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Abstract— Compressed sensing magnetic resonance
imaging (CS-MRI) enables fast acquisition, which is highly
desirable for numerous clinical applications. This can not
only reduce the scanning cost and ease patient burden,
but also potentially reduce motion artefacts and the effect
of contrast washout, thus yielding better image quality.
Different from parallel imaging-based fast MRI, which uti-
lizes multiple coils to simultaneously receive MR signals,
CS-MRI breaks the Nyquist–Shannon sampling barrier to
reconstruct MRI images with much less required raw
data. This paper provides a deep learning-based strategy
for reconstruction of CS-MRI, and bridges a substantial
gap between conventional non-learning methods work-
ing only on data from a single image, and prior knowl-
edge from large training data sets. In particular, a novel
conditional Generative Adversarial Networks-based model
(DAGAN)-based model is proposed to reconstruct CS-MRI.
In our DAGAN architecture, we have designed a refine-
ment learning method to stabilize our U-Net based gen-
erator, which provides an end-to-end network to reduce
aliasing artefacts. To better preserve texture and edges in
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the reconstruction, we have coupled the adversarial loss
with an innovative content loss. In addition, we incorporate
frequency-domain information to enforce similarity in both
the image and frequency domains. We have performed
comprehensive comparison studies with both conventional
CS-MRI reconstruction methods and newly investigated
deep learning approaches. Compared with these methods,
our DAGAN method provides superior reconstruction with
preserved perceptual image details. Furthermore, each
image is reconstructed in about 5 ms, which is suitable for
real-time processing.

Index Terms— Compressed sensing, magnetic reso-
nance imaging (MRI), fast MRI, deep learning, generative
adversarial networks (GAN), de-aliasing, inverse problems.

I. INTRODUCTION

M
AGNETIC Resonance Imaging (MRI) is a widely

applied medical imaging modality for numerous clini-

cal applications. MRI can provide reproducible, non-invasive,

and quantitative measurements of tissue, including structural,

anatomical and functional information. However, one major

drawback of MRI is the prolonged acquisition time. MRI is

associated with an inherently slow acquisition speed that is

due to data samples not being collected directly in the image

space but rather in k-space. K-space contains spatial-frequency

information that is acquired line-by-line and anywhere from

64 to 512 lines of data are needed for a high quality reconstruc-

tion. This relatively slow acquisition could result in significant

artefacts due to patient movement and physiological motion,

e.g., cardiac pulsation, respiratory excursion, and gastroin-

testinal peristalsis. Prolonged acquisition times also limit the

usage of MRI due to expensive cost and considerations of

patient comfort and compliance [1]. Moreover, for protocols

that require contrast agent injection, lengthy acquisition can

result in contrast washout that may lead to poor quality or non-

diagnostic images. Due to limitations of the scanning speed,

patient throughput using MRI is slow compared with other

medical imaging modalities.

The MRI raw data samples are acquired sequentially in

k-space and the speed at which k-space can be traversed is lim-

ited by physiological and hardware constraints [2]. Once the

desired field-of-view and spatial resolution of the MRI images

are prescribed, the required k-space raw data is conventionally
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determined by the Nyquist-Shannon sampling criteria [3].

Some early research on fast MRI proposed acquiring several

lines in k-space from a single radio frequency (RF) excitation

by implementing multiple RF [4] or gradient [5] refocussings.

Since these acceleration techniques acquire the full k-space

coverage demanded by the Nyquist-Shannon sampling criteria,

they are still categorised as fully sampled methods [1].

One possible fast MRI approach is to undersample

k-space, resulting in an acceleration rate proportional to the

undersampling ratio. Partial Fourier imaging (PFI) [6] is an

undersampled technique based on the principle that in theory,

only half of the k-space in the phase encoding direction is

required according to the property that the Fourier trans-

formation of a purely real function has complex conjugate

symmetry in k-space [7]. However, in practice, more than

half of the phase encoding is acquired to provide a robust

phase correction [1]; therefore, the acceleration factor using

PFI is limited to <2 and it is associated with a drop of

signal to noise ratio (SNR). Alternatively, parallel imaging

is a fast MRI method using multiple independent receiver

channels. Each independent channel is most sensitive to the

tissue nearest to that coil. The raw data acquired from these

independent channels can be combined using either a sensi-

tivity encoding (SENSE) technique [8] or a generalised auto-

calibrating (GRAPPA) method [9]. The acceleration factor of

parallel imaging is limited by the number and arrangement of

the receiver coils, which potentially introduce some imaging

artefacts [10] and increase the manufacturing cost of the MRI

scanner.

On the other hand, Compressed Sensing [11] based

MRI (CS-MRI) allows fast acquisition that bypasses the

Nyquist-Shannon sampling criteria with more aggressive

undersampling. In theory, it can achieve a reconstruction with-

out deterioration of image quality by performing nonlinear

optimisation on randomly undersampled raw data, assuming

the data is compressible. The main challenge for CS-MRI is

to find an algorithm that can reconstruct an uncorrupted or

de-aliased image from randomly highly undersampled k-space

data.

II. RELATED WORK AND OUR CONTRIBUTIONS

A. Classic Model-Based CS-MRI

CS-MRI research has been focused on three major

directions. First, investigations have sought the best

undersampling scheme, which should be as random as possible

to create incoherent undersampling artefacts so that a proper

nonlinear reconstruction can be applied to suppress noise-like

artefacts without degrading image quality of the reconstruction

[12]–[14]. The sparsity of the random undersampling

determines the acceleration rate. More importantly, the random

undersampling scheme must be feasible to implement on

the MRI scanner and compatible with particular scanning

sequences. Currently, most studies using 2D MRI have relied

on 1D random undersampling to produce a sampling pattern

that follows a 1D Gaussian distribution. This gives a higher

level of undersampling in the high frequency regions while low

frequencies are retained to preserve overall image structure.

Only 1D undersampling is used because the sampling

along the frequency encoding direction is fast, and only

the phase encoding direction limits the acquisition time [2].

Considering 3D reconstruction, 2D Gaussian and Poisson

disc masks are commonly used to accelerate phase and slice

encoding [1].

Second, in general, medical imagery acquired by MRI is

naturally compressible. CS-MRI utilises the implicit sparsity

to reconstruct accelerated acquisitions [15]. Here the term

sparsity describes a matrix of image pixels or raw data points

which are predominately zero valued or namely compressible.

Such sparseness may exist either in the image domain or more

commonly via a suitable mathematical representation in a

transform domain. Sparse representation can be explored in a

specific transform domain or generally in a dictionary-based

subspace [16]. Classic fast CS-MRI uses predefined and fixed

sparsifying transforms, e.g., total variation (TV) [17]–[19],

discrete cosine transforms [20]–[22] and discrete wavelet

transforms [23]–[25]. In addition, this has been extended to a

more flexible sparse representation learnt directly from data

using dictionary learning [26]–[28].

Finally, nonlinear optimisation algorithms ensure the

achievement of efficient, stable and accurate reconstruction

[16], [18], [29], [30]. Comprehensive reviews on classic

CS-MRI methods and clinical applications can be found

elsewhere, e.g., [1], [31].

Although there are promising studies applying fast CS-MRI

in clinical environments [31]–[33], most routine clinical MRI

scanning is still based on standard fully-sampled Cartesian

sequences or is accelerated only using parallel imaging. The

main challenges are: (1) satisfying the incoherence criteria

required by CS-MRI [1]; (2) the widely applied sparsifying

transforms might be too simple to capture complex image

details associated with subtle differences of biological tissues,

e.g., TV based sparsifying transform penalises local variation

in the reconstructed images but can introduce staircase

artefacts and the wavelet transform enforces point singularities

and isotropic features but orthogonal wavelets may lead to

blocky artefacts [34]–[36]; (3) nonlinear optimisation solvers

usually involve iterative computation that may result in

relatively long reconstruction time [1]; (4) inappropriate

hyper-parameters predicted in current CS-MRI methods can

cause over-regularisation that will yield overly smooth and

unnatural looking reconstructions or images with residual

undersampling artefacts [1]. Due to these challenges and

limitations, the acceleration rate using CS-MRI alone is still

limited (2× to 6× acceleration).

B. Deep Learning-Based CS-MRI

Recently, deep learning has received great attention in

computer vision studies and has generally returned dividends

in performance. Shen et al. [37] surveyed the most recent

research in deep learning for medical image analysis and

Wang [38] provided an insightful perspective on deep imaging

that proposed to incorporate deep learning into tomographic

image reconstruction. Essentially, CS-MRI reconstruction

solves a generalised inverse problem that is analogous to
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image super-resolution (SR) [39], de-noising and inpainting

[40], [41] that have been successfully solved using deep

neural network architectures, e.g., using convolutional neural

networks (CNN).

Currently, there are only preliminary studies on deep learn-

ing based CS-MRI reconstruction. Wang et al. [42] introduced

a CNN-based CS-MRI method, in which the learnt network

was used to initialise the classic CS-MRI in a two-phase

reconstruction, or integrated into the CS-MRI directly as an

additional regularisation term. Despite preliminary qualitative

visualisation that showed some promise, the applicability of

this method for CS-MRI reconstruction is yet to be quan-

titatively assessed in detail. In [36], a deep network was

trained for solving CS-MRI using an Alternating Direction

Method of Multipliers [18] framework, i.e., ADMM-Net. The

reconstruction, de-noising and Lagrangian multiplier updates

were implemented in a data flow graph and optimised through

cascaded deep network layers. The method achieved similar

reconstruction results as classic CS-MRI reconstruction meth-

ods but dramatically reduced reconstruction time. There are

also three preprints describing deep learning based CS-MRI:

Schlemper et al. [43] proposed cascaded CNN incorporating

a data consistency layer, Hammernik et al. [44] trained a

variational network to solve CS-MRI and Lee et al. [45]

combined CNN based CS-MRI with parallel imaging to

estimate and remove the aliasing artefacts. Although deep

learning has shown great potential in solving CS-MRI with

much faster reconstruction, to date improvement was not found

significantly different from what classic CS-MRI can achieve.

Moreover, similar to other deep learning applications, it is not

trivial to define the network architecture and convergence of

the deep network training might be difficult to achieve unless

comprehensive parameter tuning is performed.

C. Our Contributions

In this study, we proposed a novel conditional Generative

Adversarial Networks (GAN) based deep learning architecture

(dubbed DAGAN) for de-aliasing and fast CS-MRI by a com-

prehensive extension of our initial proof-of-concept study [46]

in both method and simulation settings. Our main contributions

are:

• We propose a U-Net architecture [47], [48] with skip

connections for the generator network;

• A refinement learning approach is designed to stabilise

the training of GAN for fast convergence and less para-

meter tuning;

• The adversarial loss is coupled with a novel content loss

considering both pixel-wise mean square error (MSE) and

perceptual loss defined by pretrained deep convolutional

networks from the Visual Geometry Group at Oxford

University (in short VGG networks [49]) to achieve better

reconstruction details;

• Frequency domain information of the CS-MRI has been

incorporated as additional constraints for the data consis-

tency, which is formed as an extra loss term;

• We perform comprehensive experiments and compare our

proposed models with both classic CS-MRI and newly

developed deep learning based methods.

Compared to the state-of-the-art CS-MRI methods, we can

achieve high acceleration factors with superior results and

faster processing time.

III. METHOD

A. General CS-MRI

1) Forward Model: The observation or data acquisition

forward model of image restoration or reconstruction can be

approximated as a discretised linear system [50],

Fx + ε = y, (1)

in which x ∈ CN represents the desired image to be recon-

structed, which consists of
√

N ×
√

N pixels formatted as

a column vector. The observation is denoted as y ∈ CM .

The forward model of image acquisition can be described

using a linear operator F : CN �→ CM that different matrices

F ∈ CM×N represent various image restoration or reconstruc-

tion problems, e.g., an identity operator for image de-noising,

convolution operators for de-blurring, filtered subsampling

operators for SR and k-space random undersampling operators

for CS-MRI reconstruction [50].

2) Inverse Model: The inverse estimation of Eq. 1 is usually

ill-posed because the problem is normally underdetermined

with M ≪ N . Moreover, the inverse model is unstable due to

a numerically ill-conditioned operator F and the presence of

noise (ε in Eq. 1) [50].

3) Classic Model-Based CS-MRI: In order to solve this

underdetermined and ill-posed system of CS-MRI, one must

exploit a-priori knowledge of x that can be formulated as an

unconstrained optimisation problem, that is

min
x

1

2
||Fux − y||22 + λR(x), (2)

where 1
2
||Fux − y||22 is the data fidelity term and Fu ∈ C

M×N

is the undersampled Fourier encoding matrix. R expresses

regularisation terms on x and λ is a regularisation parame-

ter. The regularisation terms R typically involve lq -norms

(0 ≤ q ≤ 1) in the sparsifying domain of x [2].

4) Deep Learning-BasedCS-MRI: Deep learning based stud-

ies [42], [43] propose to incorporate a CNN into CS-MRI

reconstruction, that is

min
x

1

2
‖Fux − y‖2

2 + λR(x) + ζ‖x − fcnn(xu|θ̂ )‖2
2, (3)

in which fcnn is the forward propagation of data through

the CNN parametrised by θ , and ζ is another regularisation

parameter. The image generated by the CNN (i.e., fcnn(xu |θ̂ ))

is used as a reference image and as an additional regularisation

term, in which θ̂ represents the optimised parameters of the

trained CNN. In addition, xu = FH
u y is the reconstruction from

the zero-filled undersampled k-space measurements, where H

represents the Hermitian transpose operation. MRI data nat-

urally encodes magnitude and phase information in complex

number format. There are at least two strategies for a deep

learning based method to handle complex numbers: (1) real-

valued information can be embedded into the complex space

using an operator Re∗ : RN �→ CN such that Re∗(x) = x+0i ,

and therefore the MRI forward operator can be expressed as
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Fig. 1. Schema for our proposed conditional GAN-based de-aliasing for fast CS-MRI (DAGAN).

F : RN Re∗
�→ CN �→ FCN �→ UCM that Fu combines the

Fourier transform F and random undersampling U opera-

tors [51]; (2) the real and imaginary data can be learnt as

separate channels in the training of the CNN, in other words,

the CN is replaced as R2N [43]. In our simulation based study,

the first strategy was employed to avoid extra computational

burden.

B. General GAN

Generative Adversarial Networks [52] consist of a gener-

ator network G and a discriminator network D. The goal of

the generator G is to map a latent variable z, e.g., an input

vector of random numbers, to the distribution of the given true

data x that we are interested in imitating in order to fool the

discriminator D. The discriminator aims to distinguish the true

data x from the synthesized fake data GθG (z). GAN can be

formulated mathematically as a minimax game between the

generator GθG (z) : z �→ x and the discriminator DθD (x) :
x �→ [0, 1], and this training process is parameterised by θG

and θD as following

min
θG

max
θD

L(θD, θG) = Ex∼pdata(x)[log DθD (x)]

+ Ez∼pz(z)[log(1 − DθD (GθG (z)))] (4)

where latent variable z is sampled from a fixed latent dis-

tribution pz(z) and real samples x come from a real data

distribution pdata(x). The GAN model can be solved by

alternating gradient optimisation between the discriminator

and the generator. Let pG(x) be the distribution induced by

the generator, for a fixed G, the optimal discriminator is

θ∗
D(x) = pdata(x)

pdata(x) + pG(x)
(5)

when the generator distribution exactly matches the data distri-

bution pdata(x) = pG(x) [52]. To avoid the vanishing gradient

problem, when initially the discriminator is very confident and

almost always outputs 0, in practice the gradient step for the

generator is replaced by

�θG = ∇θG Ez∼pz(z)[− log DθD (GθG (z))]. (6)

In so doing, the gradient signals are enhanced, but this is

no longer a zero-sum game [53]. When the discriminator is

optimal, the minimax game is reduced into a minimisation

over the generator only and is equal to

min
θG

L(θ∗
D, θG) = JSD(pdata||pG) − log(2) (7)

using the Jensen-Shannon divergence [53]. In practice,

optimal θ∗
D is rarely known; thus, minimisation of L(θD, θG)

yields only a lower bound [52], [53].

C. Proposed Method

A GAN can be extended to a conditional model if extra prior

information is included to constrain the generator and discrim-

inator; this is known as a conditional GAN [54]. Additional

prior information can be discrete labels, text and

images [55], [56]. In this study, a GAN conditioned on

images was used and Figure 1 shows the overall framework

of our conditional GAN-based CS-MRI architecture.

1) Conditional GAN Loss: First, instead of using a CNN,

we incorporated the conditional GAN loss into our CS-MRI

reconstruction, that is

min
θG

max
θD

LcGAN(θD, θG) = Ext ∼ptrain(xt )[log DθD (xt )]

+Exu∼pG(xu)[− log(DθD (GθG (xu)))], (8)

in which there is one input for the generator, i.e., zero-

filling reconstruction xu with aliasing artefacts. After

learning, the generator yielded the corresponding de-aliased

reconstruction x̂u , which was fed to the discriminator. The aim

is to keep training until the discriminator cannot distinguish

a de-aliased reconstruction x̂u from the fully-sampled ground

truth reconstruction xt . Here xt and xu are our input training

data or in other words we input xu conditioned on the given xt ,

and output the de-aliased reconstruction x̂u . Compared to the

original conditional GAN [54], in which both the generator

and discriminator are conditioned on some extra information,

in our DAGAN model only the generator receives the

undersampled image input as the conditional information.

2) DAGAN Architecture: Our DAGAN architecture was

loosely inspired by [55] and [57]. We proposed to use a U-

Net based architecture [47] to construct the generator G that

consisted of 8 convolutional layers (encoder layers) and corre-

sponding 8 deconvolutional layers (decoder layers), and each

was followed by batch normalisation [58] and leaky ReLU

layers. In addition, skip connections were applied to connect



1314 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 6, JUNE 2018

mirrored layers between the encoder and decoder paths in

order to feed different levels of features to the decoder to gain

superior reconstruction details. A hyperbolic tangent function

was used as the output activation function for the generator.

On the other hand, the discriminator D undertook a classifica-

tion task to differentiate the de-aliased reconstruction x̂u from

the fully-sampled ground truth reconstruction xt . It was formed

using a standard CNN architecture with 11 convolutional

layers, and each was also followed by batch normalisation

and leaky ReLU layers. Finally a dense convolutional layer

was cascaded and the sigmoid activation function output the

classification results (more detail in Supplementary Material).

3) Content Loss: In order to improve the perceptual quality

of our reconstruction, a content loss was designed for the

training of the generator. This loss consisted of three parts,

i.e., a pixel-wise image domain mean square error (MSE) loss,

a frequency domain MSE loss and a perceptual VGG loss.

First, the MSE based loss functions can be represented as

min
θG

LiMSE(θG) = 1

2
||xt − x̂u ||22; (9)

min
θG

LfMSE(θG) = 1

2
||yt − ŷu ||22, (10)

in which yt and ŷu are the corresponding frequency domain

data of xt and x̂u . The VGG loss is defined as

min
θG

LVGG(θG) = 1

2
|| fvgg(xt ) − fvgg(x̂u)||22. (11)

Together with the adversarial loss of the generator

min
θG

LGEN(θG) = − log(DθD (GθG (xu))), (12)

the total loss function can be denoted as

LTOTAL = αLiMSE + βLfMSE + γLVGG + LGEN. (13)

In this study, normalised MSE (NMSE) was used as the

optimisation cost function for the fast CS-MRI reconstruction.

However, the solution solely based on the optimisation of

the NMSE, which is defined on pixel-wise image differ-

ence (LiMSE), could result in perceptually nonsmooth recon-

structions that often lack coherent image details. Therefore,

we added NMSE of the frequency domain data as additional

constraints (LfMSE) and also an additional VGG loss (LVGG)

to take the perceptual similarity into account [59]. Once the

generator has been trained based on the LTOTAL, we can apply

it to any new inputs (i.e., initial aliased reconstructions after

filling zeros into the undersampled k-space), and it will result

in the de-aliased reconstruction.

4) Refinement Learning: It is well known that a deep

learning based method might be hard to train due to vanish-

ing or exploding gradient problems, however comprehensive

parameter tuning may alleviate the problems but subject to

large variance of performance with different parameter set-

tings. The original GAN model is also difficult to train [57]

due to the alternating training on the adversarial components.

In this study, we proposed a refinement learning to stabilise

the training of our DAGAN model, which can yield faster con-

vergence. Essentially, we proposed to use x̂u = GθG (xu) + xu

instead of using x̂u = GθG (xu). In so doing, we transferred the

generator from a conditional generative function to a refine-

ment function, i.e., only generate the missing information,

which can dramatically reduce the complexity of the model

learning. In addition, in order to ensure that the de-aliased

reconstruction x̂u is in an appropriate intensity scale as the

ground truth, we applied a simple ramp function to rescale

the image.

5) Networks and Training Settings: The VGG network [49]

in this work was pretrained on ImageNet [60]. In particular,

we used the conv4 output of the VGG16 as the encoded

embedding of the de-aliased output and the ground truth,

and computed the MSE between them. We trained separate

networks for different undersampling ratios with the following

fixed mutual hyperparameters: α = 15, β = 0.1, γ = 0.0025,

initial learning rate of 0.0001, batch size of 25. It is of

note that the hyperparameters: α, β and γ are the weights

associated with different loss terms. According to previous

research [61] and in practice, we found that it is adequate

to set these weights such that the magnitude of different

loss terms is balanced into similar scales. We adopted Adam

optimisation [62] with momentum of 0.5. Each model was

learnt by employing early stopping and the learning rate was

halved every 5 epochs. Here we want to emphasise that our

DAGAN models are robust with minimal parameter tuning

so that the same set of hyperparmeters were used for our

following experiments using different undersampling ratios,

various undersampling masks and with and without noises.

6) Data Augmentation: In order to boost the network per-

formance, in addition to conventional data augmentation (e.g.,

image flipping, rotating, shifting, brightness adjustment and

zooming), elastic distortion [63] was also applied to account

non-rigid deformation of the imaged organs.

D. Implementation Details and Evaluation Methods

1) Implementation: The implementation of our DAGAN

models1 has been done using a high-level Python wrapper

(TensorLayer)2 [64] of the TensorFlow3 library.

2) Evaluation Methods: We report the NMSE, the Peak

Signal-to-Noise Ratio (PSNR in dB) and the Structural Sim-

ilarity Index (SSIM) [59]. The reconstructed fully sampled

k-space data was used as ground truth (GT) for validation.

In addition to quantitative metrics, we also evaluated our

method using qualitative visualisation of the reconstructed

MRI images and the error with respect to the GT.

IV. SIMULATION SETTINGS AND RESULTS

A. Simulation Settings

1) Datasets: First, we trained and tested our model using

a MICCAI 2013 grand challenge dataset.4 We randomly

included 100 T1-weighted MRI datasets for training (70%)

and validation (30%) that contained 16095 and 5033 valid

2D images including brain tissues. Independent testing was

1https://github.com/nebulaV/DAGAN
2http://tensorlayer.readthedocs.io
3https://www.tensorflow.org
4http://masiweb.vuse.vanderbilt.edu/workshop2013/index.php/



YANG et al.: DAGAN FOR FAST CS-MRI RECONSTRUCTION 1315

TABLE I

QUANTITATIVE RESULTS (NMSE AND PSNR) OF THE COMPARISON STUDY USING

DIFFERENT RANDOM UNDERSAMPLING RATIOS OF THE 1D GAUSSIAN MASK

performed on 50 datasets (contained 9854 2D images).

In order to compare with other conventional CS-MRI

methods, we randomly chose 50 2D images for comparison.

Second, in order to test the diagnostic value of our DAGAN

based CS-MRI model, we used the trained model to infer the

pathological MRI images, i.e., brain lesion MRI images5 and

cardiac MRI images with atrial scarring.

2) Masks: Three different types of undersampling patterns

were tested, i.e., 1D Gaussian (G1D), 2D Gaussian (G2D) and

2D Poisson disc (P2D). For the 1D Gaussian mask, 10%, 20%,

30%, 40% and 50% retained raw k-space data were simulated

representing 10×, 5×, 3.3×, 2.5× and 2× accelerations.

For 2D Gaussian and 2D Poisson disc masks, 30% retained

k-space data was simulated, respectively (For details refer to

Supplementary Material).

3) DAGAN Variations: In order to test the effectiveness of

different loss components in our cost function, we compared

the following DAGAN variations: (1) Pixel-Frequency-

Perceptual-GAN-Refinement (PFPGR): the full model using

the GAN architecture with pixel-wise MSE, frequency

domain data MSE, VGG loss, and refinement learning;

(2) Pixel-Perceptual-GAN-Refinement (PPGR): the model

without frequency domain data constraints; (3) Pixel-

Perceptual-GAN (PPG): the model without refinement

learning; (4) Pixel-GAN (PG): the method with pixel-wise

MSE only and GAN architecture.

4) Comparison Methods: We compared our DAGAN model

with conventional CS-MRI methods including TV [16],

SIDWT [65] and RecPF [18], and the state-of-the-art

approaches including DLMRI [26], PBDW [23], PANO [66],

Noiselet [67], BM3D [50] and DeepADMM [36]. It is

worth noticing that all the comparison methods and our

DAGAN models were initialised using the baseline zero-

filling (ZF) reconstruction to achieve a fair comparison study.

The initialisation using a prior reconstructed image (e.g.,

using SIDWT) may boost the performance of some methods,

but can obviously suffer from much longer reconstruction.

In addition, we only performed minimum parameter tuning for

5http://www.brainlesion-workshop.org/

all the methods. For most of these comparison algorithms (TV,

SIDWT, RecPF, PBDW and Noiselet), we used two generic

stopping criteria: the number of maximum iterations (800)

and the improvement tolerance (0.00001), and the recon-

struction stops when either criterion is satisfied. However,

the fundamental mechanism of these algorithms are different;

therefore, they may have different definitions for the number of

iterations. For the DLMRI method, we used the recommended

setting, i.e., 40 outer loop iterations with 20 iterations for

the K-singular value decomposition algorithm. Similarly, for

the BM3D method, we used some recommended number

of iterations, e.g., 100. For the PANO method, there is no

open source implementation; therefore, we only used the

provided executable file to perform the reconstruction (the

pre-defined inner loop improvement tolerance is 0.005 [66]).

For the DeepADMM method, we performed 500 iterations

for the training procedure to avoid possible overfitting and

also considered the relatively prolonged training time per

iteration. For our DAGAN method we applied the early

stopping strategy, which can be considered as an additional

and efficient regularisation technique to avoid overfitting [68].

To test the noise tolerance of the CS-MRI methods, we syn-

thesised additive white Gaussian noise, which was added to

the k-space before applying the undersampling. Although we

assumed that the MRI images before adding noise were clean,

the actual data were acquired from MRI scanner that may

contain certain amount of noise. In this study, the baseline

noise level (5.5% ± 13%) was calculated using the method

described in [69]. It is of note that although the noise model

of magnitude MRI images should follow Rician distribution,

the additive Gaussian white noise assumption still holds for

the k-space components [70].

B. Results

1) Comparison of DAGAN Variations: Table I tabulates the

quantitative comparison results of DAGAN variations (i.e.,

PG, PPG, PPGR and PFPGR). Overall, the results using 1D

Gaussian masks presented in Table I show that adding the

refinement learning and frequency domain constraint (PFPGR)
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Fig. 2. Qualitative results of using different undersampling ratio. Results
were obtained by PFPGR and 1D Gaussian masks with 10% (a),
20% (b), 40% (c) and 50% (d) retained data. GT and results of 30%
retained data can be found in Figure 3(a) and (o), respectively. Cyan
box in (a): zoomed-in ROI; Red box in (a): zoomed-in difference image
ROI (50×) between the reconstructed image and the GT. Corresponding
zoomed-in ROIs are shown in (b-d). Colour bars for the image (left) and
the difference image (right) are shown at the bottom.

improved the average NMSE and PSNR. For all our DAGAN

models, we obtained compelling de-aliasing results compared

to the ZF reconstruction that contained significant aliasing

artefacts. Figure 2 shows example PFPGR reconstructions by

different undersampling ratios (1D Gaussian mask). Quali-

tatively, there is little difference between the reconstructed

images and the GT when the undersampling ratio is ≥20%.

For 10% retained data, most of the aliasing artefacts have

still been suppressed effectively and we can still obtain an

average PSNR > 31dB, but there is obvious loss of structural

details (e.g., organ edges). This is because the k-space is highly

undersampled and there is significant information loss in the

low frequency regions.

Compared to using pixel-wise MSE only (PG), adding

the perceptual loss (PPG) produced similar quantitative

results; however, qualitative visualisation showed finer

reconstruction details without unrealistic jagged artefacts

(Figure 3 (l) vs. (m), (n) and (o)). In addition, a horizontal

line profile across a randomly selected case (Figure 4) showed

that ZF reconstruction still contained a significant amount of

artefacts. PG and PPG clearly reduced the aliasing artefacts,

and with refinement learning both PPGR and PFPGR achieve

more accurate reconstructed line profile compared to the GT

(Figure 4).

2) Comparison With Other Methods: Table I also summarises

the comparison results of conventional CS-MRI and some

representative state-of-the-art methods. Conventional CS-MRI

approaches (TV, SIDWT and RecPF) reconstructed images

with limited de-aliasing effect, for example, significant remain-

ing aliasing artefacts can be seen in Figure 3 (c), (d) and (e).

Dictionary learning (DLMRI) and patch based methods

(PBDW and PANO) obtained better de-aliasing, but with

clearly over-smoothed reconstruction details (Figure 3 (f),

(g) and (h)). Moreover, there are visible aliasing arte-

facts in the reconstructed images using the Noiselet method

(e.g., in Figure 3 (i)). Although both BM3D and DeepADMM

worked quite well (Figure 3 (j) and (k)), all our DAGAN

models produced visually more convincing reconstructions

with much higher SSIM (Figure 3 (l), (m), (n) and (o)).

3) Study on Noise and Masks: Figures 5 and 6 show the

PSNR with respect to different noise levels and various under-

sampling patterns. Our DAGAN models demonstrated certain

tolerance to the noise, e.g., our DAGAN models achieved

> 30dB PSNR when the noise level is ≤20%. In con-

trast, other methods were dramatically affected by the noise

(Figure 5). For various sampling patterns, our DAGAN models

performed better with 2D undersampling masks, and pro-

duced superior or comparable reconstruction results with other

CS-MRI methods using the same sampling pattern (Figure 6).

4) Zero-Shot Inference on Pathological Cases: Figures 7

and 8 show the reconstruction results using our PFPGR

model on example pathological MRI images. It is of note

that these results were obtained by using the trained PFPGR

model on normal brain MRI images (i.e., randomly selected

T1-weighted MRI data), and there was no pathological MRI

image used for training. This can also be referred as a

zero-shot inference problem [71]. In general, our DAGAN

(PFPGR) model achieved faithful reconstruction with clear

pathological patterns been preserved, for example, compared

to the ZF reconstruction, our PFPGR model demonstrated

superior reconstructed details and better defined brain tumour

textures and boundaries (green arrows in Figure 7 (a-c)).

V. DISCUSSION

In this study, we developed a novel conditional GAN based

method for fast CS-MRI reconstruction. To the best of our

knowledge, the proposed DAGAN model is the first work

that incorporates GAN based deep learning for CS-MRI [46].

Overall, our results suggest that the DAGAN model can

outperform conventional CS-MRI methods (TV, SIDWT

and RecPF) in both qualitative visualisation and quantitative

validation. Compared to other state-of-the-art methods (e.g.,

PANO and BM3D), our DAGAN model can also obtain

comparable results. More importantly, the reconstruction time

using DAGAN is much faster than others (about 0.2 sec per

2D image on a CPU or 5 ms on a dedicated GPU) that is

feasible for a real-time reconstruction on the MRI scanner.

To emphasise a fair comparison, we initialise all the com-

parison algorithms with the ZF reconstruction and performed

minimum parameter tuning and used generic stopping criteria,

e.g., the maximum number of iterations and the improvement

tolerance. It should be stressed here that the major purpose

of this study is to present our DAGAN model for CS-MRI

reconstruction, not benchmarking various reconstruction

methods; therefore, a comprehensive comparison of different



YANG et al.: DAGAN FOR FAST CS-MRI RECONSTRUCTION 1317

Fig. 3. Qualitative visualisation. Cyan boxes in (a): zoomed-in ROI; Red box in (b): zoomed-in difference image (50×) between the reconstructed
image and the GT of the same ROI in (a). Corresponding zoomed-in ROIs are shown in (c-o). Results were obtained using 1D Gaussian mask
with 30% retained raw data. Colour bars for the image (left) and the difference image (right) are shown at the bottom.

Fig. 4. Comparison of horizontal line profiles.

parameter settings of the compared methods is beyond the

scope of the current study. In addition, previous studies have

demonstrated that different initialisation could affect the final

reconstruction, e.g., the PANO algorithm can perform better

with an initialisation using the SIDWT results instead of

using ZF [66], but this clearly sacrifices the reconstruction

efficiency. Schlemper et al. [43] have also shown that a

cascade of alternating CNN and a data consistency layer can

achieve superior performance. Such alternating scheme can

be also applied to combine our DAGAN model with a data

consistency layer or a conventional CS-MRI method; however,

this will dramatically reduce the reconstruction efficiency.

Fig. 5. PSNR with respect to different noise levels (1D Gaussian mask
was used with 30% retained raw data).

Fig. 6. PSNR with respect to different undersampling patterns.

Classic fast CS-MRI methods try to solve the image recon-

struction using nonlinear optimisation techniques assuming

the data is compressible, but normally without considering
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Fig. 7. Zero-Shot inference on pathological MRI images. Left: GT;
Middle: ZF; Right: PFPGR. Colour boxes show zoomed-in ROIs. Colour
bar below is used for the the difference image (50× in yellow box).

Fig. 8. Zero-Shot inference on pathological cardiac MRI images.
Left: GT; Middle: ZF; Right: PFPGR. Colour boxes show zoomed-in ROIs.
Colour bar below is used for the the difference image (50× in yellow box).

the prior information of the expected appearance of the

anatomy or the possible structure of the undersampling arte-

facts. This is significantly different from how human radiol-

ogists learn to read and interpret MRI images. Radiologists

have been trained by reading thousands of MRI images to

develop remarkable skills to recognise certain reproducible

anatomical and contextual patterns in the images even with

known artefacts presented [1], [44]. Our deep learning based

DAGAN method aims to imitate this human learning proce-

dure, and therefore shifts the conventional online nonlinear

optimisation into an offline training procedure. In other words,

our DAGAN method bridges a substantial gap between con-

ventional non-learning methods solving the inverse problem

using information from only a single input, and abundant

prior knowledge from large training datasets. Compared to our

DAGAN method, dictionary learning based methods usually

utilise either a fixed over-complete set of basis or form a

dictionary learnt directly from data. For the former learning

scheme, there is lack of adaptivity, and for the latter one,

the resulting dictionary in sparse coding is not hierarchical

as in the deep learning based methods, which in general could

provide superior results. In addition, the performance of our

DAGAN method is also improved by enriching the training

datasets with a comprehensive data augmentation that has

not been considered in previous dictionary learning or deep

learning based methods [26], [36], [42]–[45]. Once a DAGAN

model has been trained, it can be used to infer any new input

raw data with the same undersampling ratio. The advantages

of the DAGAN model can be two-fold: (1) a more complex

nonlinear mapping can be learnt through a comprehensive

feature extraction by deep learning, and therefore superior

reconstruction details can be obtained; (2) the offline training

procedure finishes the labourious optimisation, and the infer-

ence avoids any online iterative updating of the reconstruction,

which is therefore much more efficient.

In addition to the proposed application of a conditional

GAN architecture, a perceptual loss is incorporated to account

for the improvement over the reconstructed image quality in

terms of the visually more convincing anatomical or patholog-

ical details. The idea of the perceptual loss is loosely inspired

by GAN based super-resolution [59], which has demonstrated

that adding the perceptual loss can achieve better qualitative

performance. Our simulation results have also confirmed this,

which can be attributed to the fact that when reconstructing

highly undersampled k-space data, the PG method without

perceptual loss can only find an optimal solution to satisfy the

MSE criteria but may not perceptually resemble the real data.

In addition, our perceptual loss is formed using a pretrained

VGG network, which is used to extract high-level features

of MRI images; therefore, no natural-looking structures have

been hallucinated in the reconstructed MRI images. Compared

to the SR application, CS-MRI solves a more general inverse

problem to recover data from undersampled measurements,

in which the undersampling pattern is random and noise

and artefacts propagation is global due to the frequency

domain operation (compared to the regular downsampling

pattern and local artefacts in SR). Therefore, the CS-MRI

is a more challenging problem to solve. Furthermore, our

DAGAN model can be generalised to solve SR and it is

also applicable for solving tomographic reconstruction of other

imaging modalities, e.g., Computed Tomography and Positron-

Emission Tomography.

Together with the perceptual loss, the content loss of our

DAGAN model incorporates also MSE loss terms considering

both pixel and frequency domain information. In a preliminary

study (results shown in Supplementary Material Section 3),

the DAGAN model without content loss (using only the

adversarial loss) could not achieve acceptable reconstruction.

Moreover, the training using only the adversarial loss with

refinement learning could not converge. This may be due to the

fact that the content loss has provided effective constraints to
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Fig. 9. Qualitative visualisation of the intermediate results (i.e., epoch 0, 5, 10 and 15). Cyan boxes in (a) a normal brain case and (f) a pathological
case: zoomed-in ROI; Red box in (b) and (g): zoomed-in difference image (50×) between the reconstructed image and the GT of the same ROI in
(a) and (f). Corresponding zoomed-in ROIs are shown in (c-e) and (h-j). Colour bars for the image (left) and the difference image (right) are shown
at the bottom.

Fig. 10. Convergence analysis with and without refinement learning.

regularise the generator to synthesise reasonable reconstruction

instead of arbitrary image features.

In the context of CS-MRI, one immediate question is

whether the conditional GAN architecture would synthesise

any unrealistic image details in the reconstruction. We studied

this by visually scrutinising our reconstruction results, and

by a thorough inspection we observed only residual aliasing

artefacts when the undersampling ratio is high (≤20%);

however, there were no unnatural synthesised image details

in the intermediate results and final reconstruction (Figure 9).

This may be due to the fact that the input of our DAGAN is

not totally random, and the ZF reconstruction provided a rea-

sonable initialisation for DAGAN to perform the de-aliasing.

In addition, the proposed refinement learning can substantially

stabilise the training of the GAN (Figure 10) that is known to

be difficult. We noticed that in a previous study on CS based

Computed Tomography reconstruction, a similar residual

learning method was proposed [72]. It has been used in the

U-Net based architecture instead of learning the full-view

reconstruction of the Computed Tomography image. Further-

more, their persistent homology analysis demonstrated that the

manifold of the full-view reconstruction is topologically more

complex than the reconstruction of the residual image, and

therefore the residual learning performed better. In our study,

a similar refinement learning technique has been applied for

training the conditional GAN model. In particular, refinement

learning can constrain the generator to reconstruct only the

missing details, and prevent it from generating arbitrary

features that may not present in real MRI images. In fact, due

to limited network capacity and uneven real data distribution,

the discriminator might hardly differentiate these unrealistic

features, and in turn could incorrectly encourage the generator

to reconstruct such arbitrary features. Our convergence analy-

sis (Figure 10) has demonstrated that the proposed refinement

learning can dramatically reduce the training complexity of

GAN with stabilised and fast-converging training.

In order to demonstrate that the hyperparameters tuning will

not affect the DAGAN reconstruction results significantly we

performed a robustness analysis by tuning one hyperparameter

by 0.5×, 5× and 10× of the used setting while fixing the other

two. For comparison of different hyperparameter settings,

statistical significances were given by a two-sample Wilcoxon

rank-sum test. Figure 11 shows that only when we set β to

5×β, we obtained clearly worse results ( p = 0.012), but with

other parameter settings, there were no significant differences

in the reconstruction results. In addition, our DAGAN method

has shown improved tolerance to the additive noise.

Interestingly, the zero-shot inference performed well on

pathological cases. The visualisation results showed var-

ious brain lesions clearly without any distortion of the

lesions or any new lesions being synthesised. It is of note

that the training data used for our DAGAN model were

normal brain images acquired with a T1-weighted MRI
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Fig. 11. PSNR with respect to different parameter settings, and the
original parameters are α = 15, β = 0.1, γ = 0.0025. (1D Gaussian
mask was used with 30% retained raw data and reconstructed by
PFPGR).

sequence while the pathological cases were acquired using

different T1-weighted or FLAIR sequences. We have shown

that our DAGAN model can still reconstruct these images

(Figure 7(c), (f), (i)). For cardiac MRI images (Figure 8),

the main features of cardiac anatomy were reconstructed

reasonably well, although there were some artefacts introduced

in the blood pool regions and some loss of fine structural

detail. The obvious information loss around the peripheral

regions (pink boxes in Figure 8) may be due to the fact that

our DAGAN model has been trained using normal brain MRI,

and during the inference of cardiac MRI images, the DAGAN

model enforces the peripheral regions to be zero as for the

brain MRI images. For cardiac MRI, this peripheral informa-

tion loss is clinically unimportant.

VI. CONCLUSION

The presented study proposes a conditional GAN-based

deep learning method for fast CS-MRI reconstruction. The

proposed DAGAN method has outperformed conventional

CS-MRI approaches and also achieved comparable

reconstruction compared to newly developed methods, but the

processing time has been remarkably reduced (from seconds

to milliseconds per 2D slice) enabling possible real-time appli-

cation. By combining with existing MRI scanning sequences

and parallel imaging, we can envisage this simulation based

study to be translated to the real clinical environment.
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