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1. Introduction 

DAOO [Stolfo and Shaw, 1981J is a tarallel, tree-structured machine 

designed to provide highly significant performance improvements in the 

execution of production systems. A production system [Newell, 1973; Davis and 

King 1975; Rychener, 1976J is defined by a set of rules, or productiOns, which 

form the production DlE!DQry (PM), together with a database of assertions, 

called the working menory (WM). Each production consists of a conjunction of 

mttern elanents, called the ~-.bana ~ (LHS) of the rule, aloog with a 

set of actions called the .tisb.t-banQ ~ (RRS). '!be RHS specifies 

information which is to be added to (asserted) or reooved fran WM when the LBS 

successfully matches against the contents of WH. 

In operation, the PS repeatedly executes the following ~ of o{;erations: 

1. ~: For each rule, determine whether the LBS natches the current 
environment of WM. 

2. Select: Choose exactly one of the matching rules according to serre 
predefined criterion. 

3. M: Add to or delete fran WM all assertions specified in the RES 
of the selected rule. 

In this taper, data elements in WM will have the form of arbitrary ground 

literals in the first order predicate calculus. For pedagogical reasons, we 

will restrict our attention to the case in which both the LBS and RES are 

conjunctions of predicates in which all first order terms are canposed of 

constants and existentially quantified variables. (DAOO in fact supports the 

incorporation of universally quantified variables in the LHS of a production 

as well, but an adequate treatment of this case would substantially canplicate 

our exposition, and has thus been anitted. '!be interested reader is referred 

to a discussion of the LSEC algorithm for logical satisfaction, presented in a 

doctoral dissertation by Shaw [1983].) A negated };attem in the LHS causes 

the matching procedure to fail whenever WM contains a matching ground literal, 
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while a negated pattern in the RHS causes all rratching data elerrents in WM to 

be deleted. 

An example production is presented in Figure 1-1. (Variables are prefixed 

wi th· an equal sign.) 

(Part-category =part electronic-component) 
(Used-in =part =product) 
(Sut=Plied-to =product =custcmer) 
(00'r Manufactured-by =part =custaner) 
-) (Dependent-on =custaner =tart) 

(tUl' Independent =custcner) 

Figure 1-1: An ~le Production 

Beeause the matching of each rule against WM is essentially independent of 

the others (at least in the absence of contention for data in WM), it is 

natural to attempt a decanposition of the matching p:>rtion of each cycle into 

a large mmi:aer of tasks suitable for tilYsically concurrent execution on 

parallel harQ.iare. While the design of sp!cial-~se tarallel machines 

adapted to artificial intelligence applications has attracted sane attention 

[Fahlnan, 1979; Fuhlrott, 1982], little progress has been made in the 

application of highly concurrent hardware to the execution of rule-based 

systems. Forgy [1980] prop:>sed a very interesting use of the llLIAC tv 

machine for such applications, but recognized that his approach failed to 

identify all IlBtching productions under certain circumstances. 

In this t=at:er, we describe a tree-structured machine architecture that 

utilizes the emerging technology of VLSI systems in support of the highly 

efficient parallel execution of large-scale production systans. Portions of 

the rrachine, which we have come to call DAOO, are now in the early stages of 

construction at Columbia University. We believe a full-scale DAOO prototype, 

eatable of significant p:rformanqe improvements over implementations based on 
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von Na:rann llBc::hines, to be technically and econanically feasible for 

imp!.anentaticn using current technology. 

2. ~e = Machine Architecture 

The 0Ar0 mchine cxxnprises a reasonably large (on the order of several 

thousand) set of "rocessiog elengnts (PE' 5), each containing its own 

processor, a small amount ( 2K bytes, in the current design) of local randem 

access mBnOry, ard a specialized I/O switch. '!he PE's are interconnected to 

form a cauplete binary tree. certain aspects of the = machine are moclell.ed 

after NJN-VON {Shaw, 1979; Shaw, et al., 1981], a tree-structured, highly 

tarallel rtBchine containing a larger rumber of auch simpler processing 

elements. 

In ~vtN, IOOSt of the p£ls are severely restricted in both processing 

lXlWer and storage ca;:ecity, and are thus not typically used to execute 
. 

indel=EI1dertt programs. Instead, a single control processor, located at the 

root of the 00N-Vtl'I tree, typically broadcasts a single stream of instructions 

. tr !:''''ch such instructioo is then simultaneously 
1:0 ill !IE'S III the ee. ~ 

executed (on different data) by every PE in the tree. 
. the literature of p!rallel 

has been referred to l.n (SIMD) execution [Flynn . 19721. 
mul tiple data stream . 

instruction stream, .' . tDN-VCt'I m fact sarewhat oversi,mpll.fled, Slllce 
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rIl\l.' ts 
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.,""''''''_- ,,~~ fixed level within e 
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Such subtrees, though, _ allable. ) 

processing powet loS av 
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canp.1tation as single 
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tree, where additional 
d each FE is capable of executing 

. on the other han , th PE 
W'thin the DAOO uachine, call eTVrl~' e 

... which we ",ill ~ 
_-.:I"'s In the first, . the 

in either of two ~ . . thin the tree, as Ul 
by sane ancestor FE Wl. 

"'YeoJtes instructions broadcast MIMC: mode (for 
...... which will be referred to as 

In the second, 
IIlN-liOO ..,chine. 



4 

mul tiple instruction stream, multiple data stream), each FE executes 

instructions stored in its am local RlIM, independently of the other PE IS. 

When a DAOO FE enters MIMD mode, its I/O switch settings are changed in 

such a way as to effectively "disconnect" it and its descendants frem all 

higher-level FE I S in the tree. In particular, a FE in MIMD mode does not 

receive any instructions that might be placed on the tree-structured 

ccmnunication bus by one of its ancestors. Sum a FE may, however, broadcast 

instructions to be exealted by its own descendants, providing all of these 

descendants have themselves been switched to SIMD mode. '!be OAOO machine can 

thus be configured in such a way that an arbitrary internal node in the tree 

acts as the root of a tree-structured, OON-VON-like SIMD -device in which all 

FE I S execute a single instruction at a given !;Dint in time. 

As in OON-VON, the DAOO I/O switch supports camtunication between 

~sically adjacent neighbors (tarents and children) within the tree in 
addition to broadcast-based ccmnunication. 

3. Allocatioo of ProductialS and Working Memory 

In order to execute til 
, e production system. CYCle th . 

conf~gured in such a way as to di 'de ' e I/O sw~tches are 
Vl the DAOO mach.in ' 

diStinct CXInponents. One e lnto three conceptuall 
. of these canponents con ' y 

partiCUlar level wi thin th s~sts of all FE I S at 
e tree, called th a 

manner to be detailed sh e .H2 level, which is ch . 
ortly. The Other tw OBen !on a 

of the tree which 0 canponents are th 
, canprises all FE lSI e JJDCer J'.X)rtj oc 

~ Bleti"" ocated above the PM 1 
-_x.AIC.U of the tree, which . evel, and the 

1_- 1 cons~sts of all I 
,"ve. 'Ihis functi ' , PE s found bel. 

onal div~sion is illustrated' , ow the R-f 
lJ1 Flgtlre 3-1 

Each FE at the PM level is 
used to stor ' 

must thus be chosen such that th e a s~ngle production. 

large as the numbe f e number of nodes at that level 
r 0 productions . 

lJ1 FM. 

'!he PM level 

is at least as 
The subtree rooted by . 

a glven FE at 
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J Upper Tree: 
synchronize. 
select & act 

-PM Level: 
match. determine relevance 
& instantiate 

WM Subtrees: 
content - addressable 
memories 

Figure 3-1: FUnctional Division of the DAOO Tree 

the EM level will store that portion of WM that is relevant to the production 

stored in that PE. A ground literal in WM is defined to be relevant to a 

given production if its predicate synDol agrees with the predicate symbol in 

one of the pattern literals in the L8S of the production, and all constants in 

the tattern literal are equal to the corresponding constants in the ground 

literal. Intuitively, the set of ground literals relevant to a given 

production consists of exactly those li terals that might rratch that 

production, given appropriate variable bindings. 

The constituent subtrees that rrake up the lower portion of the tree will be 

referred to as the ~subtrees. For simplicity, we will assume in this pat:er 

that each PE in a WM-subtree rooted by scme production contains exactly one 

ground literal relevant to that production. (Osing "tacking" techniques 
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analogous to those employed in OON-VON, however, this assumption is easily 

relaxed at the expense of a rrOOest cost in time.) It should be noted that, 

since a single ground literal may be relevant to more than one production, 

~rtions of WM may in general be replicated in different WM-subtrees. 

During the match tilase, the WM-subtrees are used as content-addresMble 

memories, allowing t=arallel matching in time independent of the size of WH. 

The uP{::er portion of the tree is used to select one of the matching 

productions to be executed, and to broadcast the action resulting fran this 

execution (both in 0 (log P) time, where P is the number of productions). 

Details of these functions follow. 

4. 'lbe Matching Phase 

At the beginning of the matching J;il.ase, all PE's at the EM lENel are 

instructed to enter MIMD mode, and to simultaneously (and inde~dently) match 

their LES against the contents of their respective ~subtrees. 'lbe ability 

to concurrently match the LBS of all productions accounts for sane, but not 

all, of the tBrallelism achieved in DAOO'S matching J;il.ase. In addition, the 

matching of a single LHS is t=erformed in a parallel rranner, using the 

corresponding WM-subtree as an associative gtocessing device. '!be simplest 

case involves the matching of a single LBS ~ttern predicate containing at 

most one instance of any variable. In order to match the predicate 

(Part-category -p!rt electronic-canponent), 

for example, the PM-level FE corresponding to the production in question would 

first broadcast a sequence of instructions to all PE' s in the WM-subtree that 

would cause each CI'Ie to simultaneously canp!re the field beginning in, say, 

its fifth RAM cell with the string "Part-category". All non-matching PE's 

would then be disabled, causing all subsequent instructions to be ignored for 

the duration of the match. Next, the string "electronic-canponent" would be 
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broadcast, along with the instructions necessary to match this string against, 

say, the field beginning in the thirty-fifth RAM location of all currently 

enabled PE's. After again disabling all non-matching PE's, the only PE's 

still enabled would be those containing a ground literal that matches the 

predicate in question. If this were the only predicate in the LHS, matching 

would terminate at this point. It should be noted that the time required for 

this matching operation depends only on the complexity of the pattern 

predicate, and not 00 the number of ground literals stored in the ~subtree. 

'lbe general matching algorithm, which acccmnodates a LHS consisting of a 

number of conjoined pcedicates, possibly including ccmoon ~ttem variables, 

is considerably more complex. While space does not permit a canplete 

exposition of the general algorithm, readers familiar with the literature of 

relational database systens, and in tarticular, database machineS, may find 

the follCMing brief conments illuminating. First, we note that the set of all 

ground literals in a single WM-subtree may be regarded as ccmprising several 

relations, each the extension of sane p!ttern literal. Viewed in this w;;q, 

the general production matching problem reduces to a problem for which Shaw 

[198~] has prop:>sed, and simulated in software, a highly efficient solution 

involving the use of associative harcJriare to evaluate relational algebraic 

primitives in p!rallel. '!be result is a new relation enbodying the variable 

bindings corresp:>nding to all possible instantiations of the production in 

question that are consistent with the contents of WM. 

5. '!be Selectioo fbase 

Since each production is asynchronously matched against the data stored in 

its WM-subtree, the production matching Fhase will in general terminate at 

different times within each EM-level PE. At the end of the matching ~se, 

the PM-level PE' s must thus be synchronized before initiation of the selection 

tilase. In support of this synchronization operation, each EM-level FE sets a 
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local flag ux:on canpletion of its own I!'a.tching task. '!be I/O switch contains 

canbinatorial hardware that t=ermits the DAOO tree to compute a logical 

conjunction of these flags in time equal to O(log n) gate delays. DAOO's 

tree-structured topology, along with the combinatOrial, as opposed to 

sequential, ccmputation of this n-ary "logical AND", lead to a synchronization 

time which is dcminated by that required for natching, and which may, in 

practice, be ignored in analysis of the time canplexity of the production 

system cycle. 

'!be selection of a single production to afire" fran among the set of all 

matching productions also requires time proportional to the depth of the tree. 

Unlike the synchrati.zation operation, hcwever, the primitive operations 

required for selection are ccmputed using sequential logic. We assume that 

each EM-Ievel PE t=erforms sane local ccmputation IXior to the synchronizatioo 

operation that yields a single, numerical priority rating. PE's containing 

matching .:roductions are assigned positive values, while other EM-level FE's 

are assigned a priority of zero. We also assume that each l:M-Ievel FE has a 

distinct .ft.tag, stored in a fixed location within its local IIlBIlOry, which may 

be used to uniquely identify that PE. 

After synchronization, all PM-Ievel PE's are instructed to enter SIMI) mode. 

Each such PE is then instructed to send its priority rating to its ~rent. 

Each parent canpares the priority ratings of its two children, retaining the 

larger of the two, alcng with the unique tag of the "winner". 'lbe process is 

repeated at successively higher levels within the tree until a single tag 

arrives at the root. 'lbis tag is then broadcast to all EM-level PE's for 

matching, disabling all except the one having the highest priority rating, 

which remains enabled for the action I=hase. 
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6. '!be Action Phase 

At this point, the "winning" PE is instructed to instantiate its RES, which 

is then broadcast to the root. Next, all fM-level PE's are enabled, and the 

RES of the winning instance is broadcast to all. The details of the action 

Fi'lase are nade more canplex by the importance of avoiding unnecessary 

replication of WM literals within the lower portion of the tree, and of 

reclaiming local memory s};:ace freed by the deletion of such literals. 'Ibese 

functions are based on associative operations similar to those anployed in the 

natching operatioo. 

The FE's at the EM level are instructed to enter MIMD IOOde and to 

concurrently update their WM-subtrees as specified by the RBS of the winning 

instance. 

First, the PM-Ievel PE's perform an associative pcObe for each literal to 

be deleted frem WM, enabling only those PE' s in the WM-subtrees whose local 

memories are to be reclaiIred. '!be enabled PE's are then instructed by the PM

level FE to O'tlerwrite their stored ground literal with a special ~.tag 

identifying empty PE's. This tag is the target of the subsequent associative 

probe executed for each of the ground literals to be added to WM. 

When processing an asserted literal, the fM-level FE first determines 

'""hether or not the literal is relevant to its stored production. Next, the 

associative operation identifies those relevant literals which are not present 

in the WM-subtree, and thus are to be stored in sane empty PE. 

After probing for the free-tag, all FE's are disabled except the empty 

PE's. To avoid duplication of asserted literals, all but one of these PE's is 

disabled by a multiple ~ resolution scheme which uses canbinatorial 

har&are in the I/O switch to very rapidly clear a flag in all but an 

arbitrary "first n enabled PE. The asserted literal is then broadcast to the 
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one enabled FE. 

As in the matching ~, the selection ~se in general will terminate at 

different times in each l?M-level FE. After synchronization, another cycle of 

production system execution begins with the production matching ~se. 

7. S(:eCialized Production systems 

The general scheme for production system execution on DAOO can be extended 

to support execution of carmutative production systems, as well as 

"cooperating expert systems" based on multiple, independently executing 

production systems. 

A camrutative production system allc.ws each of the matching rules on every 

cycle of operation to be selected for execution. The same canbinatorial 

hardware used in the action tilase to select a single arbitrary "free" PE 

supports this o};:eration by enumerating each of the matching productions in an 

arbitrary sequential order. Each of the RHS's so reported to the root are 

then processed by the action tilase. 

In our exposition of the general production system algori thIn, it was 

assumed that the upper tree was rooted at the (~ysical) root of DAOO (see 

Figure 3-1). Since each PE in the DAOO tree can execute its c.wn independent 

program, the upper tree can be rooted at an arbitrary internal node of DAm. 

'!hus, multiple, independent production systems are executed on the DAD:) 

machine by rooting a forest of upper trees at the same fixed level of the DAm 

tree. Ccmnunication among these independent production systems is implenented 

in the same fashion as ccmnunication among the l?M-level PE's during the 

(camnutative) production system cycle. 
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