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Abstract: In the field of image fusion, spatial detail blurring and color distortion appear in synthetic
aperture radar (SAR) images and multispectral (MS) during the traditional fusion process due to
the difference in sensor imaging mechanisms. To solve this problem, this paper proposes a fusion
method for SAR images and MS images based on a convolutional neural network. In order to
make use of the spatial information and different scale feature information of high-resolution SAR
image, a dual-channel feature extraction module is constructed to obtain a SAR image feature map.
In addition, different from the common direct addition strategy, an attention-based feature fusion
module is designed to achieve spectral fidelity of the fused images. In order to obtain better spectral
and spatial retention ability of the network, an unsupervised joint loss function is designed to train
the network. In this paper, the Sentinel 1 SAR images and Landsat 8 MS images are used as datasets
for experiments. The experimental results show that the proposed algorithm has better performance
in quantitative and visual representation when compared with traditional fusion methods and deep
learning algorithms.

Keywords: SAR and MS images; image fusion; convolutional neural network (CNN)

1. Introduction

With the rapid development of remote sensing technology, the types of imaging
sensors have become more and more diverse. In terms of remote sensing systems, high
spectral resolution and spatial resolution often cannot be obtained simultaneously [1,2].
The synthetic aperture radar is an active microwave sensor whose imaging process does not
depend on signal from the sun. This allows SAR systems to operate all day and under all
weather circumstances. However, it also leads to SAR images that do not contain spectral
information [3,4]. Multispectral sensors are passive and rely mainly on the ability of the
ground to reflect light, which can visually respond to the color and texture of the object;
however, they have a low resolution [5]. Therefore, fusing MS images and SAR images to
generate high-quality fused images with richer spatial information and spectral feature
greatly improves the structural information of the source images and can obtain the hidden
information in SAR images, which enhances the image interpretation capability. It facilitates
the subsequent tasks such as urban land cover, terrain classification, and road detection.

Currently, image fusion algorithms can be divided into four main categories:
component substitution (CS), multiresolution analysis (MRA), hybrid methods, and deep
learning-based methods.

The CS method projects the low-spatial-resolution MS images to other spaces, thus
separating the spectral and spatial information, and replaces the spatial components with
high-spatial-resolution SAR images by histogram matching. Finally, the MS images are
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inverted back to the original space to obtain the fusion results. Methods that function in
this manner include: IHS transform [6–9], principal component analysis (PCA) [10–12],
Brovery transform (BT) [13], Gram–Schmidt (GS) transformation [14], etc.

The MRA method decomposes the source image into different scale spaces using
multiscale transformation methods first, such as Laplacian pyramid transform [15,16],
wavelet transform [17–20], contourlet transform [21,22] and curvelet transform [23,24],
non-subsampled contourlet transform (NSCT) [25–27], non-subsampled shearlet transform
(NSST) [28]. Then, the image is fused in different scale space. Finally, the fusion result is
obtained by inverse transformation.

Hybrid methods [29–31] combine the advantages of CS and MRA methods. The
PCA transform can obtain higher spatial resolution, but produces more severe spectral
distortion. On the other hand, wavelet transform is able to retain spatial information,
but the result lacks high spatial resolution. YAN et al. [30] proposed a fusion technique
based on additive wavelet decomposition and PCA transform to achieve remote sensing
image fusion. Zhao et al. [31] proposed a fusion method based on IHS and NSCT transform,
which effectively achieved unmanned aerial vehicle (UAV) panchromatic and hyperspectral
image fusion.

In recent years, deep learning has produced excellent results in computer vision,
natural language processing, and image processing due to its powerful feature
representation [32]. Image fusion is an important branch of image processing, and
researchers have proposed many deep learning-based image fusion methods [33–38].
K. Ram Prabhakar et al. [33] proposed the DeepFUSE network to implement extreme
exposure image fusion. The network consists of three components: a feature extraction
layer, a fusion layer, and a reconstruction layer. The feature extraction network extracts
similar features from different source images through weight sharing and fuses them
in the fusion layer to obtain the fusion results. On this basis, Li [34] proposed the
DenseFuse method for the fusion of infrared and visible images. The encoded network
obtained better fusion results by introducing dense linking blocks to link the features
of each layer with other layers to get richer features. Yuan [35] proposed a multiscale
and multidepth convolutional neural network (MSDCNN) which obtained good results
in the pan-sharpening task. Yang et al. [37] proposed a new progressive cascade deep
residual network with two residual sub-networks for the pan-sharpening task and obtained
distortion-free fusion results. He [38] proposed a convolutional neural network-based
method for arbitrary resolution traditional hyperspectral (ARHS-CNN) to achieve arbitrary
resolution hyperspectral image fusion. Saxena [39] proposed a pan-sharpening method
based on the multistage multichannel spectral graph wavelet transform and a convolutional
neural network (SGWT-PNN).

Among the above four types of methods, CS methods have lower computational
complexity, but these methods are highly dependent on the correlation between images.
Owing to the large differences between SAR images and MS images, the fused images of
SAR and MS images can show severe spectral distortion. MRA fusion methods can achieve
fusion in different frequency spaces as a way to obtain better performance. However, MRA
methods are extremely time consuming and heavily rely on decomposition methods and
fusion rules. It is still difficult to choose the appropriate decomposition methods and fusion
rules for different images. Deep learning methods can dispose of the high level of manual
involvement, enabling the network to learn autonomously. However, most networks
simply sum the feature maps without considering the connections between feature map
channels. It is equally difficult to design a suitable network structure for a specific source
image fusion task.

To overcome the above-mentioned limitations, this paper proposes a dual-channel
feature extraction and attention fusion convolutional neural network (DAFCNN) to achieve
SAR image and MS image fusion. In order to extract the features of high-resolution SAR
images more effectively, we design a dual-channel feature extraction module to extract the
spatial feature information of high-resolution SAR images at different levels. In addition,
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an attention-based feature fusion (AFF) module is designed to fuse features from SAR
image and MS image. The AFF module is different from the common direct summation
fusion strategy, which fully considers the relationship between feature map bands and
preserves the spectral characteristics of MS images. To train our network more effectively,
an unsupervised joint loss function is proposed to constrain the network training. The
experimental results in Section 4 show that the proposed method has excellent performance
in the task of fusing SAR images with MS images.

The rest of this paper is organized as follows: Section 2 presents the related work,
Section 3 describes the method proposed in this paper, Section 4 provides the experimental
results and compares them with other methods, and finally, Section 5 makes a conclusion.

2. Related Work
2.1. Residual Block Structure

He et al. [40] proposed a residual learning network structure that overcomes the
problem of vanishing network gradients while deepening the network. A residual block is
shown in Figure 1. Formally, the residual block is represented as

y = F(x, {Wi}) + x (1)

where x and y are the input and output vectors of the residual block. The function
F(x, {Wi}) denotes the residual mapping to be learned. As in Figure 1, the F(x) is
represented as

F(x) = W2δ(W1x) (2)

where W is the weight of convolutional layer and δ is the ReLU activation function.

x

w1

x

identity

Figure 1. Residual block structure.

2.2. Squeeze-and-Excitation Networks

Hu et al. [41] proposed the channel attention module squeeze-and-excitation network
(SENet), as shown in Figure 2. SENet uses global information to explicitly model dynamic,
nonlinear dependencies between channels, which can simplify the learning process,
suppress useless information, and significantly enhance the representation capability of
the network. Furthermore, SENet is easy to integrate into other networks as an attention
module. SENet includes a squeezing module and an excitation module. The squeeze
module extracts the spatial information by global average pooling, which can compress the
information without increasing the time and space complexity. The squeezing operation
Fsq(·) flow equation is represented as

zc = Fsq(Uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

Uc(i, j) (3)
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where U is the input feature map of the squeezing operation; H, W, C represent the
height, width, and channel of the feature map; and z is the output feature map of the
squeezing operation.

( )sqF
( )exF

( , )scaleFH

C

W

U

H

C

W

Y

1 1 C  1 1 C 

Figure 2. SENet.

To take advantage of the global information obtained from the squeeze operation, the
excitation operation is then used to fully capture the channel correlation. The excitation
operation Fex(·) uses the sigmoid activation gate mechanism and the process equation is
denoted as

s = Fex(z, D) = σ(g(z, D)) = σ(D2δ(D1z)) (4)

where s is the output feature map of the excitation operation, δ denotes the ReLU activation
function, σ denotes the sigmoid activation function, and D1, D2 denotes the fully connected
operation. The output Y of the final network is denoted as

Y = Fscale(Uc, sc) = Ucsc (5)

where Fscale(Uc, sc) represents the input feature map U multiplied by the scaling factor s
by channel.

2.3. Structural Similarity Index

Wang et al. [42] proposed an structural similarity evaluation metric (SSIM) to measure
the similarity between two images. SSIM compares the differences between images in terms
of luminance, contrast, and structure, respectively. The defined functions of luminance,
contrast, and structure are as follows:

l(R, F) =
2µRµF + C1

µ2
R + µ2

F + C1
(6)

c(R, F) =
2σRσF + C2

σ2
R + σ2

F + C2
(7)

s(R, F) =
σRF + C3

µRµF + C3
(8)

where µR, µF, σ2
R, σ2

F, σRF denote the mean, variance of image and covariance between
the two images, respectively. The function of Ci(i = 1, 2, 3) is to avoid instability when
the denominator of l, c, s approaches 0. Ci can be calculated as C1 = (K1L)2, C2 = (K2L)2,
C3 = C2/2, usually set K1 = 0.01, K2 = 0.03. L is the dynamic range of the image pixel
values. The above three metrics are combined to form SSIM as

SSIM = [l(R, F)]α[c(R, F)]β[s(R, F)]γ (9)

3. The Proposed Method

In this section, the structure of DAFCNN is described in detail, which consists of
three modules: the spatial feature extraction branch, the spectral preservation branch, and
the feature fusion module based on the attention mechanism. This section introduces the
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specifics of these three modules at first, and then the designed loss function is introduced.
The complete structure of the network is shown in Figure 3.
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Figure 3. Detailed structure diagram of DAFCNN.

3.1. Spatial Feature Extraction Branch

The spatial feature extraction branch consists of a two-channel feature extraction
network and four residual blocks. In order to efficiently and completely obtain the objects’
information of various sizes in SAR images, a dual-channel feature extraction module is
designed to extract the object features in SAR images. The dual-channel feature extraction
module has two independent modules: a three layers basic convolutional module and a
multi-scale feature extraction block (MSFEB). The three-layer structure is used to extract
shallow features in SAR images. The MSFEB can extract intermediate and high-level
features of SAR images, and its structure is shown in Figure 4a.
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Figure 4. Structure of MSFEB. (a) General MSFEB, (b) improved MSFEB.
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In general, large convolutional kernels are used to extract features of large targets,
and small convolutional kernels are used to extract features of small targets. MSFEB uses
convolutional layers with kernel sizes of 3 × 3, 5 × 5, and 7 × 7 to extract features at
different scales, and then links the feature maps extracted from different kernels by channel.
The MSFEB also introduces skip connections, which can make fuller use of the spatial
information in SAR images and avoid information loss due to deeper network. In order
to speed up the network training but not affect the network feature extraction capability,
we replace the 3 × 3, 5 × 5, and 7 × 7 convolutional kernels with 1 × 3 and 3 × 1, 1 × 5
and 5 × 1, and 1 × 7 and 7 × 1 convolutional kernels. The improved MSFEB structure is
shown in Figure 4b.

The following figure shows the feature maps extracted by MSEFB and the basic
three-layer module (five groups selected from each feature map). As shown in Figure 5,
it can be seen that MSEFB can extract finer ground texture details, whereas the basic
three-layer module extracts rough structures.

(a)

(b)

Figure 5. Example of the features extracted by two different modules. (a) Feature maps of MSFEB,
(b) feature maps of basic convolutional module.

3.2. Spectral Retention Branch

The purpose of the spectral retention branch is to retain more spectral information
of MS images when upsampling MS images and also to retain the target information in
MS images. In this paper, the upsampling and resblock method is designed to achieve the
upsampling of MS images. As shown in Figure 3, a residual block is introduced to extract
the feature information of MS images after the upsampling operation using the bicubic
linear interpolation operator. At the same time, it can eliminate the checkerboard artifacts
generated by the upsampling operation.

The feature map obtained by spectral retention branch is shown in Figure 6. From
the feature map, it can be seen that the spectral preservation branch preserves the spatial
information of the MS image, and the differences between channels can also reflect the
spectral information of the feature map.

3.3. Attention Feature Fusion Module

The feature maps of SAR and MS images are obtained after the spatial feature
extraction branch and the spectral retention branch. In order to fully utilize the spatial
information of the SAR image and the spectral information of the MS image, the feature
maps must be fused. Unlike other networks that simply add the features of two images
directly, the proposed attention feature fusion (AFF) module can calculate the weights
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of each feature map by channel. Then let the feature maps be summed by channel with
different weights. The structure of AFF module is shown in Figure 7. AFF model can be
expressed as

OUT = M1(X1)⊗ X1 ⊕M2(X2)⊗ X2 (10)

where X1, X2 denotes the two input feature maps, OUT denotes the output of AFF module,
M(X) denotes the adaptive weights obtained from the channel attention module, ⊗ is
elemental multiplication, and ⊕ is summation by elements.

(a) (b) (c) (d)

Figure 6. Example of the feature maps extracted by spectral retention branch. (a) Input MS image.
(b) First feature map. (c) Second feature map. (d) Third feature map.

GlobalAverage

Pooling2D

FC

Relu

FC

Sigmoid

GlobalAverage

Pooling2D

FC

Relu

FC

Sigmoid

X1 X2

OUT

Figure 7. AFF module.

3.4. Unsupervised Union Loss Function

An unsupervised learning joint loss function is designed to train the network for
the imaging mechanism of SAR images and MS images, the difficulty of obtaining real
reference images, and the need to simultaneously consider the spatial detail information of
SAR images and the spectral information of MS images. The union loss function contains
spectral loss Lspectral and detail loss Lspatial , which are calculated as

Loss = Lspectral + λLspatial (11)
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where λ denotes the weighting coefficient. The spectral loss function is expressed as the L1
norm between the fusion image and the multispectral image, which is used to constrain
the spectral distortion of the fused image. The formula is defined as

Lspectral = |F−MS ↑ |1 (12)

where F denotes the fused image, MS ↑ is the 3-fold upsampled MS input image, and | · |1
denotes the L1 norm. The detail loss function represents the structural similarity between
the fused image and the input SAR image, so that the fused image carries more spatial
detail information of the SAR image. The formula is defined as

Lspatial = 1− SSIM(F, SARHP) (13)

where SARHP is the high-pass filtered SAR image. The SSIM calculation formula is shown
in Equation (9).

4. Experiments and Results
4.1. Datasets

The training datasets in this paper are selected from Sentinel-1 and LandSat-8.
Sentinel-1 is Global Monitoring for Environment and Security (GMES) of the European
Space Agency, consisting of two satellites carrying a C-band synthetic aperture radar that
provides continuous images (day, night, and various weather conditions). Landsat is a
series of U.S. Earth observation satellite systems used to explore the Earth’s resources
and environment, mainly for resource exploration, environmental monitoring, natural
disaster prevention, etc. In this paper, the Ground Range Detected (GRD) level SAR data of
Sentinel-I with a resolution of 10 m and polarization of VH are selected as SAR datasets.
The MS images are selected from Landsat-8, with 4, 3, and 2 bands consisting of true color
images with a resolution of 30 m. The images contain features such as wide sea area, cities,
vegetation, mountains, etc., which can verify the applicability of the proposed method.
Two grouped images of the dataset are shown in Figure 8.

(a) (b)

Figure 8. Two groups images of Data set. (a) the first group, (b) the second group.

For more efficient training of the network, the source images are cropped into small
patches.The MS images are cropped to a size of 32 × 32 pixels and the SAR images are
cropped to a size of 96 × 96 pixels. A total of 25,600 pairs of images are cropped for training
the network. In addition, a total of 656 pairs of SAR images and MS images of 768 × 768
and 256 × 256 pixel size are selected to test the network.

4.2. Experimental Setting

We split the dataset in the ratio of 9:1 as training and validation sets to train the
network in 200 epochs. Batch size was set to 8, and the loss function was constrained
using adaptive moment estimation (Adam). The initial learning rate was 0.0002 and the
learning decay rate was 0.5. When the performance of the model did not improve after
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three epochs of iteration, the learning rate reduction mechanism is triggered, and when
the performance of the model does not improve after 10 epochs of iteration, the training
process is terminated to avoid overfitting.

To further validate the effectiveness of the proposed union loss function, we set
different values to train the network. Figure 9 shows the peak signal-to-noise ratio
(PSNR) [43] (larger is better, Figure 9a) and spectral angle mapper (SAM) [44] (smaller
is better, Figure 9b) on the test dataset after training the network with different lambda
values. It can be seen from Figure 9 that PSNR decreases with the increase in value, whereas
SAM increases with the increase in value. The best performance was obtained when λ was
0.1. Therefore, in subsequent experiments, the value of λ was set to 0.1. The network is
implemented under python 3.8 and tensorflow 2.7. The experiments were performed on an
NVIDIA (Santa Clara, CA, USA) GeForce RTX 3060 Laptop GPU.

(a)

(b)

Figure 9. Result of λ experimental. (a) PSNR, (b) SAM.
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4.3. Comparison of Methods

In this paper, the proposed method is compared with six methods in terms of both
visual performance and quantitative metrics.

(1) IHS [6]: a fast intensity–hue–saturation fusion technique;
(2) NSCT [27]: non-subsampled contourlet transform domain fusion method;
(3) Wavelet [17]: the wavelet transform fusion method;
(4) NSCT-FL [26]: a fusion method based on NSCT and fuzzy logic;
(5) NSCR-PCNN [25]: a fusion method Based on NSCT and pulse-coupled

neural network;
(6) MSDCNN [35]: a multiscale and multidepth convolutional neural network. The

MSDCNN is trained to constrain the training by using the loss function proposed in
this paper.

4.4. Evaluation Indicators

In this paper, seven widely using metrics are selected to quantitatively evaluate the
performance of the proposed method and the comparison method. Four of them are
included as reference image evaluation metrics: correlation coefficient (CC) [45], peak
signal-to-noise ratio (PSNR) [43], spectral angle mapper (SAM) [44], SSIM [42]. Three
non-reference evaluation metrics are used as well, which include quality with no reference
(QNR), spatial distortion (Ds) and spectral distortion (Dλ) [45]. In calculating the evaluation
metrics with reference images, the triple upsampling MS images are used as reference
images according to Wald’s protocol [46].

The correlation coefficient (CC) reflects the correlation degree between the fused image
and the reference image, and its value ranges from [−1,1], and larger values indicate a
higher correlation between the two images. The CC is defined as

CC =

M
∑
i

N
∑
j
[(R(i, j)− µR)(F(i, j)− µF)]√

M
∑
i

N
∑
j
(R(i, j)− µR)

2 �
M
∑
i

N
∑
j
(F(i, j)− µF)

2
(14)

µR =
1

M× N

M

∑
i

N

∑
j

R(i, j) (15)

µF =
1

M× N

M

∑
i

N

∑
j

F(i, j) (16)

where R, F are the reference image and the fused image (the following R, F all represent
this meaning), µ is the average value of the image, and M, N are the height and width of
the image.

The peak signal-to-noise ratio (PSNR) reflects the quality of the fused image by
calculating the ratio between the maximum peak value of the fused image and the mean
square error of the reference image. The PSNR is defined as

PSNR = 10 lg
(MAXI)

2

1
M×N

M
∑
i

N
∑
j
(F(i, j)− R(i, j))2

(17)

where MAXI indicates the maximum value of image pixel points. A higher PSNR value
between two images indicates that the two images are more similar.
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A spectral angle mapper (SAM) is used to measure the degree of spectral distortion
between the fused image and the corresponding pixel points of the reference image. The
SAM is defined as

SAM = arccos
(
〈IR, IF〉
‖IR‖ � ‖IF‖

)
(18)

where IR, IF is the vector at the same pixel point of the reference image and the fused image,
〈·, ·〉 denotes the inner product of the two vectors, and ‖·‖ denotes the L2 norm. The ideal
value of SAM is 0.

The structural similarity (SSIM) defines structural information from the perspective
of image composition as a property that reflects the structure of objects in a scene
independently of luminance and contrast. Furthermore, the distortion of the image is
expressed as the combination of three different factors of luminance, contrast, and structure.
The expression is shown in Equation (9), and the coefficient α, β, γ in Equation (9) is set
to 1.

The quality with no reference (QNR) index reflects the quality of the fused image by
measuring the spatial distortion between the MS image, the SAR image, and the fused
image, as well as the spectral distortion between the MS image and the fused image. The
optimal value of QNR is 1, where the quality of the fused image is the highest. QNR is
defined as

QNR = (1− Dλ)
α(1− Ds)

β (19)

whereα, β usually is set to 1, Dλ and Ds are obtained by calculating the Q [41] index between
different images. The index Q [39] is commonly used to measure image distortion and is
calculated as

Q =
2µRµF

µ2
R + µ2

F

|σRF|
σR � σF

2σR � σF

σ2
R + σ2

F
(20)

Dλ measures the spectral distortion of the image by calculating the Q value between
the respective channels of the fused image and the original MS image. The optimal value
of Dλ is 0. The Dλ is calculated as

Dλ = p

√√√√ 1
L(L− 1)

L

∑
l=1

L

∑
r=1,r 6=l

(
Q(Fl , Fr)−Q(MSl , MSr)

)p (21)

where MS denotes the original multispectral image, and L denotes the number of channels
of the fused image. p is usually set to 1.

Ds measures the degree of spatial distortion of the fused image by calculating the
difference between the Q metric between the fused image and the SAR image channel and
the Q value between the original MS image and the degraded SAR image. The optimal
value of Ds is 0, and the Ds is calculated as

Ds =
q

√√√√ 1
L

L

∑
l=1

(
Q(Fl , SAR)−Q(MSl , SARLR)

)q

(22)

where SAR denotes the input SAR image and SARLR denotes the downsampled SAR
image. q is usually set to 1.

4.5. Analysis of Results

In the experiments, two groups of images from the test dataset of 656 images containing
various types of features were selected to analyze the advantages and disadvantages
between the proposed method and the comparison method in terms of visual effects and
objective evaluation indexes. In the table of objective evaluation indexes, the best values
are indicated in bold, the second best values are marked with underlined horizontal lines,
and the third values are marked with sliding wavy lines.
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The first group is the image with the river, and the fusion results of each method
are shown in Figure 10. Figure 10a is the reference image, Figure 10b is the original SAR
image, and Figure 10c–i show the fusion results of various methods. In order to be able to
more effectively observe the details of the fusion images, the red and yellow boxed areas
in the figure are enlarged as in Figures 11 and 12. As can be seen in Figure 10, the HIS,
NSCT, and wavelet spectra are severely distorted and also exhibit severe spatial distortion.
NSCT-FL and NSCT-PCNN have good performance in spectral retention, but exhibit severe
spatial detail in the form of spatial distortion. In comparison, the CNN-based methods
perform better in spectral retention compared to the conventional methods. However, the
MSDCNN is inferior to the DAFCNN in terms of feature extraction capability, as shown
in Figure 11. In the yellow enlarged area, it can be clearly seen from Figure 12 that the
MSDCNN has some spectral distortion. From the objective evaluation results, as shown in
Table 1, the performance of the CNN-based fusion method is far ahead of other methods,
and DAFCNN is in the leading position.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. The fusion results of different methods for the first group of images. (a) Reference, (b) SAR,
(c) IHS, (d) NSCT, (e) Wavelet, (f) NSCT-FL, (g) NSCT-PCNN, (h) MSDCNN, (i) DAFCNN.
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Table 1. Quantitative indicators of the first group fusion results.

Methods CC (↑) PSNR (↑) SAM (↓) SSIM (↑) Ds (↓) Dλ (↓) QNR (↑)
IHS −0.5820 6.3007 10.6878 −0.4972 0.1155 0.0027 0.8821

NSCT −0.0512 6.9353 14.9826 −0.0192 0.2648 0.0049 0.7315
Wavelet 0.6155 11.5314 3.1822 0.4338 0.0904 0.0017 0.9080

NSCT-FL
:::::
0.8535

::::::
15.6627 2.0313

:::::
0.8285

:::::
0.0215 0.0003

:::::
0.9782

NSCT-PCNN 0.8120 14.0786 2.3038 0.7873 0.1045 0.0011 0.8945
MSDCNN 0.9371 18.9213 2.6944 0.9337 0.0133 0.0004 0.9861
DAFCNN 0.9799 2.5795

:::::
2.4434 0.9679 0.0074

:::::
0.0006 0.9919

↑: The larger the value, the better. ↓: The smaller the value, the better. bold format: The best value. underline:
The second best value.

:::::
under

::::
wave

::::
lines: The third best value.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 11. Enlarged red box area in Figure 10. (a) Reference, (b) SAR, (c) IHS, (d) NSCT, (e) Wavelet,
(f) NSCT-FL, (g) NSCT-PCNN, (h) MSDCNN, (i) DAFCNN.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 12. Enlarged yellow box area in Figure 10. (a) Reference, (b) SAR, (c) IHS, (d) NSCT,
(e) Wavelet, (f) NSCT-FL, (g) NSCT-PCNN, (h) MSDCNN, (i) DAFCNN.
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The fusion results of the second group images, which include urban and mountain
areas are shown in Figure 13. Reference image and the original SAR image are shown in
Figure 13a,b, and Figure 13c–i show the fusion results of various methods. Similarly, the red
boxed area in the fusion results are enlarged as shown in Figure 14. from the fusion results
it can be seen that the traditional methods have serious spectral and spatial distortion,
and the CNN-based fusion method still outperforms the traditional method. However,
as shown in Figure 14, the MSDCNN introduces too much speckle noise, which leads to
distortion of the object structure in the image. the DAFCNN method adds more details
while obtaining better spectral fidelity. The objective evaluation metrics corresponding to
Figure 13 are shown in Table 2, and it can be seen that DAFCNN exhibits optimal fusion
values for most metrics.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13. The fusion results of different methods for the second group of images. (a) Reference,
(b) SAR, (c) IHS, (d) NSCT, (e) Wavelet, (f) NSCT-FL, (g) NSCT-PCNN, (h) MSDCNN, (i) DAFCNN.
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Table 2. Quantitative indicators of the second group fusion results.

Methods CC (↑) PSNR (↑) SAM (↓) SSIM (↑) Ds (↓) Dλ (↓) QNR (↑)
IHS −0.0123 9.5775 8.5049 −0.4900 0.0390 0.0091 0.9522

NSCT 0.5055 10.7658 9.0350 0.4479 0.0670 0.0218 0.9121
Wavelet 0.7380 14.3651 3.6564 0.6610 0.0281 0.0063 0.9658

NSCT-FL
:::::
0.8493 16.5720 2.7567

:::::
0.8367

:::::
0.0135 0.0030

:::::
0.9835

NSCT-PCNN 0.8346
::::::
16.2621 2.4721 0.8189 0.0154 0.0013 0.9833

MSDCNN 0.8577 15.9557 4.6426 0.8442 0.0089 0.0018 0.9893
DAFCNN 0.9750 22.3246

:::::
3.4506 0.9565 0.0067

:::::
0.0026 0.9908

↑: The larger the value, the better. ↓: The smaller the value, the better. bold format: The best value. underline:
The second best value.

:::::
under

::::
wave

::::
lines: The third best value.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 14. Enlarged red box area in Figure 13. (a) Reference, (b) SAR, (c) IHS, (d) NSCT, (e) Wavelet,
(f) NSCT-FL, (g) NSCT-PCNN, (h) MSDCNN, (i) DAFCNN.

Table 3 shows the average values of objective evaluation metrics for the entire set
containing 656 sets of images. From the table, it can be seen that the method DAFCNN
performs optimally in most of the evaluation metrics, which also proves that our proposed
method is effective for the task of fusing SAR images with MS images.

Table 3. Average quantitative metrics for the test dataset of 656 images.

Methods CC (↑) PSNR (↑) SAM (↓) SSIM (↑) Ds (↓) Dλ (↓) QNR (↑)
IHS 0.2909 8.6195 15.3945 0.0362 0.3730 0.2945 0.4765

NSCT 0.2607 8.9561 20.6113 0.1845 0.2380 0.2714 0.5421
Wavelet 0.7017 13.2078 4.6937 0.5699 0.1986 0.0431 0.7685

NSCT-FL
:::::
0.7061 19.2868 2.1126

:::::
0.6904 0.0296 0.0056 0.9649

NSCT-PCNN 0.6940
::::::
20.0053 2.0886 0.6740 0.0504 0.0046 0.9472

MSDCNN 0.8913 21.1186 3.0055 0.8466
:::::
0.0423 0.0053

:::::
0.9528

DAFCNN 0.9801 25.2072
:::::
2.5177 0.9394 0.0230 0.0053 0.9718

↑: The larger the value, the better. ↓: The smaller the value, the better. bold format: The best value. underline: The
second best value.

:::::
under

::::
wave

::::
lines: The third best value.

4.6. Validation of the Performance of the Proposed Fusion Module

When fusing feature maps, CNN-based fusion methods usually directly add two
feature maps in a simple linear manner without considering the relationship between
different feature maps. This fusion strategy may not yield the desired fusion results. In
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order to fully utilize the connections between feature map channels, the AFF module shown
in Figure 7 has been designed. The AFF module adds adaptive weights to the fused feature
maps through the attention mechanism.

To verify the effectiveness of the AFF module, the fusion strategy of feature maps
summed by elements is used in place of AFF module in the DAFCNN. The new fusion
network is called DAFCNN-ADD, and the original is called DAFCNN-AFF. As shown
in Figure 15, the DAFCNN-AFF has superior ability in spectral retention. the results of
DAFCNN-AFF are closer to the reference image. From this, it can be seen that adding
the AFF module significantly improves the performance of the network. Furthermore, as
shown in Table 4, Whether in reference image evaluation indicators or no reference image
evaluation indicators, the DAFCNN-AFF outperforms the DAFCNN-ADD in almost all
quantitative metrics. This also indicates that the proposed AFF module is useful for the
fusion of SAR images and MS images.

(a) (b) (c)

Figure 15. Verification of the performance of the AFF module. (a) Reference, (b) DAFCNN-ADD,
(c) DAFCNN-AFF.

Table 4. Verification of the performance of the AFF module.

Methods CC (↑) PSNR (↑) SAM (↓) SSIM (↑) Ds (↓) Dλ (↓) QNR (↑)
DAFCNN-AFF 0.9801 25.2072 2.5177 0.9394 0.0230 0.0053 0.9718
DAFCNN-ADD 0.9645 24.4646 2.7464 0.9395 0.0401 0.0108 0.9459

↑: The larger the value, the better. ↓: The smaller the value, the better. bold format: The better value.

5. Conclusions

In this paper, a dual-channel feature extraction and attention fusion convolutional
neural network (DAFCNN) is proposed to implement SAR image and MS image fusion. In
this experiment, the high-frequency components of SAR images are mainly used to obtain
spatial information of the images. In order to extract the features of high-resolution SAR
images more effectively, a dual-channel feature extraction module is designed to extract the
spatial feature information of high-resolution SAR images. The residual block is introduced
after the feature extraction module, which not only can obtain deeper feature maps but also
can reduce the information loss caused by the deeper network. Finally, unlike the common
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simple direct summation fusion strategy, an attention-based feature fusion (AFF) module is
designed, which takes fully into account the relationship between feature map channels and
shows excellent ability in spectral preservation. An upsampling+resblock structure is used
in the experiments to achieve upsampling of low-resolution MS images, which can not only
eliminate the tessellation effect but also better utilize the spatial information in MS images.
Finally, the unsupervised union loss function is used in the training phase to constrain the
network learning. The experimental results show that the proposed method has excellent
performance in the task of fusing SAR images with MS images. The fusion of MS images
and SAR images generates high-quality fused images with richer spatial information and
spectral features. It is also of great significance for urban land cover, terrain classification,
road detection, and other tasks. In the future, more methods will be sought to achieve SAR
image and MS image fusion instead of focusing on CNN only, such as by GAN, GCN, and
other methods to achieve SAR image and MS image fusion.
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