Ruj’s DACC scheme. We do the
simulation on a Linux system with an Intel Core 2 Duo CPU at
3.16GHz and 4.00GB RAM. The code uses the Pairing-Based
Cryptography library version 0.5.12 to simulate the access
control schemes. We use a symmetric elliptic curve α-curve,
where the base field size is 512-bit and the embedding degree
is 2. The α-curve has a 160-bit group order, which means p
is a 160-bit length prime. All the simulation results are the
mean of 20 trials.

We compare the computation efficiency of both encryption
and decryption in two criteria: the number of authorities and
the number of attributes per authority, as shown in Fig. 2.
Fig.2(a) describes the comparison of encryption time on the
owner versus the number of AAs, where the involved number
of attributes from each AA is set to be 10. Fig.2(b) gives the
comparison of encryption time on the owner versus the number
of attributes from each AA, where the involved number of
AAs is set to be 10. Suppose the user has the same number
of attributes from each AA. Fig.2(c) shows the comparison
of decryption time on the user versus the number of AAs,
where the number of attributes the user holds from each
AA is set to be 10. Fig.2(d) describes the comparison of
decryption time on the user versus the number of attributes
the user holds from each AA, where the number of authority
for the user is fixed to be 10. Fig.2(e) gives the comparison of
ciphertext re-encryption/update versus the number of revoked
attributes appeared in the ciphertext. The simulation results
show that our DAC-MACS incurs less computation cost on
the encryption of owners, the decryption of users and the re-
encryption of ciphertexts.

V. EXTENSIVE DAC-MACS

In DAC-MACS, there is a security assumption that all the
non-revoked users will not give the received update keys to
the revoked user. However, this is a strong assumption, and
in practical the revoked user may collude with other users to
obtain the update keys. This section first proposes an extensive
data access control scheme (EDAC-MACS), and then give the
security analysis to show that EDAC-MACS can achieve the
same security goal without this assumption.

A. EDAC-MACS

If we remove this assumption, the backward security in
DAC-MACS will no longer be guaranteed. That is when the
adversary µ (the revoked user) corrupted any AA, he/she could
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(e) Re-encryption/Update

Fig. 2. Comparison of Encryption, Decryption and Ciphertext Re-encryption/Update Time

obtain all the users’ secrets {uuid}, and use it to transfer the
other user’s key update key KUK j,x̃k to its own one as

KUKA,x̃k =
(
KUK j,x̃k

) uµ

u j .

Then, the adversary can use it to update his secret key to
the latest version by running the secret key update algorithm
SKUpdate.

To address this security issue, we modify the secret key
generation algorithm SKeyGen by padding a new piece to the
K j,xk . It generates the user’s secret key as

SK j,k = ( K j,k = g
αk
z j ·gau j ·g

a
βk

t j,k , R j,k = gat j,k

∀xk ∈ S j,k : L j,k,xk = g
βk
z j
(t j,k+vxk ),

K j,xk = g
βkγk(t j,k+vxk )

z j · (gvxk ·H(xk))
γkβku j ),

where j ∈ SU and k ∈ SA.

The encryption algorithm Encrypt is the same as DAC-
MACS, but during the data decryption, the decryption token
TK is generated by the new decryption token generation
algorithm TKGen as

TK= ∏
k∈IA

e(C′,K j,k) · e(R j,k,C′′)−1

∏
i∈IAk

(
e(Ci,GPK j)e(D1,i,K j,ρ(i))e(D2,i,L j,k,ρ(i))

)wiNA

= ∏
k∈IA

e(g,g)
αk
z j

s
.

Correctness We observe that

∏
k∈IA

e(C′,K j,k)e(R−1
j,k ,C

′′) = ∏
k∈IA

e(gs,g
αk
z j gau j g

at j,k
βk )e(gat j,k ,g

− s
βk )

=e(g,g)sau jNA ·∏
k∈IA

e(g,g)
s

αk
z j .

For each i ∈ I, suppose ρ(i) ∈ Sk, it computes

e(Ci,GPK j) · e(D1,i,K j,ρ(i)) · e(D2,i,L j,k,ρ(i))

=e(gaλi · (gvρ(i)H(ρ(i)))−γkri ,gu j) · e(g
ri
βk ,g

βkγk(t j,k+v
ρ(i))

z j ·

(gvρ(i)H(ρ(i)))γkβku j · e(g−
γk
βk

ri ,g
βk(t j,k+v

ρ(i))
z j )

=e(g,g)au jλi .

Then, it computes

∏
k∈IA

∏
i∈IAk

(
e(g,g)au jλi

)wiNA
= e(g,g)au jNAs.

The decryption algorithm is the same as DAC-MACS.
During the attribute revocation, the authority also needs

to first generate the update keys. The ciphertext update key
CUKx̃k is the same as the one in DAC-MACS. However, the
user’s key update key is generated as

KUK j,x̃k = ( KUK1, j,x̃k = g
(u jβk+

βk
z j
)·AUKx̃k ,

KUK2, j,x̃k = g
βk

γkz j
·AUKx̃k ).

Accordingly, the key update algorithm SKUpdate is con-
structed as

SK′ j,k = ( K′j,k = K j,k, R′j,k = R j,k,

L′j,k,x̃k
= L j,k,x̃k ·KUK2, j,x̃k ,K

′
j,x̃k

= K j,x̃k ·KUK1, j,x̃k ,

∀x ∈ Su,x 6= x̃ : L′j,k,xk
= L j,k,xk , K′j,k = K j,k ).

B. Security Analysis

We conclude the security of EDAC-MACS as the following
two theorems:

Theorem 3. In EDAC-MACS, the revoked user has no chance
to update its secret key, even if it can corrupt some AAs (not
the AA corresponding to the revoked attribute) and collude
some non-revoked users.

Proof: In EDAC-MACS, each key update key is associ-
ated with the user’s identity uid. And the item gβkγkvxk/z j in
the secret key prevents users from updating their secret keys
with the other user’s update key, since γk is only known by
the AAk and kept secret to all the users.

Theorem 4. When the decisional q-parallel BDHE assump-
tion holds, no polynomial time adversary can selectively break
EDAC-MACS with a challenge matrix of size l∗× n∗, where
n∗ < q.

Proof: Based on the Theorem 3, the security proof of
EDAC-MACS is similar to DAC-MACS as Theorem 1. The
main difference is how to simulate the new secret keys in
EDAC-MACS. The detailed security proof is described in
Appendix A.

VI. RELATED WORK

Cryptographic techniques are well applied to access control
for remote storage systems [15]–[17]. To prevent the untrusted
servers from accessing sensitive data, traditional methods [18],
[19] usually encrypt the data and only the users who hold
valid keys can decrypt. Then, the data access control becomes
the matter of key distribution. Although these methods can
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provide secure data access control, the key management is
very complicated when more users are in the system. Data
owners also have to stay online all the time to deliver keys
to new users. Moreover, for each data, there are multiple
copies of ciphertexts for users with different keys, which will
incur high storage overhead on the server. Some methods [20]
deliver the key management and distribution from data owners
to the remote server under the assumption that the server is
trusted. However, the server is not fully trusted in cloud storage
systems and thus these methods cannot be applied to data
access control for cloud storage systems.

Attribute-based Encryption (ABE) is a promising technique
that is designed for access control of encrypted data. After
Sahai and Waters introduced the first ABE scheme [21], Goyal
et al. [22] formulated the ABE into two complimentary forms:
Key-Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-
ABE). There are a number of works used ABE to realize fine-
grained access control for outsourced data [13], [23], [24].
These schemes require a trusted authority to manage all the
attributes in the system and issue secret keys to users. Since
the authority can decrypt all the encrypted data, it becomes
a vulnerable security point for the system. Moreover, the
authority may become the performance bottleneck in the large
scale cloud storage systems.

Some cryptographic methods are proposed for the multi-
authority ABE problem [7]–[10], [25], [26], where there are
multiple authorities coexist and users may have attributes
from multiple authorities. However, some of them [7], [8]
still require a global authority. Lin et al. [25] proposed a
decentralized scheme based on threshold mechanism. In this
scheme, the set of authorities is pre-determined and it requires
the interaction among the authorities during the system setup.
In [10], Lewko et al. proposed a new comprehensive scheme,
which does not require any central authority. However, they
did not consider attribute revocation problem.

There are a number of works about the revocation in ABE
systems in the cryptography literature [2]–[6]. However, these
methods either only support the user level revocation or rely
on the server to conduct the attribute revocation. Moreover,
these attribute revocation methods are designed only for ABE
systems with single authority. Ruj et al. [14] designed a DACC
scheme and proposed an attribute revocation method for the
Lewko and Waters’ decentralized ABE scheme. However, their
attribute revocation method incurs a heavy communication
cost since it requires the data owner to transmit a new
ciphertext component to every non-revoked user. Li et al. [27]
proposed an attribute revocation method for multi-authority
ABE systems, but their methods is only for KP-ABE systems.

Green et al. [12] proposed two ABE schemes that outsource
the decryption to the server. In their schemes, the authority
separate the traditional secret key into a user secret key and
a transformation key. However, their schemes are designed
only for the single authority systems and do not support for
the multi-authority systems. That is because each authority
may generate different user’s secret key, such that the trans-
formation keys cannot be combined together to transform the
ciphertext into a correct intermediate value.

VII. CONCLUSION

In this paper, we proposed an effective data access con-
trol scheme for multi-authority cloud storage systems, DAC-
MACS. We also constructed a new multi-authority CP-ABE
scheme, in which the main computation of decryption is
outsourced to the server. We further designed an efficient
attribute revocation method that can achieve both forward
security and backward security.

We also removed the security assumption that all the non-
revoked users will not reveal their received key update keys
to the revoked user. We further proposed an extensive DAC-
MACS, which is secure under weaker security assumptions.
Although this work is for multi-authority cloud storage sys-
tems, the techniques designed in this paper can be applied into
other applications, such as any remote storage systems, online
social networks etc.
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APPENDIX
PROOF OF THEOREM 4

Proof: Suppose we have an adversary A with non-
negligible advantage ε = AdvA in the selective security game
against our construction and suppose it chooses a challenge
matrix M∗ with the dimension at most q−1 columns. In the
security game, the adversary can query any secret keys and
update keys that cannot be used for decryption in combination
with any keys it can obtain from the corrupted AAs. With
these constraints, the security game in multi-authority systems
can be treated equally to the one in single authority systems.
Therefore, we can build a simulator B that plays the decisional
q-parallel BDHE problem with non-negligible advantage as
follows.

Init. The simulator takes in the q-parallel BDHE challenge
~y, T . The adversary gives the algorithm the challenge access
structure (M∗,ρ∗), where M∗ has n∗ columns.

Setup. The simulator runs the CASetup and AASetup algo-
rithm, and gives g to the adversary. The adversary chooses a set
of S′A ⊂ SA of corrupted authorities, and reveals these to the
simulator. For each uncorrupted authority AAk(k ∈ SA− S′A),
the simulator randomly chooses α ′k,βk,γk ∈ Zp(k ∈ SA− S′A)
and implicitly sets αk = α ′k +aq+1 by letting

e(g,g)αk = e(ga,gaq
)e(g,g)α ′k .

Then, we describe how the simulator programs the random
oracle H by building a table. Consider a call to H(x), if H(x)
was already defined in the table, the oracle returns the same
answer as before. Otherwise, begin by choosing a random
value dx. Let X denote the set of indices i, such that ρ∗(i) = x.
In other words, all the row indices in the set X match the same
attribute x. The simulator programs the oracle as

H(x) = gdx ∏
i∈X

ga2M∗i,1/bi ·ga3M∗i,2/bi · · ·gan∗+1M∗i,n/bi .

Note that if X = /0 then we have H(x) = gdx . Also note that
the response from the oracle are distributed randomly due to
the gdx value.

The simulator also randomly chooses two numbers βk,γk ∈
Zp. Then, it generates the public key of each uncorrupted
authority AAk as

PKk =

(
e(g,g)αk , g

1
βk , g

γk
βk

)
.

The public attribute keys PKxk can be simulated by randomly
choosing a version number vxk ∈Zp as

PKxk = (gvxk+dxk ∏
i∈X

ga2M∗i,1/bi ·ga3M∗i,2/bi · · ·gan+1M∗i,n/bi)γk .

The simulator assigns a user identity uid to the adversary
and chooses two random numbers u′uid ,zuid ∈Zp. Then, it sets
GSKuid = zuid and implicitly sets uuid = u′uid−

aq

zuid
by setting

GPKuid = gu′uid (gaq
)
− 1

zuid

The simulator then sends the global public/secret key pairs
(GPKuid ,GSKuid) to the adversary.

Phase 1. In this phase, the simulator answers secret key
queries and update key queries from the adversary. Suppose
the adversary makes secret key queries by submitting pairs
(uid,Sk) to the simulator, where Sk is a set of attributes
belonging to an uncorrupted authority AAk. Suppose Sk does
not satisfy M∗ together with any keys that can obtain from
corrupted authorities.

The simulator finds a vector ~w = (w1,w2, · · · ,wn∗) ∈ Zn∗
p ,

such that w1 =−1 and for all i where ρ∗(i) ∈ Sk we have that
~w ·M∗i = 0. By the definition of a LSSS, such a vector must
exist, since Sk does not satisfy M∗.

The simulator then implicitly defines t by randomly choos-
ing a number r ∈Zp as

tuid,k = r+w1aq−1 +w2aq−2 + · · ·+wn∗aq−n∗

by setting

Luid,k,xk = (g
βk

zuid )r
∏

i=1,...,n∗
(gaq−i

)
wi

βk
zuid ·gβkvxk .

The simulator then constructs Ruid,k as

Ruid,k = gar · ∏
i=1,...,n∗

(gaq+1−i
)wi .

From the definition of guuid , we find that gauuid contains a
term of gaq+1/zuid , which will cancel out with the unknown term
in gαk/zuid when creating Kuid,k. The simulator can calculate

Kuid,k = g
α ′k

zuid gau′uid g
ar
βk · ∏

i=1,...,n∗
(gaq+1−i

)
wi
βk .

For the calculation of Kuid,xk(∀xk ∈ Sk), if xk is used in the
access structure, the simulator computes Kuid,xk as follows.

Kuid,xk = (Luid,k)
γk · (PKxk)

βku′uid .

If the attribute x ∈ SAID is not used in the access structure.
That is there is no i such that ρ∗(i) = x. For those attributes,
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we can let

Kuid,xk = (Luid,k)
γk · (GPKuid)

βkγk .

Towards update key queries, suppose the adversary submits
pairs of {(uid,xk)}. If the attribute xk has a new version
number v′xk

, and uid is an non-revoked users, it then sends
back the key update key as

KUKuid,xk = (gu jβkγk(v′xk
−vxk ), g

βk
z j
·(v′xk
−vxk )).

Otherwise, it responses “⊥”.
Challenge. In this phase, the simulator programs the chal-

lenge ciphertext. The adversary gives two messages m0,m1 to
the simulator. The simulator flips a coin b. It creates

C = mbT ·∏
k∈IA

e(gs,gα ′AIDk )

and C′ = gs, C′′ = g
s

βk .
The difficult part is to simulate the Ci values since this con-

tains terms that must be canceled out. However, the simulator
can choose the secret splitting, such that these can be canceled
out. Intuitively, the simulator will choose random y′2, · · · ,y′n∗
and share the secret s using the vector

~v = (s,sa+ y′2,sa2 + y′3, · · · ,san∗−1 + y′n∗) ∈Zn∗
p .

It also chooses random values r′1, · · · ,r′l .
For i = 1, . . . ,n∗, let Ri be the set of all k 6= i such that

ρ∗(i) = ρ∗(k). That is the set of all other row indices that
have the same attribute as row i. The challenge ciphertext
components can be generated as

D1,i =
(

gr′i gsbi
) 1

βk , D2,i =
(

gr′i gsbi
)−γk

βk .

From the vector ~v, we can construct the share of the secret as

λi = s ·M∗i,1 + ∑
j=2,...,n∗

(sa j−1 + y′j)M
∗
i, j

Then, we can simulate the Ci as

Ci =(gvρ∗(i) ·H(ρ∗(i)))γkr′i ·

(
∏

j=1,...,n∗
gaMi, jy j

)
·

(
gbis
)−γk(vρ∗(i)+dρ∗(i)) ·

(
∏
k∈Ri

∏
j=1,...,n∗

(ga js(bi/bk))γkM∗k, j

)
.

Phase 2. Same as Phase 1.
Guess. The adversary will eventually output a guess b′ of

b. If b′ = b, the simulator then outputs 0 to show that T =
e(g,g)aq+1s; otherwise, it outputs 1 to indicate that it believes
T is a random group element in GT .

When T is a tuple, the simulator B gives a perfect
simulation so we have that Pr[B(~y,T = e(g,g)aq+1s) = 0] =
1
2 +AdvA. When T is a random group element the message
mb is completely hidden from the adversary and we have at
Pr[B(~y,T = e(g,g)aq+1s) = 0] = 1

2 .
Therefore, B can play the decisional q-parallel BDHE game

with non-negligible advantage.
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