
DAG Scheduling Using a Lookahead Variant
of the Heterogeneous Earliest Finish Time Algorithm

Luiz F. Bittencourt
Institute of Computing
University of Campinas
P.O. 6176, Campinas

São Paulo, Brazil
bit@ic.unicamp.br

Rizos Sakellariou
School of Computer Science

University of Manchester
Oxford Road, Manchester

M13 9PL, UK
rizos@cs.man.ac.uk

Edmundo R. M. Madeira
Institute of Computing
University of Campinas
P.O. 6176, Campinas

São Paulo, Brazil
edmundo@ic.unicamp.br

Abstract—Among the numerous DAG scheduling heuris-
tics suitable for heterogeneous systems, the Heterogeneous
Earliest Finish Time (HEFT) heuristic is known to give
good results in short time. In this paper, we propose an
improvement of HEFT, where the locally optimal decisions
made by the heuristic do not rely on estimates of a single
task only, but also look ahead in the schedule and take into
account information about the impact of this decision to the
children of the task being allocated. Preliminary simulation
results indicate that the lookahead variation of HEFT can
effectively reduce the makespan of the schedule in most cases
without making the algorithm’s execution time prohibitively
high.

I. INTRODUCTION

Directed Acyclic Graphs (DAGs) are frequently used
to capture the precedence constraints of a number of
applications. When such applications are executed on
parallel computing resources, a decisive factor determining
an application’s performance is the order that independent
tasks (that is, tasks which are not constrained by prece-
dence constraints) will be scheduled onto resources. In
its most general form, the problem of scheduling tasks
of a graph onto a set of different machines is an NP-
Complete problem [1]. As a result, over several years, a
number of heuristics have been developed that attempt to
strike a good balance between running time, complexity
and schedule quality [2].

In recent years, there has been an increasing interest in
DAG scheduling heuristics for heterogeneous resources,
that is, resources whose capabilities may differ (as opposed
to traditional homogeneous resources, such as multipro-
cessors). Part of the motivation for this work is the
emergence of heterogeneous processing platforms, such
as the Grid, and the increasing interest in a number
of applications that can be modelled by a DAG, such
as workflows [3], [4]. A number of heuristics suitable
for DAG scheduling on heterogeneous resources have
been suggested; a comparative evaluation of 20 different
heuristics can be found in [5]. Among these heuristics, the
Heterogeneous Earliest Finish Time heuristic (or HEFT
in short) [6] has been one of the most often cited and
used, having the advantage of simplicity and producing
generally good schedules with a short makespan.

HEFT is essentially a list scheduling [1] heuristic that
constructs first a priority list of tasks and then makes

locally optimal allocation decisions for each task on the
basis of the task’s estimated finish time. However, a locally
optimal decision for a given task may not necessarily be
a good decision for the task’s descendants in the DAG.
The key idea of this paper is to enhance the process
of scheduling tasks in HEFT, by looking ahead and
considering information about the descendants of a task.
Then, scheduling decisions for each task are made on the
basis of what appears to be beneficial not only for the task
itself, but both for the task and its children. Clearly, such
an enhancement has the potential of increasing HEFT’s
execution time. However, HEFT is already a simple and
fast algorithm and, as we demonstrate in our simulation
experiments, such an increase is affordable.

Thus, the contribution of this paper is the proposal and
investigation of specific improvements for HEFT, which
allow HEFT to make more informed scheduling decisions
by employing the notion of lookahead to obtain extra in-
formation before allocating each task. As we demonstrate
in our simulation experiments, using five different types of
DAGs corresponding to real-world workflow applications,
our suggested improvements, which are based on minimal
lookahead information, may shorten the makespan in some
cases by up to 20% on average.

The rest of the paper is structured as follows. Section
II introduces the problem, presents related work and
shows a motivating example, which highlights the poten-
tial benefits of our proposal. In Section III, the proposed
enhancements of HEFT are presented, which are then
evaluated in Section IV. Finally, Section V concludes the
paper.

II. BACKGROUND

The application model used in this paper is a directed
acyclic graph (DAG), where each node is a task and each
edge represents a data dependence. Each task can only
start its execution after receiving all data from its parents.
The target environment is a set of heterogeneous com-
puting resources fully connected by heterogeneous links.
Computation costs for each task and the amount of data
communication between two dependent tasks are given.
Data transfer costs for each resource pair are also given, as
well as the computation capacity of each resource. Every
task can be executed on every resource. The scheduling



Figure 1. An example illustrating the benefits of HEFT with lookahead information.

problem examined here consists in selecting resources
for each task aiming at minimizing the overall execution
time of the application (makespan), always obeying the
precedence constraints imposed by the DAG.

DAG scheduling is a widely studied problem in both
homogeneous and heterogeneous systems; for surveys
and representative work addressing this problem we refer
to [2], [7], regarding DAG scheduling in homogeneous
systems, and [5], [6], [8], [9] regarding DAG scheduling
in heterogeneous systems. Among the algorithms suitable
for the latter problem, HEFT [6] has been one of the most
frequently cited and used, owing this both to its simplicity
and good performance.

HEFT belongs to the family of list scheduling [1]
heuristics. Thus, HEFT assigns first a weight to each
node and edge of the DAG. The weight for each node
is calculated as the average computation cost to execute
this task on every machine, while the weight for each
edge is calculated as the average communication cost over
all possible pairs of machines. A ranking value, ranku,
is computed by traversing the DAG upwards, with the
ranku of a task t being t’s weight plus the maximum
value resulting from the weight of each child of t added
to the weight of the edge connecting this child with t.
Then, the tasks are scheduled in descending order of their
ranku value on the resource which gives the smallest
estimated finish time (EFT) for each task. Although, as
demonstrated in [8], [10], HEFT is sometimes particularly
sensitive to the ranking values produced using average
values to compute the weights, it is not immediately clear
under what circumstances other options to compute the
weights may produce better quality schedules.

Similarly to HEFT, many DAG scheduling heuristics
select resources based solely on attributes calculated for a

single, selected task, ignoring any adverse consequences
of such a scheduling decision to the task’s successors. A
notable exception to this rule is the k-DLA algorithm [11],
where a statically computed attribute takes into account the
number of neighbours of a resource in the network as well
as the number of children of the task being scheduled.
Our proposal takes this further by building upon HEFT
and looking ahead as the schedule is generated, thereby
considering the impact of every task’s scheduling decision
separately.

To illustrate the possible benefits, consider the simple
DAG shown in Figure 1. The cost of executing each task
on three different (heterogeneous) resources is given in
the table below the graph. It is assumed that the three
resources are connected with communication links of the
same capacity. Thus, the communication requirements be-
tween tasks are only determined by the amount of data sent
between tasks (shown next to each edge of the DAG). Two
schedules are shown on the right-hand side of the figure.
The first illustrates the schedule produced by the standard
version of HEFT. The second illustrates the schedule
produced by an improved version of HEFT, which uses
lookahead information to assess the impact of each allo-
cation decision to a task’s children. The second schedule
has a makespan, which is approximately 30% less than
the makespan produced by HEFT (184 as opposed to 260
time units). Following ranking, the priority list of tasks
used in our motivating example is {1, 4, 2, 3, 5, 6, 7, 8, 9}.
The improvement is achieved when task 7 is scheduled.
Without any lookahead information, the smallest EFT for
task 7 is 141 on R2; then, task 8 gives a smallest EFT on
R3 (143), and task 9 has the smallest EFT on R1 (260).
When using lookahead information, task 7 is scheduled on



the resource that gives the smallest EFT for its children,
in this case task 9 only.

This outcome can be achieved by assigning (provision-
ally) task 7 on each resource and attempting to schedule
its child (that is, task 9) using HEFT. When task 7 is
assigned to R2 its EFT is 141, and the best resource for
task 9 would be R1 (which returns an EFT of 260). On
the other hand, when task 7 is assigned to R1, although
it has a worse EFT (143), the EFT for its child, task 9,
would be 184, which is smaller than before (260). Thus,
the algorithm decides to schedule task 7 on a resource
which gives a worse EFT for this task, but which can
reduce the EFT of its child. Then, task 8 is scheduled on
R2, which results in the best EFT for task 9 in R1 (184).
Finally, task 9 is scheduled on the resource which gives
the best EFT for itself, since it does not have children.

Clearly, our proposal increases the time complexity of
the original HEFT. However, we believe the potentially
significant benefits resulting from this increase (around
30% in the example above and up to 20% when averaged
over several runs – see Section 4) are justified in practice
because: (i) HEFT is already a simple and quick heuris-
tic (for example, a standard HEFT implementation can
generate a schedule for DAGs with 100s of nodes in less
than a second); (ii) as indicated in [5], there are heuristics
with a time complexity higher than HEFT, which, however,
do not necessarily generate makespans as good as those
generated by HEFT.

III. HEFT WITH LOOKAHEAD

We present four different possibilities to enhance HEFT
with lookahead information. The four different versions
correspond to all combinations of: (i) two different ways
to select a resource for each task (based on two different
approaches to calculate the EFT of the children of the
task); and (ii) two different ways of selecting which task
will be scheduled first (using either strictly the priority or-
der calculated by HEFT’s ranku attribute to rank tasks, or
partly relaxing this ranking, motivated by the observations
in [8], [10]).

The four versions studied are as follows.

1) Lookahead: this is the lookahead as described in
the motivating example above, where the resource
selected for a task t is the one which minimizes the
maximum EFT from all t’s children on all resources
where t is tried.

2) Lookahead with weighted average EFT: the resource
selected for t is the one which minimizes a weighted
average EFT from all t’s children, where the average
is weighted using the ranku of each task.

3) Lookahead and priority list change: Provided that
the first two unscheduled ready tasks (as ranked by
HEFT) are independent, they are each considered,
in turn, for allocation making use of lookahead
information for the children of both. The task which
was scheduled first when the maximum EFT was
minimized is the one finally scheduled.

4) Lookahead and priority list change with weighted
average EFT: same as the priority list change above,
but using the weighted average EFT instead of EFT.

A. Lookahead

To implement the lookahead only versions (first two
versions of the four versions listed above), we use the
standard description of HEFT, including the calculation
of a priority attribute ranku for each task ti, defined as
follows (see [6]):

ranku(ti) = wi + max
tj∈succ(ti)

(ci,j + ranku(tj)),

where wi is the average execution time of ti over all
resources, succ(ti) is the set of immediate successors of
ti, and ci,j is the average communication cost between ti
and tj .

The lookahead version raises some issues that need
to be tackled. Let t be the highest priority task ready
to be scheduled. Task t is tried on every resource and
its children are scheduled using HEFT to calculate their
estimated finish time according to where t is scheduled.
However, some (or all) children of t may not become ready
immediately after scheduling t (as a result of a dependence
to another, as yet unscheduled, parent). Still, to calculate
the estimated finish time of t’s children, we only consider
their already scheduled parents and t, ignoring further
delays that may arise due to any unscheduled parents. This
means that the estimated finish time computed is rather
optimistic.

Another issue is that one can think of several ways to
select a resource for a task t based on the estimated finish
time of its children. This may be because, for example,
some of the children may have a low priority comparing
to other children which are on the critical path. In this
paper, we consider and evaluate two alternative ways:

1) Select the resource which minimizes the maximum
EFT for t’s children among all resources where t
is tried. In other words, this means that t will be
scheduled on the resource which gives the minimum
completion time for all t’s children, which were
scheduled using HEFT.

2) Select the resource which minimizes the weighted
average EFT, EFTW , for t’s children. The rationale
of the weighted average is that the EFT of children
with a low ranking value (that is, children that are
expected to be scheduled the furthest in the future) is
given a lower weight. The weighted average EFTW

for a task t is computed as follows:

EFTW =

∑

tj∈L

(ranku(tj)× EFTtj )

∑

tj∈L

ranku(tj)
,

where L is the lookahead set containing the tasks
which are used to look ahead. In the lookahead
version described here, L contains all children of
t. When the set L is empty, t is scheduled on the
resource which gives the best EFT for itself.



Algorithm 1 HEFT with lookahead
1: rank tasks using the ranku

2: while there are unscheduled tasks do
3: t← unscheduled task with highest ranku

4: L← children of t
5: for all resource ri in the resources set R do
6: schedule t on ri

7: schedule all tasks of L using HEFT
8: EFTri ← maximum EFT for tasks in L
9: return to the schedule state at the beginning of

this loop
10: end for
11: schedule t on ri such that EFTri ≤ EFTrk

∀rk ∈
R

12: end while

The version based on the minimization of the maximum
EFT values is shown in Algorithm 1. The version that
makes use of the weighted average requires a modification
in line 8 to assign EFTW to EFTri .

It is easy to observe that the time complexity of the
lookahead algorithm increases the time complexity of
HEFT by a factor of r × c, where r is the number of
resources and c is the average number of children per
task. The algorithm can also be modified to look ahead
recursively, achieving a higher depth of lookahead, by
checking not only the children of a task but the children
of the children and so on. Every additional level increases
the complexity significantly (by another factor of r × c).
In addition, some preliminary simulation results indicated
that there was not much to gain in terms of the makespan
by considering a lookahead with depth of 2 and 3. As
a result, in this paper we restrict our description and the
discussion to a lookahead of depth 1 (that is, only the
task’s children and not their children too).

B. Lookahead and priority list change

Motivated by the observations made in [8], [10] (where
it was demonstrated that, sometimes, relaxing the priority
order of tasks, obtained through ranking, may give better
quality schedules), we developed a version that may
change the order of the first unscheduled task, t, with
its successor task, t1, in the priority list, depending on
the outcome of lookahead information. Of course, it is
assumed that these two tasks, t and t1, are ready for exe-
cution (that is, all their parents have completed execution)
and they are independent (that is, their execution order is
not bound by a precedence constraint).

The idea behind this version is to look ahead also in
the priority list, in addition to looking ahead for children’s
completion time, described hitherto. This version works in
a similar way to Algorithm 1, but with two differences:

(i) in addition to the children of the first ready task, t,
the set L includes the second ready task with highest
priority, t1, and the children of t1;

(ii) the inner loop of Algorithm 1 (lines 5-10) is executed
twice: first considering t as the first task to be

Algorithm 2 HEFT with lookahead and priority change
1: rank tasks using the ranku

2: while there are unscheduled tasks do
3: t← unscheduled task with highest ranku

4: t1 ← unscheduled task with second highest ranku

5: for (i = 0; i < 2; i + +) do
6: L← (children of t) ∪ t1 ∪ (children of t1)
7: for all resource ri in the resources set R do
8: schedule t on ri

9: schedule all tasks of L using HEFT
10: EFTt,ri ← maximum EFT for tasks in L
11: return to the schedule state in the beginning of

this loop
12: end for
13: resourcet ← ri such that EFTt,ri ≤

EFTt,rk
∀rk ∈ R

14: EFTt ← minri∈R EFTt,ri

15: return to the schedule state in the beginning of
this loop

16: aux← t; t← t1; t1 ← aux
17: end for
18: select t which resulted in the smallest EFTt

19: schedule t on resourcet

20: end while

scheduled and then considering t1.

The schedule which gives the best overall result is then
chosen.

A version of this algorithm, which minimizes the com-
pletion time of all tasks in L, is illustrated in Algorithm 2.
Line 10 can be changed to use the weighted average
approach to compute a weighted average EFTW . The
algorithm works in a similar way to Algorithm 1, the only
difference being that runs twice (considering a different
task each time) and checks the children of both tasks under
consideration.

IV. SIMULATION RESULTS

We carried out extensive simulation with an in-house
simulator developed in Java and used in other similar
studies (e.g., [12]). In the simulation, it is assumed that the
DAGs have dedicated use of the resources. We measured
the average makespan for the lookahead and priority
list change, both with the minimize maximum EFT and
weighted average variations. Additionally, we measured
the execution time of each algorithm. The simulations
were run using 2 and 10 heterogeneous resources in the
target environment, each one having a processing capacity
(units of computation per time unit) randomly taken from
the interval (10, 100). The resources were fully connected
by a heterogeneous network; each link had its bandwidth
randomly taken from the interval (10, 100).

Five different types of DAGs were used, each corre-
sponding to a real-world workflow application. They are:

• Montage: 24 tasks; see Figure 3 in [13]
• AIRSN: 51 tasks; see Figure 5 in [15]
• LIGO: 166 tasks; see Figure 4 in [14]



(a) Montage [13] (b) LIGO [14] (c) AIRSN [15]

(d) Chimera-1 [16] (e) Chimera-2 [16]

Figure 2. Workflow applications used in the simulations.

• Chimera-1: 43 tasks; see Figure 6 in [16].
• Chimera-2: 123 tasks; see Figure 7 in [16].

The versions of the five DAGs used are reproduced in
Figure 2.

The computation cost of each node was randomly
taken from the interval (500, 4000). For each type of
DAG, we performed simulations using communication to
computation ratios (CCR) of 0.5, 1.0, and 2.0. CCR is
defined as the ratio between the amount of communication
and the amount of computation performed in the DAG
execution.

A. Results

The results are averaged over 500 runs and, along with
some observations for each type of DAG, are presented
next.

Montage: The average makespan results for the Mon-
tage DAG are shown in Figure 3. The highest makespan
improvements over HEFT were obtained by the lookahead
algorithm using the minimize maximum EFT for all chil-
dren approach. Improvements range from 1.55%, with 2
resources and CCR = 0.5, to 15.2%, with 10 resources
and CCR = 2.0.

AIRSN: The results for the AIRSN DAG are shown
in Figure 4. The priority list change algorithm using
the weighted average approach performed better with
the AIRSN DAG with 2 resources and CCR = 0.5
(improvement of 2.85%) or CCR = 1.0 (improvement
of 3.93%). With 2 resources and CCR = 2.0, the
lookahead algorithm performed slightly better than the
priority change, improving the makespan by 5.88%. With
10 resources, the results are similar for the lookahead and

priority change when both are using the weighted average
approach, with improvements of around 6%.

LIGO: The results for the LIGO DAG are shown in
Figure 5. The makespan is similar for all algorithms with 2
resources, even though, when CCR = 2, algorithms using
the weighted average approach performed slightly better;
the improvement is low, around 0.25%. For simulations
with 10 resources, when CCR = 0.5 the priority list
change using weighted average was marginally better,
improving the schedule of HEFT by 0.77%. With CCR =
1.0 both algorithms with the weighted average approach
gave similar results, with improvement around 2%, while
with CCR = 2.0 the lookahead with weighted average
performed better than the other algorithms, resulting in an
average makespan 7.2% lower than HEFT’s makespan.

Chimera-1: The results for the Chimera-1 DAG are
shown in Figure 6. When the CCR is 0.5 or 1.0 the
results are similar for all four proposed algorithms. With
2 resources and CCR = 0.5 the improvement against
HEFT is around 1.7%, while for CCR = 1.0 the im-
provement is around 3.5%. Results for 10 resources give
an improvement of around 5.2% with CCR = 0.5 and
11% when CCR = 1.0. When the CCR is higher, the
makespan improvement of the lookahead algorithm with
weighted average is around 20%.

Chimera-2: The results for the Chimera-2 DAG are
shown in Figure 7. They show similar trends to the results
of Chimera-1. The best improvement with 2 resources
is given by the lookahead with weighted average when
CCR = 2.0 (2.6%); with 10 resources the maximum
improvement is around 14.4% with CCR = 2.0.



 980

 1000

 1020

 1040

 1060

 1080

 1100

 1120

 1140

 1160

2.01.00.5

A
ve

ra
ge

 m
ak

es
pa

n

CCR

Montage - 2 resources

HEFT
Lookahead

Lookahed-Wavg
PriorityChange

PriorityChange-Wavg

 600

 650

 700

 750

 800

 850

2.01.00.5

A
ve

ra
ge

 m
ak

es
pa

n

CCR

Montage - 10 resources

HEFT
Lookahead

Lookahed-Wavg
PriorityChange

PriorityChange-Wavg

Figure 3. Average makespan using the Montage graph and 2 or 10 resources.

 1200

 1250

 1300

 1350

 1400

 1450

2.01.00.5

A
ve

ra
ge

 m
ak

es
pa

n

CCR

AIRSN - 2 resources

HEFT
Lookahead

Lookahed-Wavg
PriorityChange

PriorityChange-Wavg

 400

 450

 500

 550

 600

 650

 700

2.01.00.5

A
ve

ra
ge

 m
ak

es
pa

n

CCR

AIRSN - 10 resources

HEFT
Lookahead

Lookahed-Wavg
PriorityChange

PriorityChange-Wavg

Figure 4. Average makespan using the AIRSN graph and 2 or 10 resources.

 3850

 3900

 3950

 4000

 4050

 4100

 4150

2.01.00.5

A
ve

ra
ge

 m
ak

es
pa

n

CCR

LIGO - 2 resources

HEFT
Lookahead

Lookahed-Wavg
PriorityChange

PriorityChange-Wavg

 740

 760

 780

 800

 820

 840

 860

 880

 900

 920

2.01.00.5

A
ve

ra
ge

 m
ak

es
pa

n

CCR

LIGO - 10 resources

HEFT
Lookahead

Lookahed-Wavg
PriorityChange

PriorityChange-Wavg

Figure 5. Average makespan using the LIGO graph and 2 or 10 resources.

B. Discussion

Analysing the results for each DAG we observe that
the proposed algorithms appear to give better results when
there are more resources and when the CCR is increased.
The motivating example presented in Section II gives a
hint that may explain this behaviour: when looking ahead
for task 7, the algorithm found that the communication
between task 7 and task 9 had to be prioritised instead
of the EFT of task 7. Thus, when the CCR is high and

there are more resources where tasks can be assigned to,
lookahead information can foresee whether future data
transfers may be too costly and thus avoid them.

A second observation is that the priority list change
versions do not seem to give significantly better results
despite the additional complexity. Many times, their per-
formance seems to be worse than the performance of
the lookahead alone versions. This is an interesting ob-
servation, because it seems to indicate that considering



 1100

 1150

 1200

 1250

 1300

 1350

 1400

2.01.00.5

A
ve

ra
ge

 m
ak

es
pa

n

CCR

Chimera-1 - 2 resources

HEFT
Lookahead

Lookahed-Wavg
PriorityChange

PriorityChange-Wavg

 300

 350

 400

 450

 500

 550

 600

 650

 700

2.01.00.5

A
ve

ra
ge

 m
ak

es
pa

n

CCR

Chimera-1 - 10 resources

HEFT
Lookahead

Lookahed-Wavg
PriorityChange

PriorityChange-Wavg

Figure 6. Average makespan using the Chimera-1 graph and 2 or 10 resources.

 2940

 2960

 2980

 3000

 3020

 3040

 3060

 3080

 3100

2.01.00.5

A
ve

ra
ge

 m
ak

es
pa

n

CCR

Chimera-2 - 2 resources

HEFT
Lookahead

Lookahed-Wavg
PriorityChange

PriorityChange-Wavg

 550

 600

 650

 700

 750

 800

 850

 900

 950

2.01.00.5

A
ve

ra
ge

 m
ak

es
pa

n

CCR

Chimera-2 - 10 resources

HEFT
Lookahead

Lookahed-Wavg
PriorityChange

PriorityChange-Wavg

Figure 7. Average makespan using the Chimera-2 graph and 2 or 10 resources.

the impact of scheduling decisions on children alone is
sufficient as a remedy to the problems observed in [8],
[10], that motivated the idea of partially relaxing the
priority order of tasks.

C. Algorithm Execution Time

An important point to evaluate with the proposed algo-
rithms is how long they take to run; since they consider
a wider search space than HEFT, they have a higher time
complexity. The execution time of each algorithm for
simulations with 10 resources is shown in Figure 8. As
expected, the lookahead versions took more time to run
than HEFT, and the priority change versions took even
more time than the lookahead. Furthermore, as expected,
a high number of edges results in higher execution times.
For example, the Chimera-1 DAG has a high edge density;
the running time of the algorithms for Chimera-1 is much
higher than for AIRSN even though the latter has more
tasks. Nevertheless, in absolute terms, as the measured
execution times demonstrate, none of the algorithms has
a prohibitively high execution time when compared to
HEFT. The execution time for the lookahead alone (no
priority list) versions is at most four times more than
HEFT for Chimera-2, which has a high edge density; still,
in absolute terms, this was less than 0.5 seconds, which

 0

 200

 400

 600

 800

 1000

 1200

LIGO
(168 tasks)

Chimera2
(124 tasks)

AIRSN
(53 tasks)

Chimera1
(44 tasks)

Montage
(25 tasks)

E
xe

cu
tio

n 
tim

e 
(m

s)

HEFT
Lookahead

Lookahed-Wavg
PriorityChange

PriorityChange-Wavg

Figure 8. Algorithms execution time.

is not prohibitively high and makes it attractive for real
practice (especially with regards to the expected benefits
in the makespan). For other DAGs with a smaller edge
density, the lookahead version was twice as slow as HEFT.

V. CONCLUSION

This paper presented lookahead approaches to schedule
DAGs in heterogeneous systems, which are implemented
as an extension of the popular Heterogeneous Earliest



Finish Time (HEFT) algorithm. The first approach pro-
posed uses lookahead information from the DAG, trying
to minimize the estimated finish time of the children of the
task being scheduled. The second approach looks ahead in
the priority list too, changing the order of the tasks being
scheduled to see which order can give a better estimated
finish time.

Preliminary simulations with a number of DAGs cor-
responding to real-world applications have indicated that
the lookahead versions proposed can significantly improve
the schedule returned by HEFT, especially in cases where
the communication cost is higher with respect to compu-
tation, without resulting in a prohibitively high running
time. The first approach proposed seems to give results,
which are as good as the results of the second approach,
with lower complexity, and consequently lower running
time. The proposed lookahead algorithms may shorten the
makespan in some cases by up to 20% on average. Such an
improvement is important because, despite the increased
complexity, HEFT performs better than many higher time
complexity algorithms. In addition, thanks to its simplicity
and good performance, it appears to be one of the most
frequently used DAG scheduling heuristics, which makes
it worth investigating situations where enhancements of
the original algorithm may lead to improved schedules.

Future work can examine different approaches to look
ahead as well as further work on the feasibility of a higher
lookahead depth. Another point for future investigation
is the effect of lookahead strategies to other similar
DAG scheduling heuristics and the optimization of the
lookahead strategies so that they only selectively consider
lookahead information.

ACKNOWLEDGEMENT

This work was carried out while the first author was on a
10-month visit to the University of Manchester, with sup-
port from CAPES (3248-08-9) and FAPESP (05/59706-3),
which is gratefully acknowledged.

REFERENCES

[1] M. L. Pinedo, Scheduling: Theory, Algorithms, and Sys-
tems. Springer Publishing Company, 2008.

[2] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms
for allocating directed task graphs to multiprocessors,”
ACM Computing Surveys, vol. 31, no. 4, pp. 406–471, 1999.

[3] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields,
Workflows for e-Science. Scientific Workflows for Grids.
Springer, 2007.

[4] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Work-
flows and e-science: An overview of workflow system
features and capabilities,” Future Generation Computer
Systems, vol. 25, no. 5, pp. 528–540, 2009.

[5] L.-C. Canon, E. Jeannot, R. Sakellariou, and W. Zheng,
“Comparative Evaluation of the Robustness of DAG
Scheduling Heuristics,” in Integrated Research in Grid
Computing, CoreGRID Integration Workshop, Greece,
April 2008, pp. 63–74.

[6] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-
effective and low-complexity task scheduling for hetero-
geneous computing.” IEEE Transactions on Parallel and
Distributed Systems, vol. 13, no. 3, pp. 260–274, 2002.

[7] A. S. Wu, H. Yu, S. Jin, K.-C. Lin, and G. Schiavone,
“An Incremental Genetic Algorithm Approach to Multi-
processor Scheduling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 9, pp. 824–834, 2004.

[8] R. Sakellariou and H. Zhao, “A Hybrid Heuristic for DAG
Scheduling on Heterogeneous Systems.” in 13th Hetero-
geneous Computing Workshop. IEEE Computer Society,
2004, pp. 111–123.

[9] J.Yu, R. Buyya, and K. Ramamohanarao, “Workflow
scheduling algorithms for grid computing.” Studies in Com-
putational Intelligence, vol. 146, pp. 173–214, 2008.

[10] H. Zhao and R. Sakellariou, “An Experimental Investiga-
tion into the Rank Function of the Heterogeneous Earliest
Finish Time Scheduling Algorithm,” in 9th International
Euro-Par Conference, Klagenfurt, Austria, 2003, pp. 189–
194.

[11] N. Woo and H. Y. Yeom, “k-Depth Look-Ahead Task
Scheduling in Network of Heterogeneous Processors,” in
International Conference on Information Networking, Wire-
less Communications Technologies and Network Applica-
tions (ICOIN’02). Cheju Island, Korea: Springer-Verlag,
2002, pp. 736–745.

[12] L. F. Bittencourt and E. R. M. Madeira, “A performance-
oriented adaptive scheduler for dependent tasks on grids,”
Concurrency and Computation : Practice and Experience,
vol. 20, no. 9, pp. 1029–1049, 2008.

[13] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil,
C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good,
A. Laity, J. C. Jacob, and D. S. Katz, “Pegasus: A
framework for mapping complex scientific workflows onto
distributed systems,” Scientific Programming, vol. 13, no. 3,
pp. 219–237, 2005.

[14] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman,
R. Sakellariou, K. Vahi, K. Blackburn, D. Meyers, and
M. Samidi, “Scheduling data-intensive workflows onto
storage-constrained distributed resources,” in CCGRID ’07:
Proceedings of the Seventh IEEE International Symposium
on Cluster Computing and the Grid. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 401–409.

[15] Y. Zhao, J. Dobson, I. Foster, L. Moreau, and M. Wilde,
“A notation and system for expressing and executing
cleanly typed workflows on messy scientific data,” SIG-
MOD Records, vol. 34, no. 3, pp. 37–43, 2005.

[16] J. Annis, Y. Zhao, J. Voeckler, M. Wilde, S. Kent, and
I. Foster, “Applying Chimera virtual data concepts to cluster
finding in the Sloan Sky Survey,” in Supercomputing ’02:
Proceedings of the 2002 ACM/IEEE Conference on Super-
computing. Los Alamitos, CA, USA: IEEE Computer
Society Press, 2002, pp. 1–14.


