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Background
Ovarian cancer is the most lethal gynecological malignancy and is often diagnosed at 
an advanced stage [1]. Tumor resistance to chemotherapy is a major factor determining 
the survival of ovarian cancer patients, which has been daunting and remained largely 
unchanged during the past few decades, despite all the efforts and resources devoted 
to genomic research of this disease. Therefore, there is an urgent need to develop novel 
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approaches to gain insights of the molecular mechanism for treatment responses to 
chemo-therapy among ovarian cancer patients.

Recent breakthrough in proteomics research has made it possible to monitor tens of 
thousands of proteins in one biological sample simultaneously. High-throughput pro-
teomics experiments have been performed on ovarian tumor samples by the Clinical 
Proteomic Tumor Analysis Consortium (CPTAC) [2, 3], which provides an unprece-
dented opportunity to screen for potential protein biomarkers that may not otherwise 
be discovered using previously defined genomic approaches due to the large amount 
of post-translational modifications in cells. In addition, like most other cancers, ovar-
ian cancer is a complex disease, involving complicated pathway interactions and dys-
functions across multiple biological processes. Thus, a systems-level approach is the key 
for enhancing our understanding of molecular mechanism underlying the disease, and 
for detecting effective biomarkers for treatment response. Consequently, higher order 
molecular networks could serve as central tools for extracting relevant information from 
high dimensional proteogenomic data. Therefore, in this paper, we aim to screen for pro-
teins having causal associations with response to treatment in ovarian cancer, via con-
structing appropriate network models based on CPTAC proteogenomics data.

Under the context of protein regulatory networks, edges characterize the dependence 
relationships among protein abundances in the cell. These relationships can provide 
insights about steps for the formation of protein complexes or the signaling pathways 
relating to the drug targets. Specifically, in this paper, we are interested in identifying 
proteins driving the chemo-response. The resulting candidates could cast light on poten-
tial therapeutic targets. Among different approaches to constructing networks, directed 
acyclic graph (DAG) models, also known as Bayesian network models, are often used to 
infer causal relationships. A DAG model is a probabilistic graphical model representing 
a set of variables as nodes and their conditional dependencies as edges via a directed 
acyclic graph [4–8]. In the past decade, DAG models have been successfully applied to 
infer causality of the complex regulatory relationships among various entities, such as 
genes and proteins [9–15], or to identify causal associations between biomarkers and 
clinical variables [16, 17].

Despite considerable efforts and many pioneering works, there remain challenges in 
DAG structure learning, especially when the node set contains both continuous and dis-
crete variables (i.e., mixed types of nodes). For example, the clinical outcomes are often 
binary endpoints, e.g., patient response to treatment, whereas potential biomarkers are 
often continuous measures such as protein expression levels. While discretization of 
continuous nodes is a commonly used strategy in DAG learning [18], it does not always 
guarantee the preservation of the original dependence structure and may also lead to 
loss of information. On the other hand, simply treating discrete variables as continuous 
variables leads to model misspecification and false edges/directions. Some works tackle 
this challenge through imposing constraints on the parent/child status of the binary/
continuous nodes [15, 19], which are only suitable for specific types of applications. Two 
recent works [20, 21] employ hybrid strategies to estimate joint likelihoods of mixed 
nodes and to infer the edge direction in subsequent steps.

In this paper, aiming for detecting biomarkers causally associated with clinical varia-
bles of interest, we propose a score based DAG structure learning algorithm, DAGBagM, 
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which models the continuous nodes by conditional Gaussian distributions and the 
binary nodes through logistic regressions. Compared to alternative strategies [20, 21], 
DAGBagM has more flexible distributional assumptions. Moreover, unlike in [15, 19], 
DAGBagM allows for both continuous and binary variables to be children nodes and is 
not biased towards a particular type of edges. In addition, since DAGBagM is a purely 
score based method, it does not involve any tuning parameters and thus is computa-
tionally very efficient. To better tackle computational challenges associated with mixed 
nodes and high dimensionality, we also develop an efficient implementation of the hill 
climbing algorithm where at each search step information from the previous step is uti-
lized to speed up both score calculation and acyclic status check.

DAG structure learning tends to be highly variable: the learned graph could change 
drastically with small perturbation of the data. To tackle this challenge, DAGBagM 
employs an aggregation procedure inspired by bootstrap aggregating (bagging) [22] and 
couples this procedure with the score-based algorithm. As shown by simulation experi-
ments, this aggregation strategy can greatly reduce false positives with only moderate 
sacrifice in power.

DAGBagM is also flexible in taking into prior information. This can be important 
in DAG learning as edge directions are not always identifiable without external infor-
mation. Independent sources such as time course experiments could provide valuable 
information on regulatory directions. On the other hand, since prior knowledge/infor-
mation can be inaccurate, DAGBagM utilizes prior information in an innovative way, 
i.e., through the aggregation process, to enhance robustness.

In the real data application, we construct DAG models to screen for proteins causally 
associated with response to treatment in ovarian cancer. We implemented an integra-
tive learning pipeline using DAGBagM to borrow information across multiple prote-
ogenomic data sets of ovarian cancer. The results shed light on the underlying role of 
the key markers of the metabolic pathways that are causally associated with response to 
treatment.

Results
Simulation experiments

We conduct simulation experiments to examine the proposed DAGBagM algorithm and 
compare it to several existing DAG structure learning algorithms including PC-alg, and 
MMHC and the hill climbing (HC) algorithm implemented in the widely used bnlearn 
package, as well as mDAG [21], a recent method that is specifically designed for learning 
DAGs with mixed types of nodes.

Simulation setup

We perform four sets of simulation experiments. In Simulation (i), we consider the 
simple case with only continuous nodes. In Simulation (ii), we focus on a low dimen-
sion example of mixed nodes (10 continuous and one binary), and evaluate the impact 
of sample sizes (n = 50, 75, 100) on method performance. In Simulation (iii), for a fixed 
sample size of n = 100, we consider different dimensions of continuous nodes (p = 20, 60, 
120, 200, 500) plus one binary node. In the end, we performed Simulation (iv) to evaluate 
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how the usage of prior edge information may help to improve edge detection, using an 
example of 200 continuous nodes and 10 binary nodes.

For Simulation (i), given the true graph G , n i.i.d. samples are generated according to 
Gaussian linear mechanisms: Xi =

∑
j∈paGi

βijXj + ǫi, i = 1, . . . , p . In this model, ǫi ’s are 

independent Gaussian random variables with mean zero and variance σ 2
i  . The coeffi-

cients {β ij} are uniformly generated from [−0.5,−0.3] ∪ [0.3, 0.5] , and the noise variances 
σ 2
i  s are chosen such that for each node the corresponding signal-to-noise-ratio (SNR) , 

defined as the ratio between the standard deviation of the signal part and that of the 
noise part in the linear mechanisms, is within [0.5, 1.5] . For nodes without parents, we 
simply sample from the standard Normal distribution. For comparison, we consider the 
non-aggregated hill climbing algorithm (HC) (based on the implementation in Dag-
BagM), the constraint-based algorithm PC-alg (implemented in R package pcalg [23] 
with α = 0.005 as suggested in [5]), and the hybrid algorithm MMHC (implemented in R 
package bnlearn [18] with the default tuning parameter set at 0.05 ). Simulation (i) serves 
the purpose to show the (comparative) performance of DAGBagM when there are only 
continuous nodes as well as demonstrates the effectiveness of aggregation in reducing 
false positive edges.

For Simulations (ii), (iii) and (iv), we used a similar data generating scheme for the con-
tinuous nodes as in Simulation (i). The binary nodes, denoted by Yk , are generated by 
logistic regression models: P(Yk = 1) = γk0 + j∈paGi

γkjXj . For all these three simula-

tions, we considered three alternative methods for comparison, namely DAGBagC, 
mDAG and bnlearnD. In DAGBagC, we simply apply the DAGBagM algorithm while 
treating all nodes (including the binary nodes) as continuous. For bnlearnD, we first dis-
cretize every continuous node using the median cut-off criterion, and we then treat all 
nodes as binary nodes and apply the “hc” function with BIC score implemented in the R 
package bnlearn. For mDAG, we use the default parameters setting in the R package 
mDAG. For a fair comparison, for both bnlearnD and mDAG, we learn one DAG on 
each bootstrap resample and apply our proposed aggregation algorithm to obtain the 
final aggregated DAG. Simulations (ii), (iii) and (iv) serve the purpose to show the (com-
parative) performance of DAGBagM when there are both continuous and binary nodes.

We consider DAGs with different numbers of nodes (p) as well as different sample 
sizes (n) . The topology of the true DAGs are shown in the Additional file 1: Figs. S1, S2 
and S3. We evaluate the performance of various methods by assessing their powers or 
true positive rates (TPRs), false discovery rates (FDRs), and the F1 scores for: (i) detec-
tion of skeleton edges (i.e., without direction); and (ii) detection of directed edges 
between continuous and binary nodes. Power (or TPR) is calculated as the ratio between 
the number of correctly identified edges in the estimated DAG to the number of total 
edges in the true DAG. FDR is calculated as the ratio between the number of falsely 
identified edges in the estimated DAG to the number of total edges in the estimated 
DAG. F1-score is calculated as F1 =

2×precision×recall
(precision+recall)

 , where precision = 1 − FDR and 
recall = power. For each simulation setting, the performance metrics are averaged across 
100 independent replicates.
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Simulation results

For Simulation (i), we first consider an empty graph ( � E �= 0 edge) to illustrate the 
effect of aggregation in reducing the number of false positive edge detections. Note that 
here any detected edge would be a false positive. DAGBagM results in very few false 
positives, whereas the three non-aggregation methods, namely, HC, PC-alg and MMHC, 
all have a large number of false positives (Table 1). This experiment demonstrates the 
effectiveness of aggregation in reducing false positives for DAG learning algorithms.

We then consider a graph (Additional file  1: Fig. S1) with p = 504 nodes and 
� E �= 515 edges under two sample sizes, n = 100 and n = 250 . It is clear from Addi-
tional file 1: Fig. S4 that DAGBagM outperforms the other three methods in terms of 
balancing power and FDR. It is also obvious that the larger sample size leads to better 
performance for all methods, especially so for DAGBagM.

For Simulations (ii) and (iii)—mixture of continuous nodes and a single binary node, 
we consider graphs (Additional file 1: Fig. S2) with different combinations of number of 
nodes and edges. In each graph, there is a single binary node which is the child of two 
continuous parents, and it in turn is the parent of one continuous child. These settings 
mimic the second step in the ovarian cancer application where we learn DAGs on mod-
ules containing a few scores of continuous biomarkers and one binary clinical outcome.

We summarize edge detection results in Fig. 1A, C under varying sample sizes for a 
fixed graph (Additional file 1: Fig. S2A) with p = 11 nodes and � E �= 8 edges (Simu-
lation (ii)). Again, the performance of all four methods improves with the increase of 
sample size n (Fig. 1A). In parallel, we also report edge detection results (Fig. 1B, D) for 
graphs with different combinations of p and ‖ E ‖ (Additional file 1: Fig. S2B, S2C, S2D 
and S2E) for a fixed sample size n = 100 (Simulation (iii)). For both simulations, in terms 
of power and FDR of skeleton edges detection (Fig. 1A, B), the overall performances of 
DAGBagM and DAGBagC are quite similar as there is only one binary node, followed 
by mDAG, while the performance of bnlearnD is much worse. As to the detection of the 
directed edges between the continuous and binary nodes (Fig.  1C, D), we observe an 
enhanced performance of DAGBagM over the other three methods for all settings.

Based on the results of Simulation (iii), we further illustrate the impact of graph 
dimensionality (i.e., the number of nodes p ) on the performance of DAGBagM and the 
other methods in terms of the F1 score. The number of nodes has a negative impact 
on the performances of all methods (Fig. 2). Specifically, the F1 score of DAGBagM for 
the skeleton edges detection drops from 0.83 to 0.74 , when the dimension of the graph 
increases from 201 to 501. We also see that, while all methods demonstrate deterioration 

Table 1  Simulation (i)—only continuous nodes

True DAG: p = 1000 nodes, � E �= 0 edge; sample size n = 250 . The reported numbers are averaged over 100 replicates 
and the numbers in parentheses are standard deviations

Method Total # of false edges

DAGBagM 5.7 (2.83)

HC 1995.6 (2.12)

PC-alg 946.5 (12.47)

MMHC 4199.6 (45.7)
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Fig. 1  Results for Simulation (ii)—different sample size n with fixed p = 11 and Simulation (iii)—different 
number of nodes p with fixed n = 100 . A, B Performance in detecting the skeleton edges for Simulation (ii) 
and (iii), respectively. C, D Performance in detecting the directed edges between continuous and binary 
nodes for Simulation (ii) and (iii), respectively
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Fig. 2  Results for Simulation (iii): impact of graph dimension (p) on the performance of various methods. A 
F1 scores for detecting the skeleton edges. B F1 scores for detecting the directed edges between continuous 
and binary nodes
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in performance with the increase of the graph size, DAGBagM outperforms the other 
methods for all settings considered.

For Simulation (iv)—mixture of continuous nodes and multiple binary nodes, we 
consider a graph (Additional file  1: Fig. S3) with p = 210 nodes (200 continuous and 
10 binary) and � E �= 170 edges. Furthermore, we randomly sample 5%, 20% and 60% 
edges from the true DAG and include them as prior edges using the “whitelist” fea-
ture in DAGBagM, DAGBagC and bnlearnD. We also considered each method without 
including any prior edge (“no prior edge”). Since the mDAG package does not provide 
a way to include prior edges, only results under the “no prior edge” setting are shown 
for mDAG. We plot power against FDR for detecting the skeleton edges (Fig. 3A) and 
those for detecting the directed edges between continuous and binary nodes (Fig. 3B). 
We clearly see an enhanced performance of DAGBagM over the other methods for over-
all skeleton edges detection as well as directed edges detection between continuous and 
binary nodes. Moreover, as expected, the performance improves with the inclusion of 
more true edges as priors.

Furthermore, we check the robustness of DAGBagM with respect to distributional 
assumptions. We simulate the residual terms of the linear mechanism from non-Gauss-
ian distributions including t-distributions with degrees of freedom 3 or 5, and (mean-
centered) Gamma distribution with the shape parameter 1 and the scale parameter 2. 
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Fig. 3  Results for Simulation (iv): impact of prior edges. A Performance in detecting the skeleton edges. B 
Performance in detecting the directed edges between continuous and binary nodes. Note that since mDAG 
does not allow the inclusion of prior edges, we only show its performance for the "no prior edge" setting

Table 2  Robustness of DAGBagM with respect to distributional assumptions

The data are generated using a DAG with p = 102 nodes and � E �= 109 edges. The range of signal-to-noise ratio (SNR) 
is set to be [0.5, 1.5], and the sample size is set to be n = 102 . The reported numbers are averaged over 100 independent 
replicates

Distribution Power (TPR) FDR F1-score

Gaussian 0.8245 0.087 0.8665

t distribution (df = 3) 0.8375 0.105 0.8653

t distribution (df = 5) 0.8262 0.093 0.8647

Gamma distribution (shape = 1, 
scale = 2)

0.8182 0.1 0.8572
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In Additional file 1: Fig. S5 we plot the probability density curves of these distributions. 
We generated the data according to a DAG with the number of nodes p = 102 and the 
number of edges � E �= 109 . The signal-to-noise ratio (SNR) is set to be in the range of 
[0.5, 1.5] , and a fixed sample size of n = 102 is considered. We report the power (or TPR), 
FDR and F1 scores in terms of skeleton edges detection by DAGBagM, averaged over 
100 simulations (Table 2). From the table, we can see that the performance of DAGBagM 
is very stable across different distributions, suggesting that DAGBagM is robust with 
respect to distributional assumptions.

In the end, we compare the run time of the HC algorithm implemented in DAGBagM 
with the HC algorithm implementation in R package bnlearn, as well as with mDAG 
(using default parameters). We plot the run time as a function of the number of nodes 
(edges) when the sample size is fixed at n = 500 and the maximum number of search 
steps is capped at 1000 (Fig.  4). The run time of mDAG increases dramatically as the 
number of nodes increases (and therefore only results up to p = 1512 nodes are reported 
for mDAG), followed by the run time of bnlearn, while the run time of DAGBagM 
increases at a much slower rate. As an example, when p = 1008, � E �= 1030 , it takes 
36.68 s by DAGBagM, 112.05 s by bnlearn and 10803.2 s by mDAG to fit the DAG model, 
on a machine with 8 GB RAM and dual-core CPU.

In summary, the simulation results suggest that aggregation is an effective way to 
reduce false positives in DAG structure learning, treating continuous nodes and binary 
nodes using different models are beneficial in presence of mixture types of nodes in 
terms of both edge and edge direction detection, and inclusion of prior information 
further improves the performance. In addition, DAGBagM is robust to distributional 
assumptions, and it is very competitive in terms of computational cost.

Application to ovarian cancer

High grade serous ovarian cancer (HGSOC) is the most lethal gynecological malig-
nancy, and its daunting overall survival has not changed significantly for decades. 
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Chemotherapy is the main treatment strategy for these patients, and chemo-resistance is 
the most important factor determining the survival outcomes of HGSOC patients. There 
is a pressing need to gain a better understanding of resistance mechanisms of chemo-
therapies. Comprehensive mass-spectrometry based proteomics characterization has 
been carried out in multiple recent cancer studies. Pathway activities characterized by 
proteomics data revealed surprising new information of tumor samples. Specifically, 
metabolic pathways such as Oxidative Phosphorylation and Adipogenesis are the ones 
showing the least correlation between RNA and proteomics data in multiple tumors, 
suggesting active post-translational modifications to the members of these pathways in 
tumors [3]. Metabolic reprogramming, recognized as one of the cancer hallmarks [24], 
promotes the activation of oncogenes and thus facilitates cancer progression and metas-
tasis [25]. This motivates us to screen for potential protein markers in related pathways 
in ovarian cancer based on newly generated proteomics data, which might lead to new 
insights missed in previous genomic based studies. Specifically, we apply DAGBagM 
on ovarian cancer proteogenomic data sets, focusing on Oxidative Phosphorylation 
and Adipogenesis pathways, to derive a causal graph to characterize the dependence of 
patient’s response to chemotherapy on protein marker activities.

The detailed data analysis pipeline is described in Fig. 5 and Additional file 2: Method 
S3. Briefly, the pipeline consists of two major steps. We first derive prior information on 
causal protein–protein interactions using a time-course ovarian cancer cell line proteog-
enomic data set from a treatment perturbation experiment (Step 1) [26]. Then, using the 
direction information learned from Step 1 as priors, we construct an outcome-driven-
DAG for genes in the Oxidative Phosphorylation and Adipogenesis pathways using 
a tumor proteogenomic data set from the CPTAC retrospective ovarian (Retro-Ova) 
cancer study (Step 2) [3]. Throughout, we focus on the 260 genes from the Oxidative 
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infer outcome-driven-DAGs with both continuous (e.g. proteins) and a binary variable (treatment response) 
based on CPTAC ovarian cancer proteogenomics data, while taking into account the directional information 
learned in Step 1
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Phosphorylation and Adipogenesis pathways that were measured in both proteogenom-
ics data sets.

Step 1: Learning regulatory direction on time‑course cell line data

We first use a time-course cell line proteomics data [26] to generate initial information 
on regulatory edge directions among the 260 proteins. The data contains proteomic pro-
files of 6 ovarian cancer cell lines, with three biological replicates of each cell line, from 
two different time points, namely, 8-h and 24-h, after a chemo-drug perturbation. Thus, 
there are 36 proteomic profiles in total. It is reasonable to assume that the activities at 
the earlier time point drive the protein abundances at the later time point. Thus, for each 
protein, we treat its measurements at the two time points as two separate nodes and we 
exclude edges from nodes at the 24-h time point to nodes at the earlier 8-h time point. 
By applying the DAGBagM algorithm, we identify 100 directed edges among the 520 
nodes. Out of these, 81 nodes have at least one child and 100 nodes have at least one 
parent. Due to the small sample size, we can expect that the estimated DAG contains 
false edges and only a subset of the regulatory relationships are identified. However, this 
provides valuable prior information for the Step 2 analysis based on a larger ovarian 
tumor data set.

Note that there could be bidirectional edges in the above network, when the time 
information is dropped. For example, there might be an edge from the 8-h time point 
of protein A to the 24-h time point of protein B (A8 → B24) as well as another edge from 
protein B at 8-h time point to protein A at 24-h time-point (B8 → A24). These are illus-
trated as A ↔ B in Fig. 5 under Step 1. Thus, in Step 2, when sampling a subset of edges 
from the inferred cell-line network to form the prior “whitelist”, we include further steps 
to make sure that the sampled edge set does not violate acyclicity (Additional File 2: 
Method S3).

Step 2: Identifying protein biomarkers causally associated with treatment response using 

the Retro‑Ova data

In this step, we seek for potential protein markers causally associated with chemother-
apy resistance based on the Retro-Ova proteomics data, which contains proteomic pro-
files of treatment naive primary tumor samples of 174 ovarian cancer patients [3]. We 
first use the overall survival (OS) information of these patients to derive an approxima-
tion of patient response to treatment: patients with OS > 5.5 years were labeled as sen-
sitive, and patients with extremely short survival time (OS < 1.5 years) were labeled as 
resistant/refractory. There are 43 patients classified to the sensitive group, and 36 to the 
resistant/refractory group, so a total of 79 patients are used for the subsequent DAG 
inference. Data preprocessing is described in the Additional file 2: Method S4.

Note that since overall survival (OS) is a complicated phenotype, we want to focus 
on cases with unambiguous treatment responses in order to have strong signals in the 
DAGBagM analysis. According to [27], the definition of resistant/refractory for ovarian 
cancer patients is as follows: platinum-resistance describes disease that recurs within 6 
months (0.5 year) of last therapy; and refractory disease is a form of platinum-resistance 
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where the cancer progresses during treatment or recurs within 1 month after platinum 
chemotherapy completion. Assuming that the treatment spans about 6 months (0.5 year) 
after diagnosis and the patients tend to have a short life span after tumor relapse, we use 
1.5 year of OS cutoff (i.e. 0.5 year for the treatment period, plus 0.5 year from treatment 
to tumor relapse for resistant definition, and plus 0.5 year from tumor relapse to death). 
This stringent cutoff is meant to avoid including (borderline) sensitive cases in the resist-
ant/refractory group. For example, a sensitive patient who relapses 7 months after treat-
ment could have an overall survival time shorter than 2 years and thus would be labeled 
as resistant if a less stringent (e.g. 2-year or more) OS cutoff had been adopted. On the 
other hand, we used cutoff 5.5 (0.5 year for treatment period plus additional 5 years of 
survival) to select patients who clearly had excellent responses to treatments and did not 
relapse in the initial few years.

To enhance power, we further divide the 260 proteins into a few smaller tightly corre-
lated functional subgroups and infer outcome-driven-DAG for each subgroup separately. 
Specifically, we first learn a DAG for the 260 proteins (without the treatment response 
variable) based on the Retro-Ova data using the selected 79 patients. We then iden-
tify well-connected network modules in this DAG to define protein functional groups 
(Fig. 6A). This reveals several well-connected network modules, each containing roughly 
10–20 proteins after we apply the "cluster_edge_betweenness" function implemented in 
the R package igraph [28]. The detail is given in the Additional file 2: Method S3.

We then infer outcome-driven-DAGs for each of these modules based on the Retro-
Ova data of the 79 labeled patients. For each module, we apply DAGBagM to the abun-
dance measures of proteins in the module together with a binary variable Y  representing 
the response to treatment status (sensitive vs. refractory). We also incorporate prior 
information for edge directions from Step 1 by specifying whitelists (i.e., edges always 
included) when fitting DAGBagM. Note that, since some of the directions learned from 
the cell-line data could be either false positives or do not apply to tumor cells, along with 
each bootstrap resample of the data, we randomly sample only a subset of the inferred 
edge directions from Step 1 to form a whitelist. By this way, false edges from Step 1 

(C)Retrospective Data (B)(A) Selected network 
module

(D)

Resistant/Refractory
Sensitive

Y

Fig. 6  Ovarian cancer application. A DAG learned from the Retro-ova data. There are 260 nodes (proteins) 
and 464 inferred edges. The purple module is of particular interest, as it contains a parent node SAMM50 
of the treatment response. B Topology and node information for the purple module in A. C, D Boxplots of 
protein abundance and RNA expression level of SAMM50 and IMMT in the sensitive and resistant/refractory 
tumors based on Retro-Ova data. The p values are calculated using Student’s t-test
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would only impact a subset of the DAGs in the learned ensemble and thus are more 
likely to be filtered out during the aggregation step.

The resulting outcome-driven-DAGs suggest a few causal protein markers for treat-
ment response. Specifically, DAGBagM identified 11 genes as the parent nodes of the 
response based on the proteomics data (Table  3). The estimated DAG of the purple-
colored module (Fig. 6B) is of particular interest, in which SAMM50 is a parent node 
causally associated with the response to treatment, with an upstream regulator, IMMT. 
For both SAMM50 and IMMT, significantly higher protein abundances are observed in 
resistant/refractory tumors than in sensitive tumors (Fig.  6C, D, p values < 0.05 based 
on Student’s t-tests). Protein of SAMM50 is a component of the sorting and assembly 
machinery of the mitochondrial outer membrane. It was hypothesized that change in 
the transport of proteins and metabolites into mitochondria due to SAMM50 is respon-
sible for the energy production in cancer cells, and thus activity of SAMM50 has been 
suggested to be predictive of cancer progressing in breast cancer [29]. SAMM50 pro-
tein is closely associated with the mitochondrial contact site and cristae organizing sys-
tem (MICOS) complex [30], of which IMMT is an important player. Recently, a study 
has revealed the prognostic value of IMMT protein in gastric cancer [31]. Thus, we 
further evaluate the prognostic value of SAMM50 and IMMT protein in the complete 
Retro-Ova cohort (n = 174) using Cox regression models. The protein abundances of 
both SAMM50 (Cox regression p value = 0.0381, hazard ratio = 5.104) and IMMT (Cox 
regression p value = 0.0376, hazard ratio = 3.535) are significantly associated with poor 
survival (Additional file 1: Fig. S10A–B). Furthermore, we observe that abundances of 
both SAMM50 and IMMT are associated with 3-year survival outcomes (Student’s t-test 
p values < 0.05, Additional file  1: Fig. S10C–D) but not associated with 5- or 10-year 
survival outcomes. This might be due to the fact that 3-year survival outcome is greatly 
driven by the initial treatment responses, while longer year survival outcomes depend 
on many other factors. These results, for the first time, suggest the potential roles of pro-
teins of SAMM50 and IMMT in platinum treatment response among ovarian cancer 
patients.

In addition, we apply bnlearnD and mDAG on the Retro-Ova proteomics data in the 
same manner. Both methods detect fewer parent nodes of treatment response than 
DAGBagM (Table 3). Specifically, for the purple module (Fig. 6B), bnlearnD identifies no 
parent node while one child node of the treatment response (Additional file 1: Fig. S7). 
And mDAG does not identify any protein as either parent or child node for the treat-
ment response for this module (Additional file 1: Fig. S8).

Table 3  Genes/proteins identified as parents of the treatment response by DAGBagM, bnlearnD 
and mDAG based on Retro-ova protein and RNA data

Genes with * indicates their association with overall survival (Cox regression p value < 0.05) using the complete (n = 174) 
Retro-Ova data

Method Protein RNA

DAGBagM SAMM50*, NDUFS4, NQO2, ME1, UQCRC1, AIFM1, NDU-
FAB1, HSPA9, RETSAT, NDUFB4, CYB5A

SLC25A3, CPT1A, NMT1, 
AGPAT3, TIMM50*

bnlearnD MGST3, PEX14, FAH, SUCLA2 HTRA2, STAT5A*, SLC25A3

mDAG FAH, TIMM50* STAT5A*, COX6B1, NDUFB7



Page 13 of 19Chowdhury et al. BMC Bioinformatics          (2022) 23:321 	

Moreover, to compare DAGs derived based on protein abundances to that of RNA 
expression levels, we apply DAGBagM, bnlearnD, and mDAG to the Retro-ova RNAseq 
data with prior edge information learned from the cellline RNAseq data using the same 
procedure. DAGBagM, bnlearnD and mDAG inferred 5, 3, and 3 genes as the parent 
nodes of the response, respectively (Table 3). Interestingly, these are mostly non-over-
lapping with those identified based on the proteomics data (Table 3). Specifically, neither 
SAMM50 nor IMMT has been inferred as a parent node based on  the RNAseq data. 
This is further illustrated in Fig. 6C, D: no significant association is detected between 
RNA expression levels of either SAMM50 or IMMT with response to treatment (Stu-
dent’s t-test p values > 0.05). Since proteins of SAMM50 and IMMT relate to the MICOS 
protein complex, it is likely that their protein abundances were greatly influenced by 
post-translational modifications during complex forming and/or activation. Indeed, 
RNA expression level and protein abundance of both SAMM50 and IMMT in the same 
tumor samples showed poor correlation (cor < 0.25, Additional file 1: Fig. S6).

In summary, DAGBagM identified more parent nodes as compared to bnlearnD or 
mDAG, which is consistent with the observation that it has higher power in edge detec-
tion than other methods in the simulation studies. Moreover, our findings nicely illus-
trate that the proteomics data and RNA-seq data provide complementary information 
on searching for biomarkers associated with treatment response.

Discussion
In this paper, we propose DAGBagM, a novel DAG structure learning tool for data with 
both continuous and binary variables using a score-based method coupled with boot-
strap aggregation. The score-based DAG structure learning algorithm allows either type 
of nodes to be a child node. As shown by simulation experiments, DAGBagM achieves 
better performance for detecting edges and edge directions, compared to conventional 
strategies that treat all nodes as one type. It also outperforms a recent DAG method—
mDAG—that is designed for mixed types of nodes. The flexibility and competitive per-
formance provided by DAGBagM have important relevance in practice when one is 
interested in detecting biomarkers causally associated with clinical outcomes, as the 
latter are often binary endpoints and the former are often continuous measurements. 
In addition, DAGBagM employs a novel technique to aggregate DAGs learned on boot-
strap resamples, which can greatly reduce the number of false positives. Moreover, this 
aggregation procedure is a general tool that can be coupled with any structure learn-
ing algorithm (score based or not) and is a flexible and robust way to incorporate prior 
information. Finally, our implementation of the hill-climbing algorithm is much faster 
than that in a widely used DAG learning R package bnlearn as well as mDAG.

We apply DAGBagM to analyze ovarian cancer proteogenomics datasets with the goal 
to identify potential prognostic proteins in ovarian cancer. To facilitate the inference of 
edge directions, we utilize a time-course cell line proteogenomics data to get the initial 
regulatory direction estimation. We then use learned edges as prior information to con-
struct DAGs from another ovarian tumor proteogenomics data set. Our result reveals 
multiple candidate protein biomarkers, including SAMM50 and IMMT, to be caus-
ally associated with response to treatment in ovarian cancer. Proteins of SAMM50 and 
IMMT are an important regulator and a member of the MICOS complex, respectively. 
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While prognostic values of SAMM50 and IMMT in other cancer types have been 
reported, our analysis for the first time suggests their prognostic roles in ovarian cancer. 
Intriguingly, the prognostic value of SAMM50 and IMMT could not be observed based 
on RNA expression data from the same set of patients, suggesting the importance and 
great potential of employing proteogenomic integrative analysis in biomedical research. 
These biomarkers identified to have a causal relationship with response to treatment 
in ovarian cancer could serve as potential targets to individualized anti-cancer agents, 
upon evaluation through clinical practice [32]. In this paper, we focus on the Oxidative 
Phosphorylation and Adipogenesis pathways to investigate the underlying molecular 
mechanism of their members. Although extending the analysis pipeline developed here 
to other pathways in a systematic manner is out of the scope of this paper, we see great 
potential of DAGBagM in systems biology applications. As many other models for con-
structing high-dimensional networks, DAGBagM is designed to infer sparse networks 
[5, 33, 34]. In practice, this model works well when the number of edges is in the same 
order as the number of nodes. This is a reasonable assumption for gene/protein regula-
tory networks, as each gene/protein is expected to interact with only a limited number of 
other genes/proteins [35, 36]. Nevertheless, graph dimensionality has a negative impact 
on the performance of DAGBagM (and other DAG learning methods), as illustrated in 
Fig. 2. However, as demonstrated in the simulation results, when the number of nodes 
is around 100, DAGBagM has > 80% power to detect skeleton edges with a sample size 
around 100. Thus, in real data analysis, when DAGBagM is applied to individual path-
ways or gene sets of size ~ 100, we expect its power for edge detection to be reasonable.

The current DAGBagM implementation is aimed to achieve fast speed rather than effi-
cient memory usage (memory use is in the order of p2 ). DAGBagM runs smoothly for 
p in the order of 103 on a machine with 8 GB RAM and dual-core CPU. It can fit larger 
models (e.g., p in the order of 104 ) on small-scale multi-core servers. But for very large 
models (e.g., p in the order of 106 ), memory could become a limiting factor.

In the end, as presented in the simulation, DagBagM is quite robust to distributional 
assumptions. So, we expect DAGBagM to have robust performance on bulk tissue-omics 
applications  as we demonstrated in the ovarian cancer study using both protein and 
RNA data. However, DAGBagM may not be appropriate for low-depth read count data 
with extensive drop-out rates, such as those from single-cell or spatial transcriptomic 
profiling experiments. Extension of DAGBagM to those applications is warranted as 
future research.

Methods
In this section, we present a new tool—DAGBagM—for learning directed acyclic graphs 
with both continuous and binary nodes.

We first introduce some notations. A directed acyclic graph G(V ,E) consists of a node 
set V  and an edge set E with directed edges from parents nodes to children nodes. In 
a DAG model, the node set corresponds to a set of random variables and the edge set 
encodes the conditional dependence relationships among these random variables. DAG 
structure learning amounts to identifying the parent set (also referred to as neighbor-
hood) of each node in the graph. Although different DAGs could encode the same set 
of conditional dependencies (which form an equivalent class of DAGs), it is shown that, 
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two DAGs are equivalent if and only if they have the same set of skeleton edges and v
-structures [8]. The skeleton edges are obtained by removing directions from the directed 
edges and a v-structure is a triplet of nodes (x1, x2, x3) , such that x1 → x3 ∈ E, x2 → 
x3 ∈ E , and x1, x2 are not adjacent.

To deal with both continuous and binary nodes, DAGBagM models continuous nodes 
as Normally distributed given their parent nodes; and models binary nodes through 
logistic regressions with parent nodes as regressors. It then uses an efficient implemen-
tation of a popular search algorithm, the hill climbing (HC) algorithm [37], to look for a 
DAG model that optimizes a score function. Our implementation uses information from 
the previous search step to facilitate the score calculation and acyclic status check in 
the current step of the search algorithm. Details are given in two propositions in the 
Additional file  2: Method S1. DAGBagM also employs a novel aggregation procedure 
to learn stable structures and to reduce false positive edges. Moreover, DAGBagM can 
incorporate prior information through blacklist(s) of forbidden edges and/or whitelist(s) 
of edges that are always kept in the graph. This is done through the exclusion of certain 
operations from the set of eligible operations at each search step. These lists may be uti-
lized in either the individual DAG learning step or in the aggregation step. Major steps 
of DAGBagM are summarized in Algorithm  1 and in Additional file  1: Fig. S9. More 
detailed information is provided in the subsequent subsections. Note that, although we 
describe the DAGBagM algorithm under the situation when there are both continuous 
and binary nodes for the most generality, it is applicable when there are only continuous 
nodes or when there are only binary nodes.

Score calculation

Structure learning based on likelihood score overfits the data since it always favors larger 
models, i.e., distributions with less independence constraints/DAGs with more edges. 
Therefore, it is reasonable to consider scores that penalize for model complexity. Since 
Bayesian information criterion (BIC) [38] is model selection consistent and locally con-
sistent [39], DAGBagM adopts BIC-type scores to be minimized by the hill-climbing 
algorithm.

Specifically, for a continuous node, denoted by X , at each search step, its score is cal-
culated by regressing X onto its current parent set. Specifically, for a given graph G , 
scoreBICX :=

(
RSSX
n

)
+

∣∣paGX
∣∣log(n) , where, RSSX is the residual sum of squares, n is the 

sample size, paGX denotes the parent set of X in graph G and 
∣∣paGX

∣∣ denotes the size of the 
parent set. For a binary node Y  , the score is obtained by regressing Y  onto its current 
parent set through logistic regression:

where Yk denotes the kth sample of Y, p̂k = P
(
Yk = 1 | paGY,k

)
=

exp
(
γ̂0+γ̂ TpaGY,k

)

1+exp(γ̂0+γ̂ TpaGY,k)
, γ̂0 is 

the fitted intercept and γ̂  is the vector of the fitted coefficients in logistic regression. 
Finally, the score of a graph G is the summation of individual node’s score: 

scoreBICY := −2

(
n∑

k=1

I(Yk = 1)log
(
p̂k
)
+

n∑

k=1

I(Yk = 0)log
(
1− p̂k

)
)

+

∣∣∣paGY
∣∣∣log(n),
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scoreBIC(G : D) :=
∑

X :ContinuousNodesscoreBICX +

∑
Y :BinaryNodesscoreBICY  , where D 

denotes the data.



Page 17 of 19Chowdhury et al. BMC Bioinformatics          (2022) 23:321 	

Bootstrap aggregation

DAGBagM employs an aggregation procedure to learn stable structures and to reduce 
false positive edges. It first learns an ensemble of DAGs where each DAG is learned 
on a bootstrap resample of the data. It then obtains an aggregated DAG through min-
imizing the average structural Hamming distance to DAGs in the ensemble [7, 40].

The aggregation of an ensemble of DAGs is nontrivial because the notion of mean 
is not straightforward on the DAG space. Here, we generalize the idea of mean by 
searching for a DAG that minimizes an average distance to the DAGs in the ensem-
ble. For this purpose, we define a distance metric based on the Hamming distance. In 
information theory, the Hamming distance between two 0−1 vectors of equal length 
is the minimum number of substitutions needed to convert one vector to another. 
This can be generalized to give a distance measure between two DAGs with the same 
set of nodes, defined as the minimum number of basic operations, namely, addition, 
deletion and (possibly) reversal that are needed to convert one graph to another. This 
definition leads to a valid distance metric and is referred to as the structural Ham-
ming distance (SHD).

While there are different variants of SHD depending on how the reversal operations 
are counted, here we focus on the case where the reversal operation is counted as one 
unit of operation. This leads to the following distance: 
d
(
G, G̃

)
=

∑
1≤i<j≤pmax

{∣∣∣A
(
i, j
)
− Ã

(
i, j
)∣∣∣,

∣∣∣A
(
j, i
)
− Ã

(
j, i
)∣∣∣
}

 , where A and Ã denote 

the adjacency matrices of the DAGs G and G̃ , respectively. The adjacency matrix of a 
DAG is a 0−1 element matrix where the 

(
i, j
)
-th element is one if there is a directed 

edge from the i th node to the j th node; otherwise, it is zero.
Finally, the aggregation score between a DAG G and an ensemble of DAGs 

Ge = {G1, · · · ,GB} is the average distance between G and the DAGs in the ensemble: 
scored(G : Ge) = 1

B

∑B
b=1d(G,Gb) . By Proposition 3 in Additional file  2: Method S2, 

the aggregation score can be expressed as scored(G : Ge) =
∑

e∈E(G)

(
1− 2gpe

)
+ C , 

where C is a constant, and gpe is a generalized selection frequency. Given an ensem-
ble, one can search for the DAG that minimizes the aggregation score while maintain-
ing acyclicity by applying the HC algorithm. We defer details to the Additional file 2: 
Method S2.
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