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Abstract. We consider the Witt-type formula for Daehee numbrers and
polynomials and investigate some properties of those numbers and polynomi-
als. In particular, Daehee numbers are closely related to higher-order Bernoulli
numbers and Bernoulli numbers of the second kind.

1. Introduction

As is known, the n-th Daehee polynomials are defined by the generating
function to be(

log (1 + t)

t

)
(1 + t)x =

∞∑
n=0

Dn (x)
tn

n!
, (see [5,6,8,9,10,11]) .(1.1)

In the special case, x = 0, Dn = Dn (0) are called the Daehee numbers.
Throughout this paper, Zp, Qp and Cp will denote the rings of p-adic integers,

the fields of p-adic numbers and the completion of algebraic closure of Qp.
The p−adic norm |·|p is normalized by |p|p = 1

p
. Let UD[Zp] be the space of

uniformly differentiable functions on Zp. For f ∈UD[Zp], the p-adic invariant
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integral on Zp is defined by

I (f) =

∫
�p

f (x) dμ0 (x) = lim
n→∞

1

pn

pn−1∑
x=0

f (x) , (see [6, 7]) .(1.2)

Let f1 be the translation of f with f1 (x) = f (x + 1) . Then, by (1.2), we
get

I (f1) = I (f) + f ′ (0) , where f ′ (0) =
df (x)

dx

∣∣∣∣
x=0

.(1.3)

As is known, the Stirling number of the first kind is defined by

(x)n = x (x − 1) · · · (x − n + 1) =

n∑
l=0

S1 (n, l)xl,(1.4)

and the Stirling number of the second kind is given by the generating function
to be (

et − 1
)m

= m!

∞∑
l=m

S2 (l, m)
tl

l!
, (see [2,3,4]) .(1.5)

For α ∈ Z, the Bernoulli polynomials of order α are defined by the generating
function to be (

t

et − 1

)α

ext =
∞∑

n=0

B(α)
n (x)

tn

n!
, (see [1, 2, 8]) .(1.6)

When x = 0, B
(α)
n = B

(α)
n (0) are called the Bernoulli numbers of order α.

In this paper, we give a p-adic integral representation of Daehee numbers and
polynomials, which are called the Witt-type formula for Daehee numbers and
polynomials. From our integral representation, we can derive some interesting
properties related to Daehee numbers and polynomials.

2. Witt-type formula for Daehee numbers and polynomials

First, we consider the following integral representation associated with falling
factorial sequences :∫

�p

(x)n dμ0 (x) , where n ∈ Z+ = N ∪ {0} .(2.1)

By (2.1), we get
∞∑

n=0

∫
�p

(x)n dμ0 (x)
tn

n!
=

∫
�p

∞∑
n=0

(
x

n

)
tndμ0 (x)(2.2)

=

∫
�p

(1 + t)x dμ0 (x) ,

where t ∈ Cp with |t|p < p−
1

p−1 .
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For t ∈ Cp with |t|p < p−
1

p−1 , let us take f (x) = (1 + t)x . Then, from (1.3),
we have ∫

�p

(1 + t)x dμ0 (x) =
log (1 + t)

t
.(2.3)

By (1.1) and (2.3), we see that
∞∑

n=0

Dn
tn

n!
=

log (1 + t)

t
(2.4)

=

∫
�p

(1 + t)x dμ0 (x)

=
∞∑

n=0

∫
�p

(x)n dμ0 (x)
tn

n!
.

Therefore, by (2.4), we obtain the following theorem.

Theorem 1. For n ≥ 0, we have∫
�p

(x)n dμ0 (x) = Dn.

For n ∈ Z, it is known that(
t

log (1 + t)

)n

(1 + t)x−1 =

∞∑
k=0

B
(k−n+1)
k (x)

tk

k!
, (see [2,3,4]) .(2.5)

Thus, by (2.5), we get

Dk =

∫
�p

(x)k dμ0 (x) = B
(k+2)
k (1) , (k ≥ 0) ,(2.6)

where B
(n)
k (x) are the Bernoulli polynomials of order n.

In the special case, x = 0, B
(n)
k = B

(n)
k (0) are called the n-th Bernoulli

numbers of order n.
From (2.4), we note that

(1 + t)x

∫
�p

(1 + t)y dμ0 (y) =

(
log (1 + t)

t

)
(1 + t)x(2.7)

=

∞∑
n=0

Dn (x)
tn

n!
.

Thus, by (2.7), we get∫
�p

(x + y)n dμ0 (y) = Dn (x) , (n ≥ 0) ,(2.8)

and, from (2.5), we have

Dn (x) = B(n+2)
n (x + 1) .(2.9)
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Therefore, by (2.8) and (2.9), we obtain the following theorem.

Theorem 2. For n ≥ 0, we have

Dn (x) =

∫
�p

(x + y)n dμ0 (y) ,

and

Dn (x) = B(n+2)
n (x + 1) .

By Theorem 1, we easily see that

Dn =
n∑

l=0

S1 (n, l) Bl,(2.10)

where Bl are the ordinary Bernoulli numbers.
From Theorem 2, we have

Dn (x) =

∫
�p

(x + y)n dμ0 (y)(2.11)

=

n∑
l=0

S1 (n, l) Bl (x) ,

where Bl (x) are the Bernoulli polynomials defined by generating function to
be

t

et − 1
ext =

∞∑
n=0

Bn (x)
tn

n!
.

Therefore, by (2.10) and (2.11), we obtain the following corollary.

Corollary 3. For n ≥ 0, we have

Dn (x) =

n∑
l=0

S1 (n, l) Bl (x) .

In (2.4), we have

t

et − 1
=

∞∑
n=0

Dn
1

n!

(
et − 1

)n
(2.12)

=

∞∑
n=0

Dn
1

n!
n!

∞∑
m=n

S2 (m,n)
tm

m!

=
∞∑

m=0

(
m∑

n=0

DnS2 (m, n)

)
tm

m!

and

t

et − 1
=

∞∑
m=0

Bm
tm

m!
.(2.13)
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Therefore, by (2.12) and (2.13), we obtain the following theorem.

Theorem 4. For m ≥ 0, we have

Bm =

m∑
n=0

DnS2 (m,n) .

In particular, ∫
�p

xmdμ0 (x) =
m∑

n=0

DnS2 (m, n) .

Remark. For m ≥ 0, by (2.11), we have∫
�p

(x + y)m dμ0 (y) =

m∑
n=0

Dn (x) S2 (m, n) .

For n ∈ Z≥0, the rising factorial sequence is defined by

x(n) = x (x + 1) · · · (x + n − 1) .(2.14)

Let us define the Daehee numbers of the second kind as follows :

D̂n =

∫
�p

(−x)n dμ0 (x) , (n ∈ Z≥0) .(2.15)

By (2.15), we get

x(n) = (−1)n (−x)n =
n∑

l=0

S1 (n, l) (−1)n−l xl.(2.16)

From (2.15) and (2.16), we have

D̂n =

∫
�p

(−x)n dμ0 (x) =

∫
�p

x(n) (−1)n dμ0 (x)(2.17)

=
n∑

l=0

S1 (n, l) (−1)l Bl.

Therefore, by (2.17), we obtain the following theorem.

Theorem 5. For n ≥ 0, we have

D̂n =

n∑
l=0

S1 (n, l) (−1)l Bl.

Let us consider the generating function of the Daehee numbers of the second
kind as follows :
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∞∑
n=0

D̂n
tn

n!
=

∞∑
n=0

∫
�p

(−x)n dμ0 (x)
tn

n!
(2.18)

=

∫
�p

∞∑
n=0

(−x

n

)
tndμ0 (x)

=

∫
�p

(1 + t)−x dμ0 (x) .

From (1.3), we can derive the following equation :∫
�p

(1 + t)−x dμ0 (x) =
(1 + t) log (1 + t)

t
,(2.19)

where |t|p < p−
1
p .

By (2.18) and (2.19), we get

1

t
(1 + t) log (1 + t) =

∫
�p

(1 + t)−x dμ0 (x)(2.20)

=
∞∑

n=0

D̂n
tn

n!
.

Let us consider the Daehee polynomials of the second kind as follows :

(1 + t) log (1 + t)

t

1

(1 + t)x =
∞∑

n=0

D̂n (x)
tn

n!
.(2.21)

Then, by (2.21), we get∫
�p

(1 + t)−x−y dμ0 (y) =

∞∑
n=0

D̂n (x)
tn

n!
.(2.22)

From (2.22), we get

D̂n (x) =

∫
�p

(−x − y)n dμ0 (y) , (n ≥ 0)(2.23)

=

n∑
l=0

(−1)l S1 (n, l)Bl (x) .

Therefore, by (2.23), we obtain the following theorem.

Theorem 6. For n ≥ 0, we have

D̂n (x) =

∫
�p

(−x − y)n dμ0 (y) =
n∑

l=0

(−1)l S1 (n, l) Bl (x) .
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From (2.21) and (2.22), we have(
t

et − 1

)
e(1−x)t =

∞∑
n=0

D̂n (x)
1

n!

(
et − 1

)n
(2.24)

=
∞∑

n=0

D̂n (x)
1

n!
n!

∞∑
m=n

S2 (m, n)
tm

m!

=
∞∑

m=0

(
m∑

n=0

D̂n (x) S2 (m, n)

)
tn

m!
,

and ∫
�p

e−(x+y)tdμ0 (y) =
∞∑

n=0

D̂n (x)
(et − 1)

n

n!
(2.25)

=

∞∑
m=0

(
m∑

n=0

D̂n (x) S2 (m, n)

)
tm

m!
.

Therefore, by (2.24) and (2.25), we obtain the follwoing theorem.

Theorem 7. For m ≥ 0, we have

Bm (1 − x) = (−1)m

∫
�p

(x + y)m dμ0 (y)

=

m∑
n=0

D̂n (x) S2 (m, n) .

In particular,

Bm (1 − x) = (−1)m Bm (x) =
m∑

n=0

D̂m (x) S2 (m, n) .

Remark. By (2.5), (2.20) and (2.21), we see that

D̂n = B(n+2)
n (2) , D̂n (x) = B(n+2)

n (2 − x) .

From Theorem 1 and (2.15), we have

(−1)n Dn

n!
= (−1)n

∫
�p

(
x

n

)
dμ0 (x)(2.26)

=

∫
�p

(−x + n − 1

n

)
dμ0 (x)

=

n∑
m=0

(
n − 1

n − m

)∫
�p

(−x

m

)
dμ0 (x)

=
n∑

m=0

(
n − 1

n − m

)
D̂m

m!
=

n∑
m=1

(
n − 1

m − 1

)
D̂m

m!
,
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and

(−1)n D̂n

n!
= (−1)n

∫
�p

(−x

n

)
dμ0 (x) =

∫
�p

(
x + n − 1

n

)
dμ0 (x)(2.27)

=
n∑

m=0

(
n − 1

n − m

)∫ 1

0

(
x

m

)
dμ0 (x)

=
n∑

m=0

(
n − 1

m − 1

)
Dm

m!
=

n∑
m=1

(
n − 1

m − 1

)
Dm

m!
.

Therefore, by (2.26) and (2.27), we obtain the following theorem.

Theorem 8. For n ∈ N, we have

(−1)n Dn

n!
=

n∑
m=1

(
n − 1

m − 1

)
D̂m

m!
,

and

(−1)n D̂n

n!
=

n∑
m=1

(
n − 1

m − 1

)
Dm

m!
.
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