
DAFT: Decoupled Acyclic Fault Tolerance

Yun Zhang Jae W. Lee† Nick P. Johnson David I. August

Computer Science Department † Parakinetics Inc.
Princeton University Princeton, NJ 08542
Princeton, NJ 08540 leejw@parakinetics.com

{yunzhang, npjohnso, august}@princeton.edu

ABSTRACT
Higher transistor counts, lower voltage levels, and reduced noise
margin increase the susceptibility of multicore processors to tran-
sient faults. Redundant hardware modules can detect such errors,
but software transient fault detection techniques are more appealing
for their low cost and flexibility. Recent software proposals dou-
ble register pressure or memory usage, or are too slow in the ab-
sence of hardware extensions, preventing widespread acceptance.
This paper presents DAFT, a fast, safe, and memory efficient tran-
sient fault detection framework for commodity multicore systems.
DAFT replicates computation across multiple cores and schedules
fault detection off the critical path. Where possible, values are
speculated to be correct and only communicated to the redundant
thread at essential program points. DAFT is implemented in the
LLVM compiler framework and evaluated using SPEC CPU2000
and SPEC CPU2006 benchmarks on a commodity multicore sys-
tem. Results demonstrate DAFT’s high performance and broad
fault coverage. Speculation allows DAFT to reduce the perfor-
mance overhead of software redundant multithreading from an av-
erage of 200% to 38% with no degradation of fault coverage.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault tolerance

General Terms
Reliability

Keywords
transient fault, multicore, speculation

1. INTRODUCTION
As semiconductor technology continues to scale, the number of

transistors on a single chip grows exponentially. This implies an
exponential reduction in transistor size, degrading the noise mar-
gin of each transistor. In addition, extreme demands for energy
efficiency drive aggressive voltage scaling, which leads to an even

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

lower noise margin. All of these technology trends make processor
chips more susceptible to transient faults than ever before.

Transient faults are caused by either environmental events, such
as particle strikes, or fluctuating power supply, and are nearly im-
possible to reproduce. Transient faults are not necessarily attributed
to design flaws and occur randomly after deployment. These soft
errors do not cause permanent hardware damage, but may result
in a complete system failure. For example, Sun Microsystems ac-
knowledges that customers such as America Online, eBay and Los
Alamos National Labs experienced system failures caused by tran-
sient faults [8].

A typical solution for transient fault detection is through redun-
dant computation. A program’s execution is duplicated, in either
hardware or software, and the results of the two instances are com-
pared. Hardware solutions are transparent to programmers and
system software, but require specialized hardware (e.g., watchdog
processor in [7]). Real systems, such as IBM S/390 [16], Boeing
777 airplanes [20, 21], and HP’s NonStop Himalaya [4] incorporate
hardware transient fault detection and recovery modules. However,
hardware redundant computing requires extra chip area, extra logic
units, and additional hardware verification. The scope of protection
and fault detection scheme are usually hardwired at design time,
which limits the system’s flexibility.

On the other hand, software redundancy is more flexible and
much cheaper in terms of physical resources. This approach avoids
expensive hardware and chip development costs. Multicore designs
provide increasing parallel resources in hardware, making software
redundancy solutions more viable than ever. Reinhardt et al. pro-
posed redundant multithreading for fault detection, in which lead-
ing and trailing threads execute the program simultaneously and
compare their outputs [11]. Recent implementations of software re-
dundancy, however, double the usage of general-purpose registers
[12], require specialized hardware communication queues [19], or
double memory usage [15].

This paper presents DAFT, a software-only speculation technique
for transient fault detection. DAFT is a fully automatic compiler
transformation that duplicates computations in a redundant trail-
ing thread and inserts error checking instructions. DAFT specu-
lates that transient faults do not happen so that cyclic inter-thread
communications can be avoided. As a result, DAFT exhibits very
low performance overhead. DAFT generates specialized exception
handlers and is capable of discerning transient faults from software
exceptions that occur normally (e.g., bugs in the software). Volatile
variables, such as memory-mapped IO addresses, are handled with
special care to prevent speculative execution from triggering an ex-
ternally observable side-effect.

Communication and code optimizations are then applied to fur-
ther improve whole program performance. Because DAFT is a

software-only approach, it provides the flexibility to choose the re-
gion of a program to protect.

In short, DAFT advances the state-of-the-art in software redun-
dant multithreading. DAFT achieves all of the following desirable
properties:

• performance overhead of an average of 38% on a real multi-
core machine, compared to 200% for a non-speculative ver-
sion of software redundant multithreading. This low over-
head is comparable to those of hardware solutions but achieved
without any hardware support.

• the ability to distinguish normal exceptions from transient
faults and guarantee no false positives.

• 99.93% fault coverage on a mixed set of SPEC CPU2000 and
SPEC CPU2006 benchmark programs, which is comparable
to other hardware and software redundancy techniques.

The remainder of this paper is organized as follows: Section 2
surveys related work and compares DAFT with other approaches.
Section 3 introduces the software speculation technique in DAFT
and other optimizations to minimize performance overhead with-
out compromising fault detection capabilities. Section 4 presents
the automatic code transformation algorithm of DAFT. Section 5
presents experimental results along with analysis. Section 6 con-
cludes the paper.

2. RELATED WORK
Early multithreaded fault detection techniques rely on special-

ized hardware to execute redundant copies of the program for tran-
sient fault detection and recovery. Rotenberg’s AR-SMT [14] is
the first technique to use simultaneous multi-threading for transient
fault detection. An active thread (A) and a redundant thread (R)
execute the same program at runtime, and their computation results
are compared to detect transient faults. Mukherjee et al. improved
AR-SMT with Chip-level Redundant Threading (CRT), which uses
chip-level redundantly threaded multi-processors for redundant ex-
ecution and value checking [9]. Simultaneous Redundant Thread-
ing (SRT), proposed by Reinhardt et al., detects transient faults
based on simultaneous multi-threading processors [11]. However,
all these techniques rely on specialized hardware extensions.

Software redundancy using multithreading can also detect tran-
sient faults without any hardware support [3, 9, 12, 19]. SWIFT
exploits unused computing power of multiple-issue processors by
duplicated execution within the same thread [12]. The resulting
code requires twice as many registers, potentially causing register
spills. For this reason, SWIFT’s overhead is low on architectures
with many registers, such as the Itanium. However, instruction-
level redundancy has much higher overhead on IA32 architecture
having only 8 software-visible registers [13]. DAFT targets the
IA32 architecture and exploits multicore to minimize runtime over-
head.

Software-based Redundant Multithreading (SRMT) is a software
solution that achieves redundancy with multiple threads. The SRMT
compiler generates redundant code and minimizes inter-thread com-
munication. SRMT allows the leading thread to continue on non-
volatile variable accesses without waiting for verification from the
trailing thread. Volatile variable accesses still need cyclic com-
munications between original and redundant threads. However,
when a real transient fault triggers an exception, SRMT invokes
the program’s exception handler to catch the fault, registering a
false positive and possibly changing the program’s behavior. Like

SRMT, DAFT takes a software-only redundant multithreading ap-
proach. DAFT assumes speculatively that all computations execute
correctly and verifies them off the critical path, drastically reduc-
ing the overhead of fault detection. Since the inter-thread commu-
nication pattern is acyclic, DAFT is insensitive to the latency of
inter-core communication. Finally, DAFT distinguishes between
transient faults and normal exceptions and guarantees no false pos-
itives in fault detection.

Lessons from n-version programming can also be applied to
fault detection [1, 2, 10, 15]. Process-level Redundancy (PLR)
presented by Shye et al. acts as a shim between user programs
and the operating system [15]. Two instances of the program run
simultaneously, and fault detection is performed on externally vis-
ible side effects, such as I/O operations or program termination.
This approach guarantees that faults do not change the observable
behavior. PLR checks fewer values, so it tends to have low over-
heads, yet the memory usage of PLR is at least doubled. PLR’s
memory footprint can be prohibitive for memory-bound applica-
tions or memory-constrained systems, such as embedded devices.
Also, PLR must be applied at the program granularity; program-
mers and tools are not free to select critical sections of code that
need protection.

Several transient fault detection techniques are summarized in
Table 1. Compared with other techniques, DAFT provides broad
fault coverage, presents little pressure on register files, requires no
specialized hardware, and keeps memory overhead minimal.

3. DECOUPLED ACYCLIC FAULT
TOLERANCE

This section presents the design of DAFT with step-by-step de-
velopment, starting from a non-speculative version of redundant
multithreading in Section 3.1. Section 3.2 describes the software
speculation technique in DAFT to minimize performance overhead
caused by redundant execution and error checking. While boosting
performance, speculation poses new challenges for detecting faults
and ensuring the correctness of program execution. Section 3.3
addresses these challenges with three fault detection mechanisms.
Finally, Section 3.4 presents several communication and code opti-
mization techniques to make DAFT even faster.

3.1 Non-Speculative Redundant
Multithreading

One question for software redundant multithreading, with or with-
out speculation, is which instructions in the original program are
replicated for redundant execution. DAFT replicates all static in-
structions in the original program except memory operations (i.e.,
loads and stores) and library function calls. Loads are excluded
from replication because a pair of loads from the same memory ad-
dress in a shared memory model are not guaranteed to return the
same value, as there is always the possibility of intervening writes
between the two loads, from an exception hander or from other
threads, for example. This potentially leads to many false positives
in fault detection. The situation is the same for stores. Library
function calls are also excluded in cases when the DAFT compiler
does not have access to the library source codes or intermediate
representations.

To address this, DAFT executes each load only once in the lead-
ing thread and passes loaded values to the trailing thread via a soft-
ware queue. Similarly, store instructions are executed once, with
value and memory address being checked in the trailing thread. In
this way, DAFT ensures deterministic program behavior and elimi-
nates false positives. Because the source of library functions is not

Table 1: Comparison of transient fault detection techniques
SRT [11] SWIFT [12] SRMT [19] PLR [15] DAFT

Special Hardware Yes No No No No
Register Pressure 1× 2× 1× 1× 1×
Fault Coverage Broad Broad Broad Broad Broad
Memory Usage 1× 1× 1× 2× 1×

Communication Style Cyclic None Cyclic Cyclic Acyclic

available for DAFT to compile, calls to such functions are also only
executed once. The return value of a library function call is simi-
larly produced and consumed across the two threads like a loaded
value. In Figure 1(a), for example, instructions 2, 4, 5 and 7 are
replicable, whereas instructions 1 (library function call), 3 (load), 6
(store) and 8 (store) are not. The Sphere of Replication (SoR) [11]
of DAFT is the processor core; the memory subsystem, including
caches and off-chip DRAMs, is out of DAFT’s SoR, as it can be
protected by ECC.

The DAFT compiler replicates the instructions in the SoR into
the leading and trailing threads and inserts instructions for com-
munication and fault checking. Figures 1(b) and (c) illustrate how
the leading and trailing threads in non-speculative redundant mul-
tithreading are created based on the original program. Instructions
for communication and fault checking are emphasized in boldface.
Before every memory operation in the leading thread, the memory
address and the value to be stored, if any, are sent to the trailing
thread and compared against the corresponding duplicate values.
The result of fault checking on these values is sent back to the lead-
ing thread. The memory operation fires only if there is no fault;
otherwise, the leading thread will stop execution and trap into the
operating system to report a transient fault.

Redundant computation and fault checking in redundant mul-
tithreading increase static and dynamic instruction counts, which
lead to significant performance overhead. Consequently, compiler
optimizations should be performed before applying redundant mul-
tithreading. These pre-pass optimizations help by removing dead
code and reducing the number of memory operations, leaving less
code replication and less checking/communication overhead.

More importantly, these chains of produce, consume, check,
send, and wait instructions create a cyclic communication pat-
tern. As a result, the leading thread spends much of its time wait-
ing for confirmation instead of performing useful work. In the code
shown in Figures 1(b) and (c), there are three communication cy-
cles among instruction 4 and 5, 11 and 12, and 16 and 17. Ac-
cording to our evaluation, this non-speculative version of redundant
multithreading shows more than 3× slowdown over the original
code (see Section 5). Moreover, performance is highly sensitive to
the inter-thread communication cost. An increase in communica-
tion latency can cause significant further slowdown. In one realistic
setup, SPEC CPU2000 benchmarks with software redundant mul-
tithreading have slowed down almost by 3× solely because of an
increase in the communication cost between threads [19].

3.2 Software Speculation in DAFT: Removing
Cyclic Dependencies

Cyclic dependencies in the non-speculative redundant multithread-
ing from Section 3.1 put the inter-thread communication latency on
the critical path of program execution, thereby slowing down the
leading thread significantly. Since a transient fault occurs rarely in
practice, the trailing thread almost always signals no fault to the
leading thread. Therefore, this inter-thread communication signal
value makes a high-confidence target for speculation.

Inspired by Speculative Decoupled Software Pipelining (Spec-
DSWP) [17], DAFT exploits such a high-confidence value spec-
ulation to break the cyclic dependencies. More specifically, the
communication dependence between signal and wait instruc-
tions is removed. Instead of waiting for the trailing thread to signal
back, the leading thread continues execution. The performance of
the program is no longer sensitive to the inter-thread communica-
tion latency. Figures 1(d) and (e) illustrate the code after specu-
lation is applied. Through speculation, DAFT not only improves
program performance by allowing the leading thread to continue
execution instead of busy waiting, but also reduces communication
bandwidth use and code bloat.

However, speculation poses new challenges for detecting faults
and ensuring the correct execution of programs. For example, mis-
speculation on volatile variable accesses can cause severe prob-
lems, such as sending a wrong value to an IO device. Another po-
tential issue is the difficulty of distinguishing a segmentation fault
from a transient fault when a fault occurs in a pointer register. The
next section discusses challenges and solutions to maintain broad
fault coverage without losing the performance benefit of specula-
tion.

3.3 Safe Misspeculation Detection
With speculation, the problem of fault detection in DAFT is ef-

fectively translated to the problem of misspeculation detection. Fig-
ure 2 shows usage scenarios of a bit-flipped register value and the
fault detection mechanisms of DAFT for all the scenarios (leaf
nodes in the scenario tree). Some faults are detected by the leading
thread, and others by the trailing thread. If the faulty value is never
used by later computation, the fault can be safely ignored without
affecting the correctness of the program, where “use” means the
variable will affect a later store to memory. In what follows, we
present three mechanisms for misspeculation detection in DAFT—
in-thread operand duplication for volatile variable accesses, redun-
dant value checking and custom exception handlers—as we walk
through the scenario tree in Figure 2.

In-Thread Operand Duplication for Volatile Variable
Accesses
A volatile variable is defined as a variable that may be modified in
ways unknown to the implementation or have other unknown side
effects. Memory-mapped IO accesses are an example of volatile
variable accesses, and compiler optimizations should not reposi-
tion volatile accesses. Misspeculation on volatile variable accesses
may cause an externally observable side-effect which cannot be re-
versed. Assuming vaddr in the example shown in Figure 1(a) is
an IO mapped memory address, r3 and vaddr must be checked
for correctness (by instruction 14 and 15) before the store commits
to prevent potentially catastrophic effects. However, if we become
too conservative and fall back to the non-speculative solution used
in Figure 1(b) and (c) with cyclic dependence and signaling, per-
formance gains from speculation would be lost; communication la-
tency would be put once again in the critical path.

1 r0 = rand()
2 addr1 = addr1 + r0
3 load r1, [addr1]
4 r2 = call bar(i32 r1)
5 addr2 = addr2 + 8
6 store r2, [addr2]
7 r3 = r3 + 1
8 store r3, [vaddr]

1 r0’ = consume()
2 addr1’ = addr1’ + r0’
3 addr1 = consume()
4 check addr1, addr1’
5 send(signal)

6 r1’ = consume()
7 r2’ = call _trail_bar(i32 r1’)
8 addr2’ = addr2’ + 8
9 r2 = consume()
10 addr2 = consume()
11 check r2, r2’
12 check addr2, addr2’
13 send(signal)

14 r3’ = r3’ + 1
15 r3 = consume()
16 vaddr = consume()
17 check r3, r3’
18 check vaddr, vaddr’
19 send(signal)

(a) Original (b) Leading Function
(Non-Speculative)

(c) Trailing Function
(Non-Speculative)

1 r0 = rand()
2 produce r0
3 addr1 = addr1 + r0
4 produce addr1

5 wait(signal)
6 load r1, [addr1]
7 produce r1
8 r2 = call _lead_bar(i32 r1)
9 addr2 = addr2 + 8
10 produce r2
11 produce addr2

12 wait(signal)
13 store r2, [addr2]
14 r3 = r3 + 1
15 produce r3
16 produce vaddr

17 wait(signal)
18 store r3, [vaddr]

1 r0 = rand()
2 produce r0
3 addr1 = addr1 + r0
4 produce addr1
5 load r1, [addr1]
6 produce r1
7 r2 = call _lead_bar(i32 r1)
8 addr2 = addr2 + 8
9 produce r2
10 produce addr2
11 store r2, [addr2]
12 r3 = r3 + 1
13 r3’= r3’+ 1
14 check r3, r3’
15 check vaddr, vaddr’
16 store r3, [vaddr]

1 r0’ = consume()
2 addr1’ = addr1’ + r0’
3 addr1 = consume()
4 check addr1, addr1’
6 r1’ = consume()
7 r2’ = call _trail_bar(i32 r1’)
8 addr2’ = addr2’ + 8
9 r2 = consume()
10 addr2 = consume()
11 check r2, r2’
12 check addr2, addr2’

(d) Leading Function
(Speculative)

(e) Trailing Function
(Speculative)

Figure 1: Program transformation with and without DAFT

Is the bit-flipped register value ...

Used by later computation?

Benign fault
safely ignored.

Used by a volatile load or
store?

Detected by
In-thread

Operand Duplication

Used by the addr field
of a load or store?

Detected by
Redundant Value Checking

Mapped to a valid
memory address?

Detected by
Redundant Value Checking

Detected by
Custom Exception Handler

No Yes

Yes No

No Yes

Yes No

: Performed by Leading Thread

: Performed by Trailing Thread

Used by
non-volatile memory instruction

Store only

Used as
address field

Figure 2: Classification of possible usage scenarios of a bit-flipped register value and fault detection mechanisms in DAFT

In this case, the more efficient solution is to verify the operands
to the volatile store in thread; slowing the leading thread infre-
quently is a better strategy than cyclic communication. Dataflow
analysis is used to compute the def-use chain of the volatile vari-
able. DAFT replicates all instructions from the volatile variable’s
def-use chain in the leading thread, as shown in Figure 1(d) and
(e). A code generation algorithm to handle this case is described in
Section 4.

Redundant Value Checking
If a transient fault flips a bit in a register to be stored to a non-
volatile memory variable later, the fault is detected through redun-
dant value checking. The trailing thread in DAFT contains value
checking code for every non-volatile store and is responsible for
reporting this kind of fault. Instruction 11 in Figure 1(e) illustrates
an example of redundant value checking. The check operation
compares the two redundant copies of r2 and traps the operating
system if the values do not match.

Custom Exception Handler
The last scenario of a faulty value is usage as a non-volatile load
or store address. Depending on whether the faulty value maps to
a valid memory address or not, the fault is detected either by the
redundant value checking mechanism previously discussed, or by
DAFT’s custom exception handler. In the case of a valid address,
the trailing thread will eventually detect the fault by comparing re-
dundant copies of the faulty register.

If the address is invalid, a segmentation fault exception will be
triggered. In such a case, SRMT [19] relies on a system exception
handler to abort the program. Unfortunately, this is not a safe solu-
tion. It changes the program behavior and cannot tell the difference
between a normal program exception and a transient fault. The cus-
tom exception handler in DAFT catches all segmentation faults as
shown in Figure 3. For example, when a segmentation fault hap-

Leading Thread Trailing Thread

Operating System

Customized
Exception
Handlers

fault flag

Program Code Duplicated Code

Figure 3: The exception handling diagram in DAFT

pens, the signal handler traps it and asks the leading thread to wait
for a signal from the trailing thread. If the trailing thread confirms
the address is correct, the exception is a normal program exception,
and the original exception handler is called. Otherwise, a transient
fault is reported and the program is terminated. This is critical for
program safety, especially for programs implementing custom ex-
ception handlers.

3.4 Communication and Code Optimizations:
Making DAFT Faster

Speculation removes wait and signal communication, and
takes communication latency off the critical path. However, the
amount of communication in a program as well as the communi-
cation speed still plays an important role in whole program perfor-
mance. To further speed up DAFT, two optimizations are applied
to DAFT-transformed code for minimal communication cost and
fewer branches. Several optimization decisions are also made to
speed up a single data communication.

bb: ;preds=entry!
 r2 = add r2, 1!
 br bb1!

bb1: ;preds = bb!
 r1 = call rand()!
 produce r1!
 br bb12!

bb12: ;preds = bb1!
 r3 = call _lead_foo (i32 r1)!

 (b) Leading function!

bb: ;preds=entry!
 r2’ = add r2’, 1!
 r1’ = consume()!
 br bb12!

bb1: ;preds =!
 r1’ = consume()!
 br bb12!

bb12: ;preds = bb!
 r3’ = call _trail_foo (i32 r1’)!

 (c) Trailing function!

bb: ;preds=entry!
 r2 = add r2, 1!
 br bb1!

bb1: ;preds = bb!
 r1 = call rand()!
 br bb12!

bb12: ;preds = bb1!
 r3 = call foo (i32 r1)!

(a) Original program!

Figure 4: Branch removal after DAFT code generation

Branch Removal
Since the trailing thread does not duplicate all instructions in the
original program, it may sometimes contain basic blocks which
contain only consume and branch instructions. This is not re-
dundant code and cannot be removed through dead code elimina-
tion. Figure 4 explains a typical case where some branches can
be removed to reduce the work on trailing thread. In Figure 4(a),
basic block bb1 contains only one library function call and an un-
conditional branch to basic block bb12. DAFT transformation in
Figures 4(b) and (c) creates a basic block bb1 in trailing function
containing only a consume and an unconditional branch. It is
preferable to remove basic block bb1 entirely and move the com-
munication to basic block bb to avoid one unnecessary branch.

Loop Invariants Lifting
r1 in Figure 5 is a loop induction variable. Its value is used later in
computing the memory address to load from. This pattern is typical
in array-based operations. Since our exception handler captures
segmentation faults caused by transient faults, it is safe to move
the memory address check out of the loop, removing one or more
communications per iteration.

Software Communication Queue
In DAFT, an unbalanced lock-free ring buffer software queue li-
brary is used for inter-thread communication. This queue imple-
mentation shifts more work of communication onto the consumer
thread. Since all communications in DAFT are uni-directional from
the leading to trailing thread, the fast communication queue ensures
low runtime overhead and latency tolerance.

Streaming store and prefetching are enabled in the queue im-
plementation for DAFT to achieve best performance on real ma-
chines. Streaming store is an SSE instruction for better bandwidth
and performance stability. Streaming stores bypass L2 cache and
write to memory directly. The consumers of that store see the value
in memory as soon as it is required. This optimization speeds up
communication especially when two threads are not sharing an L2
cache. Prefetching is enabled for the consumer to prefetch queue
data into its own cache before the values are used.

4. AUTOMATIC CODE GENERATION
DAFT is a fully automatic compiler transformation. For a given

input IR, it identifies the replicable instructions, generates code
for redundant computation, inserts inter-thread communication for
critical values, and inserts value checking and exception handlers
for fault detection. A high-level view of the algorithm is presented

in Algorithm 1. The following sections explore the phases of the
algorithm.

4.1 Replicable Instruction Sets
For each function in a program, DAFT first traverses the interme-

diate representation and partitions the instructions into three sets:

• Non-replicable

• Redundant replicable

• In-thread replicable

Non-replicable instructions are those which directly load from or
store to memory, or are library function calls. Redundant repli-
cable instructions are those which do not access memory, or are
not calls to library functions. In-thread replicable instructions are
those which compute the address or value of a volatile store. These
must be handled differently than other redundant replicable instruc-
tions, since volatile stores cannot be re-ordered. DAFT replicates
in-thread redundant instructions into the leading thread, whereas re-
dundant replicable instructions are replicated into the trailing thread.

4.2 Building Redundant Program Structure
Next, we construct a new, empty function to serve as the trailing

thread. Both threads must follow the same control flow pattern.
However, not every basic block will perform work in the trailing
thread. For efficiency, we will selectively copy only relevant basic
blocks to the trailing thread.

We say that a basic block bb is relevant to the trailing thread if
(i) any instruction from bb is in the redundant-replicable set, (ii)
any instruction from bb is in the non-replicable set, or (iii) there is
another block bb′ such that bb′ is relevant to the trailing thread, and
bb is transitively control dependent on bb′.

We create an empty copy of every relevant basic block in the
trailing thread. Additionally, we duplicate the control-flow instruc-
tion (branch, switch, return, etc) at the end of each basic block.
Since the destination basic block may not be relevant to the trailing
thread, we redirect those destinations to the closest post-dominating
block which is relevant to the trailing thread.

To achieve control equivalence between a pair of leading and
trailing threads, conditional branches from each thread must branch
the same direction. In other words, the branch predicate must be
communicated from the leading thread to the trailing thread. If
that branch condition is within the redundant-replicable or non-
replicable set, the value should already be communicated to the
trailing thread. Otherwise, in the case of in-thread replicable branch

loopEntry:
r3 = load [r1]
.....
r1 = r1 + 4
cmp r1, r0
br loopEntry, loopExit

loopExit:

(a) Original Program

loopEntry:
r2 = load [r1]
......
r1 = r1 + 4
cmp r1, r0
br loopEntry, loopExit

loopExit:
produce r1

(b) Leading Thread in DAFT

loopEntry:
consume r2
......
r1’ = r1’ + 4
cmp r1’, r0’
br loopEntry, loopExit

loopExit:
consume r1’
check r1, r1’

(c) Trailing Thread in DAFT

Figure 5: Communication lifting after DAFT code generation

Algorithm 1 Automatic DAFT transformation
for all Function func ∈ program do

// Building Replicable Instruction Set
RedundantReplicableSet = InThreadReplicableSet = NonReplicableSet = ∅
for all Instruction inst ∈ func do

if inst is load or store then
NonReplicableSet = NonReplicableSet ∪ {inst}
if inst stores to volatile variable address then

for all Instruction prev_inst ∈ DefinitionChain(inst) do
InThreadReplicableSet = InThreadReplicableSet ∪ {prev_inst}

end for
end if

else if inst is register computation then
RedundantReplicableSet = RedundantReplicableSet ∪ {inst}

else if inst is non-library function call or indirect function call then
RedundantReplicableSet = RedundantReplicableSet ∪ {inst}

else
NonReplicableSet = NonReplicableSet ∪ {inst}

end if
end for
RedundantReplicableSet = RedundantReplicableSet − InThreadReplicableSet

// Identify and Clone Relevant Basic Blocks
RelevantBasicBlocks = ∅
for all Basic block bb ∈ func do

if bb is relevant to Trailing thread then
RelevantBasicBlocks = RelevantBasicBlocks ∪ {bb}

end if
end for

// Replication and Communications
for all Instruction inst ∈ func do

if inst ∈ InThreadReplicableSet then
inst.clone()→ leadingFunction
insertFaultChecking(inst)→ leadingFunction

else if inst ∈ RedundantReplicableSet then
inst.clone()→ trailingFunction

else if inst ∈ NonReplicableSet then
insertCommunication(inst)
insertFaultChecking(inst)→ trailingFunction

end if
end for

end for

conditions, that value must be communicated to the trailing thread
with an additional produce-consume pair.

4.3 Code Replication and Communication
Insertion

Whenever a value escapes the SoR and needs to be communi-
cated from the leading thread to the trailing thread, a produce
operation is inserted into the leading thread, and a consume oper-
ation is inserted into the trailing thread at the corresponding loca-
tion.

For a memory load instruction, a produce-consume pair is cre-
ated for the memory address. Similarly, two produce-consume
pairs are created for store instruction for communicating value
and address, respectively. Before each binary function call, each
argument which is passed via register is produced to the trailing
thread for correctness checking. If a binary function call returns
a value that is used in later computation, that value needs to be
communicated, too. Our definition of relevant basic blocks ensures
that produce and consume operations are always inserted at control-
equivalent locations in each thread.

4.4 Customized Signal Handlers
It is possible that a misspeculated fault can lead to an exception

before the trailing thread detects the fault through redundant check-
ing. However, it is also possible that the original program to throw
the same exception during its execution, with or without a tran-
sient fault. We must distinguish between these two cases. DAFT
achieves this by creating custom signal handlers for each applica-
tion.

Specialized exceptions handlers are added in order to distinguish
between transient faults and normal faults. These signal handlers
are registered (via sigaction()) at the beginning of program
execution.

When a signal is caught, the custom signal handler is invoked.
The signal handler waits for the trailing thread to raise a red flag
on fault. If no fault is reported before timeout occurs, the signal
handler assumes that this is a normal exception and calls the corre-
sponding system exception handler.

4.5 Indirect Function Call
For indirect function calls through function pointers, the com-

piler cannot tell which function will be called. Therefore, the lead-
ing version of the callee function is always invoked. Such calls
originate either in the leading thread or the trailing thread; an extra
flag is added to distinguish these cases. If the function is called
from the trailing thread, the leading thread function will serve as a
trampoline and invoke the corresponding trail version of the func-
tion. For the leading thread, that is not very computationally ex-
pensive: only one long jump is made at each call. For the trailing
thread, the trampoline in the leading thread is used to invoke the
correct trailing function. If a wrapper function is used for indirect
calls, each function call in both threads will have to go through
two calls which increase runtime overhead. Function calls from
libraries are also possible if the compiler understands the calling
convention.

4.6 Example Walk-through
A sample program in Figure 1(a) is used to demonstrate how Al-

gorithm 1 works on a real piece of code. The first step is to identify
replicable instructions. The algorithm scans all the instructions in
the function. If the instruction is a regular computation statement
such as instruction 2, it is inserted into RedundantReplicableSet. If
the instruction is a memory load/store, or a binary function call, it

Table 2: Replicability of instructions in Figure 1(a)
Replicability Instruction

In-thread Replicable 7
Redundant Thread Replicable 2, 4, 5

Non-replicable 1, 3, 6, 8

is immediately marked NonReplicable. The rest of the instructions
are inserted into RedundantReplicableSet.

A tricky case is volatile memory access. In this example, at first
instruction 7 in Figure 1(a) is a regular computation and therefore
redundantly replicable. But as soon as instruction 8 is scanned, we
realize that r3 is stored as a volatile variable. At this point, the
def-use chain of r3 is computed. Instruction 7 is then removed
from redundant replicable set and inserted into the in-thread repli-
cable set. This is why replicable instruction sets must built before
code duplication and communication insertion. Such information
is stored in a data structure similar to Table 2.

Once the instructions are classified, the code is scanned for code
duplication. All redundant thread replicable and in-thread repli-
cable instructions are copied to the trailing and leading functions,
respectively. Since branch and function call instructions are all re-
dundant thread replicable, the trailing thread copies the control flow
of the leading thread, too. After instruction replication, instruc-
tions 2, 7, and 8 in Figure 1(e) are inserted into the trailing thread
version of that function. Similarly, instruction 14 in Figure 1(d)
is replicated from in-thread replicable instruction 7 in the original
program.

Communications are inserted for values that come into or escape
from the SoR. In this example, load instruction 3 in Figure 1(a)
escapes the SoR, therefore the address it loads from must be com-
municated for correctness checking. In Figure 1(e), instruction 3
is inserted into the trailing thread. Fault checking code is inserted
immediately after the communication; check operations serve as
correctness checking points and alert the user if a fault occurs.

Similarly, for store instruction 6, both the value and the mem-
ory address are communicated, followed by fault checking code.
Volatile variable store such as instruction 8 triggers in-thread fault
checking. No communication is needed for this store. The fault
checking code is inserted into the leading thread immediately be-
fore the store commits. The return value of a binary function call,
such as r0 in instruction 1 in Figure 1(a), is a value that comes into
the SoR, hence it is communicated to the trailing thread. On the
contrary, non-binary function call such as instruction 4 needs no
communication or fault checking code since nothing escapes from
the SoR.

5. EVALUATION
DAFT is evaluated on a six-core Intel Xeon X7460 processor

with a 16MB shared L3 cache. Each pair of cores shares one 3MB
L2 cache. A mixed set of SPEC CPU2000 and SPEC CPU2006
benchmark programs is used for reliability and performance anal-
ysis. All evaluations use the SPEC ref input sets. DAFT is imple-
mented in the LLVM Compiler Framework [5]. DAFT uses fast,
lock-free software queues with streaming write and prefetching for
inter-thread communication.

5.1 Reliability Analysis
To measure the fault coverage of DAFT, Intel’s PIN instrumenta-

tion tool [6] is used to inject single bit flip faults. We first perform
a profile run of the program to count the number of dynamic in-
structions. In the simulations, no fault is injected into the standard

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

164.gzip

179.art

181.m
cf

183.equake

256.bzip2

401.bzip2

429.m
cf

435.grom
acs

444.nam
d

456.hm
m

er

470.lbm

473.astar

482.sphinx

999.specrand

GTC
GeoM

ean

P
er

ce
nt

ag
e

of
 In

je
ct

ed
 F

au
lts

Detected Timeout Benign Data Corrupt

Figure 6: Fault detection distribution

C libraries, since they are not compiled with DAFT and therefore
lack transient fault protection. One dynamic instruction is selected
randomly. One register is again selected randomly among general-
purpose registers, floating point registers, and predicate registers.
PIN uses IARG_RETURN_REGS to flip a random bit of the se-
lected register after the selected instruction. Execution is compared
against the reference output to ensure that externally visible behav-
ior is unchanged. Single-event-upset (SEU) model is assumed in
the evaluation [11, 13, 18]. Each benchmark program is executed
5000 times, with one transient fault injected in each run.

This fault injection method cannot simulate faults occurring on
the bus or latches. Simulating such faults would require complex
hardware modeling support. PIN works at a software level and can
simulate faults in architectural state which are the target of this pa-
per. The memory system of the machine used for experimentation
is protected by ECC and is out of DAFT’s SoR.

Injected faults are categorized into four groups based on the out-
come of the program: (1) Benign faults; (2) Detected by DAFT ; (3)
Timeout; and (4) Data Corrupt. After a fault is injected, it is possi-
ble that the program can still finish running normally with correct
output. We call this kind of injected fault Benign because it does
not affect the program’s normal execution. Some injected transient
faults can be detected by DAFT through either redundant compu-
tation and value checking, or specialized exception handling. This
kind of soft error is Detected by DAFT . There is a chance that some
faults may cause the program to freeze. We specify a scale and an
estimated execution time of the program. If the program takes more
than scale×ExecutionT ime to finish, our instrumentation aborts
the program and reports Timeout as an indication that transient fault
happened. The fault coverage of DAFT is not 100% because tran-
sient faults can occur while moving from a redundant instruction to
a non-replicable instruction. For example, if a transient fault occurs
on register r1 in Figure 1(d) right after instruction 5 (load) and in-
struction 6 (value replication), DAFT is not able to detect the fault
(represented as Data Corrupt in Figure 6). However, the possibil-
ity of such a fault occurring is extremely low—the fault coverage
is evaluated to be 99.93% from simulation.

5.2 Performance
DAFT is evaluated on a real multi-core processor. Performance

results are shown in Figure 7. The runtime overhead is normalized
to the original sequential program without any fault protection. We
compare our performance with a software redundant multithread-
ing implementation that does not employ speculation.

The performance overhead of DAFT is 38% (or 1.38×) on av-
erage. Compared with redundant multithreading without specu-
lation, DAFT is 2.17× faster. Previous software solutions, such
as SRMT [19], reported 4.5× program execution slowdown using
a software queue on a real SMP machine. Compared to SRMT,
DAFT performs favorably, and hence is more practical for real-
world deployment.

DAFT speeds up execution by almost 4× in 473.astar to 2×
in 435.gromacs, compared to non-speculative redundant multi-
threading. In 473.astar, memory loads and stores are closely
located with each other in some hot loops. Without speculation,
each of the two redundant threads has to wait for the other to pass
values over. This back and forth communication puts the com-
munication latency on the critical path, causing the program to
slow down significantly. 181.mcf and 164.gzip have similar
memory access patterns. 435.gromacs does not contain a lot of
closely located memory load and stores, but the number of memory
operations is higher than other benchmark programs. More mem-
ory operations means more communications and redundant value
checking, which translates to higher runtime overhead.

The whole program slowdown of DAFT mainly depends on the
number of memory operations in a program. For one load instruc-
tion, DAFT inserts two produce/consume pairs: one before loading
to check the correctness of the memory address; the other one after
the load to pass values to the trail thread. For one store instruction,
two produce/consume pairs need to be inserted: one for the value
to be stored and one for the memory address. Figure 8 indicates the
number of communications (linear in the number of values we pass
through software queue) normalized to the number of total instruc-
tions in a program.

Figure 9 shows the static size of the binary generated by DAFT
normalized to the original program without protection. The code
size of DAFT is about 2.4× larger than the baseline program. This
is because every register computation instruction is duplicated into
two. One produce-consume pair is created for each load, and two
pairs are added for each store. Compared with previous work,

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

164.gzip

179.art

181.m
cf

183.equake

256.bzip2

401.bzip2

429.m
cf

435.grom
acs

444.nam
d

456.hm
m

er

470.lbm

473.astar

482.sphinx

999.specrand

GTC
GeoM

ean

P
ro

gr
am

 S
lo

w
do

w
n

(x
)

Without Speculation
With Speculation

Figure 7: Performance overhead of redundant multithreading with and without speculation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

164.gzip

179.art

181.m
cf

183.equake

256.bzip2

401.bzip2

429.m
cf

435.grom
acs

444.nam
d

456.hm
m

er

470.lbm

473.astar

482.sphinx

999.specrand

GTC
GeoM

ean

N
or

m
al

iz
ed

 A
m

ou
nt

 o
f C

om
m

un
ic

at
io

n

Without Speculation
With Speculation

Figure 8: Number of communication instructions (produce/consume) normalized to the total number of instructions executed

DAFT has a similar increase in binary size, yet lower runtime over-
head, due to the fact that DAFT utilizes multi-core for execution.

6. CONCLUSION
Future processors will ship with more cores, more and smaller

transistors, and lower core voltages. Short of a miracle in silicon
fabrication technology, transient faults will become a critical issue
for developers everywhere. However, the multicore revolution has
brought redundant hardware to commodity systems, enabling low-
cost redundancy for fault detection.

This paper presents a fast, safe and memory-efficient redundant
multithreading technique. By combining speculation, customized
fault handlers, and intelligent communication schemes, DAFT pro-
vides advanced fault detection on off-the-shelf commodity hard-
ware. It features minimal runtime overhead and no memory bloat.
Unlike some of previous software solutions, DAFT correctly han-
dles exceptions and differentiates program exceptions from tran-

sient faults. DAFT can provide reliability for mission-critical sys-
tems without any specialized hardware or memory space usage ex-
plosion.

Acknowledgments
We thank the Liberty Research Group for their support and feed-
back during this work. We also thank the anonymous reviewers for
their insightful comments and suggestions. This material is based
upon work supported by the National Science Foundation under
Grant No. 0627650. We acknowledge the support of the Gigascale
Systems Research Focus Center, one of five research centers funded
under the Focus Center Research Program, a Semiconductor Re-
search Corporation program. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of
the Liberty Research Group and do not necessarily reflect the views
of the National Science Foundation.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

164.gzip

179.art

181.m
cf

183.equake

256.bzip2

401.bzip2

429.m
cf

435.grom
acs

444.nam
d

456.hm
m

er

470.lbm

473.astar

482.sphinx

999.specrand

GTC
GeoM

ean

B
in

ar
y

F
ile

 S
iz

e
In

cr
ea

se
 (

x) Without Speculation
With Speculation

Figure 9: DAFT-generated binary size normalized to the original binary size

7. REFERENCES
[1] E. D. Berger and B. G. Zorn. Diehard: Probabilistic memory safety

for unsafe languages. In Proceedings of the ACM SIGPLAN ’06
Conference on Programming Language Design and Implementation,
June 2006.

[2] S. S. Brilliant, J. C. Knight, and N. G. Leveson. Analysis of faults in
an n-version software experiment. IEEE Trans. Softw. Eng.,
16(2):238–247, 1990.

[3] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz.
Transient-fault recovery for chip multiprocessors. In Proceedings of
the 30th annual international symposium on Computer architecture,
pages 98–109. ACM Press, 2003.

[4] R. W. Horst, R. L. Harris, and R. L. Jardine. Multiple instruction
issue in the NonStop Cyclone processor. In Proceedings of the 17th
International Symposium on Computer Architecture, pages 216–226,
May 1990.

[5] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In CGO ’04:
Proceedings of the International Symposium on Code Generation
and Optimization, page 75, Washington, DC, USA, 2004. IEEE
Computer Society.

[6] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’05, pages 190–200, New York,
NY, USA, 2005. ACM.

[7] A. Mahmood and E. J. McCluskey. Concurrent error detection using
watchdog processors-a survey. IEEE Transactions on Computers,
37(2):160–174, 1988.

[8] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala, and
S. A. Wender. Predicting the number of fatal soft errors in los alamos
national labratory’s ASC Q computer. IEEE Transactions on Device
and Materials Reliability, 5(3):329–335, September 2005.

[9] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed design and
evaluation of redundant multithreading alternatives. SIGARCH
Comput. Archit. News, 30(2):99–110, 2002.

[10] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator:
automatically correcting memory errors with high probability. In
PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, pages 1–11,
New York, NY, USA, 2007. ACM.

[11] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection via
simultaneous multithreading. In Proceedings of the 27th Annual

International Symposium on Computer Architecture, pages 25–36.
ACM Press, 2000.

[12] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
SWIFT: Software implemented fault tolerance. In Proceedings of the
3rd International Symposium on Code Generation and Optimization,
March 2005.

[13] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and
S. S. Mukherjee. Design and evaluation of hybrid fault-detection
systems. In Proceedings of the 32th Annual International Symposium
on Computer Architecture, pages 148–159, June 2005.

[14] E. Rotenberg. AR-SMT: A microarchitectural approach to fault
tolerance in microprocessors. In Proceedings of the Twenty-Ninth
Annual International Symposium on Fault-Tolerant Computing,
page 84. IEEE Computer Society, 1999.

[15] A. Shye, T. Moseley, V. J. Reddi, J. B. t, and D. A. Connors. Using
process-level redundancy to exploit multiple cores for transient fault
tolerance. Dependable Systems and Networks, International
Conference on, 0:297–306, 2007.

[16] T. J. Slegel, R. M. Averill III, M. A. Check, B. C. Giamei, B. W.
Krumm, C. A. Krygowski, W. H. Li, J. S. Liptay, J. D. MacDougall,
T. J. McPherson, J. A. Navarro, E. M. Schwarz, K. Shum, and C. F.
Webb. IBM’s S/390 G5 Microprocessor design. In IEEE Micro,
volume 19, pages 12–23, March 1999.

[17] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and
D. I. August. Speculative decoupled software pipelining. In PACT
’07: Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques, pages 49–59, Washington,
DC, USA, 2007. IEEE Computer Society.

[18] D. Walker, L. Mackey, J. Ligatti, G. A. Reis, and D. I. August. Static
typing for a faulty lambda calculus. SIGPLAN Not., 41(9):38–49,
2006.

[19] C. Wang, H.-S. Kim, Y. Wu, and V. Ying. Compiler-managed
software-based redundant multi-threading for transient fault
detection. In CGO ’07: Proceedings of the International Symposium
on Code Generation and Optimization, pages 244–258, Washington,
DC, USA, 2007. IEEE Computer Society.

[20] Y. Yeh. Triple-triple redundant 777 primary flight computer. In
Proceedings of the 1996 IEEE Aerospace Applications Conference,
volume 1, pages 293–307, February 1996.

[21] Y. Yeh. Design considerations in Boeing 777 fly-by-wire computers.
In Proceedings of the Third IEEE International High-Assurance
Systems Engineering Symposium, pages 64 – 72, November 1998.

