
CUCS-24-82

ONX): A 'mEE-S'lmClURED MAQ!INE ARCBITEC'IORE

FOR mJIXJcrIOO SYS"lmS1

Salvatore J. stolfo

and

David Elliot Shaw

Depart:Irent of C~ter science

Col~a University

March, 1982

f Appeared in Proceedings of the National Conference
on Artificial Intelligence, Carnegie Mellon University,
University of Pittsburgh, Pittsburgh, Penna.,
Aug. 18-20, 1982.

1rru.s research was s~rted in p!rt by the Defense Advanced Research
Projects Agency under contract N00039-82-C-0427.

i

Table of Contents

1. Introduction
2. 'l11e DAm Machine Architecture
3. Allocatioo of Productions and Working Menory
4. 'l11e Matching Phase
5. The Selection Phase
6. 'ttle Action Phase
7. Specialized Production systems

1
3
4
6
7
9

HJ

FigUte 1-1:
Figure 3-1:

ii

List of Figures

An Example Production
FUnctional Division of the DAOJ Tree

2
5

1

1. Introduction

DAOO [Stolfo and Shaw, 1981J is a tarallel, tree-structured machine

designed to provide highly significant performance improvements in the

execution of production systems. A production system [Newell, 1973; Davis and

King 1975; Rychener, 1976J is defined by a set of rules, or productiOns, which

form the production DlE!DQry (PM), together with a database of assertions,

called the working menory (WM). Each production consists of a conjunction of

mttern elanents, called the ~-.bana ~ (LHS) of the rule, aloog with a

set of actions called the .tisb.t-banQ ~ (RRS). '!be RHS specifies

information which is to be added to (asserted) or reooved fran WM when the LBS

successfully matches against the contents of WH.

In operation, the PS repeatedly executes the following ~ of o{;erations:

1. ~: For each rule, determine whether the LBS natches the current
environment of WM.

2. Select: Choose exactly one of the matching rules according to serre
predefined criterion.

3. M: Add to or delete fran WM all assertions specified in the RES
of the selected rule.

In this taper, data elements in WM will have the form of arbitrary ground

literals in the first order predicate calculus. For pedagogical reasons, we

will restrict our attention to the case in which both the LBS and RES are

conjunctions of predicates in which all first order terms are canposed of

constants and existentially quantified variables. (DAOO in fact supports the

incorporation of universally quantified variables in the LHS of a production

as well, but an adequate treatment of this case would substantially canplicate

our exposition, and has thus been anitted. '!be interested reader is referred

to a discussion of the LSEC algorithm for logical satisfaction, presented in a

doctoral dissertation by Shaw [1983].) A negated };attem in the LHS causes

the matching procedure to fail whenever WM contains a matching ground literal,

2

while a negated pattern in the RHS causes all rratching data elerrents in WM to

be deleted.

An example production is presented in Figure 1-1. (Variables are prefixed

wi th· an equal sign.)

(Part-category =part electronic-component)
(Used-in =part =product)
(Sut=Plied-to =product =custcmer)
(00'r Manufactured-by =part =custaner)
-) (Dependent-on =custaner =tart)

(tUl' Independent =custcner)

Figure 1-1: An ~le Production

Beeause the matching of each rule against WM is essentially independent of

the others (at least in the absence of contention for data in WM), it is

natural to attempt a decanposition of the matching p:>rtion of each cycle into

a large mmi:aer of tasks suitable for tilYsically concurrent execution on

parallel harQ.iare. While the design of sp!cial-~se tarallel machines

adapted to artificial intelligence applications has attracted sane attention

[Fahlnan, 1979; Fuhlrott, 1982], little progress has been made in the

application of highly concurrent hardware to the execution of rule-based

systems. Forgy [1980] prop:>sed a very interesting use of the llLIAC tv

machine for such applications, but recognized that his approach failed to

identify all IlBtching productions under certain circumstances.

In this t=at:er, we describe a tree-structured machine architecture that

utilizes the emerging technology of VLSI systems in support of the highly

efficient parallel execution of large-scale production systans. Portions of

the rrachine, which we have come to call DAOO, are now in the early stages of

construction at Columbia University. We believe a full-scale DAOO prototype,

eatable of significant p:rformanqe improvements over implementations based on

3

von Na:rann llBc::hines, to be technically and econanically feasible for

imp!.anentaticn using current technology.

2. ~e = Machine Architecture

The 0Ar0 mchine cxxnprises a reasonably large (on the order of several

thousand) set of "rocessiog elengnts (PE' 5), each containing its own

processor, a small amount (2K bytes, in the current design) of local randem

access mBnOry, ard a specialized I/O switch. '!he PE's are interconnected to

form a cauplete binary tree. certain aspects of the = machine are moclell.ed

after NJN-VON {Shaw, 1979; Shaw, et al., 1981], a tree-structured, highly

tarallel rtBchine containing a larger rumber of auch simpler processing

elements.

In ~vtN, IOOSt of the p£ls are severely restricted in both processing

lXlWer and storage ca;:ecity, and are thus not typically used to execute
.

indel=EI1dertt programs. Instead, a single control processor, located at the

root of the 00N-Vtl'I tree, typically broadcasts a single stream of instructions

. tr !:''''ch such instructioo is then simultaneously
1:0 ill !IE'S III the ee. ~

executed (on different data) by every PE in the tree.
. the literature of p!rallel

has been referred to l.n (SIMD) execution [Flynn . 19721.
mul tiple data stream .

instruction stream, .' . tDN-VCt'I m fact sarewhat oversi,mpll.fled, Slllce
aboVe description is in fact dcast to selected subtrees.

rIl\l.' ts
'_.L.---"'"t '-""'uction streams to be broa th
.,""''''''_- ,,~~ fixed level within e

pe trUSt be rooted at a single,
Such subtrees, though, _ allable.)

processing powet loS av

nlis mode of operation

canp.1tation as single

('nle

tree, where additional
d each FE is capable of executing

. on the other han , th PE
W'thin the DAOO uachine, call eTVrl~' e

... which we ",ill ~
_-.:I"'s In the first, . the

in either of two ~ . . thin the tree, as Ul
by sane ancestor FE Wl.

"'YeoJtes instructions broadcast MIMC: mode (for
...... which will be referred to as

In the second,
IIlN-liOO ..,chine.

4

mul tiple instruction stream, multiple data stream), each FE executes

instructions stored in its am local RlIM, independently of the other PE IS.

When a DAOO FE enters MIMD mode, its I/O switch settings are changed in

such a way as to effectively "disconnect" it and its descendants frem all

higher-level FE I S in the tree. In particular, a FE in MIMD mode does not

receive any instructions that might be placed on the tree-structured

ccmnunication bus by one of its ancestors. Sum a FE may, however, broadcast

instructions to be exealted by its own descendants, providing all of these

descendants have themselves been switched to SIMD mode. '!be OAOO machine can

thus be configured in such a way that an arbitrary internal node in the tree

acts as the root of a tree-structured, OON-VON-like SIMD -device in which all

FE I S execute a single instruction at a given !;Dint in time.

As in OON-VON, the DAOO I/O switch supports camtunication between

~sically adjacent neighbors (tarents and children) within the tree in
addition to broadcast-based ccmnunication.

3. Allocatioo of ProductialS and Working Memory

In order to execute til
, e production system. CYCle th .

conf~gured in such a way as to di 'de ' e I/O sw~tches are
Vl the DAOO mach.in '

diStinct CXInponents. One e lnto three conceptuall
. of these canponents con ' y

partiCUlar level wi thin th s~sts of all FE I S at
e tree, called th a

manner to be detailed sh e .H2 level, which is ch .
ortly. The Other tw OBen !on a

of the tree which 0 canponents are th
, canprises all FE lSI e JJDCer J'.X)rtj oc

~ Bleti"" ocated above the PM 1
-_x.AIC.U of the tree, which . evel, and the

1_- 1 cons~sts of all I
,"ve. 'Ihis functi ' , PE s found bel.

onal div~sion is illustrated' , ow the R-f
lJ1 Flgtlre 3-1

Each FE at the PM level is
used to stor '

must thus be chosen such that th e a s~ngle production.

large as the numbe f e number of nodes at that level
r 0 productions .

lJ1 FM.

'!he PM level

is at least as
The subtree rooted by .

a glven FE at

5

J Upper Tree:
synchronize.
select & act

-PM Level:
match. determine relevance
& instantiate

WM Subtrees:
content - addressable
memories

Figure 3-1: FUnctional Division of the DAOO Tree

the EM level will store that portion of WM that is relevant to the production

stored in that PE. A ground literal in WM is defined to be relevant to a

given production if its predicate synDol agrees with the predicate symbol in

one of the pattern literals in the L8S of the production, and all constants in

the tattern literal are equal to the corresponding constants in the ground

literal. Intuitively, the set of ground literals relevant to a given

production consists of exactly those li terals that might rratch that

production, given appropriate variable bindings.

The constituent subtrees that rrake up the lower portion of the tree will be

referred to as the ~subtrees. For simplicity, we will assume in this pat:er

that each PE in a WM-subtree rooted by scme production contains exactly one

ground literal relevant to that production. (Osing "tacking" techniques

6

analogous to those employed in OON-VON, however, this assumption is easily

relaxed at the expense of a rrOOest cost in time.) It should be noted that,

since a single ground literal may be relevant to more than one production,

~rtions of WM may in general be replicated in different WM-subtrees.

During the match tilase, the WM-subtrees are used as content-addresMble

memories, allowing t=arallel matching in time independent of the size of WH.

The uP{::er portion of the tree is used to select one of the matching

productions to be executed, and to broadcast the action resulting fran this

execution (both in 0 (log P) time, where P is the number of productions).

Details of these functions follow.

4. 'lbe Matching Phase

At the beginning of the matching J;il.ase, all PE's at the EM lENel are

instructed to enter MIMD mode, and to simultaneously (and inde~dently) match

their LES against the contents of their respective ~subtrees. 'lbe ability

to concurrently match the LBS of all productions accounts for sane, but not

all, of the tBrallelism achieved in DAOO'S matching J;il.ase. In addition, the

matching of a single LHS is t=erformed in a parallel rranner, using the

corresponding WM-subtree as an associative gtocessing device. '!be simplest

case involves the matching of a single LBS ~ttern predicate containing at

most one instance of any variable. In order to match the predicate

(Part-category -p!rt electronic-canponent),

for example, the PM-level FE corresponding to the production in question would

first broadcast a sequence of instructions to all PE' s in the WM-subtree that

would cause each CI'Ie to simultaneously canp!re the field beginning in, say,

its fifth RAM cell with the string "Part-category". All non-matching PE's

would then be disabled, causing all subsequent instructions to be ignored for

the duration of the match. Next, the string "electronic-canponent" would be

7

broadcast, along with the instructions necessary to match this string against,

say, the field beginning in the thirty-fifth RAM location of all currently

enabled PE's. After again disabling all non-matching PE's, the only PE's

still enabled would be those containing a ground literal that matches the

predicate in question. If this were the only predicate in the LHS, matching

would terminate at this point. It should be noted that the time required for

this matching operation depends only on the complexity of the pattern

predicate, and not 00 the number of ground literals stored in the ~subtree.

'lbe general matching algorithm, which acccmnodates a LHS consisting of a

number of conjoined pcedicates, possibly including ccmoon ~ttem variables,

is considerably more complex. While space does not permit a canplete

exposition of the general algorithm, readers familiar with the literature of

relational database systens, and in tarticular, database machineS, may find

the follCMing brief conments illuminating. First, we note that the set of all

ground literals in a single WM-subtree may be regarded as ccmprising several

relations, each the extension of sane p!ttern literal. Viewed in this w;;q,

the general production matching problem reduces to a problem for which Shaw

[198~] has prop:>sed, and simulated in software, a highly efficient solution

involving the use of associative harcJriare to evaluate relational algebraic

primitives in p!rallel. '!be result is a new relation enbodying the variable

bindings corresp:>nding to all possible instantiations of the production in

question that are consistent with the contents of WM.

5. '!be Selectioo fbase

Since each production is asynchronously matched against the data stored in

its WM-subtree, the production matching Fhase will in general terminate at

different times within each EM-level PE. At the end of the matching ~se,

the PM-level PE' s must thus be synchronized before initiation of the selection

tilase. In support of this synchronization operation, each EM-level FE sets a

8

local flag ux:on canpletion of its own I!'a.tching task. '!be I/O switch contains

canbinatorial hardware that t=ermits the DAOO tree to compute a logical

conjunction of these flags in time equal to O(log n) gate delays. DAOO's

tree-structured topology, along with the combinatOrial, as opposed to

sequential, ccmputation of this n-ary "logical AND", lead to a synchronization

time which is dcminated by that required for natching, and which may, in

practice, be ignored in analysis of the time canplexity of the production

system cycle.

'!be selection of a single production to afire" fran among the set of all

matching productions also requires time proportional to the depth of the tree.

Unlike the synchrati.zation operation, hcwever, the primitive operations

required for selection are ccmputed using sequential logic. We assume that

each EM-Ievel PE t=erforms sane local ccmputation IXior to the synchronizatioo

operation that yields a single, numerical priority rating. PE's containing

matching .:roductions are assigned positive values, while other EM-level FE's

are assigned a priority of zero. We also assume that each l:M-Ievel FE has a

distinct .ft.tag, stored in a fixed location within its local IIlBIlOry, which may

be used to uniquely identify that PE.

After synchronization, all PM-Ievel PE's are instructed to enter SIMI) mode.

Each such PE is then instructed to send its priority rating to its ~rent.

Each parent canpares the priority ratings of its two children, retaining the

larger of the two, alcng with the unique tag of the "winner". 'lbe process is

repeated at successively higher levels within the tree until a single tag

arrives at the root. 'lbis tag is then broadcast to all EM-level PE's for

matching, disabling all except the one having the highest priority rating,

which remains enabled for the action I=hase.

9

6. '!be Action Phase

At this point, the "winning" PE is instructed to instantiate its RES, which

is then broadcast to the root. Next, all fM-level PE's are enabled, and the

RES of the winning instance is broadcast to all. The details of the action

Fi'lase are nade more canplex by the importance of avoiding unnecessary

replication of WM literals within the lower portion of the tree, and of

reclaiming local memory s};:ace freed by the deletion of such literals. 'Ibese

functions are based on associative operations similar to those anployed in the

natching operatioo.

The FE's at the EM level are instructed to enter MIMD IOOde and to

concurrently update their WM-subtrees as specified by the RBS of the winning

instance.

First, the PM-Ievel PE's perform an associative pcObe for each literal to

be deleted frem WM, enabling only those PE' s in the WM-subtrees whose local

memories are to be reclaiIred. '!be enabled PE's are then instructed by the PM

level FE to O'tlerwrite their stored ground literal with a special ~.tag

identifying empty PE's. This tag is the target of the subsequent associative

probe executed for each of the ground literals to be added to WM.

When processing an asserted literal, the fM-level FE first determines

'""hether or not the literal is relevant to its stored production. Next, the

associative operation identifies those relevant literals which are not present

in the WM-subtree, and thus are to be stored in sane empty PE.

After probing for the free-tag, all FE's are disabled except the empty

PE's. To avoid duplication of asserted literals, all but one of these PE's is

disabled by a multiple ~ resolution scheme which uses canbinatorial

har&are in the I/O switch to very rapidly clear a flag in all but an

arbitrary "first n enabled PE. The asserted literal is then broadcast to the

10

one enabled FE.

As in the matching ~, the selection ~se in general will terminate at

different times in each l?M-level FE. After synchronization, another cycle of

production system execution begins with the production matching ~se.

7. S(:eCialized Production systems

The general scheme for production system execution on DAOO can be extended

to support execution of carmutative production systems, as well as

"cooperating expert systems" based on multiple, independently executing

production systems.

A camrutative production system allc.ws each of the matching rules on every

cycle of operation to be selected for execution. The same canbinatorial

hardware used in the action tilase to select a single arbitrary "free" PE

supports this o};:eration by enumerating each of the matching productions in an

arbitrary sequential order. Each of the RHS's so reported to the root are

then processed by the action tilase.

In our exposition of the general production system algori thIn, it was

assumed that the upper tree was rooted at the (~ysical) root of DAOO (see

Figure 3-1). Since each PE in the DAOO tree can execute its c.wn independent

program, the upper tree can be rooted at an arbitrary internal node of DAm.

'!hus, multiple, independent production systems are executed on the DAD:)

machine by rooting a forest of upper trees at the same fixed level of the DAm

tree. Ccmnunication among these independent production systems is implenented

in the same fashion as ccmnunication among the l?M-level PE's during the

(camnutative) production system cycle.

Shaw, David Elliot.
Knowledge-Based Retrieval O~g Relational Database Machine.
Ph.D. thesis, Department of Computer Science, Stanford

Oniversity, August, 1980.

Shaw, David Elliot, Salvatore J. Stolfo, Husse~n Ibrahim, Bruce
Hillyer, Gio Wiederhold and J. A. Andrews.
The NON-VON Database Machine: A Brief Overview.
Database Engineering 4(2), December, 1981.

Stolfo, Salvatore J. and David Elliot Shaw.
Specialized Hardware ~.Production Systems.
Technical Report, Department of Computer Science, Columbia

Oniversity, August, 1981.

REFERENCES

Davis, Randall and Jonathan King.
An Overview of production Systems.
Technical Report, Stanford University Computer Science

Department, 1975.
AI Lab Memo, AIM-271.

Fahlman, Scott E.
The Hashnet Interconnection Scheme.
Technical Report 125, Department of Computer Science, Carnegie

Mellon University, 1979.

Flynn, Michael J.
Some computer organizations and their effectiveness.
IEEE Transactions on Computers, 948-960, September, 1972.

Forgy, Charles L.
A Note on Production Systems ~ ILLIAC IV.
Technical Report 130, Department of Computer Science, Carnegie

Mellon Oniversity, July, 1980.

Fuhlrott, Oskar.
Bibliography on AI Machines.
SIGART Newsletter (79), January, 1982.

Newell, Allen.
Production Systems: Models of Control Structures.
In w. Chase (editor), Visual Information Processing, Academic

Press, 1973.

Rychener, Michael.
Production Systems as ~ Programming Language for Artificial

Intelligence Research.
PhD thesis, Department of Computer Science, Carnegie-Mellon

University, 1976.

Shaw, David Elliot.
~ Hierarchical Associative Architecture ~the Parallel

Evaluation Qf Relational Algebraic Database Primitives.
Technical Report STAN-CS-79-778, Department of Computer

Science, Stanford University, October, 1979.

