
DAGON: Technology Binding and Local Optimization
by DAG Matching

Kurt Keutzer
AT&T Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

Technology binding is the process of mapping a technology
independent description of a circuit into a particular tech-
nology. This paper outlines a formalism of this problem
and offers a solution to the problem in terms of matching
patterns, describing technology specific cells and optimiza-
tions, against a technology independent circuit represented
as a directed acyclic graph. This solution is implemented
in DAGON. DAGON rests on a firm algorithmic founda-
tion, and is able to guarantee locally optimal matches
against a set of over three thousand patterns. DAGON is
an integral part of a synthesis system that has been found
to provide industrial quality solutions to real circuit design
problems.

1. Introduction

t We begin our treatment of the problem of technology binding
with local optimizations by outlining a formalization of it.
Using this formalization we will find that the problem is related
to those that have been encountered in the field of programming
language compilers. Indeed, we claim that compiler techniques
are highly relevant to many problems in logic synthesis. This
thesis was originally stated in [Jo821 and in [TJBW. In partic-
ular here we claim that technology binding for logic synthesis is
a very closely related problem to code generation for program-
ming language compilers. More specifically, matching a graph-
like description of a technology independent circuit against a
library of patterns in a technology, such as a standard cell
library, is similar to matching a graph-like intermediate
representation of a computer program against the patterns of an
instruction set of a given machine. Thus twig [Tj86], a tree
manipulator used for constructing code generators for program-
ming language compilers is used to build an optimizing technol-
ogy binder. The result is a technology binder, DAGON, that is
capable of optimizing for time, area or a function of both.
Because DAGON uses data abstraction, and a modular technol-
ogy pattern description format, DAGON is easy to “port” to new

Permission to copy without fee all or part of this material is granted
provided that the copies are. not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

technologies. DAGON rests on a firm algorithmic foundation,
and is able to guarantee locally optimal matches against a set
of over three thousand patterns.

2. The Formalism

Before going into how compiler techniques are used in DAGON
we will first take a step back to view the problem of technology
binding and local optimizations under a broad formalism. In
this paper we assume, that the reader is familiar with basic tree
and graph terminology, as described, for instance, in [AHU761.
Any set of boolean functions with common sub-expressions can
be viewed as a directed acyclic graph (DAG) in which the labels
of the vertices in the graph are the boolean operators AND and
OR and edges are labeled either 1, for the true value of the sig-
nal associated with the vertex, or 0, for the inverted value. We
may think of this DAG as a circuit with edges directed from
outputs to inputs. We present here the different stages of the
technology binding process.

1. A technology independent graph Gi * (F’,:E) such that
each vi in V, label&) E (AND.OR] and each ei in E E

2.

3.

4.

IO,l). . .
A technology independent graph Gd - (V,E) such that
each vi in V, label(vi) E (AND,OR), the outdegree
(fanin) of each vi is less than some technological limit,
and each ei in E E (0.1).
A canonically represented technology independent graph
G, = (V,E) such that each vi in V E INAND,NOTI the
outdegree of each vi in V is less than some technological
limit. Edges have no labels.
A technology bound graph G, = (V,E) such that for each
vi in Y label(vi) E (technology pattern set (e.g. gates in
a standard cell library 1. The outdegree of each vi in V is
less than some technological limit. Edges have no labels.

It is assumed that common subexpressions have already been
discovered by a global optimization technique such as LBrMc841
and are reflected in Gi. The translation from Gi to G,, is called
decomposition. Decomposition begins the binding into technol-
ogy by realizing fan-in limitations, but also considers non-local
transformations within a single boolean function. We will not
treat this problem here, but our work on this problem will be
presented in [KLV871. The translation from Cd to G, is a
direct process. In this paper we concern ourselves with the
problem of the translation from G, to G,. We treat this problem
as one of as DAG covering or a DAG rewriting. A precise for-
malization of the notion of DAG covering or DAG rewriting is
beyond the scope of this paper, but the formalizations for trees
presented in [HoOD82] and (AhGaS may be extended to

24th ACM/IEEE Design Automation Conference
Paper 21.1

@ 1987 ACM 0738-100X/87/0600-0341$00.75 341

DAGS. In taking a covering approach to the problem of tech-
nology binding, we have purposely moved all non-local optimiza-
tions up into global optimization and decomposition stages.

Having abstracted away the domain specific details of the prob-
lem, we may now observe that problem of covering a DAG is
also encountered in a programming language compiler’s code
generation for language expressions with common subexpressions
[AJU771. Unfortunately, [BrSe761 and [AJU771 show that this
problem is NP-complete and to date no efficient technique for
attacking this problem directly has been realized. However, as
the problem of code generation is an essential one, practical
ways of approaching the problem have been found. An attrac-
tive approach is to treat the problem of matching a DAG as the
problem of matching against a forest of trees which compose it
[RSU861. This is the approach followed in DAGON.

3. The DAGON Approach

DAGON takes a canonical technology-independent description of
a combinational circuit (G,) and a list of patterns describing
both the cells in the technology and local transformations.
WAGON creates a technology bound circuit (G,) by partitioning
the circuit into a forest of trees, then using a tree pattern match-
ing automaton to match the individual trees. The tree matcher
that is used in DAGON is based on twig [Tj861, a tree matching
generator tool that is generally used for constructing code gen-
erators for programming language compilers. Figure 1 gives an
overview of the DAGON approach. These aspects are described
in more detail below.

3.1 Partitioning

The technique used here for partitioning is simply to make each
node (gate) with indegree (fanout) greater than one, the root of
a new tree. This process requires only time linear in the size of
the DAG. The size of these resultant trees in the forest depends
very much on the nature of the circuit. If the circuit has a great
deal of fanout, then there will probably be many small trees
after partitioning. On the other hand if the original circuit has
more of a tree-like structure, then the circuit will be partitioned
into a few large trees. Figure 2 shows the partitioning of a
small circuit into trees. X’s mark partition points.

3.2 Tree Matching

After partitioning, DAGON proceeds to find minimal cost
matches or coverings of the partitioned trees against the technol-
ogy patterns. DAGON guarantees an optimal match in the
entire tree, how ever many levels of logic it may contain, and in
this way avoids the pitfalls of a greedy approach or any other
method that must limit its search to some fixed number of levels.
To accomplish this the twig tree manipulation program [Tj86] is
used. While for a user of DAGON, and even for a developer of
a rule set for DAGON, rwig may be treated as a “black box”, we
will briefly describe how twig works in this application. There
are two key elements in finding a minimal cost match for a tree.
The first is to identify the set of candidate matches over the
tree. The second is to identify the minimal cost match from
among the candidates. We shall describe each of these, begin-
ning with how patterns are described in DAGON.

Figure 1. The DAGON Approach

Figure 2. The Partioning the Circuit

Paper21.1
342

3.2.1 Description of Patterns Patterns in DAGON are small
trees in the canonical NAND/NOT form. These trees
correspond either to a direct mapping into a cell in the target
technology or may describe a mapping that contains a local
transformation. These patterns are fed directly to twig and con-
sist of three parts. The first part describes the pattern in a
grammatical form. An important feature of the grammatical
description is that is able to describe not just a single fixed pat-
tern but a whole family of patterns instances. In Figure 3 we
see a group of patterns describing a family of AND-OR-
INVERT (A011 gates. The five patterns given in Figure 3
actually describe sixty-four unique pattern instances from an
A01444 to an A0121 1. Many of these patterns are symmetric,
thus an A01114 is equivalent to, and would be output as, an
A0141 1. A graphical representation of the family of trees
described by these patterns is given in Figure 4.

The second part of a pattern is the cost evaluation part. This is
part of the twig-DAGON interface. A person developing a pat-
tern set for DAGON using twig gives a cost for each pattern in
the reserved variable “cost”. The type of “cost” (in DAGON it is
an array) and the functions for evaluating it (routines for adding
costs and comparing costs 1 must also be defined. The pattern-
set developer inserts code in this portion that computes the cost
of a subtree that has this pattern at its root and puts the result
in the variable “cost”. Given a tree to be matched twig uses
these costs, and the routines which manipulate them, to evaluate
the cost for candidate matches.

In Figure 3 the cost is computed at the root of the A01 tree
once the lower level patterns have been bound to their specific
vahres. This cost consists of the costs of all the subtrees below
this pattern plus the cost of the A01 gate itself. The cost of all
the subtrees below this pattern is also the default cost and is
represented by the DEFAULT-COST. To maintain modularity
time (T) and area (A) costs are computed by functions that are
loaded based on the target technology.

The third part of a pattern is of two kinds: either rewrite or
action. In Figure 3 if there is a match of the entire A01 gate,
the action is to print the appropriate gate.

This format is very convenient and makes adding and modifying
patterns, costs, and actions quite easy.

3.2.2 Size of Pattern Set DAGON uses 52 parameterizable pat-
terns. These parameterizable patterns expand into over seven
hundred unique pattern instances representing various permuta-
tions of AT&T’s standard cell library of approximately 165
gates, as well as a few thousand unique local optimization pat-
terns.

3.23 Tree Matching Given the technology patterns as described
above, twig builds a tree pattern-matching automaton that will
indicate for each node n in the subject tree all the technology
patterns which have a match in the subject tree rooted at n. A
straightforward approach to this problem is to simply traverse
the tree trying each pattern at each node. Even this naive
approach takes only time
0 (TREE-SIZE x PATTERN-SE T-SIZE 1. Twig uses a more
sophisticated approach based on the Aho-Corasick IAhCo751
algorithm. The Aho-Corasick algorithm is a string matching

/+++* AOIxxx canonically expressed as
not

nand 3
I 1 1 I

nand nand nand x/
eqn: not(nand_3tinand,inand,inand)l
/++SS refers to the root of the pattern*/
{
DEFAULT COST; /*sum up cost of children*/
cost.cost a[AREAl+=d get aoi area cost(ss);
cost.cost-a[TIMEl+=d~aoi~tim~~cost(SS)
cost.costIa[AT-Kl

+= my-pow(cost.cost-aCTIMEl,cost_power)
+cost.cost afAREA1;

I
={

d print-aoi(stdout,SSf;
I _-
Ii
inand: nand_2(eqn,eqn)
{) /*default cost is the sum of costs of the
children-it doesn't have to be spelled out+/
={};/+action taken at root of pattern tree+/
inand: nand 3(eqn,eqn,eqn)
{}/cdefault cost is the sum of children*/
={};/xaction taken at root of pattern tree*/
inand: nand_4(eqn,eqn,eqn,eqn)
{}/xdefault cost is the sum of children*/
={};/caction taken at root of pattern tree*/
inand: not(eqn)
{)/xdefault cost is the sum of children*/
={};/*action taken at root of pattern tree*/

Figure 3. An AOIxxx Pattern

algorithm, but can be applied to trees because trees can also be
described as strings. This approach can reduce the matching
time to 0 (TREE-SIZE). For further details see [AhCo751 and
IAhGa851.

At the end of this process a search space which contains all pos-
sible tree matches has been created. Figure 5 shows a subcircuit
of Figure 2 with nodes labeled with all candidated matches for
a small pattern set. What remains is to search this space and
find the optimal match.

3.2.4 Finding a Minimal Cost Match Given the set of all possi-
ble matches, as determined by the procedure described in the
previous section, it now remains to find a match of least cost.
Dynamic programming, based on the approach of iAhJo761, is
used. A dynamic programming, or divide-an-conquer, approach
is to find a least cost match of a tree T with root r and subtrecs
Tl ,...,T, by first finding least cost matches for each of the sub-
trees. This procedure is applied in a recursive depth-first
manner. As the leaf of a tree can only be a NOT or a NAND,
it is easy to determine the least cost match. At the root r of an
arbitrary subtree T, the process consists of simply trying each
pattern Pi that has matched at r. The leaves of the pattern pi
will extend into the subtrees of T. The least cost match for each
of these subtrees has already been computed by the bottom up
procedure, so the cost of matching Pi at r can be computed in
terms of the cost of pi together with the cost of each of the sub-
trees with roots at the leaves of Pi. The number of patterns
matching at a node is bounded by the total number of patterns,
so the time bound for finding an optimal match is

Paper21.1
343

i”and - D
inand -

b

Example of one resulting pattern: A01432

are in terms of grids, a measure of the width of a standard ceil.
At A we have two choices, an inverter or a complex A0121
gate. The cost of match of an inverter would be the cost of the
inverter (2 grids) plus the cost of the subtree rooted at B (11
grids) . The match of the A0121 is the cost of the A0121 (4
grids) plus the cost of the subtrees at the leaves of it’s patterns:
two inputs (of cost 0 grids) and the ND2 at E (3 grids). The

A0121 7

ND2 11

INV 2

ND2 3

Figure 4. Geometric Interpretation of Figure 3

Figure 6. Finding a Least Cost Match

A0121 is an easy winner.

3.3 Quality of Tree Matching

Matching against a forest of trees rather than against the origi-
nal DAG loses the guarantee of a globally optimal solution. But
as mentioned above, finding a globally optimal solution to DAG
matching or covering is an NP-complete problem. However, the
simple observation that optimal tree matching is realizable in
linear time and optimal DAG matching is NP-Complete shows
that there is a considerable range between these two classes of
problems. There is a very general optimization question
involved as to whether it is better to optimally solve a subprob-
lem or to suboptimally the whole problem. Greedy approaches
to the problem of covering DAG’s are considered in [AJU771
and are shown to be very suboptimal. A bottom-up greedy
approach is used to match against high-level modules in the sili-
con compiler described in [Ka86]. In the foilowing section we
discuss our own experience with the limitations of tree matching
as well as our answers to them.

Figure 5. Tree After Matching
3.4 Enhancements

0 (TREE-SIZExPATTERN-SET-SIZE).
Our experience shows that a tree matching approach that uses
only information local to a tree will not give s&factory results.
To improve the quality of result a few extensions to tree match-
ing were required. For each node in the tree to be matched,
attributes are attached which are describe properties that are
not local to the tree. The relevant attributes ire-j&out, inverse,
and signal. Inverse tells if the inverted sense of a signal is avail-
able somewhere in the circuit. This is very useful because

Figure 6 shows the discovery of a least cost match among candi-
dated matches. There are no choices for a least cost match of
the tree until we reach the inverter at the root (node A). Costs

Paper 21.1

344

drastic simplifications can often be made if the inverted sense of
a signal can be used rather than the signal itself. Signal gives
the name of a signal. This can be used together with inverse to
represent a non-tree pattern such as an Exclusive-Or. Fanout is
used to determine timing costs.

Another important advance in quality came when DAGON
began to be applied to sequential circuits. To handle this
DAGON had to be able to match against general directed
graphs as well as DAG’s. To accomplish this the partitioning
procedure had to be enhanced to make each sequential element
the root of a new tree. One advantage of matching against
sequential circuits is that optimization patterns which use the
both the inverted and non-inverted (Q and Q-bar) outputs of a
flip-flop can be described. This class of optimization has been
very important in producing a quality binding of some circuits.

A final source of enhancement is the incorporation of a
“peephole optimizer” that looks for redundant gates that may
arise due to two local optimizations colliding across tree boun-
daries. With these enhancements DAGON has been able to pro-
duce a high quality binding of the circuit. When circuits bound
by DAGON are examined by human designers, suggestions for
improvements have always been related to the need for new
optimization rules rather than problems related to any other of
the limitations of an approach based on tree matching.

4. Other Features of DAMON

DAGON runs in time
o(~AG-su~xP~rr~mi SET-SzzE). This speed allows it
to be applied to industrial sized problems and can even be used
interactively. It also allows DAGON to support a very large
cell library, such as the one currently in use at AT&T, together
with a few thousand optimizations.

In the present system the user may choose to bind the circuit in
such a way that minimizes time (T), area (A) or some function
(A x Tk) of both. This gives the user flexibility in choosing the
nature of the target implementation.

Just as code generator-generators allow for ease of porting a
compiler to a new machine, the use of a code generator-
generator in DAGON allows for ease of porting to a new tech-
nology. Porting to a new technology requires introducing a new
set of patterns, including the costing evaluators and the action
routines. The patterns, as shown in Figure 3, are easy to revise.
The costing evaluators and action routines are modular and
access the circuit representation only through an abstract data
access mechanism, so rewriting these portions is also straightfor-
ward.

5. Comparison With Other Approaches

A fair comparison with other approaches to technology is made
difficult by the fact that technology binding plays a different role
in each system. The model of synthesis that we described on the
section 2 has not been widely accepted at this point. In addi-
tion, the comparisons in this section are based on this author’s
understanding based on the limited details published and

personal conversations, as acknowledged later.

5.1 Logic Synthesis System (LSS)

Among the first work on local optimization was an approach
based on a sequence of local transformation rules applied heu-
ristically IDJBT811. Most of the optimizations described in
[DJBTSl], and in later papers on LSS, involve common subex-
pression elimination that in our present environment would be
handled as part of the decomposition process. The class of non-
local optimizations presented in [TJB861 would be handled by
the global optimizer. While such a discussion is beyond the
scope of this paper, it is the opinion of this author that common
subexpression elimination for combinational logic is one problem
that is best not handled by programming language compiler
methods because restricted domain found in combinational cir-
cuits allows for the use of a method lBrMc841 that is able to
find many more candidate sub-expressions than are efficiently
detectable in the vastly more complex domain of programming
language compilers.

As for local transformations techniques in general, we saw above
that identifying the class of local transformation patterns that
can be applied to a circuit is a straightforward problem and one
that is efficiently solved by the Aho-Corasick algorithm. The
important underlying problem is to identify which transforma-
tions to apply.

5.2 Functional Design System (FDS)

Only one portion of this synthesis system [DLT841 is devoted to
random combinational logic synthesis and technology binding
plays a rather small role in this system as a whole. The
approach of the combinational logic synthesis portion is to first
globally optimize and decompose the circuit. The resulting cir-
cuit is partitioned into trees and bound to a technology.
Although the binding is limited to trees, the greedy algorithm
used offers no guarantee of optimality. Local transformations
also do not seem to play a significant role in this system.

5.3 SOCRATES

A rule-based approach to the problem of technology binding
with local optimizations is used in SOCRATES described in
LGeCo851. The separation of the rules from the search strategy,
as employed in this approach, greatly aids the case of adding
and changing rules, as well as changing to a new technology.
This feature is also present in DAGON. The addition of time
and area trade-offs is another important advancement introduced
in SOCRATES. DAGON is also able to trade time for space by
allowing the user to optimize some function (AX Tk) of time
and area. DAGON does not have the advantage of allowing the
user to give an upper bound on time, then minimizing with
respect to area (or vice-versa).

While tree patterns and rules in a knowledge base are similar in
many ways, SOCRATES and DAGON differ significantly in
how these rules or patterns are applied. To avoid the expensive
running time of a backtracking approach, DAGON applies its
patterns to a circuit that has been partitioned into a forest of
trees. This allows it to use a dynamic programming approach it
is also able to look among all candidate coverings of a tree using

Paper21.1
34s

all rules are patterns and applying arbitrary look-ahead, in order use the fact that a two-input NAND gate is three grids. The
to choose the candidate covering of the tree that is minimal in results on these benchmarks are an improvement over others
cost. Comparing run-times with those given in IGeCo851, it published at last year’s Design Automation Conference. Run-
appears that DAGUN is at least two orders of magnitude faster ning times are on a VAX 8650 (about 6 times as fast as a VAX
for similarly sized circuits. 11/780).

In fairness to a backtracking approach, it is attempting to per-
form global optimizations that would not be addressed by
DAGON. As SOCRATES approach to binding it is more gen-
eral, it can potentially reach a global minimum, and has the
advantage that the more time it is given, the better the results
will be.

These results also support the claim that DAGON runs in time
linear in the input size. This has ensured that DAGON can be
used on large examples in a production environment.

These results show that a system such as mis together with
DAGON gives the us_r an exciting ability to interactively
explore a wide space of design trade-offs from the logic level all

6. Current Synthesis Environment

DAGON is presently part of a highly automated synthesis
environment that is producing designs that often exceed hand-
crafted quality even on relatively small examples. Synthesis
begins with CONES 1SMP861 which takes a functional, simu-
latable [Fr841, C description of a circuit, and synthesizes it into
a combinational and a sequential portion. The combinational
portion is fed into the mis IBDKM861 multi-level optimizer.

Coordination between the global optimizer and the technology
binder, which is the role of the decomposer, is critical. At
present a technology driven decomposition process [KLV871 has
been substituted into mis. Mis then outputs the circuit in a
NAND gate realization. This does not mean that mis is pre-
maturely binding the technology, only that the output is
expressed in a canonical form. The representation of the circuit
in a canonical form allows for a drastic reduction in the number
of patterns required to cover a technology. This NAND form is
then combined with the sequential portion of the circuit and fed
to DAGON for binding to the target technology.

DAGON presently supports three sets of technology patterns: a
small standard cell library of sixteen cells; the AT&T standard
cell library that is coordinated with the LTX2 ICh871 placement
and routing package; and a larger library for Sc2 [Hi851, a gate
matrix style automated layout program. This synthesis environ-
ment is presently in production use on an experimental basis.

7. Implementation

By relying on twig, DAGON has remained small and the entire
DAGON system consists of approximately 4000 lines of C code,
and another 700 lines of pattern descriptions. It presently runs
on a VAX 8650 under UNIX 4.3BSD.

8. Results

The results of running DAGON on the de Geus benchmarks
IGe861, as well as larger examples are shown in Table 1. The
target technology in these tables was the AT&T standard cell
library. In this table statistics for DAGON are shown side-by-
side with an NAND/NOT of the same logic. This is only
intended to give a feeling for DAGON’s individual contribution.
The measurements are in terms of standard cell grids. To com-
pare the grid measure with two-input NAND gate equivalents,

Example NAND/NOT DAGON

rd53
9sym
VI32
rd73
saol
sao2
bw
duke2
MO
lmtc
pla4

gates grids gates grids
36 109 19 79
66 202 44 163
90 253 65 208
90 275 47 196
111 331 64 245
111 370 61 273
171 479 118 380
338 1013 251 851
400 1073 281 835
908 2559 660 2078
1478 4338 1022 3465

runtime
bc.)

.l

.2

.2

.3

.4

.4

.6
1.2
1.3
3.1
5.6

Table 1. Results of Running DAGON

the way to layout.

9. Future Directions

While DAGON has been able to meet timing requirements
without manual intervention on cirouits to which it has been
applied, DAGON’s present ability to optimize for timing is
highly limited by it’s pattern set. A class of patterns which
would allow for timing optimizations such as moving signals off
of a critical path, add buffers, and so forth, would improve tim-
ing directed performance a great deal.

10. Summary

In this paper we have outlined three contributions to the area of
technology binding and local optimization. The first is a formal-
ism of the problem in terms of graph transformations. The
second is an approach to the problem of graph transformations
by DAG or graph matching and in term an approach to DAG
matching by reducing it to the problem of (attributed) tree
matching. These first two contributions have already reshaped
the way that this problem is being approached. The third is the
description of a working implementation of these ideas using the
twig tree matcher that has proved to be of high enough quality
to provide superior industrial designs as well as efficient enough
in implementation to be used in a production environment.

Paper21.1
346

11. Acknowledgements

Thanks to Ajit Prabhu for alerting me to this fruitful area of
research and for discussions on multi-level synthesis techniques.
Mark Vancura has been very helpful in providing evocative cir-
cuit examples together with his insights into them. He has also
helped to make DAGON available and useful in a production
environment. Mario Lega’s work in improving mis’s decomposi-
tion procedures improved DAGON’s performance. I have
enjoyed many conversations with members of the growing syn-
thesis community on issues relating to technology binding.
Thanks to Jean Dussault, Gary Gannot, Dave Gregory, Rick
Rudell, Albert0 Sangiovanni-Vincentelli and Albert Wang for
discussions on DAGON and alternative approaches to the prob-
lem. Thanks also Al Aho, Andrew Appel and Steve Tjiang for
help with rwig and for discussions on DAG matching. Thanks
to Al Dunlop and Wayne Wolf for careful readings and caustic
comments. Thanks to Bob Melville for help in using his LINK-
AGE EDITOR schematics entry program that produced the cir-
cuit diagrams in this paper.

12. References

[AHU761 A. Aho, J. Hopcroft, J. Ullman, Addison-Wesley
Publishing Company, Third Edition pp.186-194.

IASU~~I A. Aho, R. Sethi, J. Ullman, Addison-Wesley Publish-
ing Company, ~~557-584.

[AhGag A. Aho, M. Ganapathi, “Efficient tree pattern match-
ing: an aid to code generation”, “Conf. Record of the
Twelfth Annual ACM Symposium on Principles of
Programming Languages”, January 1985, 334-340.

[AhJo A. Aho, S. C. Johnson, “Optimal Code Generation for
Expression Trees”, 23, 3, 488-501 (1976).

[AJU771 A. Aho, S. C. Johnson, J. D. Ullman, “Code Genera-
tion for Expressions with Common Subexpressions”,
24, 1, 146-160 (1977).

IBrMc841 R. Brayton, C. McMullen, Synthesis and Optimiza-
tion of Multi-Stage Logic”, “Proc. of the ICCD”,
October 84,23-28,

[BDKM861 R. Brayton, E. Detjens, S. Krishna, T. Ma, et. al.,
“Multiple-Level Logic Optimization System”, “Proc.
of the ICCAD”, November 1986.

[BrSe761 J. Bruno, R. Sethi, “Code Generation for a One Regis-
ter Machine”, 23, 3. 502-510 (1976).

[Ch871 M. Chi, “An Automatic Rectilinear Partioning Pro-
cedure for Standard Cells”, to appear “Proc. of the
Design Automation Conference”, June 87.

[DJBTIlI J. Darringer, W. Joyner, C. L. Berman, L. Trevil-
lyan, “Logic Synthesis Through Local Transforma-
tions”, 25, 4, 272-280 (1981):

[DBGJ841 J. Darringer, D. Brand, J. Gerbi, W. Joyner, L. Tre-
villyan, “LSS: a system for production logic syn-
thesis”, 28, 5, 537-545 (1984). 1975.

[DLT841 J. Dussault, C-C. Liaw, M. Tong, “A High Level Syn-
thesis Tool for MOS Chip Design”, “Proc. of the 21st
Design Automation Conference”, June 1986, 308-
314.

[Fr84] E. Frey, “ESIM: A functional level simulation tool”,
“Proc. of the ICCAD”, November 84, 48-53.

[Ge861 A. J. de Geus, “Logic Synthesis and Optimization
Benchmarks for the 1986 Design Automation
Conference”, “Proc. of the 23rd Design Automation
Conference”, June 86, 78.

[GeCo851 A. J. de Geus, W. Cohen, “A Rule Based System for
Optimizing Combinational Logic” 2, 4, 22-32
(1985).

[GBGH861 D. Gregory, K. Bartlett, A. De Geus, G. Hachtel,
“Socrates: A System for Automatically Synthesizing
and Optimizing Combinational Logic”, “Proc. of the
Design Automation Conference”, June 86, 79-85.

[Hi851 D. D. Hill, “Sc2: A Hybrid Automatic Layout System”,
“Proc. of the ICCAD”, November 85, 172-174.

[HoOD821 C. Hoffman, M. O’Donnell, “Pattern Matching in
Trees” 29, 1, 68-95 (1982).

[~0831 S. C Johnson, “Code Generation for Silicon”, “Conference
Record of the Ninth Annual ACM Symposium on
Principles of Programming Languages”, January
1983, 14-19.

[JTB861 W. Joyner, er.af., “Technology Adaptation in Logic
synthesis”, “Proc. of the 23rd Design Automation
Conference”, June 1986,94-100.

[Ka861 M. Kahrs, “Matching a parts library in a silicon com-
piler”, “Proc. of the ICCAD”, November 1986.

1~~871 K. Keutzer, M. Lega, M. Vancura, “A Multi-Level Syn-
thesis Methodology”, to be presented “International
Workshop on Logic Synthesis”, North Carolina,May
87.

[SMP861 C. Stroud, R. Munoz, D. Pierce, “CONES: A System
of Automated Synthesis of VLSI and Programmable
Logic from Behavioral Models”, “Proc. of the
ICCAD”. November 1986.

[Tj861 S. Tjiang, “Twig Reference Manual”, January 1986.

[TJB861 L. Trevillyan, W. Joyner, L. Berman, “Global Flow
Analysis in Automatic Logic Design”, C35. 1, 77-81
(1986).

Paper 21.1
347

