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Abstract: Sequential recommendations have made great strides in accurately predicting the future
behavior of users. However, seeking accuracy alone may bring side effects such as unfair and
overspecialized recommendation results. In this work, we focus on the calibrated recommendations
for sequential recommendation, which is connected to both fairness and diversity. On the one hand,
it aims to provide fairer recommendations whose preference distributions are consistent with users’
historical behaviors. On the other hand, it can improve the diversity of recommendations to a
certain degree. But existing methods for calibration have mainly relied on the post-processing on the
candidate lists, which require more computation time in generating recommendations. In addition,
they fail to establish the relationship between accuracy and calibration, leading to the limitation of
accuracy. To handle these problems, we propose an end-to-end framework to provide both accurate
and calibrated recommendations for sequential recommendation. We design an objective function
to calibrate the interests between recommendation lists and historical behaviors. We also provide
distribution modification approaches to improve the diversity and mitigate the effect of imbalanced
interests. In addition, we design a decoupled-aggregated model to improve the recommendation. The
framework assigns two objectives to two individual sequence encoders, and aggregates the outputs
by extracting useful information. Experiments on benchmark datasets validate the effectiveness of
our proposed model.

Keywords: sequential recommendation; calibrated recommendation; fairness; diversity

1. Introduction

Recommender systems aim to help users find their interests among large-scale
items. In recent years, sequential recommendation has achieved great attention, which
predicts users’ future behaviors according to sequences of historical behaviors. Existing
studies focus on modeling sequences, learning item transitions and obtaining accurate
recommendations. The deep learning-based architectures, such as Recurrent Neural
Networks and Graph Neural Networks, have progressed in sequential recommenda-
tion [1–3]. Until now, most studies have focused on obtaining high accuracy of recom-
mendation lists. However, previous studies argue that recommendation algorithms
should consider more than accuracy. For example, diversity [4–8], coverage [9–11],
unexpectedness [12–14] and fairness [15,16] are also important concepts in measuring
a recommender system. Among these concepts, diversity requires the recommender
system to generate item lists that contain more item attributes (e.g., genres of movies),
and a fair recommender can provide unbiased recommendation lists for consumers
or providers. From these two perspectives, we focus on the calibration of sequential
recommendation, which is related to diversity and fairness. The calibrated recommen-
dation was first proposed by Steck [17]. It aims to provide the recommendation list
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which reflects the user’s historical behaviors [17]. For example, if a user has watched
70% action movies and 30% comedies, a fully calibrated recommendation list should
also contain action and comedy movies with this ratio. Compared to diversity, it can
also provide diversified recommendation lists to a certain degree [18]. The difference
between calibration and diversity is that calibration limits the covered item attributes of
recommendations in the range of attributes interacted in the user’s historical behaviors.
Furthermore, if a user has homogeneous interests, the recommendations will become
skewed under the constraint of calibration. From the perspective of fairness, it is a type
of C-fairness according to the taxonomy proposed by Burke et al. [19], which is the
fairness from the consumer’s perspective. For users with similar historical interests,
the calibrated recommendation model is able to provide recommendation lists with
similar interest distributions. This somehow avoids bias and reflects the fairness of the
recommendation system.

Existing studies in calibrated recommendations adopt a post-processing paradigm,
which ranks items from a candidate list that has been generated by a basic recommen-
dation model such as neural collaborative filtering [17,20,21]. This is different from the
end-to-end recommendation paradigm of sequential recommendation. As illustrated in
Figure 1, both end-to-end and post-processing-based models require predicted scores of
all items. The difference is that the end-to-end models directly select the top-K items
as final recommendations, while post-processing-based models apply a re-ranking stage
on the top-Z (Z > K) items. For example, Kaya et al. [18] and Silva et al. [21] generated
calibrated recommendations based on the top-100 items provided by the basic algorithms.
The advantage of post-processing-based approaches is that they can be applied to almost
any recommendation model, because they only require the items and scores of the candi-
date list generated by the base model. However, the post-processing-based models have
two limitations. On the one hand, these models do not consider the relation between
accuracy and calibration. The post-processing-based models make calibrated predictions
based on the trained basic models which are optimized by the accuracy objective. In this
scenario, accuracy and calibration are separate objectives, so that recommendation accuracy
is limited by the trained basic model and considering calibration may sacrifice the accuracy.
On the other hand, these models need more response time in generating recommendation
lists because they have an extra ranking stage than the end-to-end models. During the
ranking stage, the items of the final recommendation list are decided step by step, where
the model needs to compute the gains of all candidates. Though the number of candidates
can be much less than the size of the item set by selecting top-Z items, the ranking stage is
still time-consuming.

Figure 1. An illustration of end-to-end and post-processing-based recommendation.

To handle these problems, we focus on providing accurate and calibrated results
for sequential recommendation in an end-to-end framework. We propose a Decoupled-
Aggregated Calibrated Sequential Recommendation framework, namely “DACSR”. First,
we define a loss function for calibration to allow models can be optimized by accuracy
and calibration simultaneously. We combine the prediction scores of all items and the item



Appl. Sci. 2022, 12, 11765 3 of 21

attribute information to estimate the distribution of the recommendation list. Then we use
cosine similarity to measure the consistency between distributions of the recommendation
list and behavior sequence. We also provide distribution modification approaches to further
improve the diversity and mitigate the problem of amplification of main interests. Next,
to handle the objectives of accuracy and calibration, we propose a decoupled-aggregated
framework to provide accurate and calibrated recommendations. We utilize two individual
sequence encoders which only focus on accuracy and calibration, respectively. Then we
concatenate the item embeddings and sequence representations, and obtain final repre-
sentations of the sequence and items by extractor networks with feed-forward networks
and residual connections. The scores of all items are computed by the final representations,
and the model is optimized according to the weighted sum of accuracy and calibration
loss functions.

The contributions of this paper are listed as follows:

• We propose an end-to-end framework to provide accurate and calibrated recommen-
dation lists for sequential recommendation.

• We design a calibration loss function for model optimization, which aligns the prefer-
ence distribution of recommendations to the historical distribution. In addition, we
provide distribution modification methods for diversity and imbalanced interests.

• We propose a decoupled-aggregated framework which aggregates information from in-
dividual sequence encoders which are optimized by calibration and accuracy separately.

• Experiments on benchmark datasets show that our model can achieve accurate
and calibrated recommendations, with less time consumption than post-processing-
based models.

The rest of this paper is organized as follows. We first review the existing literature in
Section 2 and provide some preliminaries about sequential and calibrated recommendation
in Sections 2 and 3. Then we introduce our model in Section 4. We provide experimental
settings in Section 5 and show results and analysis in Section 6. Finally, we discuss our
work in Section 7 and conclude our paper and indicate some future work in Section 8.

2. Related Work

In this section, we provide a literature review of our work. We first introduce ex-
isting studies in sequential recommendation. Then we review the recent advances in
calibrated recommendation.

2.1. Sequential Recommendation

Sequential recommendation relies on users’ historical behavior sequences to predict
their future behaviors. Existing studies focused on modeling sequences and obtained better
sequence representations to achieve higher recommendation accuracy. Hidasi et al. [1]
first utilized gated recurrent units for sequential recommendations and provided a parallel
training strategy. Li et al. [22] further proposed an attention mechanism to capture the
main purposes of the sequence. Tang et al. [23] utilized convolutional neural networks to
extract information from short-term sequences. With the development of self-attention,
self-attentive-based models were proposed to achieve better sequence representations.
For example, SASRec applied a self-attentive mechanism to learn both long-term and short-
term preferences of user behavior sequences, which achieved satisfactory performance of
recommendation accuracy [24]. Xu et al. [25] divided sequences into subsequences and
captured users’ long- and short-term preferences by applying two self-attention networks.
In addition, transformer-based sequence encoders were proposed, such as BERT4Rec and
Transformer4Rec [26,27]. In recent years, graph neural networks were also utilized for
sequential recommendation [2,3,28]. For example, Wu et al. [3] applied GGNN to learn item
transitions from historical behaviors which treated sequences as graphs. In addition, multi-
interest-based models were proposed that used multiple vectors to represent a sequence in
order to disentangle users’ diverse intentions [5,6,29,30].
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2.2. Calibrated Recommendation

Existing sequential recommendation models achieved satisfactory recommendation
accuracy. From the concerns of fairness and filter bubble, we focus on the calibration
of recommendation lists of sequential recommendation algorithms. In recent years, cali-
bration was proposed, which aimed to generate recommendation lists whose preference
distributions were less divergent with the users’ profile [17]. Steck [17] also provided a post-
processing greedy re-ranking model which considered both accuracy and calibration at each
step of generating results. Abdollahpouri et al. [31] studied the connections between popu-
larity bias and calibration. They found that users who were affected more by popularity
bias tend to achieve less calibrated recommendation lists. Kaya and Bridge [18] compared
intent-aware algorithms and calibration algorithms. They found that the diversity-oriented
intent-aware models can achieve calibrated recommendations and calibration-oriented
models can obtain diversity to some extent. Seymen et al. [20] proposed weighted total
variation to measure the consistency between two distributions and a constrained opti-
mization model to improve the ranking stage for calibration. Silva et al. [21] proposed new
metrics to evaluate calibrated recommendations and adaptive selection strategies for the
trade-off weight in the post-processing algorithms.

The calibration of recommendations is connected to two types of concepts. One is
diversity, which aims to provide diversified recommendations for users. Seeking accuracy
may lead to skewed recommendation lists which only focused on the main interest area
of users, but users may be interested in diversified lists [17,29]. The calibrated recom-
mendation constrained the recommendations to match the user’s historical preference
distribution to avoid the problem. However, it is a type of limited diversity because recom-
mendations are limited by users’ historical behaviors. Despite the limitation of interests,
it is still considered as a solution of homogeneous contents [18,32]. Calibration is also a
type of fairness. Fairness in recommender systems aimed to provide unbiased results for
users. From the perspective of stakeholder, it can be defined as C-fairness, P-fairness and
CP-fairness, which stand for consumers, providers, and the combination, respectively [19].
The calibrated recommender system can be treated as one of C-fairness [21]. The fairness is
reflected by the less divergence of preference distributions between the user’s profile and
the recommendation list.

Despite previous advances in calibrated recommendation, it still suffers from the
following problems. First, existing methods for calibration required re-ranked the candidate
items generated by a basic recommendation model, which required more time in generating
recommendations. In addition, the post-processing models may sacrifice accuracy to
improve calibration, because they separated the process of achieving the accuracy and
calibration. In our work, we would like to explore whether calibrated recommendations
can be provided in an end-to-end way without post-processing. In addition, we investigate
whether considering both calibration and accuracy can contribute to the performance of
sequential recommendation.

3. Preliminary
3.1. The Sequential Recommendation Paradigm

The sequential recommendation predicts items that the user may interact in the future
based on the user’s historical behavior sequence. In general, it can be decomposed into
two parts, the sequence encoder and the prediction layer. The sequence encoder takes
the historical behavior sequence as the input, and represents it to a vector. Formally,
the procedure can be written as:

h = f (s | EI , θ, L) (1)

where f (·) is the sequence encoder and h is the sequence representation of sequence s. EI

represents the item embedding matrix of all items I, and θ stands for the parameters of the
sequence encoder. L is the loss function that is used to optimize the sequence encoder f .
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The sequence representation h is further used to predict the score of all items. The pre-
diction layer is usually a linear transformation layer:

ŷ = WhT + b (2)

where W and b are | I | × d and | I | dimensional learnable parameters. A common setting
is that W is the item embedding matrix which is used in f and bias b is removed:

ŷ = EIhT (3)

where EI is the item embedding matrix. This prediction layer is widely used in existing
studies [3,22,24,25,33], and we also follow this setting in our work. In our work, we
select SASRec [24] as the basic sequence encoder, because our goal is not to investigate
modeling sequences and the SASRec model has achieved satisfactory performances in
existing studies.

3.2. Preference Distributions

The calibrated recommendations aim to provide unbiased results, where preferences
reflected from historical behaviors and recommendation lists are consistent. We use symbols
p(s) and q(s) which stand for the preference distributions from historical behaviors and
recommendation lists, respectively. We follow previous work which applied item attributes
to define preference distributions [17], which are introduced below in detail.

• p(s) is the preference distribution from the sequence s. For each attribute g, the distri-
bution value is computed as:

p(g | s) = ∑x∈s p(g | x)
| s | (4)

where p(g | x) is the indicator function of item x and attribute g, which satisfies
∑g∈G p(g | x) = 1. If item x does not contain attribute g, the value of p(g | x) is 0.
If the item contains two attributes, the value of p(g | x) equals to 0.5 for each attribute
g. Finally, the preference distribution can be represented as a G-dimensional vector
{p(g = 1 | x), p(g = 2 | x), . . . , p(g = G | x)}, where | G | is the total amount of item
attributes.

• q(s) is the preference distribution of the recommendation list. For each attribute g,
the distribution value is computed as:

q(g | RLs) =
∑x∈RLs p(g | x)

K
(5)

where RLs is the recommendation list of the sequence s, and K is the size of RLs.
Similar to p(s), the distribution q(s) can also be represented as a G-dimensional vector
{q(g = 1 | x), q(g = 2 | x), . . . , q(g = G | x)}.

4. Methodology

In this section, we introduce our DACSR model in detail. We first introduce our
proposed calibration loss function for end-to-end sequential recommendation. Then we
introduce the Decoupled-Aggregated architecture in detail.

4.1. The Calibration Loss Function

Loss Function for Calibration To generate a calibrated recommendation list, we de-
sign the loss function for the model training. The calibration measures the consistency
between the recommendation list and the historical sequence. The distribution of historical
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sequence p(s) can be computed as Equation (4). For the recommendation list, we estimate
its preference distribution q̂(s) as follows:

q̂(g | s) =
|I|

∑
i

ŷi · p(g | i) (6)

ŷi = so f tmax(ŷi/τ) (7)

where ŷi is the score of the item i predicted by the model, and it is further processed by a
softmax function. If an item has a higher prediction score, it contributes more to q̂(g | s).
The softmax function also amplifies the difference in scores. Items with high scores will
still be given higher weights, while weights of other items are close to 0. τ (τ > 0) is
the temperature parameter of softmax function. If τ < 1, the score distribution becomes
sharper and items with higher scores get more emphasis. In contrast, an extremely large
value of τ will make the score distribution more uniform.

After estimating q̂(g | s)(g ∈ G), we define the loss function of calibration as:

LCalib(ŷ) = 1− cos(q̂(s), p(s)) (8)

where q̂(s) is the estimated distribution vector {q̂(g = 1 | s), . . . , q̂(g = G | s)} and
cos(v1, v2) is the cosine similarity between two vectors. If the two distributions are more
consistent, the value of LCalib will be lower.

Distribution Modification Although calibration is related to diversity, a calibrated
recommendation list is not always a diversified list. For example, a user who focuses on
a few types of items will receive less diversified recommendations when calibration is
considered. Therefore, if we want a diversified recommendation list to a certain degree, we
can modify the distribution as follows:

pd(s) = so f tmax(p(s)/τdiv) (9)

In this equation, the historical distribution p(s) is normalized by a softmax function.
For item attribute g that the user did not interacted (i.e., p(g | s) = 0), it will obtain a
positive value. Therefore, all attributes are considered. The parameter τdiv is also used to
control the distribution, similar to τ.

Meanwhile, for users who have homogeneous interests, their main interests may be
amplified under the end-to-end framework. This is similar to the imbalanced classification
tasks which tend to predict the major labels. To this end, we propose a mask-based
modification method:

pm(s) = so f tmax(mask(p(s))/τdiv) (10)

where the mask(p(s)) give all attributes whose p(g | s) = 0 an extremely little negative
value (e.g., −1010). Therefore, scores of these attributes in pm(s) will be 0. In this equation,
τdiv can be larger than 1 so that the distribution becomes more uniform, and the scores of
the main interest and other interests are more close. The difference from Equation (9) is
that the scope of interests are still limited in those the user have interacted with, while the
pd(s) distribution can explore new interests for the user.

Loss Function for Accuracy and Calibration To obtain recommendation lists with
accuracy and calibration, an intuitive way is directly optimizing the sequential recommen-
dation model with a weighted sum of loss function:

Lw(ŷ) = (1− λ)LAcc(ŷ) + λLCalib(ŷ) (11)

where λ ∈ [0, 1] is the trade-off factor between accuracy and calibration. A higher value of
λ means more consideration on calibration. LAcc is the accuracy-based loss function. In our
work, we choose the cross-entropy loss function:
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LAcc(ŷ) =
|I|

∑
i=0

yi log(ŷi) (12)

where y and ŷ are the vectors of the ground-truth and predicted scores of all items, respec-
tively. The y is an one-hot vector where yi = 1 means item i is the next item of the sequence,
and 0 otherwise.

4.2. The Decoupled-Aggregated Framework

Directly optimizing a sequence encoder by the weighted loss function may lead to a
seesaw problem [34,35]. For example, the performance of calibration increases by sacrificing
the recommendation accuracy. This is because optimizing by two objectives based on shared
parameters limits the ability of the model to obtain better representations of sequences and
items. Therefore, we propose our Decoupled-Aggregated framework, which includes two
basic sequence encoders, as shown in Figure 2. The two sequence encoders are optimized
separately. One is to accurately predict the next behavior, while the other one is to provide
a fully calibrated recommendation list. Formally, this can be represented as:

hp = fp(s | EI
p, θp, LAcc) (13)

hc = fc(s | EI
c , θc, LCalib) (14)

where fp and fc are two different sequence encoders with different parameters and objective
functions. EI

p and EI
c are item embedding matrices of the two sequence encoders. θp and θc

are their parameters. Note that the two encoders fp and fc do not share the same parameters
and item embedding matrices, and are optimized by their unique loss functions LAcc and
LCalib, respectively.

Figure 2. The architecture of our DACSR model.

Next, we use the sequence representations and item embeddings of the two encoders to
provide calibrated recommendation list. A direct way is to concatenate the representations
of two sequence encoders:

ha = [hp, hc] (15)

EI
a = [EI

p, EI
c ] (16)

where [, ] is the concatenation execution of two vectors or matrices. Based on this, we use
the concatenated vectors as input to two extractor nets:
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ho = EXseq(ha) (17)

EI
o = EXemb(EI

a) (18)

EXseq and EXemb are two extractor nets. The extractor net is a feed-forward network which
can be defined as follows:

ht = WtReLU(ht−1) + bt (t = 1, 2, 3 . . . ) (19)

where W0, W1, . . . , Wt and b0, b1 . . . , bt are 2d× 2d and 2d dimensional parameters need to
learn (d is the dimension of hidden states). t is the number of layers in the extractor net.
ReLU is the activation function. h0 is the input of the feed-forward network (i.e., [hp, hc]
and [EI

p, EI
c ]). Inspired by [36], we add the original input as the final representation:

hout = ht + h0 (20)

where hout is the final output the extractor network, which can be either sequence represen-
tation ho or item embedding EI

o. Finally, the scores of all items can be computed as:

ŷo = EI
ohTo (21)

which is similar to Equation (3). We also use the weighted loss function Lw to optimize the
model. In conclusion, the loss function of the DACSR model can be written as:

L = Lw(ŷo) + LAcc(ŷp) + LCalib(ŷc) (22)

where ŷp and ŷc are scores of all items generated by fp and fc.

5. Experiments
5.1. Dataset

We adopted two commonly-used benchmark datasets to evaluate the performance of
our model. The first one is Movelens-1m (https://grouplens.org/datasets/movielens/1m,
accessed at 14 September 2021), whichcontains interaction logs of more than 6000 users
and 3000 movies. The other is Tmall (https://tianchi.aliyun.com/dataset/dataDetail?
dataId=53, accessed at 3 January 2022), which includes user behavior logs on an e-
commerce platform. We retained the “buy” behaviors for the Tmall dataset. For both
datasets, we sorted each user’s behaviors according to the timestamp. We followed a
5-core and 20-core strategy for the Ml-1m and Tmall dataset that removes the users and
items whose number of occurrences is less than 5 or 20. We also applied the leave-one-
out evaluation protocol [24]. The latest clicked item of a user belongs to the testing set,
and the previous one of this item belongs to the validation set. The remaining sequences
construct the training set. To augment the training data, we extended the user’s sequence
following [3,22]. We set the maximum sequence length equal to 200 and 100 for the
Ml-1m and Tmall dataset, respectively. The statistics are listed in Table 1.

Table 1. Statistics of Datasets.

Statistics Ml-1m Tmall

Number of users 6040 31,854
Number of Items 3883 58,343

Number of Training Sequences 981,504 832,603
Number of Testing Sequences 6040 31,854

Number of Attributes 18 70
Average Length of Sequence 164.50 28.13

https://grouplens.org/datasets/movielens/1m
https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
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5.2. Comparison Models

We selected the following methods as baselines:

• SASRec [24] is a self-attentive-based sequential recommendation model, and is a
strong baseline. We apply the SASRec model as the sequence encoder for fp and fc,
and compare our model with SASRec.

• CaliRec [17] is a post-processing model which re-ranks the results generated by the
sequence encoder. It makes a trade-off between accuracy and calibration at each
time step.

• CaliRec-GC [21] utilizes an adaptive selection for the trade-off factor between calibra-
tion and accuracy in the CaliRec model. The higher coverage of item attributes of the
user historical sequence results in more consideration for calibration.

5.3. Evaluation Metrics

We evaluate the performances of our model and baselines in terms of accuracy and
calibration. Following previous works [3,22], we use Recall and MRR as evaluation metrics
to measure the recommendation accuracy.

• Recall@K (Rec@K) is a widely used metric in recommendation and information re-
trieval areas. Recall@K computes the proportion of sequences whose next behaviors
are included in the recommendation lists.

Recall@K =
1
N ∑

s
1(xn+1 ∈ RLs) (23)

where 1(·) is an indication function whose value equals 1 when the condition in
brackets is satisfied and 0 otherwise. N is the number of testing cases.

• MRR@K is another important metric that considers the rank of correct items. The score
is computed by the reciprocal rank when the rank is within K; otherwise the score is 0.

MRR@K =
1
N ∑

s

1
rank(xn+1, RLs)

(24)

To evaluate the effectiveness in terms of calibration, we adopt CKL which is a common
metric used for calibrated recommendation [17]. The CKL compares the consistency between
two distribution:

CKL(RL, s) =
1
N ∑

s
∑

g∈G
p(g | s)

p(g | s)
q̃(g | s)

(25)

The lower CKL value means we provide more calibrated recommendation lists. To avoid
the division-by-zero error, we use q̃(g | s) = (1− α)(g | s)+ αp(g | s) to replace the original
preference distribution q(g | s). The value of α also equals to 0.01 according to [17,18,20,21].

In addition, to better compare performances of our model and baseline models, we
define the improvement as follows:

Improv. =
MetricDACSR −MetricBaseline

MetricBaseline
(26)

where Metric can be any metric mentioned above.

5.4. Experimental Setup

We fixed the dimension of sequence representations and item embeddings equal to
64 for the DACSR model. For a fair comparison, we set the dimension of hidden states
of the SASRec model to 128, so that the numbers of parameters are close. The number
of layers in the extractor net t of the DACSR model equals 2 for all datasets. We used
the Adam [37] optimizer with the batch size of 256 and the learning rate of 0.001. We
reported the performance under the model parameters with the optimal prediction accuracy
on the validation set. We made hyper-parameter λ = 0.5 and τ = 1 as the default
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setting, and analyzed their influence in following sections. To accelerate the training
procedure, we initialized the parameters of sequence encoders used in our models by
pre-trained parameters. For the top-K recommendations, we set K = 10 and 20 which is a
common setting.

6. Results and Analysis

In this section, we provided results and analysis of our work. In general, we aimed to
answer the following research questions:

• RQ1 How are the performances and efficiency of our DACSR model in achieving
accurate and calibrated recommendation lists?

• RQ2 How do the performances of our model change as the parameters change?
• RQ3 How do the modules of our DACSR model contribute to performance improve-

ment?
• RQ4 How do the distribution modification approaches work on the two datasets?

6.1. RQ1: Overall Performance

In this section, we answer the research question RQ1 about whether our model can
provide calibrated and accurate recommendations. The performances of baselines and our
model are listed in Table 2, where the best performance is marked in bold.

Table 2. Performances of our models and baselines (best performances are marked in bold).

Datasets Metrics SASRec CaliRec CaliRec-GC DACSR

ML-1m

Rec@10 0.2627 0.2636 0.2225 0.2811

MRR@10 0.1203 0.1101 0.0712 0.1267

CKL@10 1.2385 0.9722 0.4553 1.0615

Rec@20 0.3613 0.3616 0.3258 0.3844

MRR@20 0.1271 0.1168 0.0784 0.1338

CKL@20 0.8548 0.7322 0.3847 0.7262

Tmall

Rec@10 0.1451 0.1464 0.1454 0.1517

MRR@10 0.0862 0.0846 0.0861 0.0857

CKL@10 2.5004 2.0710 2.4139 2.0114

Rec@20 0.1749 0.1753 0.1751 0.1855

MRR@20 0.0883 0.0866 0.0882 0.0881

CKL@20 2.1103 1.7943 2.0459 1.6240

Recommendation Accuracy We first analyze the performance from the perspective
of accurate recommendation (i.e., Rec@K and MRR@K). In general, on both datasets, our
model achieves the best prediction accuracy in terms of Recall and MRR. By considering
calibration, users’ preference distributions are incorporated. In addition, our model
decoupled the two objectives by two sequence encoders and aggregated their outputs.
Therefore, the preference distribution contributed to the prediction of the next item,
leading to the improvement of accuracy. For example, on the Ml-1m dataset, the Recall
and MRR of our model are higher than the original SASRec model (e.g., 0.1338 vs. 0.1271
in terms of MRR@20). In contrast, the post-processing-based models fragmented the
relationship between accuracy and calibration and therefore resulted in a reduction in
accuracy. For example, on the Ml-1m dataset, the MRR@20 of our model is 0.1338, while
it is 0.1168 and 0.0784 for CaliRec and CaliRec-GC model, with the improvement of
18.67% and 74.66%, respectively. On the Tmall dataset, the CaliRec model also decreases
the prediction accuracy.

Calibrated Recommendation Our model can provide more calibrated recommenda-
tion lists compared to the original sequential recommendation model. On both datasets,
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CKL@10 and CKL@20 of our model are lower than the original SASRec model. For example,
the CKL@20 of our model is 0.7262, which is 15.04% better than the 0.8548 of the SASRec
model. On the Tmall dataset, our model also achieves a 23.04% improvement in terms of
CKL@20. Compared to the post-processing-based CaliRec model, our model still achieves
competitive performances in terms of calibration. For example, on the ML-1m dataset,
the performances of CKL@20 of our model and the CaliRec model are 0.7262 and 0.7322.
On the Tmall dataset, our model achieves an improvement of 9.49% in terms of CKL@20.
The comparisons show the ability of our model to achieve better accuracy while obtaining
competitive performances of calibration compared to the post-processing-based models.
As for the possible reasons, on the one hand, the proposed loss function calibrated the
preference distribution of items with the highest scores to the historical preference distri-
bution. On the other hand, the decoupled-aggregated framework ensures accuracy when
improving the calibration.

We also observe that the CaliRec-GC model performs differently on the two datasets.
On the Ml-1m dataset, the CaliRec-GC model achieves the lowest CKL value among all
models, including our proposed model (e.g., 0.3847 vs. 0.7262 of CKL@20). While on
the Tmall dataset, the CaliRec-GC model cannot provide calibrated recommendation
lists. For example, the CKL@20 of CaliRec-GC is 2.0459, which is close to the original
SASRec model. We think this phenomenon results from two aspects. On the one hand,
the number of item attributes of the Tmall dataset is much more than that of the Ml-
1m dataset. The Ml-1m dataset contains 18 different item attributes, while the Tmall
dataset has 70 attributes. On the other hand, the average length of the user behavior
sequence of the Tmall dataset is less than the Ml-1m dataset, as shown in Table 1.
The shorter sequence and larger item attributes set lead to the lower coverage of item
attributes. The CaliRec-GC model adopts an adaptive selection of the trade-off factor λ
for calibration based on the coverage of item attributes. The greater coverage leads to
the higher value of λ. Therefore, it performs best in terms of calibration on the Ml-1m
dataset, and almost does not work on the Tmall dataset.

The differences between the two datasets also lead to the different calibration perfor-
mances of the two datasets. In general, performances of CKL on the Ml-1m dataset are better
than the Tmall dataset. For example, the CKL@20 of our DACSR model is 1.6240 on the
Tmall dataset, which is much higher than the 0.7262 on the Ml-1m dataset. This is similar for
the original SASRec model, with 2.1103 vs. 0.8548 on the two datasets. A possible reason is
that the lower coverage of item attributes mentioned above results in the higher divergence.
The large amount of 0 in p(s) makes it difficult in achieving calibration, especially with the
concern of accuracy.

Time Consumption In addition, we also compared the response time of our model
against the post-processing-based CaliRec model and the original SASRec model. We
focused on the average time required to generate the recommended list for each sequence.
For the SASRec model, we reported the time consumption when the dimension of hidden
states equals to 64 and 128 (namely SASRecD64 and SASRecD128). This is because the size 64
is the setting of each sequence encoder of our DACSR model. We conducted experiments on
the same device, and removed the GPU acceleration for a fair comparison. The performance
is listed in Table 3.

Table 3. Average time consumption for each sequence.

Response Time (10−4 s) Ml-1m Tmall

SASRecD64 2.01 1.32
SASRecD128 3.28 1.96

CaliRec 580.15 668.69
DACSR 4.24 5.76
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Compared to the original SASRec model, our model needs more computation. For ex-
ample, on the Ml-1m dataset, the time consumption for each sequence of the SASRecD64
model is 2.01 × 10−4 s, which is approximately half of our DACSR model. This is because
it incorporates two SASRec encoders and an extraction net, which is more complex than
the single SASRec model. In contrast, our model can provide more accurate and calibrated
recommendations than the original SASRec model. The SASRecD128 requires more time
than SASRecD64 because it contains a larger scale of parameters. Compared to the CaliRec
model, our model costs much less time to generate recommendation lists. For a single
sequence, our model only needs 4.24 and 5.76 × 10−4 s on the Ml-1m and Tmall datasets,
respectively. In contrast, the CaliRec requires approximately 0.06 s for a sequence, which
needs 200 times more time than our model. This is because the CaliRec model needs an
extra ranking stage. The original SASRec model provided scores of all items, and selected
the top-100 items with the highest scores. The post-processing-based CaliRec model then
re-ranks the top-100 items with K steps (K stands for the top-K recommendations). At each
step, it computes the gains of the candidate items when they are added to the recommen-
dation list. However, our model follows an end-to-end framework only with a sorting
stage to select top-K items after the scores of all items are computed. Therefore, our model
obtains better performance and requires less time consumption than the CaliRec model for
each sequence.

Generalization of DACSR Model We are also interested in whether our model is also
effective when the sequence encoder changes. We incorporated the GRU4Rec model [1] as
the sequence encoder, which is also a widely used sequential recommendation model.
The experimental settings were same to the previous section with λ = 0.5. We use
DACSR(G) to denote our DACSR model which takes GRU4Rec as the sequence encoder,
and CaliRec(G) to denote the post-processing-based CaliRec model with candidates pro-
vided by the GRU4Rec model. The performances are listed in Table 4.

Table 4. Performances of our DACSR(G) model with the GRU4Rec sequence encoder (best perfor-
mances are marked in bold).

Dataset Method Rec@20 MRR@20 CKL@20

Ml-1m

GRU4Rec 0.3460 0.1142 0.8356

CaliRec(G) 0.3454 0.1105 0.7013

DACSR(G) 0.3472 0.1161 0.6840

Tmall

GRU4Rec 0.1724 0.0863 2.2123

CaliRec(G) 0.1732 0.0846 1.8597

DACSR(G) 0.1750 0.0878 1.7266

As shown in the table, our model can still achieve calibrated and accurate recommen-
dation lists when we use GRU4Rec as the sequence encoder. On the Ml-1m dataset, the per-
formances of CKL@20 are 0.6840 and 0.8356 of our DACSR(G) model and the GRU4Rec
model, respectively. On the Tmall dataset, our model also obtains an improvement of
21.95% in terms of calibration. Toward recommendation accuracy, the performances of our
model are still better than the original GRU4Rec model. The improvement is not as great as
the DACSR model with the SASRec sequence encoder. We think that this is because the abil-
ity to model sequences of GRU4Rec is worse than that of the SASRec model. The SASRec
model with self-attention mechanisms can better find the user’s preference and represent
the sequence. The CaliRec(G) model also sacrificed the ranking performance to improve
the calibration, which is similar to the CaliRec model with the SASRec model. Compared to
the CaliRec(G) model, our DACSR(G) model can also achieve better performance in terms
of accuracy and calibration, as listed in Table 4. The performance comparisons indicate
that our model can be used for other basic sequence encoders, which is not specifically
designed for the SASRec model.



Appl. Sci. 2022, 12, 11765 13 of 21

6.2. RQ2: Parameter Influence

In this section, we answer the research question RQ2 about the influence of hyperpa-
rameters. Specifically, we investigate the two hyperparameters λ and τ (see Section 4.1).
The trade-off parameter λ controlled the importance of calibration during the optimization
stage of our model. The parameter τ reshaped the predicted scores of all items, which can
affect the computation of the calibration loss function.

6.2.1. Trade-Off Factor λ

We first analyze the influence of hyperparameter λ by changing it from 0.1 to 1.0. Since
the CaliRec model also required a parameter to control the importance of calibration and
accuracy which was similar to our model, we displayed the changes in the performance of
our DACSR model and compared it with the CaliRec model simultaneously. The perfor-
mances on the two datasets are shown in Figure 3, where red lines and blue lines represent
our DACSR model and the CaliRec model, respectively.

In general, a greater value of λ leads to a lower recommendation accuracy and higher
calibration. When λ has a high value (e.g., λ = 0.7), the performance of Rec@20 of our
model decreases greatly, while the CaliRec model does not decrease as large as our model.
A possible reason is the difference in the process of generating recommendation lists.
The CaliRec re-ranks the candidate list generated by the SASRec model whose size is 100
and finally selects top-K (K = 10 or 20) items as the final recommendation list. However, our
model computes scores of all items, and directly selects top-K items. For some sequences,
the users’ next items achieve relatively lower ranks. When considering more for calibration,
these items may be replaced by items whose attributes are consistent with the historical
distributions but not sequential correlated to the sequences. While for post-processing
methods, the range of items for re-ranking is narrowed. Therefore, it can preserve the
performance of Rec@20. In contrast, our model outperforms CaliRec when considering
ranking performances in terms of MRR. As shown in Figure 3c,d, the MRR@20 of our
model is always higher than the CaliRec model. This is because although target items may
be replaced, these items do not contribute to the ranking performance greatly. In contrast,
our model improves the ranking of the target items for most of the sequences, resulting in
the improvement in overall ranking performance.

In terms of calibration, our model achieves better performances compared to the
CaliRec model under the same λ in general. On the Tmall dataset, the performances
of calibration of our DACSR model are better than the CaliRec model during the major
changing process of λ. On the Ml-1m dataset, the performances are close. Our model
performs better than the CaliRec model when λ is greater than 0.5. When λ is close to 1,
our DACSR model cannot perform as well as the CaliRec model. A possible reason is that
the CaliRec model utilized a greedy-based ranking strategy so that it can select the most
calibrated recommendations from top-100 items when λ is close to 1. In contrast, the deep
learning-based optimization strategy always has a gap in fitting the target distribution and
therefore does not perform as well as the CaliRec model at very high values of λ. However,
a large λ leads to lower recommendation accuracy. Though it achieves better calibration,
it is not suggested to use high value of λ because accurately predicting the user’s next
behavior is still an important concern.

6.2.2. Temperature Factor τ

In this section, we analyze the influence of parameter τ, which controls the sharpness of
the distribution in the calibration loss function. We tune τ in {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75,
2.0}, and show the performances in Figure 4. Red lines represent the performance of
MRR@20 and correspond to the right axis, and blue lines stand for the CKL@20 perfor-
mance which follows the left axis.

On the two datasets, a relatively lower value of τ can achieve a better performance of
calibration and lower accuracy in general. For example, on the Ml-1m dataset, the CKL@20
performances are 0.6466 and 0.6915 when τ equals to 0.25 and 1.0 respectively. This is
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because a lower value of τ amplifies the scores of top items, and other items are ignored
because their scores are normalized to 0. The lower value of τ increases the calibration
performance, but decreases the recommendation accuracy, as shown by the blue lines in
Figure 4. In contrast, a higher value of τ (τ > 1) causes a negative impact on calibration, be-
cause scores of all items are normalized to close values (i.e., 1/| I | for all items). Therefore,
no useful information for calibration can be propagated to the model.

(a) Rec@20 on the Ml-1m dataset (b) Rec@20 on the Tmall dataset

(c) MRR@20 on the Ml-1m dataset (d) MRR@20 on the Tmall dataset

(e) CKL@20 on the Ml-1m dataset (f) CKL@20 on the Tmall dataset

Figure 3. Performance comparison when λ changes.
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(a) Performance change on the Ml-1m dataset (b) Performance change on the Tmall dataset

Figure 4. Performance comparison when τ changes.

6.3. RQ3: Ablation Studies

To answer the research question RQ3, we conduct ablation experiments in this section
by comparing our model with two variants. The first variant is the original SASRec model
optimized by the loss function Lw. We aim to investigate the performance of a single
sequence encoder optimized by both accuracy and calibration. We also reported the per-
formances when the dimension of hidden states equals to 64 and 128 (namely SASRecLw

D64
and SASRecLw

D128). In addition, we directly add the extractor nets to the SASRecLw
D128 model,

namely SASRecLw
D128EX. The other one is the direct concatenation of sequence represen-

tations and item embedding matrices without extraction nets (namely DACSR-C). We
compare our model with these variants by setting λ = 0.5. The performances are listed in
Table 5. In general, our DACSR model obtains the best performance in terms of recommen-
dation accuracy and calibration.

Table 5. Performance comparisons between our DACSR model and its variants.

Dataset Metrics SASRecLw
D64 SASRecLw

D128 SASRecLw
D128EX DACSR-C DACSR

Ml-1m

Rec@10 0.2551 0.2730 0.2715 0.2710 0.2811
MRR@10 0.1088 0.1206 0.1213 0.1187 0.1267
CKL@10 1.0780 1.0765 1.0835 1.0909 1.0615
Rec@20 0.3599 0.3657 0.3748 0.3719 0.3844

MRR@20 0.1161 0.1269 0.1283 0.1257 0.1338
CKL@20 0.7281 0.7253 0.7315 0.7433 0.7262

Tmall

Rec@10 0.1508 0.1482 0.1462 0.1464 0.1517
MRR@10 0.0854 0.0862 0.0864 0.0813 0.0857
CKL@10 2.1490 2.2499 2.3119 1.9816 2.0114
Rec@20 0.1830 0.1787 0.1777 0.1804 0.1855

MRR@20 0.0876 0.0884 0.0886 0.0837 0.0881
CKL@20 1.7810 1.8845 1.9322 1.5960 1.6240

The effectiveness of our designed loss function for calibration can be reflected by the
performance of SASRecLw

D64 and SASRecLw
D128. By applying the loss function Lw, the SASRec

model is able to provide more calibrated recommendation lists than the original SASRec
model only optimized by LAcc. For example, the CKL@20 of SASRec on the Tmall dataset
decreases from 2.1103 to 1.8845. Also, it achieves close performance compared to our
DACSR model on the Ml-1m dataset in terms of calibration. The calibration performances
of the SASRec model optimized by the weighted loss function Lw verified the effectiveness
of our proposed loss function.

The performances between our model and variants also demonstrate the effectiveness
of the decoupled-aggregated framework. For example, on the Ml-1m dataset, the MRR@20
of our DACSR model is 0.1338, while it is 0.1269 for the SASRecLw

D128 model, and the per-
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formances of calibration are close (0.7262 vs. 0.7253). On the Tmall dataset, our DACSR
model can achieve competitive recommendation accuracy, and provide more calibrated rec-
ommendations (e.g., 1.6240 vs. 1.8845 in terms of CKL@20). Compared to the SASRecLw

D128
and SASRecLw

D128EX model which shares parameters for two objectives, the decoupled-
aggregated framework can achieve better performance. We believe that such a framework
can learn the information of two objectives and combine them to obtain better repre-
sentations of sequences and items. While a single sequence encoder that improves the
performance in one aspect may negatively affect performance in the other because their
parameters are shared. In addition, the DACSR-C model removed the extraction net and
directly concatenated the representations of sequences and items from two sequence en-
coders. It obtained worse performance than the DACSR model, showing the importance of
the extraction net. On the Ml-1m dataset, the CKL@20 of the DACSR model is 0.7262, which
is slightly better than the 0.7433 of the DACSR-C model. But the recommendation accuracy
of the DACSR model is higher than the DACSR-C model (e.g., 0.1338 vs. 0.1257 in terms
of MRR@20). On the Tmall dataset, our DACSR model also obtains better performances
in terms of accuracy, and close performance of calibration. The extraction net takes the
concatenation of sequence/item representations as inputs, and provides more suitable
representations for the two objectives.

6.4. RQ4: Distribution Modification

In this section, we answer the research question RQ4 about the effectiveness of the
proposed distribution modification approaches. We proposed the modified distribution
pd(s) and pm(s) to further improve the diversity and mitigate the imbalanced interest
problem. These approaches are related to the diversity. Therefore, we adopted the ILD
metric with Jaccard similarity to measure the diversity of the recommendation list:

ILD(RLs) =
2

| RLs | (| RLs | −1) ∑
(i,j∈RLs)

(1−
| Attri ∩ Attrj |
| Attri ∪ Attrj |

) (27)

where Attri is the item attribute set that the item i has, and RLs is the generated recom-
mendation list for sequence s. The larger ILD value represents the higher diversity of
the recommendation list. We set the factor τdiv = 0.5 and 2 for the distribution pd(s) and
pm(s), respectively.

We first listed the performances of our DACSR model with the raw historical pref-
erence distribution (namely DACSR-p(s)) and the modified preference distribution for
diversity (namely DACSR-pd(s)) along with the original SASRec model in Table 6.

Table 6. Performances of calibration and diversity (best performances are marked in bold).

Datasets Models ILD@10 CKL@10 ILD@20 CKL@20

Ml-1m

SASRec 0.6499 1.2385 0.6677 0.8548

DACSR-p(s) 0.6654 1.0615 0.6789 0.7262

DACSR-pd(s) 0.7012 1.1347 0.7123 0.7649

Tmall

SASRec 0.7086 2.4871 0.7405 2.1092

DACSR-p(s) 0.6714 2.0114 0.7045 1.6240

DACSR-pd(s) 0.7419 2.2662 0.7725 1.8412

On the two datasets, the diversity of our model is improved by sacrificing the cali-
bration. For example, on the Ml-1m dataset, the performances of ILD@10 are 0.7012 and
0.6654 for the normalized distribution pd(s) and the original distribution p(s), respectively.
However, the CKL@10 increases from 1.0615 to 1.1347, which means the ability of calibration
of our model is weakened. On the Tmall dataset, the performance comparisons are similar.
This is because applying the normalized distribution amplifies the effect of item attributes
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that the user did not interacted in the behavior sequence. Though it does not largely affect
the true distribution p(s), it deviates from the calibration to a certain degree.

We observe that our DACSR model performed differently on the two datasets. On the
Ml-1m dataset, the diversity is higher for our DACSR model than the original SASRec
model, while it is totally different on the Tmall dataset. On the Tmall dataset, our DACSR
model achieves worse performance in terms of diversity (e.g., 0.6714 vs. 0.7086 of DACSR
and SASRec model). It is possibly due to the difference between two datasets. On the
Ml-1m dataset, the coverage of item attributes is higher than the Tmall dataset. Users
have more historical behaviors than the Tmall dataset. On the Tmall dataset, users always
interacted with several types of items, so that the p(g | s) score of most attributes equals to
0. The limited interest areas resulted in less diversified recommendation lists under the
calibration objective.

We also investigate the imbalanced interest problem. We find that main interests
are amplified on the Tmall dataset. As illustrated in Figure 5, the attribute A occupies
the 80% of the sequence, while attribute B and C only account for the 20%. For such
an imbalanced distribution, our DACSR model amplifies the major interest, as shown
in Figure 5. The recommended list only contains items with attribute A. This gives
our model a negative impact in terms of diversity. By applying the distribution pm(s),
the diversity increases and the calibration performance remains stable. As shown in
Table 7, the performances in terms of diversity are improved by the pm(s) distribution. This
indicates that the modification of distribution with the mask mechanism can mitigate the
amplification of major interest.

Figure 5. Illustration of amplified main interest.

Table 7. The performances of distribution pm(s) on the Tmall dataset.

Models ILD@10 CKL@10 ILD@20 CKL@20

p(s) 0.6714 2.0114 0.7045 1.6240
pm(s) 0.7201 2.0539 0.7516 1.6288

In conclusion, calibrated recommendations do not always improve the diversity.
Considering calibration limits the range of recommendations in users’ interacted interests,
so that the diversity of recommendations may decrease. For users with homogeneous
interests, their main interests are amplified by our end-to-end framework. By applying the
modified preference distribution for diversity, our model further increases the diversity
that can explore new interests. The proposed modification of distribution based on mask
mechanism can mitigate the problem of imbalanced interests. This also indicates us that
whether it is necessary to provide these users with diversified recommendations. We
believe this is a question worth investigating in the future.

7. Discussion

In this paper, we proposed the DACSR model to provide accurate and calibrated rec-
ommendation lists for end-to-end sequential recommendation. We conducted experiments
on benchmark datasets to demonstrate the effectiveness of our model. In general, our
model achieved higher accuracy in predicting the next item and provided more calibrated
recommendations compared to the post-processing-based model. This is because our
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model considered the relationship between calibration and accuracy, which was isolated in
post-processing-based models. Meanwhile, the end-to-end framework required much less
time to provide recommendations than the post-process-based models.

We displayed the trend in the model’s performance as the two main hyperparameters
change. As the parameter λ varies which stands for the importance of calibration in
the objective function, our model achieved better performance in terms of accuracy and
calibration. We also analyzed the influence of the parameter τ which can change the
predicted score distribution so that the model focused on items in different score segments.

In the ablation study, we first demonstrated the effectiveness of the proposed loss
function for calibration. By applying the calibration loss function, the sequential recom-
mendation models became aware of the preference distribution of recommended items,
and aligned it to the historical preference distribution. Therefore, the process of train-
ing and prediction was conducted in an end-to-end paradigm. Furthermore, with the
decoupled-aggregated framework, the positive information for the calibrated and accurate
recommendation was extracted from two individual sequence encoders to improve the
performance. The performance comparisons between our model and its variants verified
the necessity of the decoupled-aggregated framework.

We finally investigated the effectiveness of our proposed distribution modification
approaches. Because calibration is connected to diversity to a certain degree, we analyzed
the relation between diversity and calibration. We also investigate the effect of imbalanced
distribution of homogeneous interests. We found that it differed on the two datasets because
of the item attribute coverage and the length of the sequence. For sequences with homo-
geneous preferences, considering calibration reduced the diversity of recommendations
and amplified the main interests of the user. We adopted two distribution modification
methods to improve the diversity and mitigate the effect of imbalanced distribution. The
performances on two datasets verified the effectiveness of these approaches.

However, there are some limitations in our work:

• Calibration is not always equivalent to diversity, as analyzed in Section 6.4. For users
with homogeneous interests, calibration decreases the performance of diversity. There-
fore, user studies need to be conducted to analyze the acceptance of these users
towards diversified and calibrated recommendations. This can provide data and
theory support for recommendations.

• Our model followed the conventional training framework which takes a sequence as
input, predicts scores of all items and is optimized by a certain loss function. However,
other advanced technologies and theories can be incorporated, such as contrastive
learning [38,39], few-shot learning [11,40] and game theory [41,42]

• We focused on providing calibrated recommendations for sequential recommenda-
tion models by designing loss functions and the decoupled-aggregated framework.
From a different perspective, it would be valuable to investigate the reasons that cause
miscalibration in recommendation. For example, previous work has shown there
exists correlations between popularity bias and miscalibration [31]. Besides popularity
bias, whether there are other factors contributing to miscalibration and how these
factors can be incorporated into the sequence recommendation model are directions
worth exploring.

8. Conclusions and Future Work

In this paper, we were committed to exploring the provision of accurate and calibrated
recommendations based on user behavioural sequences. We proposed a DACSR model
to provide accurate and calibrated results under the end-to-end sequential recommenda-
tion framework. Specifically, we designed a loss function that estimates the preference
distribution of the recommendation list by predicted scores of all items, and measures the
consistency with the preference distribution of the user’s historical behaviors. In addition,
we proposed distribution modification approaches to improve the diversity and mitigate
the effect of imbalanced interests. To better handle the goals of accuracy and calibration,
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we proposed a decoupled-aggregated framework which includes two individual sequence
encoders that were assigned with the accuracy and calibration objectives, respectively.
Then we utilized an aggregation module to extract information from two sequence en-
coders to make both accurate and calibrated recommendations. According to experiments
on benchmark datasets, our model can achieve better accuracy and calibration than the
original sequence encoder and the post-processing methods. The ablation studies proved
the effectiveness of the general architecture and the extractor net of our model. Finally, we
investigated the connection between calibration and diversity, and prove the effectiveness
of our proposed distribution modification approaches.

For the future work, as mentioned in the discussion section, we first want to conduct
user studies about the acceptance of diversity and calibration, so that diversified and
calibrated recommendations can be supported. Furthermore, besides the conventional
sequential recommendation training framework, incorporating advanced technologies and
theories such as contrastive learning and game theory to debiasing recommendation is also
one of our interests. In addition, we are also interested in exploring the reasons that cause
the miscalibration, and applying reasons to improve the calibration performance. Finally,
besides the calibrated recommendation, we hope to deal with different types of bias in
recommendation algorithms.
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