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ABSTRACT 

Technology binding is the process of mapping a technology 
independent description of a circuit into a particular tech- 
nology. This paper outlines a formalism of this problem 
and offers a solution to the problem in terms of matching 
patterns, describing technology specific cells and optimiza- 
tions, against a technology independent circuit represented 
as a directed acyclic graph. This solution is implemented 
in DAGON. DAGON rests on a firm algorithmic founda- 
tion, and is able to guarantee locally optimal matches 
against a set of over three thousand patterns. DAGON is 
an integral part of a synthesis system that has been found 
to provide industrial quality solutions to real circuit design 
problems. 

1. Introduction 

t We begin our treatment of the problem of technology binding 
with local optimizations by outlining a formalization of it. 
Using this formalization we will find that the problem is related 
to those that have been encountered in the field of programming 
language compilers. Indeed, we claim that compiler techniques 
are highly relevant to many problems in logic synthesis. This 
thesis was originally stated in [Jo821 and in [TJBW. In partic- 
ular here we claim that technology binding for logic synthesis is 
a very closely related problem to code generation for program- 
ming language compilers. More specifically, matching a graph- 
like description of a technology independent circuit against a 
library of patterns in a technology, such as a standard cell 
library, is similar to matching a graph-like intermediate 
representation of a computer program against the patterns of an 
instruction set of a given machine. Thus twig [Tj86], a tree 
manipulator used for constructing code generators for program- 
ming language compilers is used to build an optimizing technol- 
ogy binder. The result is a technology binder, DAGON, that is 
capable of optimizing for time, area or a function of both. 
Because DAGON uses data abstraction, and a modular technol- 
ogy pattern description format, DAGON is easy to “port” to new 
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technologies. DAGON rests on a firm algorithmic foundation, 
and is able to guarantee locally optimal matches against a set 
of over three thousand patterns. 

2. The Formalism 

Before going into how compiler techniques are used in DAGON 
we will first take a step back to view the problem of technology 
binding and local optimizations under a broad formalism. In 
this paper we assume, that the reader is familiar with basic tree 
and graph terminology, as described, for instance, in [AHU761. 
Any set of boolean functions with common sub-expressions can 
be viewed as a directed acyclic graph (DAG) in which the labels 
of the vertices in the graph are the boolean operators AND and 
OR and edges are labeled either 1, for the true value of the sig- 
nal associated with the vertex, or 0, for the inverted value. We 
may think of this DAG as a circuit with edges directed from 
outputs to inputs. We present here the different stages of the 
technology binding process. 

1. A technology independent graph Gi * (F’,:E) such that 
each vi in V, label&) E (AND.OR] and each ei in E E 

2. 

3. 

4. 

IO,l). . . 
A technology independent graph Gd - (V,E) such that 
each vi in V, label(vi) E (AND,OR), the outdegree 
(fanin) of each vi is less than some technological limit, 
and each ei in E E (0.1). 
A canonically represented technology independent graph 
G, = (V,E) such that each vi in V E INAND,NOTI the 
outdegree of each vi in V is less than some technological 
limit. Edges have no labels. 
A technology bound graph G, = (V,E) such that for each 
vi in Y label(vi) E ( technology pattern set (e.g. gates in 
a standard cell library 1. The outdegree of each vi in V is 
less than some technological limit. Edges have no labels. 

It is assumed that common subexpressions have already been 
discovered by a global optimization technique such as LBrMc841 
and are reflected in Gi. The translation from Gi to G,, is called 
decomposition. Decomposition begins the binding into technol- 
ogy by realizing fan-in limitations, but also considers non-local 
transformations within a single boolean function. We will not 
treat this problem here, but our work on this problem will be 
presented in [KLV871. The translation from Cd to G, is a 
direct process. In this paper we concern ourselves with the 
problem of the translation from G, to G,. We treat this problem 
as one of as DAG covering or a DAG rewriting. A precise for- 
malization of the notion of DAG covering or DAG rewriting is 
beyond the scope of this paper, but the formalizations for trees 
presented in [HoOD82] and (AhGaS may be extended to 
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DAGS. In taking a covering approach to the problem of tech- 
nology binding, we have purposely moved all non-local optimiza- 
tions up into global optimization and decomposition stages. 

Having abstracted away the domain specific details of the prob- 
lem, we may now observe that problem of covering a DAG is 
also encountered in a programming language compiler’s code 
generation for language expressions with common subexpressions 
[AJU771. Unfortunately, [BrSe761 and [AJU771 show that this 
problem is NP-complete and to date no efficient technique for 
attacking this problem directly has been realized. However, as 
the problem of code generation is an essential one, practical 
ways of approaching the problem have been found. An attrac- 
tive approach is to treat the problem of matching a DAG as the 
problem of matching against a forest of trees which compose it 
[RSU861. This is the approach followed in DAGON. 

3. The DAGON Approach 

DAGON takes a canonical technology-independent description of 
a combinational circuit (G,) and a list of patterns describing 
both the cells in the technology and local transformations. 
WAGON creates a technology bound circuit (G,) by partitioning 
the circuit into a forest of trees, then using a tree pattern match- 
ing automaton to match the individual trees. The tree matcher 
that is used in DAGON is based on twig [Tj861, a tree matching 
generator tool that is generally used for constructing code gen- 
erators for programming language compilers. Figure 1 gives an 
overview of the DAGON approach. These aspects are described 
in more detail below. 

3.1 Partitioning 

The technique used here for partitioning is simply to make each 
node (gate) with indegree (fanout) greater than one, the root of 
a new tree. This process requires only time linear in the size of 
the DAG. The size of these resultant trees in the forest depends 
very much on the nature of the circuit. If the circuit has a great 
deal of fanout, then there will probably be many small trees 
after partitioning. On the other hand if the original circuit has 
more of a tree-like structure, then the circuit will be partitioned 
into a few large trees. Figure 2 shows the partitioning of a 
small circuit into trees. X’s mark partition points. 

3.2 Tree Matching 

After partitioning, DAGON proceeds to find minimal cost 
matches or coverings of the partitioned trees against the technol- 
ogy patterns. DAGON guarantees an optimal match in the 
entire tree, how ever many levels of logic it may contain, and in 
this way avoids the pitfalls of a greedy approach or any other 
method that must limit its search to some fixed number of levels. 
To accomplish this the twig tree manipulation program [Tj86] is 
used. While for a user of DAGON, and even for a developer of 
a rule set for DAGON, rwig may be treated as a “black box”, we 
will briefly describe how twig works in this application. There 
are two key elements in finding a minimal cost match for a tree. 
The first is to identify the set of candidate matches over the 
tree. The second is to identify the minimal cost match from 
among the candidates. We shall describe each of these, begin- 
ning with how patterns are described in DAGON. 

Figure 1. The DAGON Approach 

Figure 2. The Partioning the Circuit 
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3.2.1 Description of Patterns Patterns in DAGON are small 
trees in the canonical NAND/NOT form. These trees 
correspond either to a direct mapping into a cell in the target 
technology or may describe a mapping that contains a local 
transformation. These patterns are fed directly to twig and con- 
sist of three parts. The first part describes the pattern in a 
grammatical form. An important feature of the grammatical 
description is that is able to describe not just a single fixed pat- 
tern but a whole family of patterns instances. In Figure 3 we 
see a group of patterns describing a family of AND-OR- 
INVERT (A011 gates. The five patterns given in Figure 3 
actually describe sixty-four unique pattern instances from an 
A01444 to an A0121 1. Many of these patterns are symmetric, 
thus an A01114 is equivalent to, and would be output as, an 
A0141 1. A graphical representation of the family of trees 
described by these patterns is given in Figure 4. 

The second part of a pattern is the cost evaluation part. This is 
part of the twig-DAGON interface. A person developing a pat- 
tern set for DAGON using twig gives a cost for each pattern in 
the reserved variable “cost”. The type of “cost” (in DAGON it is 
an array) and the functions for evaluating it (routines for adding 
costs and comparing costs 1 must also be defined. The pattern- 
set developer inserts code in this portion that computes the cost 
of a subtree that has this pattern at its root and puts the result 
in the variable “cost”. Given a tree to be matched twig uses 
these costs, and the routines which manipulate them, to evaluate 
the cost for candidate matches. 

In Figure 3 the cost is computed at the root of the A01 tree 
once the lower level patterns have been bound to their specific 
vahres. This cost consists of the costs of all the subtrees below 
this pattern plus the cost of the A01 gate itself. The cost of all 
the subtrees below this pattern is also the default cost and is 
represented by the DEFAULT-COST. To maintain modularity 
time (T) and area (A) costs are computed by functions that are 
loaded based on the target technology. 

The third part of a pattern is of two kinds: either rewrite or 
action. In Figure 3 if there is a match of the entire A01 gate, 
the action is to print the appropriate gate. 

This format is very convenient and makes adding and modifying 
patterns, costs, and actions quite easy. 

3.2.2 Size of Pattern Set DAGON uses 52 parameterizable pat- 
terns. These parameterizable patterns expand into over seven 
hundred unique pattern instances representing various permuta- 
tions of AT&T’s standard cell library of approximately 165 
gates, as well as a few thousand unique local optimization pat- 
terns. 

3.23 Tree Matching Given the technology patterns as described 
above, twig builds a tree pattern-matching automaton that will 
indicate for each node n in the subject tree all the technology 
patterns which have a match in the subject tree rooted at n. A 
straightforward approach to this problem is to simply traverse 
the tree trying each pattern at each node. Even this naive 
approach takes only time 
0 (TREE-SIZE x PATTERN-SE T-SIZE 1. Twig uses a more 
sophisticated approach based on the Aho-Corasick IAhCo751 
algorithm. The Aho-Corasick algorithm is a string matching 

/+++* AOIxxx canonically expressed as 
not 

nand 3 
I 1 1 I 

nand nand nand x/ 
eqn: not(nand_3tinand,inand,inand)l 
/++SS refers to the root of the pattern*/ 
{ 
DEFAULT COST; /*sum up cost of children*/ 
cost.cost a[AREAl+=d get aoi area cost(ss); 
cost.cost-a[TIMEl+=d~aoi~tim~~cost(SS) 
cost.costIa[AT-Kl 

+= my-pow(cost.cost-aCTIMEl,cost_power) 
+cost.cost afAREA1; 

I 
={ 

d print-aoi(stdout,SSf; 
I _- 
Ii 
inand: nand_2(eqn,eqn) 
{) /*default cost is the sum of costs of the 
children-it doesn't have to be spelled out+/ 
={};/+action taken at root of pattern tree+/ 
inand: nand 3(eqn,eqn,eqn) 
{}/cdefault cost is the sum of children*/ 
={};/xaction taken at root of pattern tree*/ 
inand: nand_4(eqn,eqn,eqn,eqn) 
{}/xdefault cost is the sum of children*/ 
={};/caction taken at root of pattern tree*/ 
inand: not(eqn) 
{)/xdefault cost is the sum of children*/ 
={};/*action taken at root of pattern tree*/ 

Figure 3. An AOIxxx Pattern 

algorithm, but can be applied to trees because trees can also be 
described as strings. This approach can reduce the matching 
time to 0 (TREE-SIZE). For further details see [AhCo751 and 
IAhGa851. 

At the end of this process a search space which contains all pos- 
sible tree matches has been created. Figure 5 shows a subcircuit 
of Figure 2 with nodes labeled with all candidated matches for 
a small pattern set. What remains is to search this space and 
find the optimal match. 

3.2.4 Finding a Minimal Cost Match Given the set of all possi- 
ble matches, as determined by the procedure described in the 
previous section, it now remains to find a match of least cost. 
Dynamic programming, based on the approach of iAhJo761, is 
used. A dynamic programming, or divide-an-conquer, approach 
is to find a least cost match of a tree T with root r and subtrecs 
Tl ,...,T, by first finding least cost matches for each of the sub- 
trees. This procedure is applied in a recursive depth-first 
manner. As the leaf of a tree can only be a NOT or a NAND, 
it is easy to determine the least cost match. At the root r of an 
arbitrary subtree T, the process consists of simply trying each 
pattern Pi that has matched at r. The leaves of the pattern pi 
will extend into the subtrees of T. The least cost match for each 
of these subtrees has already been computed by the bottom up 
procedure, so the cost of matching Pi at r can be computed in 
terms of the cost of pi together with the cost of each of the sub- 
trees with roots at the leaves of Pi. The number of patterns 
matching at a node is bounded by the total number of patterns, 
so the time bound for finding an optimal match is 
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i”and - D 
inand - 

b 

Example of one resulting pattern: A01432 

are in terms of grids, a measure of the width of a standard ceil. 
At A we have two choices, an inverter or a complex A0121 
gate. The cost of match of an inverter would be the cost of the 
inverter (2 grids) plus the cost of the subtree rooted at B (11 
grids) . The match of the A0121 is the cost of the A0121 (4 
grids) plus the cost of the subtrees at the leaves of it’s patterns: 
two inputs (of cost 0 grids) and the ND2 at E (3 grids). The 

A0121 7 

ND2 11 

INV 2 

ND2 3 

Figure 4. Geometric Interpretation of Figure 3 

Figure 6. Finding a Least Cost Match 

A0121 is an easy winner. 

3.3 Quality of Tree Matching 

Matching against a forest of trees rather than against the origi- 
nal DAG loses the guarantee of a globally optimal solution. But 
as mentioned above, finding a globally optimal solution to DAG 
matching or covering is an NP-complete problem. However, the 
simple observation that optimal tree matching is realizable in 
linear time and optimal DAG matching is NP-Complete shows 
that there is a considerable range between these two classes of 
problems. There is a very general optimization question 
involved as to whether it is better to optimally solve a subprob- 
lem or to suboptimally the whole problem. Greedy approaches 
to the problem of covering DAG’s are considered in [AJU771 
and are shown to be very suboptimal. A bottom-up greedy 
approach is used to match against high-level modules in the sili- 
con compiler described in [Ka86]. In the foilowing section we 
discuss our own experience with the limitations of tree matching 
as well as our answers to them. 

Figure 5. Tree After Matching 
3.4 Enhancements 

0 (TREE-SIZExPATTERN-SET-SIZE). 
Our experience shows that a tree matching approach that uses 
only information local to a tree will not give s&factory results. 
To improve the quality of result a few extensions to tree match- 
ing were required. For each node in the tree to be matched, 
attributes are attached which are describe properties that are 
not local to the tree. The relevant attributes ire-j&out, inverse, 
and signal. Inverse tells if the inverted sense of a signal is avail- 
able somewhere in the circuit. This is very useful because 

Figure 6 shows the discovery of a least cost match among candi- 
dated matches. There are no choices for a least cost match of 
the tree until we reach the inverter at the root (node A). Costs 
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drastic simplifications can often be made if the inverted sense of 
a signal can be used rather than the signal itself. Signal gives 
the name of a signal. This can be used together with inverse to 
represent a non-tree pattern such as an Exclusive-Or. Fanout is 
used to determine timing costs. 

Another important advance in quality came when DAGON 
began to be applied to sequential circuits. To handle this 
DAGON had to be able to match against general directed 
graphs as well as DAG’s. To accomplish this the partitioning 
procedure had to be enhanced to make each sequential element 
the root of a new tree. One advantage of matching against 
sequential circuits is that optimization patterns which use the 
both the inverted and non-inverted (Q and Q-bar) outputs of a 
flip-flop can be described. This class of optimization has been 
very important in producing a quality binding of some circuits. 

A final source of enhancement is the incorporation of a 
“peephole optimizer” that looks for redundant gates that may 
arise due to two local optimizations colliding across tree boun- 
daries. With these enhancements DAGON has been able to pro- 
duce a high quality binding of the circuit. When circuits bound 
by DAGON are examined by human designers, suggestions for 
improvements have always been related to the need for new 
optimization rules rather than problems related to any other of 
the limitations of an approach based on tree matching. 

4. Other Features of DAMON 

DAGON runs in time 
o(~AG-su~xP~rr~mi SET-SzzE). This speed allows it 
to be applied to industrial sized problems and can even be used 
interactively. It also allows DAGON to support a very large 
cell library, such as the one currently in use at AT&T, together 
with a few thousand optimizations. 

In the present system the user may choose to bind the circuit in 
such a way that minimizes time (T), area (A) or some function 
(A x Tk) of both. This gives the user flexibility in choosing the 
nature of the target implementation. 

Just as code generator-generators allow for ease of porting a 
compiler to a new machine, the use of a code generator- 
generator in DAGON allows for ease of porting to a new tech- 
nology. Porting to a new technology requires introducing a new 
set of patterns, including the costing evaluators and the action 
routines. The patterns, as shown in Figure 3, are easy to revise. 
The costing evaluators and action routines are modular and 
access the circuit representation only through an abstract data 
access mechanism, so rewriting these portions is also straightfor- 
ward. 

5. Comparison With Other Approaches 

A fair comparison with other approaches to technology is made 
difficult by the fact that technology binding plays a different role 
in each system. The model of synthesis that we described on the 
section 2 has not been widely accepted at this point. In addi- 
tion, the comparisons in this section are based on this author’s 
understanding based on the limited details published and 

personal conversations, as acknowledged later. 

5.1 Logic Synthesis System (LSS) 

Among the first work on local optimization was an approach 
based on a sequence of local transformation rules applied heu- 
ristically IDJBT811. Most of the optimizations described in 
[DJBTSl], and in later papers on LSS, involve common subex- 
pression elimination that in our present environment would be 
handled as part of the decomposition process. The class of non- 
local optimizations presented in [TJB861 would be handled by 
the global optimizer. While such a discussion is beyond the 
scope of this paper, it is the opinion of this author that common 
subexpression elimination for combinational logic is one problem 
that is best not handled by programming language compiler 
methods because restricted domain found in combinational cir- 
cuits allows for the use of a method lBrMc841 that is able to 
find many more candidate sub-expressions than are efficiently 
detectable in the vastly more complex domain of programming 
language compilers. 

As for local transformations techniques in general, we saw above 
that identifying the class of local transformation patterns that 
can be applied to a circuit is a straightforward problem and one 
that is efficiently solved by the Aho-Corasick algorithm. The 
important underlying problem is to identify which transforma- 
tions to apply. 

5.2 Functional Design System (FDS) 

Only one portion of this synthesis system [DLT841 is devoted to 
random combinational logic synthesis and technology binding 
plays a rather small role in this system as a whole. The 
approach of the combinational logic synthesis portion is to first 
globally optimize and decompose the circuit. The resulting cir- 
cuit is partitioned into trees and bound to a technology. 
Although the binding is limited to trees, the greedy algorithm 
used offers no guarantee of optimality. Local transformations 
also do not seem to play a significant role in this system. 

5.3 SOCRATES 

A rule-based approach to the problem of technology binding 
with local optimizations is used in SOCRATES described in 
LGeCo851. The separation of the rules from the search strategy, 
as employed in this approach, greatly aids the case of adding 
and changing rules, as well as changing to a new technology. 
This feature is also present in DAGON. The addition of time 
and area trade-offs is another important advancement introduced 
in SOCRATES. DAGON is also able to trade time for space by 
allowing the user to optimize some function (AX Tk) of time 
and area. DAGON does not have the advantage of allowing the 
user to give an upper bound on time, then minimizing with 
respect to area (or vice-versa). 

While tree patterns and rules in a knowledge base are similar in 
many ways, SOCRATES and DAGON differ significantly in 
how these rules or patterns are applied. To avoid the expensive 
running time of a backtracking approach, DAGON applies its 
patterns to a circuit that has been partitioned into a forest of 
trees. This allows it to use a dynamic programming approach it 
is also able to look among all candidate coverings of a tree using 
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all rules are patterns and applying arbitrary look-ahead, in order use the fact that a two-input NAND gate is three grids. The 
to choose the candidate covering of the tree that is minimal in results on these benchmarks are an improvement over others 
cost. Comparing run-times with those given in IGeCo851, it published at last year’s Design Automation Conference. Run- 
appears that DAGUN is at least two orders of magnitude faster ning times are on a VAX 8650 (about 6 times as fast as a VAX 
for similarly sized circuits. 11/780). 

In fairness to a backtracking approach, it is attempting to per- 
form global optimizations that would not be addressed by 
DAGON. As SOCRATES approach to binding it is more gen- 
eral, it can potentially reach a global minimum, and has the 
advantage that the more time it is given, the better the results 
will be. 

These results also support the claim that DAGON runs in time 
linear in the input size. This has ensured that DAGON can be 
used on large examples in a production environment. 

These results show that a system such as mis together with 
DAGON gives the us_r an exciting ability to interactively 
explore a wide space of design trade-offs from the logic level all 

6. Current Synthesis Environment 

DAGON is presently part of a highly automated synthesis 
environment that is producing designs that often exceed hand- 
crafted quality even on relatively small examples. Synthesis 
begins with CONES 1SMP861 which takes a functional, simu- 
latable [Fr841, C description of a circuit, and synthesizes it into 
a combinational and a sequential portion. The combinational 
portion is fed into the mis IBDKM861 multi-level optimizer. 

Coordination between the global optimizer and the technology 
binder, which is the role of the decomposer, is critical. At 
present a technology driven decomposition process [KLV871 has 
been substituted into mis. Mis then outputs the circuit in a 
NAND gate realization. This does not mean that mis is pre- 
maturely binding the technology, only that the output is 
expressed in a canonical form. The representation of the circuit 
in a canonical form allows for a drastic reduction in the number 
of patterns required to cover a technology. This NAND form is 
then combined with the sequential portion of the circuit and fed 
to DAGON for binding to the target technology. 

DAGON presently supports three sets of technology patterns: a 
small standard cell library of sixteen cells; the AT&T standard 
cell library that is coordinated with the LTX2 ICh871 placement 
and routing package; and a larger library for Sc2 [Hi851, a gate 
matrix style automated layout program. This synthesis environ- 
ment is presently in production use on an experimental basis. 

7. Implementation 

By relying on twig, DAGON has remained small and the entire 
DAGON system consists of approximately 4000 lines of C code, 
and another 700 lines of pattern descriptions. It presently runs 
on a VAX 8650 under UNIX 4.3BSD. 

8. Results 

The results of running DAGON on the de Geus benchmarks 
IGe861, as well as larger examples are shown in Table 1. The 
target technology in these tables was the AT&T standard cell 
library. In this table statistics for DAGON are shown side-by- 
side with an NAND/NOT of the same logic. This is only 
intended to give a feeling for DAGON’s individual contribution. 
The measurements are in terms of standard cell grids. To com- 
pare the grid measure with two-input NAND gate equivalents, 

Example NAND/NOT DAGON 

rd53 
9sym 
VI32 
rd73 
saol 
sao2 
bw 
duke2 
MO 
lmtc 
pla4 

gates grids gates grids 
36 109 19 79 
66 202 44 163 
90 253 65 208 
90 275 47 196 
111 331 64 245 
111 370 61 273 
171 479 118 380 
338 1013 251 851 
400 1073 281 835 
908 2559 660 2078 
1478 4338 1022 3465 

runtime 
bc.) 

.l 

.2 

.2 

.3 

.4 

.4 

.6 
1.2 
1.3 
3.1 
5.6 

Table 1. Results of Running DAGON 

the way to layout. 

9. Future Directions 

While DAGON has been able to meet timing requirements 
without manual intervention on cirouits to which it has been 
applied, DAGON’s present ability to optimize for timing is 
highly limited by it’s pattern set. A class of patterns which 
would allow for timing optimizations such as moving signals off 
of a critical path, add buffers, and so forth, would improve tim- 
ing directed performance a great deal. 

10. Summary 

In this paper we have outlined three contributions to the area of 
technology binding and local optimization. The first is a formal- 
ism of the problem in terms of graph transformations. The 
second is an approach to the problem of graph transformations 
by DAG or graph matching and in term an approach to DAG 
matching by reducing it to the problem of (attributed) tree 
matching. These first two contributions have already reshaped 
the way that this problem is being approached. The third is the 
description of a working implementation of these ideas using the 
twig tree matcher that has proved to be of high enough quality 
to provide superior industrial designs as well as efficient enough 
in implementation to be used in a production environment. 
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