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1 Introduction

Anomalies are one of the most powerful tools that we have to analyze quantum field theo-

ries: the anomaly for any symmetry we would like to gauge needs to cancel, which is a con-

straint on the allowed spectrum. When the symmetry is global, we have anomaly matching

conditions [1] that give us very valuable information about strong coupling dynamics.

In the traditional viewpoint, an anomaly is a lack of invariance under a certain gauge

transformation/diffeomorphism. Local anomalies come from transformations which are

continuosly connected to the identity; global anomalies (such as e.g. the SU(2) anomaly

in [2]) are related to transformations that cannot be deformed to the identity.

However, it is becoming increasingly clear that this is not the end of the story [3–5].

Roughly speaking, it also makes sense to require that the theory gives an unambiguous

prescription for the phase of the partition function when put on an arbitrary manifold

X, with an arbitrary gauge bundle. We will explain the rationale for this prescription in

section 2.

There does not seem to be a universal name for this requirement in the literature;

because the main tool to study this is the so-called Dai-Freed theorem, we will refer to it

as Dai-Freed anomaly cancellation. Our interest stems from the fact that they result in

additional constraints on quantum field theories. The paradigmatic example is the topo-

logical superconductor, where freedom from gravitational anomalies on the torus requires

the number of fermions to be a multiple of 8 [4], and a more careful analysis on arbitrary
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manifolds requires this number to be a multiple of 16 [5]. As we will see, the fact that the

number of fermions in the SM, including right handed Majorana neutrinos, is a multiple

of 16 follows from Dai-Free anomaly-freedom of certain Z4 discrete symmetry, and it can

in fact be related to the modulo 16 Dai-Freed anomaly in the topological superconductor.

The aim of this paper is to substantiate this observation, and more generally explore

Dai-Freed anomalies in theories of interest to high energy particle physics. We will have

a look to Dai-Freed anomalies of semisimple Lie groups, with an emphasis on GUTs and

the Standard Model, as well as discrete symmetries. To study these anomalies in general

we will compute the bordism groups of the classifying spaces of the relevant gauge groups.

We will find that both the SU(5) and Spin(10) GUT’s, as well as the Standard Model

itself, are free from Dai-Freed anomalies.1 In the case of discrete symmetries, we will find

nontrivial constraints in symmetries of phenomenological interest, such as proton triality.

This symmetry has a modulo 9 Dai-Freed anomaly, which cancels only for a number of

generations which is a multiple of 3.

This paper is organized as follows. In section 2, we will review some useful facts about

anomalies and algebraic topology that we will use. In particular section 2.1 we give a quick

review of anomalies, both from the familiar viewpoint and the more modern one based on

the Dai-Freed theorem. We also explain the connection to bordism groups. In section 2.2 we

then introduce the mathematical tools that we will use to compute these bordism groups,

with particular emphasis on the Atiyah-Hirzebruch spectral sequence. Section 3 is devoted

to the computation of the bordism groups of classifying spaces of various Lie groups. An

easy corollary of the results in this section is the absence of Dai-Freed anomalies in the

Standard Model and GUT models (including in the case of allowing for non-orientable

spacetimes). In section 4 we turn to the analysis of discrete symmetries, where we will find

new Dai-Freed anomalies, also in some discrete symmetries of phenomenological interest

such as proton triality. We also identify a Z4 symmetry, related to U(1)B−L and hyper-

charge, which is anomaly-free if the number of fermions in a SM generation is a multiple

of 16. In section 5, which is a more theoretical aside, we briefly review how to extend

the Dai-Freed prescription to manifolds which are not boundaries and the relationship to

θ angles. We also discuss the possibility of purely K-theoretic θ angles. Finally, section 6

contains a brief summary of our findings and conclusions.

While finishing our manuscript we became aware of [7], which also discusses Dai-Freed

anomalies for discrete symmetries and the connection to Ibañez-Ross constraints.

1.1 A reading guide for the phenomenologist

One of the main points of our paper is that a recent formal development — the discovery of

new anomalies beyond traditional local and global ones — is very relevant to phenomenol-

ogy, since potentially any gauge symmetry, even the SM gauge group, could in principle

turn out to be anomalous under these more stringent constraints. Or, from a slightly dif-

ferent point of view, these developments also answer the question of whether the existence

of certain gauge symmetries imposes any constraints on spacetime topology.

1This result was previously obtained for Spin manifolds in [6] using different techniques. We rederive it,

and extend it to other interesting classes of manifolds.
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A large part of the analysis is necessarily technical, devoted to the details of the com-

putation of bordism groups and η invariants. We do encourage the reader only interested

in the resulting phenomenological constraints to skip sections 2 and 3, with the exception

of subsection 3.4, where Dai-Freed anomalies of the SM are analyzed. Sections 4.1, 4.2

and 4.3 are also of phenomenological interest and give new constraints on gauging dis-

crete symmetries. They contain, in particular, explicit formulas for Dai-Freed anomaly

cancellation of discrete symmetries in Spinc and Spin spacetimes.

2 Review

In this section we will briefly review the necessary background that we will use later on.

Excellent introductory references are [8–10] for traditional anomalies and [5] for the new

ones. We also recommend [11] for an introduction to some of the notions in algebraic

topology that will enter our analysis.

2.1 Anomalies

Suppose one has a quantum theory on which some symmetry group G acts. G can be a

combination of internal and spacetime symmetries. We may consider coupling the theory

to a nontrivial G-bundle, i.e. to a nontrivial background field. When the symmetry group

G is discrete, the notion of coupling the theory to a nontrivial G-bundle still makes sense

(for instance, one may twist boundary conditions along nontrivial cycles).

It can happen that physical predictions change as we act with G on the background

field. More specifically, we will focus on the partition function Z[A], as a function of the

background connection A for G. In this context, an anomaly means that Z[A] 6= Z[Ag]

for some gauge transform Ag of A. Equivalently, the partition function is not a well-

defined function of the background connection (modulo gauge transformations), but rather

a section of a non-trivial bundle over this space.2

An anomaly in a global symmetry is not an inconsistency; it just means that we cannot

gauge G. If we want to do this, we need to modify the parent theory somehow. Sometimes

very mild modifications suffice: in some cases, such as in the Green-Schwarz mechanism, it

is possible to do this by introducing new non-invariant terms in the Lagrangian. Alterna-

tively, as discussed in [13], coupling to a topological field theory (which introduces no new

local degrees of freedom) can sometimes be enough to cure the sickness.

This characterization of anomalies does not require the existence of a Lagrangian.

In this paper, however, it will be sufficient for us to restrict to Lagrangian theories, for

which one can give a more concrete description. Lagrangian theories have a path integral

formulation in terms of some elementary fields Φi and a Lagrangian L(Φi),

Z[Ji;A] =

∫
[DΦi] exp(−S), S =

∫

X
ddxL(Φi, A) + JiOi , (2.1)

as a function of the sources Ji and the background G-fields A.

2See for instance [12] for a more detailed discussion of this viewpoint aimed at physicists.
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Furthermore, we will further restrict to theories with some corner in their parameter

space such that the action splits as

S = Sfermion + Sother fields, Sfermion =
i

2

∫
ddx ψ̄ /Dψ. (2.2)

i.e. as a fermion plus terms for the other fields, which we will take to be non-anomalous.

The fermion ψ transforms on some representation R of the symmetry group G, and (if G

is continuous) couples to the background gauge field via the covariant derivative

/D = iγµ(∂µ − iAµ). (2.3)

Other than that, our discussion will be completely general, applying to real or complex

fermions in an arbitrary number of dimensions. So we will study anomalies of the theory

whose partition function is given by

Z[A] =

∫
[Dψ]e−Sfermion(ψ,A). (2.4)

This can be evaluated explicitly, since the path integral is quadratic. If i /D is self-adjoint,

we can diagonalize it, and the partition function becomes

Z[A] = det(i /D) . (2.5)

However, for anomalies we are often interested in the case where i /D is not an endomor-

phism, but rather a map from one fermion space to another. This happens when the

fermions transform in different representations (for instance, the partition function for a

Weyl fermion maps one chirality to another). In this case cases the definition of the deter-

minant is more subtle, but (2.5) still holds in an appropriate sense [14, 15]. (Perhaps the

most conceptually clear definition is the one due to Dai and Freed, described below.)

The above discussion holds for complex fermions. This covers most of the cases we

consider in this paper, but for completeness, we also comment on the real case ψ̄ = ψ,

following [5]. In this case, since fermion fields anti-commute, we can view i /D as an anti-

symmetric operator.

An antisymmetric operator can always be recast in block-diagonal form

i /D =




0 λ1
−λ1 0

0 λ2
−λ2 0

. . .




(2.6)

and the quadratic path integral over ψ results in

Z[A] = λ1λ2 . . . = Pf(D). (2.7)

An important technical point is that (2.4) and (2.5) require regularization as usual

in quantum field theory. If a regularization preserving the symmetry G for an arbitrary
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background gauge field can be found, then (2.4) is not anomalous. In particular, this always

happens whenever there is a G-invariant mass term

m

∫
ddx ψ̄ψ (2.8)

for the fermions. In this case, Pauli-Villars regularization is available [5], which is manifestly

gauge invariant.

2.1.1 The traditional anomaly

The traditional discussion of anomalies divides them in two broad classes:

• Local anomalies describe a failure of (2.4) to be gauge-invariant even in a gauge

transformation infinitesimally close to the identity. This was the first anomaly to

be identified; it can be analyzed via the famous triangle (or more generally, n-gon)

diagram, or more efficiently via the Wess-Zumino descent procedure, which relates the

anomalous variation of the action δgS to a (d+ 2) dimensional anomaly polynomial,

d(δgS) = δgId+1, dId+1 = Id+2 =
[
Â(R) ch(F )

]

d+2
. (2.9)

The anomaly polynomial is precisely the index density in the Atiyah-Singer index

theorem [10, 16]. (A beautiful explanation of this fact is given by the Dai-Freed

theorem [17] to be described in section 2.1.2 below.) It follows that, for the local

anomaly to cancel, the anomaly polynomial of the theory must vanish. Because any

symmetry transformation continuously connected to the identity can be related to an

infinitesimal one via exponentiation, vanishing of the anomaly polynomial guarantees

that any symmetry which can be deformed to the identity is anomaly free.

• Even if a theory is free of local anomalies, it can still have a global anomaly, an

anomaly in a transformation g not continuously connected to the identity. If we are

considering the theory on some particular manifold X, the relevant transformations

are given by maps X → G to the symmetry group G. This is commonly denoted

[X,G]. There can only be a global anomaly if this is nontrivial. In the particular case

where X = Sd is a sphere, [Sd, G] = πd(G) is the d-th homotopy group of G. Because

the sphere is the one point compactification of Rd, global anomalies on spheres are

directly relevant to theories in flat space (or more generally, they encode the part

of the global anomaly which is local in spacetime). For instance, π4(SU(2)) = Z2,

related to the SU(2) global anomaly discussed in [2].

Global anomalies were originally studied via the so-called mapping torus construc-

tion [2, 5, 8]. One constructs an auxiliary (d+ 1) dimensional space as the quotient

X × [0, 1]/r, r : (m, 0) ∼ (g(m), 1), ψ(m, 1) = ψ(m, 0)g. (2.10)

Here, ψg denotes the gauge transform of ψ under the potentially anomalous transfor-

mation. If t ∈ [0, 1], is the coordinate on the interval, we also have a corresponding

gauge field

At = (1− t)A0 + tAg0. (2.11)
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X Y

Figure 1. The Dai-Freed construction computes the phase of the fermion path integral on a

manifold X via an auxiliary manifold Y such that ∂Y = X.

The mapping torus construction can be applied to study anomalies of any transfor-

mation, whether or not we are gauging it. However, when the symmetry is gauged,

so that A0 and Ag0 are physically equivalent, the mapping torus describes a non-

contractible closed path on the space of connections on the theory on X; the gauge

profile (2.11) precisely follows this non-contractible path.

The d-dimensional theory will only be anomaly free if a certain topological invariant

constructed out of a particular (d+ 1)-dimensional Dirac operator coupled to (2.11)

actually vanishes. For anomalies of fermions in real representations of G in d = 4k

dimensions (such as a 4d euclidean Weyl fermion in the fundamental of SU(2) [2] —

recall that G includes the Lorentz part too), this topological invariant is the mod

2 index [5]. This is defined as the number of zero modes of the Dirac operator on

the mapping torus, modulo two. For complex fermions, the anomaly is computed in

terms of the APS η invariant of the Dirac operator on the mapping torus [8]. We will

discuss this invariant momentarily.

2.1.2 The Dai-Freed viewpoint on anomalies

The more modern viewpoint on anomalies encompasses the above discussion via what has

been called the Dai-Freed theorem [5, 15, 17], which for our purposes here we can state as

follows. Suppose we are interested in studying anomalies on a fermion theory defined on

some manifold X, and X can be written as the boundary of some other manifold Y , such

that both the spin/pin structure and the gauge bundle on X can be extended to Y , see

figure 1.3

Then, out of the Dirac operator on X showing up in the fermion lagrangian (2.2), we

construct a Dirac operator in Y by the prescription that near the boundary X × (−τ0, 0]
of Y , i /DY takes the form

i /DY = iγτ
(
∂

∂τ
+ i /D

′
X

)
, γτ = diag (Id,−Id),

i /D
′
X =

(
0 i /DX

−i /D†
X 0

)
. (2.12)

3Such a Y may not exist. We will comment more on this situation in section 5. For now, we assume the

existence of Y .
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As mentioned before, there is an anomaly whenever the partition function (2.4) is not a well-

defined function of the connection/metric. We can rephrase this by saying that the partition

function is in general not a function on the space M of connections/metrics modulo gauge

transformations/diffeomorphisms, but rather, a section of a nontrivial complex line bundle

over M, the so-called determinant line bundle over M [17] (or Pfaffian line bundle in the

general case).

The Dai-Freed theorem tells us that there is a quantity, computed solely in terms

of /DY ,

exp (2πiηY ) (2.13)

that is also a section of the same principal U(1) bundle. As a result, we can use (2.13)

instead of working with the determinant (2.5) directly to study anomalies. ηY is the

Atiyah-Patodi-Singer (APS) η-invariant [5, 8, 18–20], defined as follows. First, we pick a

class of boundary conditions (called APS boundary conditions [18–20], see [15] for a nice

detailed discussion) such that i /DY on Y becomes self-adjoint. Then, ηY is a regularized

sum of eigenvalues

ηY =
1

2

(
∑

λ 6=0

sign(λ) + dimker(iDY )

)

reg.

. (2.14)

The sum is infinite and requires regularization; ζ-function regularization is commonly em-

ployed in the mathematical literature. The η invariant jumps by ±1 whenever an eigen-

value crosses zero; however, exp(2πiηY ) is a continuous function of the gauge fields and

the metric.

The advantages of this approach are that we now do not have to deal with regular-

izations, etc. directly, and that we can use several properties of the η invariant to our

advantage. For instance, η behaves “nicely” under gluing [15]: if we have two manifolds

Y1, Y2 glued along a common boundary as in figure 2, giving the manifold Y1 ⊔Y2, we have

exp(2πi ηY1⊔Y2) = exp(2πi ηY1) exp(2πi ηY2) . (2.15)

This means that, as discussed in [21] for instance, if we want to compute the change of the

phase of the partition function Z[A], going from some configuration A0 to some other Ag0
(where g may or may not be continuously connected to the identity) along a path At, we

just need to compute the η invariant on a manifold X × [0, 1], since we can then glue it to

the Y0 which gives the phase on A0 (see figure 3). Because the gauge configuration at the

endpoints of the interval are gauge transformations of one another, we can glue the sides

to obtain the η invariant in the same mapping torus that was discussed above for global

anomalies [15].

In this way, absence of traditional anomalies (local or global) becomes the requirement

exp(2πi ηY ) = 1 for Y any mapping torus. We indeed recover the local and global anomaly

cancellation conditions discussed above, as in [21]:

• For g continuously connected to the identity, one can write Y = ∂Z, where Z = X×D
is a (d + 2)-dimensional manifold, since the gauge bundle can be extended to Z

– 7 –
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Figure 2. The η invariant behaves nicely under gluing as illustrated in the picture.
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Figure 3. To obtain the phase for a configuration Ag
0 starting from A0, we may just attach X×[0, 1]

as shown in the picture. The additional contribution to the phase is identical to η evaluated on the

mapping tours obtained by gluing the two sides of X × [0, 1].

without problem. In this case, we can use the APS index theorem for manifolds with

boundary [18], which relates

Ind( /DZ) = ηY +

∫

Z
Â(R) ch(F ). (2.16)

The left hand side is the index of a Dirac operator on Z, which is always an integer.

Exponentiating, we get

exp(2πi ηY ) = exp

(
2πi

∫

Z
Â(R) ch(F )

)
= exp

(
2πi

∫

Z
Id+2

)
. (2.17)

The only way the anomaly vanishes is if the anomaly polynomial vanishes identically.

We thus recover the traditional local anomaly cancellation condition.

• Global anomalies of complex fermions were already discussed in terms of the η in-

variant. This covers almost all the cases we will discuss in this paper. We refer the

reader to [5] for a discussion of the (pseudo-)real case.

In the present formalism, a natural question is whether the requirement exp(2πi ηY ) =

1 should be generalized to closed (d + 1) manifolds Y which are not mapping tori. These

conditions do not correspond to anomalies in the traditional sense; yet demanding their

vanishing can impose nontrivial constraints on the allowed theories. We will call them, for

lack of a better term, “Dai-Freed anomalies” (even though also the traditional anomalies

can also be nicely understood from the Dai-Freed point of view, as we have just seen). The

goal of this paper is the exploration of these constraints in some interesting gauge theories.
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Figure 4. Traditional global anomalies are studied via the η invariant on mapping tori (left figure).

The general Dai-Freed anomaly can be regarded as a generalization in which we allow the “mapping

torus” to have holes or other nontrivial topologies. In the same way that the traditional mapping

torus follows a nontrivial loop in configuration space, the new anomaly can be regarded as coming

from new nontrivial loops that arise once topology change is allowed, as one might expect to happen

in quantum gravity.

But before we start computing η invariants, let us review some of the reasons why it seems

plausible to us that these anomalies should cancel.

Suppose as before that we want to study the theory on some X = ∂Y1 = ∂Y2. Then,

we can glue Y1 and Y2 with opposite orientation along their common boundary, and we

can compute exp(2πi ηY1⊔Ȳ2). If this is different from one, it means that the Dai-Freed

prescription does not give a unique answer for the phase of the path integral. Faced with

this issue we could somehow try to restrict the allowed set of Y ’s to be used in the Dai-

Freed prescription, so that e.g. Y1 is allowed but Y2 is not. However, this cannot be done

arbitrarily; it has to be done in a consistent way with cutting and pasting relations [5].

Reflection positivity/unitarity also provide further constraints. It seems more economical

to impose exp(2πiηY ) = 1 for all closed Y instead.

In systems coupled to dynamical gravity, there is another way to motivate imposing

these constraints. Recall that a mapping torus for a global anomaly is just describing a

non-contractible loop in the gauge field/metric configuration space. We get one mapping

torus for each non-contractible loop. In quantum gravity, however, we generically expect

topology change (there are a myriad examples of such behaviour understood by now in

string theory, see e.g. [22, 23] for two examples which are particularly close to what we are

discussing here). Morally, this enlarges the configuration space, and one can now consider

closed paths along which the topology changes. These will look like a “mapping torus with

holes” such as the one in figure 4, and some of them might be non-contractible. From this

point of view, the Dai-Freed anomalies are not different from the traditional ones, at least

in a theory in which topology change is allowed.

While it is not obvious that any manifold Y can be regarded as a “generalized mapping

torus” as in figure 4, there is always a perhaps different manifold Y ′
X with η(Y ) = η(Y ′

X) and

which has a mapping torus interpretation over a base manifold X (so that it describes an

anomaly for the theory on X). One can construct Y ′
X by starting with a trivial mapping

torus X × S1, for which the anomaly theory is trivial since it is a boundary, and then

taking Y ′
X to be the connected sum (X ×S1)#Y . To display Y ′

X as a generalized mapping

torus, cut it open along the S1, and embed the resulting (X × [0, 1])#Y into R
K (such
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an embedding is always possible for high enough K, as proven by Whitney). Slicing with

hyperplanes parallel to the [0, 1] factor, one recovers the picture in figure 4.

For completeness, let us mention that the rephrasing of the anomaly for fermions in X

in terms of exp(2πi ηY ) is a specific example of a more general construction, where one as-

sociates a (d+1)-dimensional anomaly theory A[T ] to any anomalous d-dimensional theory

T , such that the anomalous behaviour of the partition function of T on some manifold Xd is

encoded (in the same manner as above) in the behavior of A[T ] on Yd+1, with Xd = ∂Yd+1.

In our case we have d = 4, T is the theory of a Weyl fermion charged under some global

symmetry G, and A[T ] is exp(2πi ηY ). Other important cases for which one can proceed

analogously, and construct appropriate anomaly theories, are theories with self-dual fields

in d = 4k + 2 dimensions, theories with Rarita-Schwinger fields, and theories where the

Green-Schwarz anomaly cancellation mechanism operates. We refer the reader to [24, 25]

for a systematic discussion of such generalizations, and further references to the literature.

Finally, it should be pointed out that there is the possibility of anomaly cancellation

mechanisms which in some cases might weaken the requirement of having exp(2πi ηY ) = 1

for every Y . The ordinary Green-Schwarz mechanism is one example, where the anomaly

can sometimes be cancelled by adding suitable non-invariant terms to the Lagrangian.

Relatedly, as discussed in [13], anomalies which only appear for spacetimes with specific

topological properties may sometimes be cancelled by coupling to a topological QFT with

the same anomaly. When such a possibility exists, it is perfectly fine to have a Dai-Freed

anomalous sector, as long as we “cure” the anomaly by coupling to the right TQFT. This

means that any claim we make below of a theory having a Dai-Freed anomaly should be

understood to mean that the theory is inconsistent if not coupled to any TQFT, and may

in some cases become consistent by such a coupling, but the criterion for which cases are

fixable is currently unknown. We will present explicit examples in section 4.6 where such a

possibility plays a very important role in connecting with known results. See [26] for more

examples of TQFTs with the same anomaly as local quantum field theories of interest, also

applying to generalized global symmetries.

Luckily, the claim of consistency is not subject to such uncertainties: for the cases for

which we prove absence of Dai-Freed anomalies one can state with certainty that anomalies

are absent. It is still interesting to couple the theory to non-trivial TQFTs, and perhaps

some of these introduce anomalies, but it is not something one needs to do.

2.2 Mathematical tools

The rest of the paper is devoted to analyzing Dai-Freed anomalies in theories of interest.

To do this, we need a number of mathematical tools that we review in this section.

2.2.1 The general strategy: η and bordism4

In the rest of the paper, we will only consider theories in which the local anomalies cancel.

This has the very convenient consequence that η becomes a topological invariant, and in

fact it has the stronger property of being a bordism invariant.

4Somewhat confusingly, the notion reviewed here is called both bordism and cobordism in the literature.

As generalized (co)homology theories, what we discuss is a generalized homology theory. Although it will

not enter our discussion, there is an associated generalized cohomology theory. It seems natural to call the

former bordism, and the later cobordism.
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Y1
<latexit sha1_base64="z2f9YFOy77z0VUSWUJVDvnkgJOw=">AAAB+XicbVC7TgMxENzjGcIrQEljESFRRWeEBGUEDWUQ5IGSU+Rz9nJWfA/ZPqTolE+ghZoO0fI1lPwJTriCJEw1uzOr3R0/lUIb1/1yVlbX1jc2S1vl7Z3dvf3KwWFLJ5ni2OSJTFTHZxqliLFphJHYSRWyyJfY9kc3U739hEqLJH4w4xS9iA1jEQjOjG3dP/Zpv1J1a+4MZJnQglShQKNf+e4NEp5FGBsumdZd6qbGy5kygkuclHuZxpTxERti19KYRai9fHbqhJwGiSImRDKr/3pzFmk9jnzriZgJ9aI2bf6ndTMTXHm5iNPMYMytxWpBJolJyPRjMhAKuZFjSxhXwl5JeMgU48bmMrdF23dCHEzKNhO6mMAyaZ3XqFujdxfV+nWRTgmO4QTOgMIl1OEWGtAEDkN4hhd4dXLnzXl3Pn6tK04xcwRzcD5/AHnwk+8=</latexit><latexit sha1_base64="z2f9YFOy77z0VUSWUJVDvnkgJOw=">AAAB+XicbVC7TgMxENzjGcIrQEljESFRRWeEBGUEDWUQ5IGSU+Rz9nJWfA/ZPqTolE+ghZoO0fI1lPwJTriCJEw1uzOr3R0/lUIb1/1yVlbX1jc2S1vl7Z3dvf3KwWFLJ5ni2OSJTFTHZxqliLFphJHYSRWyyJfY9kc3U739hEqLJH4w4xS9iA1jEQjOjG3dP/Zpv1J1a+4MZJnQglShQKNf+e4NEp5FGBsumdZd6qbGy5kygkuclHuZxpTxERti19KYRai9fHbqhJwGiSImRDKr/3pzFmk9jnzriZgJ9aI2bf6ndTMTXHm5iNPMYMytxWpBJolJyPRjMhAKuZFjSxhXwl5JeMgU48bmMrdF23dCHEzKNhO6mMAyaZ3XqFujdxfV+nWRTgmO4QTOgMIl1OEWGtAEDkN4hhd4dXLnzXl3Pn6tK04xcwRzcD5/AHnwk+8=</latexit><latexit sha1_base64="z2f9YFOy77z0VUSWUJVDvnkgJOw=">AAAB+XicbVC7TgMxENzjGcIrQEljESFRRWeEBGUEDWUQ5IGSU+Rz9nJWfA/ZPqTolE+ghZoO0fI1lPwJTriCJEw1uzOr3R0/lUIb1/1yVlbX1jc2S1vl7Z3dvf3KwWFLJ5ni2OSJTFTHZxqliLFphJHYSRWyyJfY9kc3U739hEqLJH4w4xS9iA1jEQjOjG3dP/Zpv1J1a+4MZJnQglShQKNf+e4NEp5FGBsumdZd6qbGy5kygkuclHuZxpTxERti19KYRai9fHbqhJwGiSImRDKr/3pzFmk9jnzriZgJ9aI2bf6ndTMTXHm5iNPMYMytxWpBJolJyPRjMhAKuZFjSxhXwl5JeMgU48bmMrdF23dCHEzKNhO6mMAyaZ3XqFujdxfV+nWRTgmO4QTOgMIl1OEWGtAEDkN4hhd4dXLnzXl3Pn6tK04xcwRzcD5/AHnwk+8=</latexit><latexit sha1_base64="z2f9YFOy77z0VUSWUJVDvnkgJOw=">AAAB+XicbVC7TgMxENzjGcIrQEljESFRRWeEBGUEDWUQ5IGSU+Rz9nJWfA/ZPqTolE+ghZoO0fI1lPwJTriCJEw1uzOr3R0/lUIb1/1yVlbX1jc2S1vl7Z3dvf3KwWFLJ5ni2OSJTFTHZxqliLFphJHYSRWyyJfY9kc3U739hEqLJH4w4xS9iA1jEQjOjG3dP/Zpv1J1a+4MZJnQglShQKNf+e4NEp5FGBsumdZd6qbGy5kygkuclHuZxpTxERti19KYRai9fHbqhJwGiSImRDKr/3pzFmk9jnzriZgJ9aI2bf6ndTMTXHm5iNPMYMytxWpBJolJyPRjMhAKuZFjSxhXwl5JeMgU48bmMrdF23dCHEzKNhO6mMAyaZ3XqFujdxfV+nWRTgmO4QTOgMIl1OEWGtAEDkN4hhd4dXLnzXl3Pn6tK04xcwRzcD5/AHnwk+8=</latexit>

Ȳ2
<latexit sha1_base64="YubY41CzIBmdCCOpzdAcoYda8x0=">AAAB/3icbVC7TsNAEFzzDOEVoKQ5ESFRRXaEBGUEDWWQyEuJFZ0v6/iU80N3Z6TIcsE30EJNh2j5FEr+hEtwQRKmmt2Z1e6OlwiutG1/WWvrG5tb26Wd8u7e/sFh5ei4reJUMmyxWMSy61GFgkfY0lwL7CYSaegJ7HiT25neeUSpeBw96GmCbkjHEfc5o9q0egOPyqyXD+vDStWu2XOQVeIUpAoFmsPK92AUszTESDNBleo7dqLdjErNmcC8PEgVJpRN6Bj7hkY0ROVm84Nzcu7HkugAybz+681oqNQ09IwnpDpQy9qs+Z/WT7V/7WY8SlKNETMWo/mpIDoms7/JiEtkWkwNoUxycyVhAZWUaZPOwhZl3glwlJdNJs5yAqukXa85ds25v6w2bop0SnAKZ3ABDlxBA+6gCS1gEMIzvMCr9WS9We/Wx691zSpmTmAB1ucPZK6WtQ==</latexit><latexit sha1_base64="YubY41CzIBmdCCOpzdAcoYda8x0=">AAAB/3icbVC7TsNAEFzzDOEVoKQ5ESFRRXaEBGUEDWWQyEuJFZ0v6/iU80N3Z6TIcsE30EJNh2j5FEr+hEtwQRKmmt2Z1e6OlwiutG1/WWvrG5tb26Wd8u7e/sFh5ei4reJUMmyxWMSy61GFgkfY0lwL7CYSaegJ7HiT25neeUSpeBw96GmCbkjHEfc5o9q0egOPyqyXD+vDStWu2XOQVeIUpAoFmsPK92AUszTESDNBleo7dqLdjErNmcC8PEgVJpRN6Bj7hkY0ROVm84Nzcu7HkugAybz+681oqNQ09IwnpDpQy9qs+Z/WT7V/7WY8SlKNETMWo/mpIDoms7/JiEtkWkwNoUxycyVhAZWUaZPOwhZl3glwlJdNJs5yAqukXa85ds25v6w2bop0SnAKZ3ABDlxBA+6gCS1gEMIzvMCr9WS9We/Wx691zSpmTmAB1ucPZK6WtQ==</latexit><latexit sha1_base64="YubY41CzIBmdCCOpzdAcoYda8x0=">AAAB/3icbVC7TsNAEFzzDOEVoKQ5ESFRRXaEBGUEDWWQyEuJFZ0v6/iU80N3Z6TIcsE30EJNh2j5FEr+hEtwQRKmmt2Z1e6OlwiutG1/WWvrG5tb26Wd8u7e/sFh5ei4reJUMmyxWMSy61GFgkfY0lwL7CYSaegJ7HiT25neeUSpeBw96GmCbkjHEfc5o9q0egOPyqyXD+vDStWu2XOQVeIUpAoFmsPK92AUszTESDNBleo7dqLdjErNmcC8PEgVJpRN6Bj7hkY0ROVm84Nzcu7HkugAybz+681oqNQ09IwnpDpQy9qs+Z/WT7V/7WY8SlKNETMWo/mpIDoms7/JiEtkWkwNoUxycyVhAZWUaZPOwhZl3glwlJdNJs5yAqukXa85ds25v6w2bop0SnAKZ3ABDlxBA+6gCS1gEMIzvMCr9WS9We/Wx691zSpmTmAB1ucPZK6WtQ==</latexit><latexit sha1_base64="YubY41CzIBmdCCOpzdAcoYda8x0=">AAAB/3icbVC7TsNAEFzzDOEVoKQ5ESFRRXaEBGUEDWWQyEuJFZ0v6/iU80N3Z6TIcsE30EJNh2j5FEr+hEtwQRKmmt2Z1e6OlwiutG1/WWvrG5tb26Wd8u7e/sFh5ei4reJUMmyxWMSy61GFgkfY0lwL7CYSaegJ7HiT25neeUSpeBw96GmCbkjHEfc5o9q0egOPyqyXD+vDStWu2XOQVeIUpAoFmsPK92AUszTESDNBleo7dqLdjErNmcC8PEgVJpRN6Bj7hkY0ROVm84Nzcu7HkugAybz+681oqNQ09IwnpDpQy9qs+Z/WT7V/7WY8SlKNETMWo/mpIDoms7/JiEtkWkwNoUxycyVhAZWUaZPOwhZl3glwlJdNJs5yAqukXa85ds25v6w2bop0SnAKZ3ABDlxBA+6gCS1gEMIzvMCr9WS9We/Wx691zSpmTmAB1ucPZK6WtQ==</latexit>

Z
<latexit sha1_base64="39iNE50b9jwYQt8xZ9hZOEyvoPc=">AAAB93icbVC7TsNAEFyHVwivACXNiQiJKrIRUigjaCgTiTxEYkXnyzo+5fzQ3RnJsvIFtFDTIVo+h5I/4RJckISpZndmtbvjJYIrbdtfVmljc2t7p7xb2ds/ODyqHp90VZxKhh0Wi1j2PapQ8Ag7mmuB/UQiDT2BPW96N9d7TygVj6MHnSXohnQScZ8zqk2r/Tiq1uy6vQBZJ05BalCgNap+D8cxS0OMNBNUqYFjJ9rNqdScCZxVhqnChLIpneDA0IiGqNx8ceiMXPixJDpAsqj/enMaKpWFnvGEVAdqVZs3/9MGqfZv3JxHSaoxYsZiND8VRMdk/i8Zc4lMi8wQyiQ3VxIWUEmZNqksbVHmnQDHs4rJxFlNYJ10r+qOXXfa17XmbZFOGc7gHC7BgQY04R5a0AEGCM/wAq9WZr1Z79bHr7VkFTOnsATr8wdNy5NM</latexit><latexit sha1_base64="39iNE50b9jwYQt8xZ9hZOEyvoPc=">AAAB93icbVC7TsNAEFyHVwivACXNiQiJKrIRUigjaCgTiTxEYkXnyzo+5fzQ3RnJsvIFtFDTIVo+h5I/4RJckISpZndmtbvjJYIrbdtfVmljc2t7p7xb2ds/ODyqHp90VZxKhh0Wi1j2PapQ8Ag7mmuB/UQiDT2BPW96N9d7TygVj6MHnSXohnQScZ8zqk2r/Tiq1uy6vQBZJ05BalCgNap+D8cxS0OMNBNUqYFjJ9rNqdScCZxVhqnChLIpneDA0IiGqNx8ceiMXPixJDpAsqj/enMaKpWFnvGEVAdqVZs3/9MGqfZv3JxHSaoxYsZiND8VRMdk/i8Zc4lMi8wQyiQ3VxIWUEmZNqksbVHmnQDHs4rJxFlNYJ10r+qOXXfa17XmbZFOGc7gHC7BgQY04R5a0AEGCM/wAq9WZr1Z79bHr7VkFTOnsATr8wdNy5NM</latexit><latexit sha1_base64="39iNE50b9jwYQt8xZ9hZOEyvoPc=">AAAB93icbVC7TsNAEFyHVwivACXNiQiJKrIRUigjaCgTiTxEYkXnyzo+5fzQ3RnJsvIFtFDTIVo+h5I/4RJckISpZndmtbvjJYIrbdtfVmljc2t7p7xb2ds/ODyqHp90VZxKhh0Wi1j2PapQ8Ag7mmuB/UQiDT2BPW96N9d7TygVj6MHnSXohnQScZ8zqk2r/Tiq1uy6vQBZJ05BalCgNap+D8cxS0OMNBNUqYFjJ9rNqdScCZxVhqnChLIpneDA0IiGqNx8ceiMXPixJDpAsqj/enMaKpWFnvGEVAdqVZs3/9MGqfZv3JxHSaoxYsZiND8VRMdk/i8Zc4lMi8wQyiQ3VxIWUEmZNqksbVHmnQDHs4rJxFlNYJ10r+qOXXfa17XmbZFOGc7gHC7BgQY04R5a0AEGCM/wAq9WZr1Z79bHr7VkFTOnsATr8wdNy5NM</latexit><latexit sha1_base64="39iNE50b9jwYQt8xZ9hZOEyvoPc=">AAAB93icbVC7TsNAEFyHVwivACXNiQiJKrIRUigjaCgTiTxEYkXnyzo+5fzQ3RnJsvIFtFDTIVo+h5I/4RJckISpZndmtbvjJYIrbdtfVmljc2t7p7xb2ds/ODyqHp90VZxKhh0Wi1j2PapQ8Ag7mmuB/UQiDT2BPW96N9d7TygVj6MHnSXohnQScZ8zqk2r/Tiq1uy6vQBZJ05BalCgNap+D8cxS0OMNBNUqYFjJ9rNqdScCZxVhqnChLIpneDA0IiGqNx8ceiMXPixJDpAsqj/enMaKpWFnvGEVAdqVZs3/9MGqfZv3JxHSaoxYsZiND8VRMdk/i8Zc4lMi8wQyiQ3VxIWUEmZNqksbVHmnQDHs4rJxFlNYJ10r+qOXXfa17XmbZFOGc7gHC7BgQY04R5a0AEGCM/wAq9WZr1Z79bHr7VkFTOnsATr8wdNy5NM</latexit>

Figure 5. The two manifolds Y1 and Y2 are bordant if Y1 ⊔ Ȳ2 is boundary of another manifold Z.

Bordism is an equivalence relation between manifolds (possibly equipped with extra

structure): Y1 and Y2 are bordant if their disjoint union with a change of orientation for

Y2, which we denote as Y1 ⊔ Ȳ2, is the boundary of another manifold Z, as illustrated in

figure 5. If this is the case, we write Y1 ∼ Y2, which is clearly an equivalence relation. In

case the Yi carry extra structure, such as a spin structure or a gauge bundle, we demand

that this can be extended to Z as well.

Bordism invariance of exp(2πi ηY ) is a simple consequence of the APS index theo-

rem (2.16) and the fact that local anomalies cancel, so the last term in (2.16) is absent. To

see this, we use the fact that under change of orientation

exp(2πi ηY ) = exp(−2πi ηY ) (2.18)

so that the gluing properties of η imply

exp(2πi ηY1⊔Y2) =
exp(2πi ηY1)

exp(2πi ηY2)
. (2.19)

If Y1 and Y2 are in the same bordism class then, by definition, Y1 ⊔ Y2 is a boundary of

some manifold Z, so by (2.17) we have

exp(2πi ηY1)

exp(2πi ηY2)
= exp(2πi ηY1⊔Y2) = exp

(
2πi

∫

Z
Id+2

)
= 1 (2.20)

assuming no local anomalies.

Furthermore, the set of bordism equivalence classes forms an abelian group under

union; we define [Y1] + [Y2] = [Y1 ⊔ Y2]. This also works when additional structures

are present.

We will be particularly interested in the bordism groups denoted ΩSpin
d (W ), whose

elements are equivalence classes of d-dimensional Spin manifolds equipped with a map to

W . To study gauge anomalies in a theory with a symmetry group G, we will takeW = BG,

the classifying space of G. This is an infinite-dimensional space equipped with a principal

G-bundle with total space EG, with the universal property that any principal G-bundle

over any manifold X is the pullback f∗EG via some map f : X → BG. Thus, the set of

all topologically distinct principal bundles over any given manifold X is equivalent to the

set [X,BG] of homotopy classes of maps from X to BG. The classifying space is therefore

– 11 –



J
H
E
P
0
8
(
2
0
1
9
)
0
0
3

a convenient way to describe principal bundles.5 See [28, 29] for a similar discussion in

the context of 3 + 1 topological insulators, where similar bordism groups (and twisted

generalizations thereof) are computed.

In a d-dimensional theory with spinors and symmetry group G, the Dai-Freed anomaly

exp(2πi ηY ) is a group homomorphism from ΩSpin
d+1 (BG) to U(1). To study these anomalies

we will follow these two steps:

• Compute ΩSpin
d+1 (BG). If it vanishes, there can be no Dai-Freed anomaly.

• If ΩSpin
d+1 (BG) 6= 0, compute exp(2πi η) : ΩSpin

d+1 (BG) → U(1), typically by explicit

computation on convenient generators of the bordism group.

For the theories of interest in this paper, the first step can be performed fairly system-

atically via spectral sequences, which we will introduce in the next subsection. The second

step is more artisanal — we need to analyze and compute η in a case-by-case basis. We

will give examples in section 4.

2.2.2 The Atiyah-Hirzebruch spectral sequence

A nice introduction to spectral sequences is [30], we will just cover the essentials to un-

derstand how the computation works. The Atiyah-Hirzebruch spectral sequence (AHSS)

is a tool for computing the generalized homology groups E∗(X) of some space X. A gen-

eralized homology theory satisfies the same axioms as ordinary homology, except for the

dimension axiom: Hp(pt) — the homology groups of a point — do not necessarily van-

ish for p 6= 0. It turns out that bordism theories ΩSpin
∗ (X) (and similarly ΩPin±

∗ (X)) are

generalized homology theories on X.

The AHSS works as follows. Suppose we have a Serre fibration6 F → X → B. Then

the AHSS provides a systematic way to obtain a filtration of ΩSpin
n (X), that is a sequence

of spaces

0 = F−1Ω
Spin
n (X) ⊂ F0Ω

Spin
n (X) ⊂ . . . ⊂ FnΩ

Spin
n (X) = ΩSpin

n (X) . (2.21)

Specifically, the AHSS provides a way to compute the quotients

E∞
k,n−k =

FkΩ
Spin
n (X)

Fk−1Ω
Spin
n (X)

. (2.22)

Even when all these quotients are known, they do not fully determine ΩSpin
∗ (X). One has to

solve the successive extension problems associated to (2.21) and (2.22), which may require

additional information.
5Since the physical theory comes equipped with a connection which must extend to the auxiliary mani-

fold, the more natural data for the anomaly theory is not a manifold with principal bundle, but a principal

bundle with connection. However, the space of connections over a given principal bundle is an affine

space [27], and in particular contractible. This means we can deform smoothly any connection to any other.

Since any bundle admits at least one connection [27], it follows that as long as the anomaly is topological

(that is, if local anomalies cancel) it cannot depend on the connection.
6This means that we only require that the fibers at different points are homotopy-equivalent to one

another [11].

– 12 –



J
H
E
P
0
8
(
2
0
1
9
)
0
0
3

E0,0

E0,1

E0,2

E0,3

E0,4

E1,0

E1,1

E1,2

E1,3

E1,4

E2,0

E2,1

E2,2

E2,3

E2,4

E3,0

E3,1

E3,2

E3,3

E3,4

E4,0

E4,1

E4,2

E4,3

E4,4

Turn

the

page

−→

E0,0

E0,1

E0,2

E0,3

E0,4

E1,0

E1,2

E1,3

E2,0

E2,1

E2,2

E2,3

E2,4

E3,1

E3,2

E3,4

E4,0

E4,1

E4,2

E4,3

E4,4

Figure 6. Generic structure of a spectral sequence. The sequence consists of “pages” (in the

figure we depict the second and third pages), and to turn to the next page one needs to take the

cohomology with respect to the differential dr. The differentials at each page are represented by

arrows. Some entries might be “killed” by the differentials. After we are done, at E∞, ΩSpin
n (E) is

obtained by solving an extension problem involving all the entries with p+ q = n.

The quotients E∞
p,q live on the “∞ page” of the spectral sequence, and they are com-

puted as follows. The “second page” of the AHSS is simply7

E2
p,q = Hp(B,Ω

Spin
q (F )) . (2.23)

The r-th page comes equipped with a differential dr : E
r
p,q → Ep−r,q+r−1, with d

2
r = 0. The

next page in the spectral sequence, Er+1, is the cohomology of Er under dr.

A spectral sequence is usually presented in a diagram such as that of figure 6. The

differentials are represented by arrows. For a given entry in the spectral sequence, there

are no more differentials that can act on it after a finite number of pages; we then say that

the sequence stabilizes (for the entry of interest) and we can read off E∞
p,q.

The generic strategy we will use to compute ΩSpin
∗ (BG) is the AHSS associated to the

fibration pt → BG → BG, which relates ΩSpin
∗ (BG) to the groups ΩSpin

q (pt), which are

given by [3, 32, 33]8

n 0 1 2 3 4 5 6 7 8 9 10

ΩSpin
n (pt) Z Z2 Z2 0 Z 0 0 0 2Z 2Z2 3Z2

(2.24)

where with the notation kZ we mean simply Z⊕ . . .⊕ Z, k times.

2.2.3 Evaluating the first nontrivial differentials: Steenrod squares & their

duals

In the applications that will be discussed in section 3, it will often be the case that the

differentials in the AHSS cannot be determined by algebraic considerations alone. In some

7There is a subtlety here: the coefficient ring in (2.23) should be viewed as being local. This fibration of

coefficients is trivial if π1(B) = 0 (see for example §9.2 in [31]), which is the case for our examples.
8Note that there is a difference between [3] and [33] in ΩSpin

10 (pt). We have written the answer in [33],

which agrees with the standard result that the free part of Ωd(pt) is concentrated at d ∈ 4Z [32].
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cases, however, we will be able to determine d2 via Lemma 2.3.2 of [34] (also the Lemma

in pg. 751 of [35]), which says that for X a spectrum, the differential E
(p,0)
2 → E

(p−2,1)
2 ,

that is

d2 : Hp(X,Ω
Spin
0 ) → Hp−2(X,Ω

Spin
1 ) , (2.25)

is the composition of reduction mod 2 ρ with the dual Sq2∗ (with respect to the Kronecker

pairing between homology and cohomology [36]) of the second Stenrood square Sq2. That

is,
〈
a, Sq2b

〉
=
〈
Sq2∗a, b

〉
for any a, b, where

〈
,
〉
is the Kronecker pairing between Hn(X,Z2)

and Hn(X,Z2), which is simply the evaluation map.

Note the fact that Hn(X,Z2) = Hn(X,Z2). This follows from the universal coefficient

theorem with coefficients in an arbitrary ring (Theorem 3.2 of [11])

0 → Ext1R(Hi−1(X,R), G) → H i(X,G) → HomR(Hi(X,R), G) → 0 (2.26)

and Ext1
Z2
(Hi−1(X,Z2),Z2) = 0 since Z2 is injective as a module over itself. We thus have

that H i(X,Z2) ∼= HomZ2(Hi(X,Z2),Z2), with the isomorphism induced by the Kronecker

pairing above.

Similarly,

d2 : Hp(X,Ω
Spin
1 ) → Hp−2(X,Ω

Spin
2 ) (2.27)

is simply the dual Steenrod square.

Steenrod squares Sqi are certain cohomology operations which we can compute ex-

plicitly in the examples of interest, using the following properties. (Here ui ∈ H i(X,Z2).)

Sq0ui = ui , (2.28a)

Sqiui = u2i , (2.28b)

Sqjui = 0 for j > i , (2.28c)

Sqn(a ⌣ b) =
∑

i+j=n

(Sqia)⌣ (Sqjb) . (2.28d)

The last equation is known as Cartan’s formula. We refer interested readers to [11, 37–40]

for further details.

Reduction modulo 2 above refers to the map ρ in the exact sequence

. . .→ Hi(X,Z) → Hi(X,Z)
ρ−→ Hi(X,Z2) → Hi−1(X,Z) . . . (2.29)

associated to the short exact sequence 0 → Z → Z → Z2 → 0.

Finally, the homology groups of a spectrum {Xn, sn} are defined as

Hk(X) = colimnHk+n(Xn) (2.30)

If X is the suspension spectrum of X0, defined by Xn = ΣnX0 and sn the identity, we can

use the result [11]

Hk+n(Σ
nX0) = Hk(X0) (2.31)

to obtain that (2.25) and (2.27) also apply to an ordinary CW complex, such as the

classifying spaces we will be interested in.

We are now in position to follow the strategy outlined in section 2.2.1 in a number of

interesting cases, which we discuss in the following sections.
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Figure 7. E4 page of the AHSS for ΩSpin
∗ (BSU(2)). We have shaded the entries of total degree 5,

and indicated explicitly the only potentially non-vanishing differential acting on the shaded region.

3 Dai-Freed anomalies of some simple Lie groups

3.1 SU(2)

As a warm-up, we will start with SU(2). To get the AHSS to work, we need the homology of

its classifying space BSU(2). This is known to be BSU(2) = HP
∞, the infinite-dimensional

quaternionic projective space (see e.g. [41], section 5.2), obtained as the limit of the natural

inclusions HP
n
→ HP

n+1. The homology groups of this space are very simple to obtain,

we have

Hn(HP
∞,Z) =

{

Z when n ≡ 0 mod 4 ,

0 otherwise .
(3.1)

We also need a way of computing Hp(HP
∞,ΩSpin

q ) out of knowledge of Hn(HP
∞,Z)

and ΩSpin
q . This is a task for the universal coefficient theorem, which in its homological

version implies (see theorem 3A.3 in [11]) that there is a short exact sequence

0 → Hn(HR
∞,Z)⊗ ΩSpin

q → Hn(HP
∞,ΩSpin

q ) → Tor(Hn−1(HP
∞,Z),ΩSpin

q ) → 0 . (3.2)

Since Hn(HP
∞,Z) is free, we have that Tor(Hn−1(HP

∞,Z),ΩSpin
q )) = 0, and thus

Hn(HP
∞,ΩSpin

q ) ∼= Hn(HR
∞,Z)⊗ ΩSpin

q =

{

ΩSpin
q when n ≡ 0 mod 4 ,

0 otherwise .
(3.3)

We have now the necessary information for constructing the AHSS. It is clear from the

fact that the differential dr has bi-degree (−r, r − 1), that E4 = E3 = E2. More generally,

it is only differentials of the form d4k that can vanish.

We show this fourth page in figure 7. There is a priori a nonvanishing differential

d4 : Z2 → Z, but since it is a homomorphism we necessarily have d4 = 0. This shows that

E∞

4,1 = E2
4,1 = Z2. Since all the other elements with total degree 5 vanish already in E2,

we conclude that

ΩSpin
5 (BSU(2)) = Z2 . (3.4)
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A bordism invariant that we can construct in this case, since SU(2) has no local anomalies, is

the η invariant, or equivalently (in this case) the mod-2 index. A simple example with non-

vanishing mod-2 index was constructed in [2]. While S5 itself is trivial in ΩSpin
5 (necessarily

so, since ΩSpin
5 = 0), there is a bundle over it such that the total space is no longer null-

bordant in ΩSpin
5 (BSU(2)) = Z2. What (3.4) shows is that the four dimensional theory

of a Weyl fermion on the fundamental of SU(2) has no further gauge anomalies on any

Spin manifold (the calculation in [2] shows absence of anomalies in S4). This was to be

expected: since a Weyl fermion in the fundamental of SU(2) is in a real representation of

the full (Lorentz plus gauge) symmetry group, it has at most a Z2 anomaly.9

It is trivial to repeat the argument for other (low enough) dimensions,10 we find

n 0 1 2 3 4 5 6 7 8

ΩSpin
n (BSU(2)) Z Z2 Z2 0 2Z Z2 Z2 0 4Z

(3.6)

The only non-trivial case here is that of ΩSpin
4 (BSU(2)) (and ΩSpin

8 (BSU(2)), which works

similarly). This has two contributions, coming from E∞
4,0 = Z and E∞

0,4 = Z.

One point that we have neglected so far is that the spectral sequence does not give us

ΩSpin
k (BSU(2)) directly, but rather an associated graded module Grp,q [30], which depends,

as discussed in subsection 2.2.2 in addition to the bordism group itself, on a suitable

filtration by graded submodules Fp. Spectral sequences compute Grp,q = E∞
p,q. Tracing the

definitions, we find that

F3Ω4 = F2Ω4 = F1Ω4 = F0Ω4 = Gr0,4 = E∞
0,4 = Z . (3.7)

On the other hand, we have E∞
4,0 = Gr4,0 = F4Ω4/F3Ω4. We are interested in solving for

Ω4 = F4Ω4. We can do this, formally, by fitting the above into a short exact sequence

0 → F3Ω4︸ ︷︷ ︸
Z

→ F4Ω4 → Gr4,0︸︷︷︸
Z

→ 0 . (3.8)

Since Ext(Z,Z) = 0 [11], the exact sequence necessarily splits, and we have Ω4 = F4Ω4 =

Z⊕ Z.

3.1.1 Physical interpretation

Obstructions to a manifold being trivial in its Spin bordism class can be detected by

computation of certain suitable KO-theory classes [32]. This is a fancy way of saying that

9One could argue similarly for some of the cases discussed below. For instance, some of the groups we

analyze only have real representations, so no anomaly can arise from four dimensional fermions even if the

bordism group happened to be non-vanishing.
10The reason we stop at degree 8 is that in page 8 we encounter a new, potentially non-vanishing differ-

ential d8 : E
8
8,2 → E8

0,9. This needs to be determined by other methods, since E8
8,2 = Z2 and E8

0,9 = Z2⊕Z2,

so the differential is not necessarily vanishing a priori. This affects the computation of ΩSpin
9 (BSU(2)) and

ΩSpin
10 (BSU(2)). One way of dealing with this differential is to use the Atiyah-Hirzebruch spectral sequence

for reduced bordism (see appendix A and remark 2 in pg. 351 of [42]) which for our case reads

E2
p,q = H̃p(X,Ωq(pt)) ⇒ Ω̃p+q(X) . (3.5)

So in particular E2
0,q = E∞

0,q = 0, and we learn that that potentially problematic differential d8 vanishes.
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there is some (perhaps mod-2) index that can detect the non-triviality of the manifold.

For instance, on an S1, with the periodic structure, the mod-2 index is non-vanishing, and

similarly for the T 2 with completely periodic structure (see pg. 45 of [5]). In these low

dimensions there is no topologically nontrivial SU(2) bundle, so what we are seeing is the

fact that ΩSpin
1 (BSU(2)) = ΩSpin

1 (pt). (More formally, this comes from the fact that every

p-cycle is contractible in BSU(2) = HP
∞ for p < 4.)

The Z2 values in 5 and 6 dimensions encode global anomalies in SU(2) theories in 4d

with a Weyl fermion and 5d with a symplectic Majorana fermion [43].

In four dimensions we get an extra factor of Z with respect to ΩSpin
4 (pt). This anomaly

can be associated to the global parity anomaly of Redlich [44, 45], for a Dirac fermion

in the fundamental of SU(2). To see this, we need need to construct the right bordism

invariants that detect both Z factors. We know that the invariant that detects the class in

ΩSpin
4 (pt) is simply the Pontryagin number. The class detecting the extra information in

ΩSpin
4 (BSU(2)) is the index of a Weyl fermion on the manifold, which is indeed related to

the parity anomaly in 3d.

The 8d case is related to parity anomalies in 7d. The relevant Chern-Simons terms

are those associated with p1(T )
2, p2(T ), p1(F )

2 and p1(T )p1(F ), with pi the Pontryagin

classes of the tangent bundle T and the gauge bundle F .

3.1.2 Simply connected semi-simple groups up to five dimensions

The structure we have just discussed for SU(2) is actually very general in low enough

dimension and applies to the simply connected forms of all semisimple Lie groups, as we

now explain. First, notice that, for any such G, π1(G) = π2(G) = 0, π3(G) = Z. We can

now use the result that (see §8.6.4 of [46])

πi+1(BG) = πi(G) (3.9)

for any group G and i ≥ 0, to compute that

πi(BG) = {0, 0, 0, 0,Z, π4(G), . . .} (3.10)

Note in particular that BG is 3-connected. Applying the Hurewicz theorem [11] we find that

Hi(BSU(n),Z) = {Z, 0, 0, 0,Z, s(π4(G)), . . .} . (3.11)

where s(π4(G)) denotes some subgroup of π4(G) to be determined. A couple of points

require explanation. First, note that the Hurewicz isomorphism only holds for i > 0. We

used the input (3.10) to set Hi(BG,Z) = Z, in contrast to π0(BG) = 0. The standard

statement for the Hurewicz isomorphism in our case is that πi(BG) = Hi(BG,Z) up to

i = 4, see for example theorem 4.37 in [11]. To set H5(BG,Z) we have used that the

Hurewicz homomorphism is surjective for i = 5 in a 3-connected space, see exercise 23 in

§4.2 of [11]. Whenever π4(G) = 0, as is the case for SU(n), Spin(n), and the exceptional

groups, we have that H5(BG,Z) = 0.

The information in (3.11) is enough to compute ΩSpin
k (BG) up to k = 4 via the AHSS,

with results identical to the SU(2) case. For the case π4(G) = 0, we also find that the
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bordism group ΩSpin
5 (BG) is given by

ΩSpin
5 (BG) = coker(d2 : E

(6,0)
2 → E

(4,1)
2 ) . (3.12)

Luckily, this is a differential for which we have an explicit expression, as reviewed in

section 2.2.3. Part of the rest of this section will be about the explicit computation of this

differential in various interesting examples.

Finally, we should remark that the construction of the AHSS (see e.g. [47]) also provides

a natural candidate for the representative of E
(4,1)
2 = H4(BG,Ω

Spin
1 ). We need a manifold

with a S1 with a spin structure that does not bound, and with a G-bundle with nontrivial

second Chern class, since this is measured by H4(BG). The natural candidate is S4 ×
S1, with periodic boundary conditions along the S1, and a gauge instanton on S4. The

question is whether or not this is trivial in spin bordism, which we now address in a number

of examples.

If all one is interested in is the anomaly on four dimensional Spin manifolds there is a

shortcut based on the previous observation: one can detect the anomaly in the original four

dimensional theory by reducing along an S4 with an instanton bundle, and seeing whether

the effective zero-dimensional theory is anomalous, as done for instance in [13].11

A second shortcut exists for simply connected groups in five dimensions: say that we

have a group G with subgroup H, and we want to understand whether we can deform

any G bundle over a base X to a H bundle over X. If we can, and assuming that the

G theory is free of local anomalies, then we can compute the η invariant from knowledge

of the η invariant of the H theory. As reviewed in [47, 49], for instance, the reduction

is in fact possible if πi(G/H) = 0 for all i < dim(X). Take H = SU(2), where we have

already understood what happens. One has SU(n + 1)/SU(n) = S2n+1, and in particular

SU(3)/SU(2) = S5. This implies that in five dimensions any SU(3) bundle can be reduced

to an SU(2) bundle, since πi(S
5) = 0 for i < 5. Similarly, by studying higher values of

n, one can show that every SU(n) bundle can be reduced to an SU(2) bundle. It is not

difficult to extend this result to the other simply connected Lie groups, which effectively

reduces the problem of computing anomalies in these cases to a group theory analysis.

While these techniques (and related ones) often lead to an economic derivation in

specific cases, we have opted to proceed by computing of the bordism groups using the

Atiyah-Hirzebruch spectral sequence, since it is a viewpoint that straightforwardly applies

to other situations of interest that do not admit the shortcuts above.

3.2 USp(2k)

The USp(2k) case is very similar to USp(2) = SU(2), so we will be brief. The classifying

space BUSp(2k) is given by the infinite quaternionic Grassmanian, we refer the reader

to [50] for details of the homology of this space. The relevant AHSS is shown in figure 8,

where we have shown specifically the USp(2k) case with k > 1.

From figure 8, it is straightforward to see that ΩSpin
5 (USp(2k)) = Z2, just like in the

SU(2) case. Indeed, this Z2 is related to a global anomaly in four dimensions, coming from

11In terms of the Dai-Freed viewpoint, in using compactification to detect the anomaly we are using the

fact that η(S4 × S1) = ind(S4) · η(S1), see Lemma 2.2 of [48].
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Figure 8. E8 page of the AHSS for ΩSpin
∗ (BUSp(2k)) with k > 1. We have shaded the entries of

total degree 9, and indicated explicitly the only potentially non-vanishing differential acting on the

shaded region.

the fact that π4(USp(2k)) �= 0 as in the ordinary Witten anomaly. Just as in this case, the

anomaly can be probed by a mod 2 index.

The first difference between SU(2) and USp(2k) with k > 1 appears in eight dimensions,

and it is due to the fact that while SU(2) bundles are classified by p21(F ), USp(2k) bundles

with k > 1 are classified by two independent quantities: p21(F ) and p2(F ). More formally

H8(BUSp(2k),Z) = H8(BUSp(2k),Z) =

{

Z if k = 1 ,

Z⊕ Z if k > 1 .
(3.13)

This leads to a qualitative difference between the k = 1 and k > 1 cases when it comes to

eight-dimensional anomalies. Consider for example a fermion in the adjoint representation.

It was shown in [13] that k > 1 had an anomaly on spacetimes of non-trivial topology (the

example analyzed there was that of spacetimes with a S4 factor, and a unit of instanton

flux on this factor, but the conclusion is clearly more general), while k = 1 did not have

this anomaly.

3.3 U(1)

Let us consider now the computation of ΩSpin
∗ (BU(1)). This is the first case in which we

will encounter non-vanishing differentials in the spectral sequence for the entries of interest.

Recall that BU(1) = K(Z, 2) = CP
∞, so the relevant homology groups are well known:

Hi(BU(1),Z) =

{

Z if i ∈ 2Z ,

0 otherwise.
(3.14)

From here, we obtain the AHSS shown in figure 9.
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Figure 9. E2 page of the AHSS for ΩSpin
∗ (BU(1)). We have shaded the entries of total degree 5,

and indicated explicitly the only potentially non-vanishing differential acting on the shaded region.

We see that there are two potentially non-vanishing differentials, both on the second

page, α : E2
(6,0) → E2

(4,1) and β : E2
(4,1) → E2

(2,2).

Let us start with α. As reviewed in section 2.2.3, from [34, 35] we have that this

differential is given by the composition of reduction modulo two and the dual of the Steen-

rod square

Sq2 : H4(BU(1),Z2) → H6(BU(1),Z2) . (3.15)

Recall that H i(BU(1),Z) = Z[x], with x of degree two, so analogously (by the universal

coefficient theorem in cohomology) H i(BU(1),Z2) = Z2[x]. Now, since x is of degree 2,

we have

Sq2(x) = x2 (3.16)

and for degree reasons Sq1(x) = 0. From here, using Cartan’s formula, we find that

Sq2(x2) = Sq0(x) ⌣ Sq2(x) + Sq2(x) ⌣ Sq0(x) = 2x2 = 0 . (3.17)

This implies that the dual Steenrod square also vanishes, and we conclude that

α = Sq2
∗
◦ r2 = 0 . (3.18)

We can deal with the β differential similarly. According to [34, 35] we have β = Sq2
∗
.

Using (3.16) we immediately see that Sq2
∗
maps the generator of H4(BU(1),Z2) to the

generator of H2(BU(1),Z2), so we immediately conclude that

ΩSpin
5 (BU(1)) = 0 . (3.19)

– 20 –



J
H
E
P
0
8
(
2
0
1
9
)
0
0
3

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

5

5

Z

Z2

Z2

0

Z

0

0

0

2Z

Z

Z2

Z2

0

Z

0

0

0

2Z

Z

Z2

Z2

0

Z

0

0

0

2Z

Z

Z2

Z2

0

Z

0

0

0

2Z

Figure 10. E2 page of the AHSS for ΩSpin
∗ (BSU(n)). We have shaded the entries contributing to

the computation of ΩSpin
5 (BSU(n)), and indicated the only relevant differential.

Similar arguments can be repeated for lower degrees, with the result

n 0 1 2 3 4 5

ΩSpin
n (BU(1)) Z Z2 Z2 ⊕ Z 0 Z⊕ Z 0

(3.20)

The obvious interpretation of these results is that the U(1) flux adds the natural obstruc-

tion, on top of that coming from ΩSpin
∗ (pt).

3.4 SU(n) and implications for the Standard Model

Let us now compute ΩSpin
∗ (BSU(n)). The classifying space of SU(n) is well known to be

the infinite Grassmanian of n-planes in C
∞. The integer cohomology ring of this space is

very well known [40, 51] to be the polynomial ring

H∗(BSU(n),Z) = Z[c2, c3 . . . cn]. (3.21)

The generators are the Chern classes; indeed, for a SU(n)-bundle over a space X defined

by a map f : X → BG, the Chern classes of the bundle are the pullbacks f∗(ci).

The universal coefficient theorem for cohomology [11] provides a short exact sequence

relating the homology groups Hi(X,Z) with the cohomology groups H i(X,Z):

0 Ext1(Hi−1(X,Z),Z) H i(X,Z) Hom(Hi(X,Z),Z)) 0.

(3.22)

If the homology groups are finitely generated, the Ext term is just the torsion part of

Hi−1(X,Z), and the Hom is the free part of Hi(X,Z).

If H i(X,Z) = 0 for i odd and there is no torsion in cohomology, such as for BSU(n),

we get Hi(X,Z) = H i(X,Z), with the resulting AHSS shown in figure 10.
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We are now in a position to compute the differential d2 in figure 10. As discussed in

section 2.2.3, we need to reduce modulo 2 and compose with the dual of the Steenrod square.

Reduction mod 2 is the induced map in homology H6(BSU(n),Z) = Z → H6(BSU(n),Z) =

Z2 from the short exact sequence

0 Z Z Z2 0 . (3.23)

Since there is no torsion in Hi(BSU(n),Z), the map is an isomorphism. Since H6(X,Z2),

H4(X,Z2), H
6(X,Z2) and H4(X,Z2) are all Z2, Sq

2
∗ will be nontrivial if and only if Sq2

is. The Stenrood square operations for BU(n) are computed in [52]; from the remark at

the start of §12 of that paper, together with the relationship P k2 = Sq2k, we obtain

Sq2(c2) = c1 ⌣ c2 + c3 , (3.24)

where c1, c2 are the degree two and four generators of the cohomology ring H∗(BU(n),Z2)

(given by the mod 2 reduction of the generators of H∗(BU(n),Z), the Chern classes). The

projection BSU(n) → BU(n) gives a pullback map from H∗(BU(n),Z2) toH∗(BSU(n),Z2)

which sends c1 to 0 and c2 to the degree four generator.

As a result, Sq2(c2) = c3, the mod 2 reduction of the third Chern class. For n = 2, c3
vanishes identically, so the differential vanishes in accordance with previous results. On the

other hand, for n > 2, the map sends the generator of H4(BSU(n),Z2) to the generator of

H6(BSU(n),Z2). This means that Sq2∗ is the identity, so the differential kills the Z2 factor.

As a result,

ΩSpin
5 (BSU(n)) = 0, for n > 2 . (3.25)

The result (3.25) is of great physical relevance. It means that the SU(5) GUT is free of

Dai-Freed anomalies and therefore defines a consistent quantum theory in any background,

of any topology. But it also implies that the Standard Model is also free of Dai-Freed

anomalies, whatever the global form of the gauge group may be.

To see this, recall that experiments have only probed the Lie algebra of the SM so far;

there are various possibilities for the global structure. For a nice recent discussion, see [53].

In short, the SM gauge group is

GSM =
SU(3)× SU(2)×U(1)

Γ
, Γ ∈ {1,Z2,Z3,Z6}. (3.26)

Different choices of Γ affect quantization of monopole charges, and also the allowed bundles

when considering the theory on an arbitrary (spin) 4-manifold. It is then conceivable that

some choices of Γ are free of global anomalies and others are not.12 If Γ1 ⊂ Γ2, all bundles

for Γ = Γ1 are also bundles for Γ = Γ2. In particular, the choice Γ = Γ6, is the “potentially

most anomalous” of all.

However, this choice is also the one that embeds as a subgroup of SU(5). The SM

fermions can be arranged into a representation of SU(5) which is free from local anoma-

lies, so the Dai-Freed anomalies of the SM can be studied just by considering Dai-Freed

12See [13, 54] for recent examples of theories that are anomalous only for specific choices of the global

form of the gauge group.
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anomalies in a (SU(3)× SU(2)×U(1))/Z6 ⊂ SU(5). But (3.25) says there can be no such

anomaly; hence we get the advertised result. This was already advanced in [6].

We have shown that the SU(5) GUT and the SM are anomaly free, assuming the

existence of a Spin structure. This is the simplest possibility allowing for the existence of

fermions, but it is not the most general. The SM breaks both P and CP , but the CP

breaking happens purely at the level of the Lagrangian — the spectrum is invariant under

the action of CP (but not P ). One could entertain the possibility that the CP breaking

in the SM is actually spontaneous (see for example [55] for some early work studying

the phenomenological implications of possibility). This theory would then make sense in

unorientable spacetimes, as long as these admit fermions. Unorientable spacetimes that

admit fermions are said to have a Pin structure (see e.g. [5, 56]). There are two possibilities,

Pin+ and Pin−.13 We can compute the groups ΩPin±
5 (BG) again via the AHSS, since we

know ΩPin±(pt) (see appendix B). We find ΩPin±
5 (BSU(n)) = 0; we will not reproduce the

computation since the AHSS is trivial in the Pin+ case, and very similar to the Spin case

in the Pin− case.

Another interesting question is whether the SM makes sense in Spinc manifolds (see

e.g. [56]). Spinc is a refinement of a Spin structure in which the transition functions for

the spin bundle live in (Spin × U(1))/Z2, where the Z2 identifies the Z2 subgroup of the

U(1) with the Z2 subgroup of Spin. Every Spin manifold is Spinc, but the converse is not

true; therefore, the SM on a Spinc manifold might in principle be anomalous. However,

we cannot put the SM as-is in a Spinc manifold. To have a Spinc structure, we need to

have an additional, non-anomalous U(1) under which all the fermions have odd charges.

No such U(1) exists in the SM. However U(1)B−L satisfies these properties and, if we

assume it to be gauged, can be used to put the theory in a Spinc manifold. We find again

ΩSpinc

5 (BSU(5)) = 0 (the relevant AHSS entries vanish trivially; the groups ΩSpinc(pt) can

be found in appendix B).

One could consider both of the above possibilities at once, and put the SM (plus

right-handed neutrinos) on a Pinc manifold (see appendix B for the point bordism groups),

which is the refinement of Spinc to non-orientable spacetimes. Again ΩPinc
5 (BSU(5)) = 0,

excluding new anomalies in the SM.

These are more possibilities we could consider. In the presence of certain Z4 symmetry

to be discussed in section 4.3, one can consider spacetimes with SpinZ4 structure [58], which

do lead to a non-trivial constraint on the spectrum of the standard model.

We have not attempted to perform a full classification of all such possible “twisted”

(s)pinor structures on spacetime, but it would be clearly interesting to do so, and see if

any further phenomenologically interesting consequences can be obtained in this way.

3.5 PSU(n)

We will now compute the bordism groups of PSU(n) ≡ SU(n)/Zn. In general, we will de-

note by PG the quotient of G by its center. A direct attempt using the AHSS associated to

the fibration pt → PSU(n) → PSU(n) is not promising, since there are many differentials.

13See [57] for a discussion of potential observable differences between both possibilities.
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Figure 11. E2 page of the AHSS for ΩSpin
∗ (PSU(n)) associated to the fibration (3.31). We have

shaded the entries with total degree four (green) and five (red).

Instead, we will pursue an alternate strategy, similar to the one in [59] (the cohomology of

PSU(n) up to degree 10 can also be found in that reference). Note that PSU(n) ≡ PU(n),

and consider the fibration

U(1) U(n) PSU(n). (3.27)

As usual, this induces a fibration of classifying spaces,

BU(1) BU(n) BPSU(n). (3.28)

We can use now the Puppe sequence [59, 60], which for a fibration F → Y → X reads

. . . ΩY ΩX F Y X, (3.29)

where Ω is a loop functor. We can act with the classifying functor B and use BΩX = X

to shift the fibration to

. . . Y X BF . . . , (3.30)

Since BU(1) = K(Z, 2) is an Eilenberg-MacLane space, we obtain a fibration

BU(n) BPSU(n) K(Z, 3). (3.31)

We will use the AHSS associated to this fibration. The homology of K(Z, 3) is computed

in [61] to be

i 0 1 2 3 4 5 6 7 8

Hi(K(Z, 3),Z) Z 0 0 Z 0 Z2 0 Z3 Z2

Hi(K(Z, 3),Z2) Z2 0 0 Z2 0 Z2 Z2 0 Z2

(3.32)

From this, we can construct the spectral sequence depicted in figure 11.

We can repeat the above procedure with the fibration

Zn SU(n) PSU(n). (3.33)
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Since BZn = K(Zn, 1), proceeding as above we obtain a fibration

BSU(n) BPSU(n) K(Zn, 2). (3.34)

Computing the homology of K(Zn, 2) is more laborious. Although a general algorithm to

compute these in principle can be found in [62], we will only discuss the cases n = pk,

for p prime. The main tool we will use is the following theorem14 (see [63, 64]) that gives

Hi(K(Zpk , 2),Z) as follows:

Hi(K(Zpk , 2),Z) =M1 ⊕M2, where

M1 =

{
0 if i ∈ 2Z+ 1,

Zpf+s if i ∈ 2Z and i
2 = rps,

(3.35)

where p does not divide r. M2 is a finite group whose exponent is bounded above by

S(i), where

S(i) =
∏

q∈P(i)

qϕ(q,i), P(i) =

{
q prime s.t. q ≤ i

2

}
,

ϕ(q, i) = max

{
1,

⌊
logq

i

2q

⌋
+ 1

}
. (3.36)

Using these results, we can compute the homology groups Hi(K(Zpk , 2),Z):

i 0 1 2 3 4 5 6 7

Hi Z 0 Z2k 0 Apk ⊕
{
Z2k+1 p = 2,

Zpk p 6= 2
Bpk Cpk ⊕

{
Z3k+1 p = 3,

Zpk p 6= 2
Dpk

(3.37)

Here, A and B are groups of exponent ≤ 2; this means that they are of the form hZ2,

for some integer h, and C and D have exponent ≤ 6, meaning that all the elements have

degree ≤ 6.

We will now discuss the case at prime 2 and higher primes separately:

3.5.1 p = 2

In this case, we can use the computer program described in [65]15 to compute A,B,C,D

explictly. To get the homology with Z2 coefficients, we use the universal coefficient theorem.

This produces some extensions of the form e(Z2,Z2), which we know to be trivial since

homology groups with coefficients in a ring R must be R-modules (and Z4 is not a Z2-

module). We obtain

i 0 1 2 3 4 5 6 7 8

Hi(K(Z2k , 2),Z) Z 0 Z2k 0 Z2k+1 Z2 Z2k Z2 Z2 ⊕ Z2k+2

Hi(K(Z2k , 2),Z2) Z2 0 Z2 Z2 Z2 2Z2 2Z2 2Z2 3Z2

(3.38)

From this, we can construct the spectral sequence depicted in figure 12.

14We thank Alain Clément Pavon for pointing out this result to us.
15An updated version can be found in https://github.com/aclemen1/EMM.
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Figure 12. E2 page of the AHSS for ΩSpin
∗ (PSU(n)) associated to the fibration (3.34), where

n = 2k.

Requiring the results of the two spectral sequences in figures 11 and 12 to be compat-

ible, we can compute the relevant bordism groups up to third degree:

i 0 1 2 3

ΩSpin
i (PSU(2k)) Z Z2 Z2 ⊕ Z2k 0

(3.39)

Unknown differentials prevent us from proceeding any further. Note that in this case,

we cannot use the result described around (2.25), since we are using the AHSS for a

nontrivial fibration.

3.5.2 p �= 2

In this case, we can also determine the groups A,B,C,D, using Serre’s spectral sequence

for the fibration [11]

K(G, 1) ∗ K(G, 2), (3.40)

where ∗ is a contractible space. As we know (see appendix C), the reduced integer ho-

mology of K(Zn, 1) = BZn localizes at odd degree, where it is Zn. In fact, direct appli-

cation of the universal coefficient theorem tells us that, in the range i ≤ 5 and for odd p,

Hi(K(Zpk , 2),Zn) = Zn with the sole exception of i = 1, which vanishes. As a result, in the

AHSS associated to the fibration (3.40), depicted in figure 13, there can be no nonvanishing

differentials acting on A,B for p �= 2, and the same holds for C,D for p �= 2, 3. Since the

resulting space is contractible, we can conclude that A = B = 0 for p �= 2 and C = D = 0

for p �= 2, 3.

We can now compute the homology with mod 2 coefficients, which turns out to be

extremely simple:

i 0 1 2 3 4 5

Hi(K(Zpk , 2),Z) Z 0 Zpk 0 Zpk 0

Hi(K(Zpk , 2),Z2) Z 0 0 0 0 0

(3.41)

The AHSS associated to (3.34) is depicted in figure 14.
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Figure 13. E2 page of the Serre spectral sequence associated to the fibration (3.40).

Comparison with (3.31) allows us to compute the bordism groups up to degree five in

this case:

i 0 1 2 3 4 5

ΩSpin
i (PSU(pk)) Z Z2 Z2 ⊕ Z2k 0 2Z 0

(3.42)

We see that there are no new anomalies in four dimensions.

3.6 Orthogonal groups

3.6.1 SO(3)

We now discuss SO(n) groups, starting with the case n = 3. While SO(3) ≡ PSU(2), and

thus it is already covered by our discussion in section 3.5 above, we will analyze it again

using different techniques as a warm-up exercise towards the case of general n.

Using the results in [66] for H∗(BSO(n),Z), together with the universal coefficient

theorem, we find

n 0 1 2 3 4 5 6 7 8

Hn(BSO(3),Z) Z 0 0 Z2 Z 0 Z2 Z2 Z

Hn(BSO(3),Z) Z 0 Z2 0 Z Z2 Z2 0 Z⊕ Z2

Hn(BSO(3),Z2) Z2 0 Z2 Z2 Z2 Z2 2Z2 Z2 2Z2

Hn(BSO(3),Z2) Z2 0 Z2 Z2 Z2 Z2 2Z2 Z2 2Z2

(3.43)

From here it is straightforward to write the Atiyah-Hirzebruch spectral sequence, the

result is shown in figure 15. We will compute the bordism groups ΩSpin
4 (BSO(3)) and

ΩSpin
5 (BSO(3)). We see that in this range there are a number of potentially non-vanishing

differentials, so we will need extra information to proceed. First, from [34, 35], we have that

d
(r,0)
2 : E

(r,0)
2 → E

(r−2,1)
2 = Sq2∗ ◦ ρ2 (3.44)

d
(r,1)
2 : E

(r,1)
2 → E

(r−2,2)
2 = Sq2∗ (3.45)
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Figure 14. E2 page of the AHSS for ΩSpin
∗ (PSU(n)) associated to the fibration (3.34), for n = pk

where p is an odd prime.
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Figure 15. E2 page of the AHSS for ΩSpin
∗ (BSO(3)). We have omitted some terms which are not

relevant for the computation of E∞ up to total degree 5, we have shaded the entries of total degree

4 and 5, and indicated the potentially non-vanishing differentials of degree 2.

where Sq2
∗
is the dual of Sq2, and ρ2 : Hi(M,Z) → Hi(M,Z2) is reduction of coefficients

modulo 2. More precisely, it is the map induced in homology from the exact coefficient

sequence 0 → Z → Z → Z2 → 0. This induces the long exact sequence

. . . → Hi(M,Z)
·2
−→ Hi(M,Z)

ρ2
−−→ Hi(M,Z2) → Hi−1(M,Z) → . . . (3.46)

For our purposes we are interested in the action of ρ2 on Hi(BSO(3),Z) with i ∈ {4, 5, 6}.

These are all generated by a single generator ei. Exactness of (3.46) then immediately

implies ρ2(e4) = m4 and ρ2(e5) = m5, where we have denoted by mi the generators of

Hi(BSO(3),Z2). The last remaining case, ρ2(e6) is more subtle, since H6(BSO(3),Z2) =

Z2 ⊕ Z2. All we know from exactness of (3.46) is that ρ2 is injective when acting on

H6(BSO(3),Z), but not which combination of generators it maps to.

We now pass to the evaluation of the dual Steenrod squares

Sq2
∗
: Hi(M,Z2) → Hi−2(M,Z2). (3.47)

Recall that these are defined by

〈

Sq2a, b
〉

=
〈

a, Sq2
∗
b
〉

(3.48)
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for all a ∈ H i(M,Z2) and b ∈ Hi+2(M,Z2), and the pairing
〈
−,−

〉
is the Kronecker

pairing. Notice that this definition makes sense since H i(M,Z2) = HomZ2(Hi(M,Z2)), as

remarked above, so there is a natural non-degenerate pairing.

In order to proceed, we need to know the action of the Steenrod squares on the coho-

mology of BSO(3). This is a classic result, originally due to Wu [37] (see also §8 of [38]).

The Z2-valued cohomology of BSO(n) is the finitely generated ring on n− 1 variables

H∗(BSO(n),Z2) = Z2[w2, . . . , wn] . (3.49)

The Steenrod squares act on the generators of this ring as

Sqiwj =

i∑

t=0

(
j − i+ t− 1

t

)
wi−twj+t (3.50)

for i ≤ j, and 0 otherwise. For the cases at hand, this implies

Sq1w2 = w3 , Sq2w2 = w2
2 , Sq1w3 = 0 and Sq2w3 = w2 ⌣ w3 . (3.51)

Steenrod squares of products of wi can then be derived via the Cartan formula (2.28d).

Let us now finally determine the relevant differentials. We start with α. The relevant

Steenrod square in cohomology is

α∗ : H
2(BSO(3),Z2) → H4(BSO(3),Z2) (3.52)

and since w2 generates H2(BSO(3),Z2) this gives α∗(w2) = Sq2(w2) = w2
2. Since w2

2

generates H4(BSO(3),Z2) we conclude that the dual map

Sq2∗ : H4(BSO(3),Z2) → H2(BSO(3),Z2) (3.53)

is the nontrivial one, sending the generator to the generator. As argued above, ρ2 acts non-

trivially on H4(BSO(3),Z), so we find that α itself is non-trivial. A very similar argument

gives that β is non-trivial, since Sq2 maps the generator w3 of H3(BSO(3),Z2) to the

generator w2w3 of H5(BSO(3),Z2), and ρ2 acts non-trivially on H5(BSO(3),Z2).

We now proceed to the differential ǫ. The structure is very analogous to α, except for

the fact that we do not need to reduce coefficients. We conclude that it is non-vanishing,

since Sq2∗ acts non-trivially on the relevant homology groups. Notice that since ǫ is injective,

we find (since ǫ ◦ γ = 0) that γ vanishes. We can obtain in this way some information

about ρ2 acting on H6(BSO(3),Z). We have

Sq2(w2
2) = 2Sq2w2 ⌣ w2 + Sq1w2 ⌣ Sq1w2 = w2

3 (3.54)

which is one of the generators of H6(BSO(3),Z2), the other being w3
2. From here we learn

that the dual Steenrod square is given by

Sq2∗ω
2
3 = ω2

2 ; Sq2∗ω
3
2 = 0 , (3.55)
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Figure 16. E2 page of the AHSS for ΩSpin
∗ (BSO(3)). We have omitted the terms which are not

relevant for the computation of entries in E∞ of total degree 6, and we have shaded the entries of

total degree 6.

where by ωk
i we mean the dual in homology of wk

i .
16 Since γ = Sq2

∗
◦ ρ2 = 0, this implies

that ρ2(m) = ω3
2 or 0, with m the generator of H6(BSO(3),Z). We have argued above that

the map is injective, so we conclude ρ2(m) = ω3
2.

Finally, we need to analyze the differential δ : H5(BSO(3),Z2) → H3(BSO(3),Z2). By

the same argument as for β, we conclude that this map is an isomorphism.

The end result of this discussion is that all of the Z2 factors of E2 of total degree 4 or

5 vanish in E3, and thus

ΩSpin
4 (BSO(3)) = Z⊕ Z ; ΩSpin

5 (BSO(3)) = 0 . (3.56)

Let us also compute ΩSpin
6 (BSO(3)) via the AHSS in figure 16. The analysis can be

performed as in the previous case.

The δ and γ maps have been analyzed before, with the conclusion that δ was a bijection,

and γ = 0. The new maps are ζ, η and θ. Let us start with η, which is the dual of the

Steenrod square Sq2 : H4(BSO(3),Z2) → H6(BSO(3),Z2). This was computed in (3.55)

above, with the result that the map is surjective.

In order to compute ζ, notice first that from the 0 → Z → Z → Z2 → 0 short exact

sequence, and H7(BSO(3),Z) = 0, we obtain that

. . . → H8(BSO(3),Z)
·2
−→ H8(BSO(3),Z)

ρ2
−−→ H8(BSO(3),Z2) → 0 (3.57)

is exact, so ρ2 is surjective when acting on H8(BSO(3),Z). We also need

Sq2 : H6(BSO(3),Z2) → H8(BSO(3),Z2). (3.58)

16This does not mean that we have a ring structure in homology, i.e. we do not have things like ωk
i �= (ωj)

k.

The notation is only meant to emphasize that we have a dual basis, in the sense of linear algebra.
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The first group is generated by w3
2 and w2

3, while the second is generated by w4
2 and

w2 ⌣ w2
3. Using (2.28d) we find

Sq2w3
2 = w2 ⌣ Sq2w2

2 + Sq1w2 ⌣ Sq1w2
2 + Sq2w2 ⌣ w2

2

= w2 ⌣ w2
3 + w3 ⌣ (2w2w3) + w4

2

= w2 ⌣ w2
3 + w4

2 .

(3.59)

Similarly

Sq2w2
3 = 2w3Sq

2w3 + (Sq1w3)
2 = 0 (3.60)

where we have used Sq1w3 = 0 in BSO(3). Dualizing:

Sq2∗ω
4
2 = Sq2∗(ω2ω

2
3) = ω3

2 (3.61)

using the same notation for the dual homology generators as above. As a small check, note

that η ◦ ζ = 0, as it should. (And more precisely, ker η = im ζ, so E
(6,1)
3 = 0.)

Finally, we need to compute θ : H7(BSO(3),Z2) → H5(BSO(3),Z2). The action of Sq2

on the generator of H5(BSO(3),Z2) is easily found to be

Sq2w2w3 = w2 ⌣ Sq2w3 + Sq1w2 ⌣ Sq1w3 + Sq2w2 ⌣ w3

= 2w2
2 ⌣ w3 = 0

(3.62)

using again Sq1w3 = 0 and the basic relations (3.51). So the conclude θ = 0.

At this point we run out of technology to compute the relevant differentials. In par-

ticular, since we find E
(5,2)
3 = E

(5,2)
2 = Z2, there is a potentially non-vanishing differential

d3 : E
(5,2)
3 → E

(2,4)
3 that we reach before we fully stabilize. There is some discussion in [34]

about what these differentials are, but without going into that, we can conclude in any case

that ΩSpin
6 (BSO(3)) is either E

(6,0)
2 = Z2, or (if the differential vanishes) some extension of

Z2 by Z2. It would be rather interesting to characterize what this means, and whether it

signals some anomaly for the five-dimensional theory.

One observation that may be helpful here is that there is a simple bordism invariant

that characterizes H6(BSO(3),Z) = Z2. Note that since H5(BSO(3),Z) = 0, we have an

exact sequence

0 → H5(BSO(3),Z2)
β−→ H6(BSO(3),Z) → . . . (3.63)

We have H5(BSO(3),Z2) = H6(BSO(3),Z) = Z2, so we can identify the generator of

H6(BSO(3),Z) with β(e), where e is the generator of H5(BSO(3),Z2) and β is the Bock-

stein map. So a natural bordism invariant of six-manifolds is
〈
β(e),M

〉
where M is the

fundamental class of the manifold.

3.6.2 SO(n)

We can use the above results to compute ΩSpin
5 (BSO(n)), for n ≥ 3 as well. The AHSS is

displayed in figure 17, where we have also illustrated the relevant differentials.

The structure is very similar to that of figure 15, but the groups are different. δn and

ǫn are again given simply in terms of dual Steenrod squares; they are again nonvanishing.
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Figure 17. E2 page of the AHSS for ΩSpin
∗ (BSO(n)), for n ≥ 8. The only differential without a

label is βn.

To analyze αn, βn and γn we need again to know the action of ρ on Hi(BSO(n),Z) for

i = 4, 5, 6. From the long exact sequence in homology, we again know that ρ4 is surjective,

and sends both generators of Z⊕Z2 to generators. This means that αn is again nontrivial.

Likewise, we know that the image and kernel of ρ5 are Z2, and that the image of ρ6 is

3Z2, but we need to know the precise action on generators. Fortunately, we can leverage

our knowledge of the SO(3) case to obtain the answer for SO(n) as well. To do this, note

that the inclusion SO(3) ⊂ SO(n) induces the following commutative diagram, where the

entries are the corresponding chain complexes,

0 Ci(BSO(3),Z) Ci(BSO(3),Z) Ci(BSO(3),Z2) 0

0 Ci(BSO(n),Z) Ci(BSO(n),Z) Ci(BSO(n),Z2) 0

(3.64)

which induces a commutative diagram in homology [60]

. . . Hi(BSO(3),Z) Hi(BSO(3),Z) Hi(BSO(3),Z2) . . .

. . . Hi(BSO(n),Z) Hi(BSO(n),Z) Hi(BSO(n),Z2) . . .

ι∗

ρSO(3)
β′

SO(3)

ρSO(n)
β′

SO(n)

(3.65)

Here, i∗ are the natural maps in homology induced by the inclusion. This commutative

diagram in turn allows us to compute im(ρSO(n)) = ker(βSO(n)) by constructing β′

SO(n) =

ι∗ ◦ β
′

SO(3).

H5(BSO(n),Z2) is generated by ξ3ξ2, ξ5, the Kronecker dual basis to w3w2, w5, and

as above H5(BSO(3),Z2) is generated by ω3ω2. Since in cohomology we have ι∗(w3w2) =

w3w2, ι
∗(w5) = 0 [67], we obtain

ι∗(ω3ω2) = ξ3ξ2 (3.66)

Since in this case β′

SO(3) = 0, the commutative diagram means that β′

SO(n)(ξ3ξ2) = 0. This

means that the image of the reduction modulo 2 map is generated by ξ3ξ2, and therefore

that the differential βn is nonvanishing.
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H6(BSO(n),Z2) is generated by ξ32ξ
2
3 , ξ4ξ2, ξ6, the Kronecker dual basis to the Stiefel-

Whitney classes w3
2, w

2
3, w2w4, w6. In cohomology we have ι∗(w3

2) = w3
2, ι

∗(w2
3) = w2

3, we

have, in the same notation as above,

ι∗(ω
3
2) = ξ32 , ι∗(ω

2
3) = ξ23 . (3.67)

We also have β′SO(3)(ω
3
2) = 0, β′SO(3)(ω

2
3) = ω3ω2, which combined with (3.66) means that

ker(β′SO(n)) is generated by ξ32 , ξ6, ξ4ξ2. This is also the image of the reduction modulo 2

map, so we can compute the γn explicitly, to be the Z2 generated by ξ4.

Combining all this, we get

ΩSpin
4 (BSO(n)) = e(Z,Z⊕ Z2), ΩSpin

5 (BSO(n)) = 0. (3.68)

Comparing with (3.56), we see that we get an extra Z2 factor. Presumably, this is measured

by
∫
w4.

3.6.3 Spin(n)

We can compute the Spin(n) bordism groups in the same way as above. First, we need the

homology groups, which are (for n ≥ 8) [67–70]

n 0 1 2 3 4 5 6 7 8

Hi(BSpin(n),Z) Z 0 0 0 Z 0 Z2 0 2Z

Hi(BSpin(n),Z2) Z2 0 0 0 Z2 0 Z2 Z2 2Z2

(3.69)

With these we can construct the spectral sequence shown in figure 18. Since we have

H5(BSpin(n),Z) = 0, the reduction modulo 2 is an isomorphism. To compute the relevant

Steenrod square, we can use the result [69, 71] that the cohomology with Z2 coefficients

of BSpin(n) can be obtained from that of BSO(n) via the pullback associated to the map

f : BSpin(n) → BSO(n). Now, Hi(BSO(n),Z2) is a polynomial Z2 ring generated by

the Stiefel-Whitney classes, with w1 = 0. The pullback map sends to zero the classes

vk = Sq2
k

. . . Sq1w2, where k ≤ h− 1 and h is the so-called Radon-Hurwitz number, which

is ≥ 9 for n ≥ 8.

Since v0 = w2, v1 = w3, the generator of H4(BSpin(n),Z2) is just f∗(w4), and the

generator of H6(BSpin(n),Z2) is f∗(w6) . By functoriality of the Steenrod square and

Wu’s formula (3.50),

Sq2(f∗w4) = f∗(Sq2(w4)) = f∗(w6 + w4 ⌣ w2) = f∗(w6) , (3.70)

so the differential shown in figure 18 is nontrivial. As a result, ΩSpin
5 (BSpin(n)) = 0. In

particular, this means that the Spin(10) GUT is free of Dai-Freed anomalies.

3.7 Exceptional groups

We can also compute the relevant bordism groups of exceptional groups by replacing BG

with a sufficiently close space which is better understood. The familiar case is BE8, which
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Figure 18. E2 page of the AHSS for ΩSpin
∗ (BSpin(n)), for n ≥ 8.

up to degree 15 has the same homology structure as K(Z, 4) [49, 72]. Let us first review

the general argument in some detail, following [33].

Suppose we have a map f : A → X. Since bordism is a generalized homology theory,

we have a long exact sequence

. . . ΩSpin
d (A) ΩSpin

d (X) ΩSpin
d (X,A) . . . (3.71)

The important point is that the relative bordism groups ΩSpin
d (X,A) can also be computed

via an AHSS with second page E2
p,q = Hp(X,A; ΩSpin

q (pt)). We will be interested in the

particular case where the induced map f∗ : πk(A) → πk(X) is an isomorphism for all

k ≤ n. Then πk(X,A) = 0 for k ≤ n, and by the relative version of Hurewicz’s theorem [11],

Hk(X,A) = 0 for k ≤ n. The lowest corner of the AHSS is trivial, proving that ΩSpin
k (X,A)

for k ≤ n. Then (3.71) proves that ΩSpin
d (A) = ΩSpin

d (X) for d < n, so that we may replace

X by A as far as low-dimensional bordisms are concerned.

Now, for any CW complexX, one can construct a Postnikov tower [11]. This is a family

of spaces Xn such that πk(Xn) = πk(X) for k ≤ n, πk(Xn) = 0 otherwise. There is an

inclusionX → Xn which induces a isomorphism in the first n homotopy groups. Combining

with the above, we reach the conclusion that, if we want to compute the bordism groups

of some space X up to a finite degree n, we may replace it with the (n+ 1)-th floor Xn+1

of the Postnikov tower.

Now consider the classifying space for BG, where G is any exceptional group. In fact,

it is true for all exceptional groups that π4(BG) = Z and πi(BG) = 0 for i ≤ 6. So the

sixth term in the Postnikov tower for BG, (BG)6, has homotopy groups π4((BG)6) = Z,

and 0 otherwise. This means that (BG)6 is by definition a presentation of the Eilenberg-

MacLane space K(Z, 4).17 This is turn implies that ΩSpin
i (BG) = ΩSpin

i (K(Z, 4)) for i ≤ 5.

We can then immediately apply the result in [33], and conclude

ΩSpin
5 (BG) = 0 (3.72)

for G any exceptional group.

17Technically, this is guaranteed by the Whitehead theorem, which [11, 49, 72] ensures that a continuous

mapping f : X → Y between CW complexes induces isomorphisms in all homotopy groups, then f is a

homotopy equivalence.
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The same reasoning works for higher bordism groups whenever we have π4(BG) = Z

and πi(BG) = 0 otherwise for i ≤ d, with d large enough. For instance, for G = E7 or

G = E8 we have [33]

Ω̃Spin
8 (BG) = Z⊕ Z ; Ω̃Spin

9 (BG) = Z2 ; Ω̃Spin
10 (BG) = Z2 ⊕ Z2 , (3.73)

so for these groups we have the possibility of global anomalies in d = {7, 8, 9}. (The eight

dimensional case was analyzed in [13].) For F4, the above results only for i ≤ 7, so we can

only analyze anomalies up to d = 7.

4 Discrete symmetries and model building constraints

We now turn to anomalies of discrete symmetries. These have a long story, see e.g. [73–79]

among many others. Our goal will be to compute the Dai-Freed anomalies in various cases

of interest, and compare the known results. The relevant bordism groups are nontrivial,

but luckily have already been computed in the mathematical literature in the works of

Gilkey [48, 56, 80, 81], who also provides the η invariant for generators of the bordism

groups. (Some information about the bordism groups can also be obtained via an AHSS

sequence, as we have been doing above. However, in this case, the AHSS is not enough to

fully determine the groups, due to a nontrivial extension problem. Still, we have included

the calculation for Zn in appendix C for the benefit of the curious reader.)

More concretely, we will now explore the Dai-Freed anomaly of the so-called spherical

space form groups [56]. The main tool we will use is the fact that there are some bordism

classes for which the η invariants can be computed explicitly (for a discussion, see [56]).

A spherical space form is a generalization of a lens space, defined as follows. Let G be

a finite group, and τ : G→ U(k) a fixed-point free representation of it.18 Then, define

M(τ,G) ≡ S2k−1/τ(G). (4.1)

For G = Zn, this is an ordinary lens space such as the ones employed in appendix C.

We are naturally interested in Spin and Spinc manifolds. For M(τ,G) to have a Spin

or Spinc structure, we just need to find a Spin or Spinc lift of the τ(G).

For the Spin case, we have canonical spin lifts of every τ(G) up to a sign. For these

to be consistent, we need that det(τ) extends to a representation of G [80]. A particularly

simple case to ensure this is if τ(G) ⊂ SU(k), in which case the determinant is 1 and

M(τ,G) is always spin. As noted in [80], there is no spin structure on M(τ,G) if |G| is
even and k odd: a finite group with even order always has an element that squares to the

identity, which in this case has to be represented by a fixed-point-free square root of the

identity, which can only be diag(−1, . . .− 1). For k odd, this has determinant −1.

The main technical result in [80] is that M represents a nontrivial class of ΩSpin
d+1 (BG),

and the η invariant of the Dirac operator in a representation ρ of G is given by

η(M(τ,G), ρ) =
1

|G|
∑

λ∈G−{1}

Tr(ρ(λ))

√
det(τ(λ))

det(I − τ(λ))
. (4.2)

18This means that the only matrix in the representation with unit eigenvalues is the identity.
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For the Spinc case, the correct expression is instead [56, 80]

η(M(τ,G), ρ) =
1

|G|
∑

λ∈G−{1}

Tr(ρ(λ))
det(τ(λ))

det(I − τ(λ))
. (4.3)

Application of the above formulae is straightforward to a number of discrete groups

of interest.

Finally, as pointed out in section 2.1.2, Dai-Freed constraints such as the ones we

discuss here can sometimes be circumvented by mild modifications, such as adding Green-

Schwarz couplings to the Lagrangian, or by coupling to a suitable topological quantum

field theory. It turns out that there are several ways of doing this for discrete symmetries,

which we discuss in subsection 4.6.

4.1 Spin − Zn

The lens space S2k−1/Zn ≡ Lk(n) is not Spin for n even and k odd, but it is for both k

and n odd. As a result, we can use (4.2) to compute η invariants corresponding to some

bordism class in ΩSpin
5 (BZn), for n odd. The formula (4.2) now becomes

η(Lk(n), ρs) =
1

n

∑

λ 6=1

(λs − 1)

( √
λ

λ− 1

)k
. (4.4)

In this formula s is the Zn charge of the fermion and λ is a n-th root of unity. One has to

be careful to define the square root in such a way that (
√
λ)n = +1, a convenient definition

is
√
λ = λ(n+1)/2.

As discussed in [56], section 4.5.1, for odd n the bordism ring ΩSpin
5 (BZn) is actually

generated by only two elements, L3(n) and K3 × L1(n). This means that there are at

most two independent Dai-Freed anomaly cancellation conditions. Furthermore, we have

(see [48], Lemma 2.2, or [20, 56])

η(A×B) = index(A)η(B) (4.5)

which means that

η(K3× L1(n)) = index(K3)η(L1(n)) = 2η(L1(n)). (4.6)

So we only need to apply formula (4.4). Using the expressions in [56] in terms of Todd

polynomials we obtain,19 after some simplifications,

∑

i

[
s3i −

1

4
(n2 + 3)si

]
≡ 0 mod 6n (4.7a)

∑

i

si ≡ 0 mod n , (4.7b)

where the si are the Zn charges of the fermions in the theory.

19Reference [56] provides an alternative characterization of ΩSpin
5 (BZn), in terms of L3(n) and a gener-

alized lens space, as well as expressions for computing their η invariant. The computation is cumbersome,

but we have checked that it agrees with (4.7b). Details are presented in appendix E for the benefit of the

curious reader.

– 36 –



J
H
E
P
0
8
(
2
0
1
9
)
0
0
3

As for the even n case, [80] provides a different family of lens spaces which allow the

computation of ΩSpin
5 (BZ2k). These spaces depend on two parameters a1, a2 on top of k.

For these, the η invariant is

η = 2−k
∑

λ 6=1

(λs − 1)
λ(a1+a2)/2(1− λa1+a2)

(1− λa1)2(1− λa2)2
. (4.8)

Since the Chinese remainder theorem means that

Z2km ≈ Z2k ⊕ Zm, (4.9)

we can compute some η invariants representing factors of ΩSpin
5 (BZn) for any n. These

are not necessarily all of the η invariants; there might be mixed anomalies between the

different factors in (4.9).

We now apply the above anomaly cancellation conditions to some interesting cases

such as Z3, where we obtain the constraint that the net number of Z3 fermions (counted

+1 if they have charge 1mod 3, and −1 if they have 2mod 3) has to vanish modulo 9,

∑

fermions

si ≡ 0mod 9, (4.10)

and Z4, where the net number of Z4 fermions (counted +1 if they have charge 1mod 4, −1

if they have 3mod 4, and 0 otherwise) must vanish modulo 4. For Z5, the net number has

to vanish mod 5, where the fermions are counted as +1 if they have charge 1 or 3 mod 5,

-1 if they have charge 2 or 4 mod 5, and 0 if their Z5 charge vanishes. For Z2 the bordism

group vanishes. This means, for instance that R-parity in the MSSM is not anomalous.

On the other hand, if we have a Zn bundle which can be embedded in a U(1) where local

anomalies cancel, then all Dai-Freed anomalies of the Zn must vanish. This is because, as

we computed in section 3.3, ΩSpin
5 (BU(1)) = 0, and the Zn η invariant can also be regarded

as a U(1) η invariant, evaluated in a particular bundle whose transition functions lie in

Zn ⊂ U(1).

4.2 Baryon triality

The constraint (4.10) has phenomenological implications, as we will now see. Consider

the Z3 baryon triality symmetry [75, 82], commonly used to ensure proton stability in the

MSSM.20 This is a symmetry under which the chiral superfields are charged as in table 1.

The total charge mod 9, counted as above, is 3 per generation, so we need the number of

generations to be a multiple of 3 in order for baryon triality to be anomaly-free. Note that

the anomaly that we found for the Z3 symmetry implies that baryon triality cannot be

embedded into an anomaly-free U(1) as long as generation-independent U(1) charges are

considered: we have just seen that a Z3 subgroup of the U(1) is anomalous for the case

of a single generation, and introducing extra generations cannot make an anomalous U(1)

anomaly-free. If we allow for generation dependent U(1) charges (but imposing that these

20Although this symmetry is typically introduced for phenomenological reasons in MSSM models, it can

also be studied as a symmetry of the vanilla Standard Model.
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Q Ū D̄ L Ē Hu Hd

Triality 0 −1 1 −1 −1 1 1

Hexality 0 −2 −5 −5 1 5 5

Table 1. Z3 and Z6 charges of the MSSM chiral superfields under baryon triality and proton

hexality. We use the conventions in [75].

U(1) charges lead to generation-independent Z3 charges), then it is possible to cancel the

anomaly with three generations.21

The above analysis also extends to the proton hexality symmetry proposed in [75].

Since Z6 ≈ Z2⊕Z3, and ΩSpin
5 (BZ2) = 0 because of a Smith homomorphism, a Z6 discrete

symmetry suffers from the same Z3 anomaly. The mod 3 reduction of the second row of

table 1 is minus the first row, so proton hexality suffers from the same anomaly. Just as in

the previous case, thanks to the fact that the Standard Model has three generations, this

anomaly can be fixed via generation-dependent couplings; this indeed is what happens in

section 9 of [75].

As discussed above, all the discrete anomaly constraints that we are discussing should

be automatically satisfied whenever the Zn can be embedded into a non-anomalous U(1).

In particular, the mod 9 condition should be obtainable from local anomaly cancellation

conditions. Consider a U(1) with charges qi = (3mi+ ri), where mi are integers and the ri
are −1, 0, 1. As above, local anomaly imposes

∑

i

27(m3
i +m2

i ri) + 9mir
2
i + r3i = 0,

∑

i

mi + ri = 0. (4.11)

Because of the definition, r3i = ri. Taking the first equation modulo 9, we obtain

∑

i

ri ≡ 0mod 9, (4.12)

as advertised.

4.3 SM fermions and the topological superconductor

Here we discuss briefly one of the observations that led to this work: that the number of

fermions per generation in the SM (including right handed neutrinos) is 16, which turns

out to be the number of Majorana zero modes of a topological superconductor that cancels

the Dai-Freed anomaly of time reversal. It turns out that the two facts can be nicely

related if we assume a certain Z4 subgroup of (B−L)+ the SM gauge group to be gauged,

as follows.22

21This is somewhat reminiscent of a similar statement in [83, 84], which finds a mixed T -flavor anomaly

when the number of flavors is a multiple of 3, and the gauge group is SU(3). It would be interesting to see

if the observations are related.
22See [85] for a previous attempt at explaining the number of fermions per generation in the Standard

Model using anomaly arguments. Reference [86] also relates the Standard Model to a topological material.
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SM field SU(3) SU(2) Y B − L X

lcL 1 2 −3 3 21

qcL 3̄ 2 1 −1 −7

lR 1 1 6 −3 −27

uR 3 1 −4 1 13

dR 3 1 2 1 1

νR 1 1 0 −3 −15

H 1 2 3 0 −6

Table 2. Charge assignments of the fields in the Standard Model. All fermions are right-moving

chiral Weyl fermions. We have rescaled the hypercharge Y and B − L such that all fields have

integer charges. H is the Higgs doublet. We have included a right-handed Majorana neutrino.

In the Standard model extended with right-handed neutrinos, there is a particular

combination of hypercharge and B − L,23

X ≡ −2Y + 5(B − L), (4.13)

such that the charges of all SM fermions under X are of the form qi = 4ki + 1. This

means that qXi mod4 is a Z4 charge under which every fermion has a charge of 1mod 4.

For convenience, we have included the relevant representations of standard model fields in

table 2.

As discussed recently in [58], in the presence of an extra Z4 symmetry, it is possible to

make sense of fermions in manifolds that are not Spin. More concretely, one can take the

structure group to be (Spin × Z4)/Z2, where the generator of the Z2 subgroup of Z4 and

(−1)F are identified. This was called a SpinZ4 structure in [58]. Because of the above, the

SM admits a SpinZ4 structure.

The same reference also constructs a version of the Smith homomorphism, along the

same lines as in section 4.4.2 below, establishing that

ΩPin+

4 ≈ ΩSpinZ4
5 . (4.14)

Physically, one can construct SpinZ4 bundles which contain domain walls on which 3d Pin+

fermions localize. For each 4d Weyl fermion with charge 1 modulo 4, we get one 3d Pin+

Majorana fermion.

Using X defined in (4.13), we see that we reproduce this story once for each standard

model fermion. Since the anomaly for the topological superconductor vanishes only when

the number of Majorana fermions is a multiple of sixteen [5], we learn that the number of

fermions in the standard model must be a multiple of sixteen for the Z4 symmetry to be

anomaly-free.24 This is precisely the number of fermions in a generation of the standard

model, once we include the right-handed neutrino.

23This is precisely the X boson of GUT’s, see e.g. [87, 88]. There are other combinations of Y and B−L

with the same properties we use here.
24We should note that in [89], this very same condition is obtained from requiring that the theory makes

sense in a manifold with a generalized spin structure.
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As discussed above, if the above Z4 symmetry is assumed to embed into a U(1) (in

this case, the combination (4.13) of hypercharge and B − L), then the relevant bor-

dism group becomes ΩSpinc

5 = 0, so the constraint that the number of fermions must

be a multiple of 16 must already be implied by local anomaly cancellation.25 And in-

deed, in this case the anomaly cancellation conditions for U(1) factors (coming from

Tr(FU(1)R
2) = Tr(F 3

U(1)) = 0)
∑

i

qi =
∑

i

q3i = 0 (4.15)

with qi the U(1) charges of the fermions, imply that the total number of fermions nF is a

multiple of 16, as follows. Define pl =
∑

i k
l
i (recall that we defined above qi = 4ki + 1).

The first anomaly cancellation condition implies nF = −4p1, and the second is

0 = nF + 12p1 + 48p2 + 64p3 = −2nF + 48p2 + 64p3 , (4.16)

which implies nF = 8(3p2 + 4p3). This means that nF is a multiple of 8, or equivalently

that p1 is an even number. But p1 and p2 have the same parity, so p2 is also even and nF
is a multiple of 16.

In fact, if we assume Spin(10) grand unification, the Z4 group we are studying is just

the center of Spin(10), so under this assumption we can understand the above result as

coming from the fact that ΩSpin
5 (Spin(10)) = 0.

Finally, we should also mention that at low energies there is a mass term for νR that

breaks B − L [88]. As a result, the Z4 is broken explicitly, and there are only 15 massless

fermions (before electroweak symmetry breaking, which also breaks Z4).

4.3.1 Topological superconductors and the MSSM

The above construction works straightforwardly in the MSSM+right-handed neutrinos,

since the additional fields (gauginos and higgsinos) do not contribute to the mod 16

anomaly, given that the Z4 anomaly for a charge 2 fermion vanishes. However, with

the fermion spectrum of the MSSM, there is an additional Z4 whose Z4 anomaly cancels.

Under this symmetry, all the fermions of the MSSM transform with charge +1. The bosons

could have any even charge and the symmetry would remain non-anomalous, but a natural

choice is to take all bosons neutral under the symmetry.26 The mod 16 constraint is still

satisfied because, on top of the original 16 fermions in the SM there are 12 gauginos (one

for each generator of the gauge group) and 4 higgsinos (two for each of the Higgs doublets,

since they are themselves SU(2) doublets). This is only possible because of the detailed

structure of the SM — including the dimension of the gauge group and the fact that we

need two Higgses in the MSSM [90].

25As discussed in section 3.4, once we assume U(1)B−L we can put the standard model in a Spinc

manifold. It is easy to see that the Z4 subgroup of this U(1)B−L leads to a topological superconductor with

8 Majorana fermions of each parity under time reversal, and thus no anomaly.
26The Z2 subgroup of this would be (−1)F (−1)2s, where s is the spin. This symmetry is related to the

standard R-parity, which flips the sign of all the superpartners while leaving all the SM fields invariant, by

a shift by “matter parity” (−1)3(B−L) [90].
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Again, one can find anomaly-free U(1)’s in which to embed this Z4 symmetry, but this

time there is no obvious relationship to GUTs. A perhaps more interesting connection

stems from the observation that the symmetry we are quotienting by is
√

(−1)F , where

(−1)F is fermion number - which is a symmetry in any quantum field theory. Perhaps

this symmetry is pointing to a (possibly orientation-reversing) Z2 geometric symmetry in

some internal space Geometric Z2 actions can lift to Z4 on the spinor bundle; this is the

case for instance for a rotation by π, or a reflection with a Pin− structure. A similar

situation was discussed in [58], where a SpinZ4 symmetry is related to a 180◦ rotation of

the F-theory fiber.

In any case, though this anomalous Z4 in the MSSM may seem enticing, it is not devoid

of problems. First of all, we have neglected the contribution of the gravity multiplet.27 The

gravitino in particular has a charge of −1 under the R-symmetry (in conventions where

the R-charge of the graviton vanishes and that of a supercharge is +1), which means that

it has a Z4 charge of −i.
We therefore want to find the contribution of a gravitino with charge −i to the anomaly.

As usual, the easiest way to accomplish this is to evaluate the contribution of a vector-

spinor, and then substract another spinor with opposite chirality.

Let us recover the spinor contribution first. The generator of ΩSpin
Z4

5 (pt) is RP
5, so

we need to evaluate the η invariant of the Dirac operator in this background. We will

use the same trick as in [5] to relate this to the index of a 6-dimensional Dirac operator

on an orbifold T 6/Z2. The Dirac index on this manifold is 8, and removing the orbifold

singularities we get 64 copies of RP5 on the boundary. As a result, η(RP5) = 1/16, in

accordance with Smith’s homomorphism.

For the Rarita-Schwinger operator, the index gets multiplied by 6 because of the extra

vector index. So the Rarita-Schwinger η invariant is −6/16 (taking into account the fact

that the R-charge is −1). We need to substract the contribution of a fermion of opposite

chirality (which is 1/16), with a total result of −7/16 per gravitino. So the contribution of

a gravitino is nonvanishing and spoils the agreement. One can double-check this result by

using the embedding SpinZ4 in Spinc (see appendix C.4). A fermion with Z4 charge of ±i
embeds as a Spinc fermion of charge q = 1, 3. Since ΩSpinc

5 = 0, the η invariants for these

two representations can be computed via the APS index theorem,

η(q) =
q3

6

∫

X
c31 +

q

24

∫

X
p1c1, (4.17)

where X is a Spinc manifold such that ∂X = RP
5. This can then be used to compute the

gravitino contribution [14],

ηgravitino = −1

6

∫
c31 +

7

8

1

24

∫
p1c1 = − 7

16
mod 1. (4.18)

Even if we ignore the issues with the gravitino, there is a mixed anomaly with the

non-abelian factors of the SM gauge group, since both gauginos and Higgsinos are charged

under these. While a full characterization of this anomaly would involve computation of at

27We thank Luis Ibañez for bringing up this point.
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least ΩSpinZ4 (BGSM), where GSM is the SM gauge group, it is possible to explicitly exhibit

an anomaly by looking at particular elements of this group. In particular, consider the

theory on S1 × S4 with a SU(N) instanton of instanton number 1 on the S4, and with a

nontrivial Z4 action on the S1. Using formula (4.5), as well as η(S1) = 1
4 for a fermion

with Z4 charge of 1, one obtains

η(S1 × S4) = η(S1)× index(S4) =
index(S4)

4
. (4.19)

For gauginos, index(S4) = 2N , while for the Higgsinos in the fundamental, the index is

1. It follows that the MSSM has both mixed SU(2) − Z4 and SU(3) − Z4 anomalies, the

former from the Higgsinos and the latter from the gauginos. Under these circumstances,

the particular Z4 we discuss is clearly not as interesting as its Standard Model counterpart;

at the very least one would need exotics to cancel the anomalies.

4.4 Spinc
− Zn

From the general formula (4.3), reference [48] shows that the eta invariant for a Spinc

fermion on Lk(n) on the representation s is given by

ηs =
1

n

∑

λ 6=1

(λs − 1)

(
λ

λ− 1

)k
, (4.20)

where λ runs over all the nontrivial n-th roots of unity (this is a particular case of (4.3)).

This is the result for a fermion of charge q = 1 only; in general, Spinc fermions can have

any (odd) charge under the U(1). To each choice of Spinc structure one can associate a

line bundle V in a canonical way, via the map

(Spin×U(1))/Z2 → U(1) : (g, λ) → λ2. (4.21)

Writing q = 2ℓ+ 1, a fermion of charge q behaves as a fermion of charge q = 1 coupled to

an additional line bundle ℓV . As discussed in [48], for the Spinc structure such that (4.20)

is valid, one has c1(V ) = kζ, where ζ is the generator of H2(Lk(n),Z) = Zn (for k > 1).

On top of this, the result (4.20) is derived for a particular Spinc structure on Lk(n).

Spinc structures over a manifold are affinely parametrized by line bundles over the manifold;

in the Spinc structure corresponding to the line bundle L, a fermion of charge q gets an

additional factor of Lq.

Putting all of the above together, a fermion of charge q in the Spinc structure related

to the one just discussed by an element β ∈ H2(Lk(n),Z) is coupled to an additional line

bundle with class qβ + ℓkζ ∈ H2(Lk(n),Z).

This means that the η invariant in a lens space for a fermion of charge q = 2ℓ+ 1 and

spin structure β is obtained as

ηs,q,β =
1

n

∑

λ 6=1

(λs+kℓ+qβ − λkℓ+qβ)

(
λ

λ− 1

)k
. (4.22)
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This formula, for different values of k and β, is sufficient to address all possible anoma-

lies, thanks to Theorem 0.1 of [48], which guarantees that, for k = 3, independent η

invariants in the Spinc case come only from four different manifolds, namely

η(L3(n)), η(L2(n)× CP 1), η(L1(n)× CP 1 × CP 1), η(L1(n)× CP 2). (4.23)

On each of these manifolds we must in principle consider all possible Spinc structures. We

will parametrize spin structures as follows, where the βi are integers modulo n, and the γi
are integers:

X H2(X) Basis coefficients

L3(n) Zn β3

L2(n)× CP 1
Zn ⊕ Z β2, γ1

L1(n)× CP 1 × CP 1 2Z γ2, γ3

L1(n)× CP 2
Z γ4

Using formula (4.5), we can express the last three η invariants in (4.23) in terms of Dirac

indices in projective spaces and η invariants on lens spaces,

η(L2(n)× CP 1) = qγ1η(L
2(n)), η(L1(n)× CP 1 × CP 1) = q2γ2γ3η(L

1(n)),

η(L1(n)× CP 2) =

(
q2 − 1

8
+ q2

γ4(γ4 + 1)

2

)
η(L1(n)). (4.24)

To evaluate the Spinc index of CP 2, we use the fact that its signature is 1 [50], together

with the index theorem for the Spinc complex [91] and the fact that any complex manifold

has a canonical Spinc structure whose associated line bundle V equals the determinant

line bundle.

From the above, it is clear that the anomaly cancellation conditions that we get from

the above set is redundant. In particular, we can take γ1 = γ2 = γ3 = 1 and γ4 = 0

without loss of generality. Using the expressions around Example 1.12.1 in [56], we find

that demanding absence of Dai-Freed anomalies on an arbitrary Spinc manifold amounts

to the constraints

∑

fermions

s
(
2n2 + 6n(3q + s) + 27q2 + 18qs+ 4s2 − 3

)

24n
∈ Z,

∑

fermions

qs(n+ 2q + s)

2n
∈ Z,

∑

fermions

q2s

n
∈ Z, and

∑

fermions

(q2 − 1)s

8n
∈ Z. (4.25)

Notice that there is no dependence in the βi; this because all the βi-dependent terms can

be rewritten as linear combinations of the (4.25).
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4.4.1 Connection to mapping tori anomaly and Ibañez-Ross constraints

Anomalies of Zn discrete symmetries have a long story, starting with the work of Ibañez and

Ross [73]. This work considers Zn symmetries that come from Higgsing a non-anomalous

U(1) in the UV. As a result, the UV fermion spectrum satisfies the corresponding (local)

anomaly cancellation conditions. Ibañez and Ross then work out which part of these

anomaly conditions still survive as constraints in the infrared theory, taking into account

that some fermions can become massive as we break the U(1) symmetry. These are the

well-known Ibañez-Ross constraints. We are interested in the case where the symmetry is

U(1)2 in the UV and Zn − U(1) in the infrared (the U(1) will be our Spinc connection).

Then there are two linear Ibañez-Ross constraints (here, (xi, qi) are the UV charges, and

xi = kin+ si), coming from mixed and gravitational anomalies,

∑

fermions

si = a
n

2
,

∑

fermions

q2i si = bn, (4.26)

and two nonlinear, coming from mixed and cubic anomalies,

∑

fermions

s2i qi = cn,
∑

fermions

s3i = dn+ e
n3

8
, (4.27)

where a, b, c, d, e are integers which are constructed out of the UV data. It was already

pointed out in [73] that the second condition in (4.26) is not a useful constraint in the

infrared, because the normalization of the U(1) charges is not known. It was later pointed

out in [92] that the nonlinear constraints are UV-sensitive, in the sense that they depend

on the global structure of the UV gauge group. For instance, suppose that we don’t change

the fermion spectrum, but change U(1) that is fixed to an l-fold cover of the original.

Equivalently, we demand that the charge quantum is not 1, but 1/l in the above units.

Then, in terms of the fundamental charge, the breaking is not to Zn but to Znl. At the

same time, the si rescale as si → simodnl, so the left and right hand sides of (4.27) scale

differently. The linear constraints, on the other hand, are independent of the particular

normalization of U(1) charges. As we will see, this distinction is also present in some of

the Dai-Freed anomalies (4.25).

The constraint (4.25) is particularly interesting in examples where the discrete Zn

symmetry cannot be embedded into a continuous unbroken U(1) in the field theory regime,

such as e.g. discrete symmetries coming from discrete isometries in Calabi-Yau compact-

ifications.28 We will now see that, in this framework, the linear Ibañez-Ross constraints

can be recovered from the eta invariant on mapping tori. Therefore, they correspond to

“traditional” global anomalies in the sense of section 2.

As discussed in section 2, restricting to mapping tori leads to an anomaly cancellation

condition which is in general weaker than full Dai-Freed anomaly cancellation; for instance,

as discussed in [5], for the 3d topological superconductor one obtains a Z16 anomaly by

demanding exp(πiη) = 1 for arbitrary 4-manifolds, but if we restrict to mapping tori only a

28These particular examples can be embedded into continuous group actions in supercritical string the-

ory [93, 94], but it is hard to argue for standard, local anomaly cancellation in these exotic scenarios.
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Z8 is visible. This Z8 can be studied by standard anomaly techniques, such as e.g. modular

anomalies in appropriate backgrounds [4].

The same happens with the Zn − U(1) anomaly (4.25). A particularly interesting

subset of mapping tori in this context are of the form Xd × S1, where Xd is an arbitrary

d-dimensional manifold, and we pick up a Zn gauge transformation as we move around

the S1. (A low dimensional analogue of this fibration would be obtained by regarding S1

as the lens space L1(n) in the sequence Zn → S1 → L1(n).) Studying anomalies on this

background is equivalent to studying anomalies on the zero-dimensional theory obtained

from dimensional reduction on Xd. Now, we have [48]

ηs,q(L
1(n)) = − s

n
mod1, (4.28)

which together with the formula (4.5) implies the anomaly condition

∑

fermions

index(Xd)s = 0modn. (4.29)

Notice that the formula (4.5) agrees with the dimensional reduction picture: reducing

on Xd produces index(Xd) zero-dimensional fermion zero modes, and we must take into

account the η invariant for each of these. For instance, consider the case d = 4, Xd =

S2 × S2 with the canonical U(1) bundle over each S2, and fermions with U(1) charges qi.

Then (4.29) becomes ∑

fermions

q2s = 0modn, (4.30)

which is the mod n reduction of the would-be mixed local anomaly cancellation condition,

one of the Ibañez-Ross constraints. If on the other hand we choose Xd to be e.g. a K3,

we obtain

2
∑

fermions

s = 0modn, (4.31)

another of the Ibañez-Ross constraints. We therefore recover the linear Ibañez-Ross con-

straints (4.26), which are precisely the ones that are not UV-sensitive [74, 92].

A natural question is the precise relationship between Dai-Freed anomaly cancella-

tion and whether the Zn symmetry can be embedded into a non-anomalous U(1). If

such an embedding is possible, then all Dai-Freed anomalies must necessarily vanish, since

ΩSpin
c

5 (BU(1)) = 0.29

Let us now discuss the converse statement. If Dai-Freed anomalies cancel, does this

mean that the Zn can be embedded into an anomaly-free U(1)? To address this point,

consider a set of charges (qi, si) which satisfy the cubic constraint for the U(1) as well as

the Dai-Freed constraints (4.25) (since we are in the Spinc case, all of the qi are odd).

If the Zn arises from Higgsing from a U(1), a fermion in a representation with charge si
comes from a representation with charges ri = si + npi, pi ∈ Z. On top of this, pairs of

29While we did not discuss this case explicitly in section 3, the computation via the AHSS is very simple,

and similar to that of figure 9. We just need to know the Spinc bordism ring, which can be found in [56]

and appendix B.
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fermions with charges (qj , rj) and (−qj , r′j) can acquire a mass after Higgsing, as long as

rj + r′j ≡ 0modn. The UV theory has four mixed anomaly cancellation conditions, which

we encode as

Ai =
(
q3i , q

2
i ri, r

2
i qi, r

3
i

)
,
∑

i

Ai = 0. (4.32)

For a particle of charge ri = si + npi,

Ai =
(
q3i , q

2
i si, s

2
i qi, s

3
i

)
+ Ei, Ei ≡ n

(
0, piq

2
i , qipi(2is+ pi), 3(sip

2
in+ s2i pi) + n2p3i

)
,

(4.33)

while the anomaly for the pair of fermions which becomes massive after Higgsing is (writing

r′j = −rj + ljn)

A(massive)
j = n

(
0, q2j lj , qlj(2rj + ljn), 3(r

2
j lj − rjl

2
jn) + l3jn

2
)
. (4.34)

Notice that Ei is of the same form as the A(massive)
j . Embedding of the Zn in an anomaly-

free U(1) will be possible if there is some choice of massive particles such that the anomaly

can cancel. This means that we can pick any set of (rj , lj) that will do the trick. We can

always pick some of these to cancel the Ei, so without loss of generality, embedding will be

possible if and only if

∑

i

(
q3i , q

2
i si, s

2
i qi, s

3
i

)
∈ L(massive), (4.35)

where L(massive) is the lattice generated by all linear combinations of all vectors of the

form (4.34).

We have checked the condition (4.35) numerically for values of n up to 15. For every

trial spectrum we checked where Dai-Freed anomalies (4.25) are cancelled, (4.35) is satisfied

as well. This suggests that Dai-Freed anomaly cancellation is sufficient to ensure embedding

into an anomaly-free U(1), though we have not proven this. On the other hand, there are

spectra which satisfy the full set of Ibañez-Ross constraints (4.26) and (4.27), but not (4.35)

or (4.25). One such example is n = 2 and a spectrum with charges (qi, si) given by

(3, 0), (−5, 0), (3, 1), (−1, 1). (4.36)

To sum up, the full set of Dai-Freed constraints (4.25) is stronger than the Ibañez-Ross

constraints, and numerical evidence suggests that it is equivalent to anomaly cancellation

in the UV. The example (4.36) shows this is not the case for Ibañez-Ross. Both the

non-abelian Ibañez-Ross and the nonlinear Dai-Freed constraints are UV sensitive. In the

Dai-Freed case, this is made manifest by the presence of a topological GS term, as we will

discuss in subsection 4.6.

Finally, all these considerations apply equally well to the Spin case discussed in subsec-

tion 4.1. Here, the only linear Ibañez-Ross constraint is the mod n reduction of gravitational

anomaly cancellation. For instance for n = 3, this is just the requirement that the charges

vanish modulo 3; we have instead a stronger, modulo 9 constraint, (4.10). We have focused

on the Spinc case because of its richer structure.
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Fermion Z2 U(1)

ψ1 0 q

ψ2 1 −q

Table 3. Two-fermion system which gives rise to a 3d Pinc zero mode.

4.4.2 n = 2 and the topological superconductor

For the n = 2 case there is a nice connection to the theory of the boundary modes of a 4d

topological superconductor. In this context, there is a well-known Z16 constraint, obtained

in the same way as above, by requiring that the anomaly theory (recall our discussion in

section 2.1.2) provided by the η invariant in one dimension more should be trivial.

Physically, the connection between the two comes from the fact that one can intro-

duce a scalar which breaks the Z2 symmetry. The associated Z2 domain walls contain

localized fermions, with a Pinc structure. When the anomaly theory of the domain wall

admits a Pin+ structure, one such fermion becomes equivalent to two copies of an ordinary

topological superconductor.

We will now explicitly construct these Z2 domain walls. We consider two Euclidean

fermions ψ1, ψ2, charged under a U(1), as well as under an additional Z2 symmetry, as

indicated in table 3 (we take q 6= 0).

We see that the U(1) anomalies cancel, but the Dai-Freed anomaly (4.25) does not. In

fact, the fermion with charge 0 does not contribute to the anomaly, so the anomaly theory

is just that of a single fermion in the sign representation of Z2. The kinetic term will be

i

2

∑

i=1,2

ψTi C /Dψi. (4.37)

The most general mass term is of the form30

Mijψ
T
i Cψj , (4.38)

where Mij is a symmetric matrix. The diagonal mass terms are forbidden by the U(1)

charge, and the only nondiagonal one is forbidden by the Z2 charge, so no mass terms are

allowed. However, let us introduce a real scalar ψ, transforming under the sign represen-

tation of Z2, coupled to the fermions via the Yukawa coupling

gφψT1 Cψ2 . (4.39)

A vev for φ will completely break the Z2 symmetry, and gap the fermions. On the φ =

0 locus there will be a localized 3d zero mode, which we now construct locally. Pick

coordinates on a neighborhood of a point on the φ = 0 locus such that φ = 0 corresponds

locally to x3 = 0. The equations of motion are

/Dψ1 = gφ(x)Cψ2, /Dψ2 = gφ(x)Cψ1. (4.40)

30There is another allowed mass term, with an extra insertion of γ5, but locally this can be removed by

a change of basis.
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We are interested in localized 3d zero modes, for which the x3 part of (4.40) vanishes

identically,

γ3∂3ψ1 = gφ(x)Cψ2, γ3∂3ψ2 = gφ(x)Cψ1. (4.41)

To solve these, introduce ξ± = ψ1 ± Cψ2. The equations become

γ3∂3ξα = αgφ(x)ξα. (4.42)

Now, we are interested in solutions of the form

ξα(x
1, x2, x3) = ζα,β(x

0, x1, x2)fα,β(x
3). (4.43)

Plugging back on (4.40), we get

γ3ζα,β = βζα,β , ∂3fα,β(x
3) = αβ gφ(x) fα,β(x

3). (4.44)

The local profile for fα,β can be found explicitly,

fα,β(x
3) = fα,β(0) exp

(
αβg

∫ x3

0
φ(x)d x

)
. (4.45)

Two of the functions fα,β(x
3) localize around x3 = 0. For instance, if φ(x3) = x3, then f+,−

and f−,+ are both Gaussians. The other two solutions are not normalizable (although in

a compact space there will be a small component of these as well). A similar construction

can be found in [95]

The localized modes are two 3d fermions, which we will label as λ1 = ζ+,− and λ2 =

−iγ5ζ−+. Acting with a U(1) gauge transformation with angle θ, which acts as ψ1 →
eiθqγ5ψ1, ψ2 → e−iθqγ5ψ2 in accordance with table 3, we get the transformation law

(
λ1
λ2

)
→
(
cos θ − sin θ

sin θ cos θ

)(
λ1
λ2

)
, (4.46)

so we can equivalently describe the zero mode sector by a complex 3d fermion λ ≡ λ1+ iλ2
of charge q. On top of this, a rotation by 180◦ degrees on the x2−x3 plane, with i = 1, 2, 3,

acts on ψ1, ψ2 by multiplication by γ3γi. This maps

ζα,β → ζ−α,−β , (4.47)

which maps normalizable modes to normalizable modes, so it is a good symmetry of the

theory and implements a spin lift of a reflection along the x2 coordinate. As a result, the

symmetry group of the 3d fermion includes reflections. Crucially, the gauge transformations

commute with the reflections. This means that the symmetry group is Pinc. The 3d gauge

field is an axial vector. Had it anticommuted, the symmetry group would have been that

of the 3d topological insulator (see appendix D for the details).

The domain wall construction can also be understood from a mathematical point of

view. As explained in [48], there is an isomorphism ΩSpinc

d−1 (BZ2) ≈ ΩPinc

d−1 , called the Smith

homomorphism. This establishes explicitly that the anomaly of the domain wall fermions
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is equivalent to that of the parent 5d theory. The Smith homomorphism has been discussed

in the physics context before in [3], where it took the form

ΩSpin
d (BZ2) ∼= ΩPin−

d−1 . (4.48)

We just use the Spinc-Pinc version of the homomorphism instead. This has been recently

discussed in the condensed matter literature [96].

The explicit construction of the homomorphism described in [3] also works in our case.

Consider a 5d Spinc manifold Y with a Z2 principal bundle. The sign representation gives

a Z2 vector bundle V over Y , and consider the class w1(V ). Let X be the Poincaré dual

to this class; this always can be represented by a submanifold by a theorem of Thom [97].

Over X, the Spinc structure on Y restricts to a Spinc structure on TY = TX ⊕ NX.

NX = V |X . We can compute

0 = w1(TY ) = w1(TX) + w1(V ), (4.49)

and

w2(TY ) = w2(TX) + w1(TX)w1(V ) = w2(TX) + w2
1(V ). (4.50)

Since w2(TY ) can be lifted to an integer class (since Y is Spinc, and w2
1(V ) can always be

lifted to an integer class31), it follows that w2(TX) can also be lifted, which is precisely

the condition to have a Pinc structure on X (see e.g. [81]).

Physically, the scalar φ of the previous subsection is a section of V , which therefore

vanishes on the Poincaré dual of w1(V )- in other words, on X we have a Z2 domain wall

with Pinc fermions on it. There is also an inverse map, given by dimensional oxidation [3]:

Start with a 3d Pinc manifold X, and consider the real 2-dimensional bundle W = ǫX ⊕ t,

where ǫX is the orientation bundle of X and t is a trivial real line bundle. Then Y can be

taken as the total space of the circle bundle of W .

Finally, this system is also closely connected to the Z16 obstruction of the topological

superconductor. This is obtained from the η invariant of 4d Pin+ manifolds. Every Pin+

manifold is also Pinc, and if we forget the U(1) gauge field the worldvolume theory in the

domain wall is exactly two copies of the topological superconductor, so we can understand

the Z8 as coming from ΩPin+
4 = Z16 after multiplication by two.

To sum up: A 5d fermion system with a unitary Z2 symmetry gives rise to do-

main walls with a Pinc structure. Consequently, the bordism group classifying the

anomalies ΩSpinc

d−1 (BZ2) ≈ ΩPinc

d−1 , where the isomorphism is obtained explicitly by domain

wall construction.

4.5 Quaternionic groups in six dimensions

The quaternionic groups Qν are defined as follows: Consider the sphere S3 ≈ SU(2) as

the unit quaternions H. Define n = 2ν−1 (for ν ≥ 3) and ξ = e2πi/n. Qν is generated by

the quaternions ξ (viewed as the quaternion cos(2πi/n) + i sin(2πi/n)) and j. It has order

2ν . We will analyze the Qν anomaly cancellation conditions in six dimensions (see [98]

31The complex line bundle L = C⊗ V = V ⊕ iV has w2(L) = w1(V )2 = c1(L)mod2.
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for a recent study of non-abelian discrete symmetries in four dimensions). Since the Qν
are subgroups of SU(2), there is a nice interplay with SU(2) anomaly cancellation. Since

ΩSpin
7 (BSU(2)) = 0, in the SU(2) case we need to concern ourselves only with local anoma-

lies.

In [80], the seven-dimensional bordism group ΩSpin
7 (BQν) was computed explicitly,

and the η invariant of all the generators given. In this section we will look at only one

of the anomaly cancellation conditions, and study its interplay with SU(2) and its Green-

Schwarz mechanism.

Concretely, we will look at anomalies in the spherical space form S7/τ(G), where the

action τ(G) in (4.1) is given in this particular case as follows: Pick quaternionic coordinates

(q1, q2) in H
2, and consider the unit sphere S7 ⊂ H

2. The spherical space form under

consideration is obtained as the quotient of this S7 by the generators
(
q1
q2

)
→ R(g)

(
q1
q2

)
, (4.51)

for g ∈ Qν and representation matrices for the generators

R(ξ) =

(
e2πi/n 0

0 e−2πi/n

)
, R(j) =

(
0 1

−1 0

)
. (4.52)

With the definition in [80], the Qν-bundle on S
7/Qν for which the η invariant is computed

is precisely the tangent bundle of S7/Qν , which has a natural Qν-structure. More precisely,

if E is the corresponding principal Qν-bundle, we have

T (C4/Qν)|S7/Qν
= T (S7/Qν)⊕ L = Ef ⊕ Ef , (4.53)

where L is a trivial line bundle and Ef is the associated vector bundle in the fundamental

SU(2) representation. This splitting can be seen explictly by writing the biquaternion as

(
q1
q2

)
=

(
z1
z2

)
+ j

(
z3
z4

)
, (4.54)

where the zi are complex numbers, and noticing that each of these subspaces is invariant

under the action of (4.52).

Anomalies can be computed using (4.3), after choosing a particular representation ρ

of Qν . We will consider the case of the irreducible complex two-dimensional representa-

tion that embeds ξ and j into the fundamental of SU(2) as in (4.52). A fermion in the

fundamental of SU(2) transforms under this representation under the Qν subgroup.

Lemma 3.1 (b) of [80] means that, for the representation (4.52), the η invariant (4.2)

takes the value

η =
a

2ν+2
, for some odd integer a. (4.55)

This means that a theory containing only fermions in the representation (4.52) must satisfy

the anomaly cancellation condition that the total number of such fermions is a multiple

of 2ν+2.
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A similar calculation can be carried out for a field in the adjoint of SU(2), which

we then decompose in terms of Qν representations. The adjoint of SU(2) reduces to a

direct sum of a two-dimensional and a one-dimensional Qν representations, as can be seen

explicitly from the representation matrices of the generators:

R(ξ) =




cos
(
4π
n

)
0− sin

(
4π
n

)
0

sin
(
4π
n

)
cos
(
4π
n

)
0

0 0 1


 , R(j) =




1 0 0

0 −1 0

0 0 −1


 . (4.56)

The invariant (4.2) is an odd multiple of 2ν−1 in this case. Put together, a theory with

a fundamentals and b adjoints of SU(2) has an anomaly cancellation condition in the Qν
subgroup measured by

α1

2ν+2
a+

α2

2ν−1
b ∈ Z, (4.57)

where α1, α2 are odd numbers explicitly given by the recurrence relations

α1(ν) = α1(ν − 1) + (1 + 2ν−3)2ν−1, α2(ν) = α2(ν − 1) + 22ν−5. (4.58)

There is an interesting interplay between SU(2) anomaly cancellation and (4.57). Con-

sider a theory with a SU(2) fundamentals and b adjoints. The Qν anomaly cancellation

conditions lead to the constraints

b ηAdj. + a ηFund. ∈ Z. (4.59)

These are only satisfied for a = 8b. This can be understood in terms of SU(2) local

anomaly cancellation. The relevant anomaly polynomial is (ignoring the purely gravita-

tional anomaly, which can always be cancelled by adding uncharged fermions)

I = (a+ 4b)
p1c2
24

+ (a+ 16b)
c22
12
, (4.60)

where c2 is the second Chern class of the SU(2) bundle, and p1 is the first Pontryagin class

of the tangent bundle. The anomaly always factorizes in this case, so in principle it can be

cancelled by a Green-Schwarz term

−
∫
B2 ∧

[
(a+ 4b)

p1
24

+ (a+ 16b)
c2
12

]
. (4.61)

and a modified Bianchi identity dH = c2 for the B2 field. The Green-Schwarz term amounts

to an extra contribution to the seven-dimensional anomaly theory, given by

−
∫
H ∧

[
(a+ 4b)

p1
24

+ (a+ 16b)
c2
12

]
. (4.62)

The anomaly theory of the fermions together with (4.62) is trivial. As discussed in sec-

tion 3.1, ΩSpin
7 (BSU(2)) = 0. Additionally, under the assumption that the Green-Schwarz

term can be extended to an 8-manifold, (4.62) can be rewritten, by using the modified

Bianchi identity, as

−
∫

8d
c2 ∧

[
(a+ 4b)

p1
24

+ (a+ 16b)
c2
12

]
. (4.63)
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where the integral is on some 8-manifold that bounds the 7-manifold we use to study the

anomaly. This is precisely minus the anomaly polynomial of the fermions, by construction.

We can now restrict the above construction to SU(2) bundles that sit in Qν . Since

thanks to the GS term anomalies cancel for any a, b, it is clear that no anomaly cancellation

such as (4.59) is at play. From the point of view of the Qν theory, there is a topological

GS term [13] which in practice can be computed by embedding the Qν gauge bundle into

SU(2), and then computing (4.61). Stated like this the GS term is not a honest TQFT;

there is some ambiguity in its definition, since the 7d theory (4.62) is not trivial on an

arbitrary 7-manifold with Qν bundle. Nevertheless, this ambiguity is compensated with

that of the Qν fermions to provide a well-defined partition function.

Even though the theory makes sense for any a, b, (4.62) can be trivial for special values

of a, b. In these cases, the anomalies of the Qν fermions have to cancel by themselves - and

so (4.59) should be satisfied. Let us work out precisely when this happens. The anomaly

cancellation condition (4.59) comes from computing the η invariant on a particular manifold

obtained as the quotient of S7 by some discrete group. For (4.59) to be satisfied, we have

to show that (4.62) is trivial in this manifold, or equivalently, that (4.63) is trivial on any

8-manifold N which has (4.1) as its boundary.

To simplify (4.63) in this case, notice that it actually only depends on the restriction

of the bundles to the boundary, so we can use (4.53) to replace p1(TM) by p1(Ef ⊕Ef ) =

2p1(Ef ), where Ef is now to be regarded as an SU(2) bundle via the natural embedding. On

the other hand, we have p1(Ef ) = −2c2(Ef ), so that p1 = −4c2. Plugging this into (4.63),

we get

− 1

12

∫

C4/Γ
(8b− a)c22. (4.64)

The integral of c22 in the above orbifold will not vanish in general, but if a = 8b we recover

the condition that the Qν anomalies of the fermions must vanish, as advertised.

4.6 Coupling to TQFTs

So far we have explored the constraints that Dai-Freed anomaly cancellation impose on

theories of interest. These results can be altered by adding Green-Schwarz terms to the

action, or more generally by coupling to a suitable topological field theory, without chang-

ing the local degrees of freedom. We review some examples in this subsection. Our present

understanding of this phenomenon is rather incomplete, so we will simply discuss some ex-

amples.

4.6.1 Embedding Zn in an anomalous U(1)

As a simple example of how anomalies of discrete symmetries can be cancelled by topo-

logical terms, let us look at standard Green-Schwarz anomaly cancellation (see [10] for a

review, and [79] for a discussion for discrete symmetries). In four dimensions, an anoma-

lous U(1) can sometimes be rendered consistent via the Green-Schwarz mechanism: one

introduces a scalar φ transforming as φ→ φ+ qλ under a U(1) gauge transformation with
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parameter λ, and with a coupling of the form −c
∫
φp1(R) into the action.32 The anoma-

lous variation of this coupling is then −cq
∫
p1. The anomalous variation coming from the

fermions is of the same form, S
∫
λp1 where S =

∑
qi. It follows that if

cq = S (4.65)

then anomalies cancel. On the other hand, invariance under φ ∼ φ+2π implies that c has

to be an integer (in units where the elementary U(1) charge is just 1). The same mechanism

also works for e.g. mixed or cubic anomalies; the one caveat is that one should make sure

that the coefficients ci in front of the topological terms are adequately quantized.

One could then imagine embedding e.g. a Zn symmetry into a possibly anomalous

U(1), cancel any anomalies via Green-Schwarz couplings, and then higgs down to Zn.

Since higgsing a non-anomalous theory cannot produce new anomalies, it would seem that

in this way one can evade any kind of anomaly constraint for Zn symmetries.

The catch is that, as discussed in [79], once one introduces a Green-Schwarz term the

U(1) symmetry (and therefore a generic Zn subgroup) are spontaneously broken by the

vev of φ. As a result, higgsing produces a non-anomalous theory, but the Zn symmetry

is gone.

Another way to see this is to look at the spectrum of charged Zn strings. In a higgsing

perspective, the Zn strings are vortices of the UV U(1). However, the Green-Schwarz axion

φ has a Stuckelberg coupling to the U(1). This implies (see e.g. [99, 100]) that q Zn strings

can break by having a U(1) monopole at the endpoint.

In general, there there will be a honest Zr symmetry in the infrared, where r = gcd(q, n)

(in case we have several GS axions with charges qi, r = gcd(q1, q2, . . . , n)). In this case,

the Zr symmetry may avoid some of the Ibañez-Ross constraints, but not all of them. For

instance, (4.65) implies that S vanishes modulo r, so the corresponding linear Ibañez-Ross

constraint still holds. On the other hand, the cubic anomaly cancellation condition requires∑
i s

3
i to vanish modulo r3, at least for odd r; in the presence of a GS term, it only has to

vanish modulo r.

In contrast with the Ibañez-Ross constraints, we cannot get rid of any Dai-Freed

constraints for Zr in this way. Part of the reason is that, unlike the Ibañez-Ross constraints,

even the cubic Dai-Freed constraints are linear in r. But the way to prove it in general is

to show that the U(1) GS terms are trivial for Zr bundles embedded in U(1). For a GS

term of the form c
∫
φW , the contribution to the 5-dimensional anomaly theory is

AGS = exp

(
2πi c

∫
dφ ∧W

)
. (4.66)

Now, by assumption, W is an integral cohomology class. On a generic 5-manifold, W will

be Poincaré-dual to a 1-cycle α, and we get

AGS = exp

(
2πi c

∫

α
dφ

)
= exp

(
2πi cq

∫

α
A

)
, (4.67)

32This is a GS for mixed gravitational-gauge anomalies, which are related to Zn anomalies as discussed

in subsection 4.1. Other types of GS terms can in some cases be introduced to cancel gravitational and

pure gauge anomalies.
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where we have used the modified Bianchi identity dφ = qA. If we now restrict to Zr

bundles, the Wilson line
∫
αA is of the form m/r, where m is an integer. Since r divides q,

we have AGS = 1, and the Dai-Freed anomalies for Zr must cancel by themselves.

To sum up, the U(1) GS term either breaks the discrete symmetry we are interested

in or does nothing useful, which is why we will not consider it any further.

4.6.2 Nonlinear Dai-Freed constraints

Even if one cannot get rid of Dai-Freed constraints by embedding in an anomalous U(1),

they are affected by the same pathology that affects the nonlinear Ibañez-Ross constraints

(see section 4.4.1). In essence, what happens is that an observer with access only to low-

energy local physics cannot tell the difference between a Znl theory with a spectrum with

discrete charges si,l = lsi for different values of l; they all provide the same selection rules

for couplings in the Lagrangian. Because the groups ΩSpin
5 (BZnl) and ΩSpinc

5 (BZnl) are

different for different values of l, the Dai-Freed constraints are sensitive to l. The low-

energy observer is entitled to impose the ones that are present for any value of l; these are

precisely the Dai-Freed constraints that are linear on the charges.

This does not mean that the Znl are all physically equivalent; they differ on the set

of allowed bundles, and spectrum of stable strings. Due to the completeness principle [99,

101], when coupled to gravity they must also necessarily differ in their charged spectrum.

However, none of these features can be detected via local experiments in the infrared.33

Since the fermion charges are also multiplied by l, the transition functions of the

vector bundles in which the fermions live in are always in Zn; one way to understand the

l-sensitivity of the results is that for l 6= 1 we also require that the Zn bundle admits a

lift to Znl. Since not all bundles can be lifted, we obtain a topological obstruction, which

forbids some of them and their associated Dai-Freed constraints.

Zn bundles over a base X are classified by homotopy classes from X to the Eilenberg-

MacLane space BZn = K(Zn, 1). Since the Eilenberg-MacLane spaces K(G, •) are the

spectrum that defines ordinary (co)homology with coefficients in G, we have that Zn bun-

dles are classified by H1(X,Zn). The Zn bundle describing the fermion transition functions

embeds in Znl in a canonical way. In the theory with l 6= 1, this bundle describes fermions

with charge qil, so the associated principal Znl-bundle is the l-th root of the embedding.

This root does not always exist, which is the technical reason why we lose constraints

sometimes. For instance, for n = l = 3, and H1(X,Z9) = Z3 (this is the case, for instance,

for the lens space L3(3)) with generator ξ3, a Z9 bundle with class ξ3 does not admit a 3rd

root (which morally would have a characteristic class of “ξ3/3”).

This obstruction can also be recast in terms of a coupling to a topological field theory

that forbids some of the bundles. Let Z(ξ) be the partition function in the topological

sector specified by the class ξ ∈ H1(X,Zn). Then the total partition function of the theory

is simply ∑

ξ∈H1(X,Zn)

Z(ξ) . (4.68)

33Naturally, the situation changes if one is has a specific string theory model at hand; in this case the

precise gauge group is in principle completely specified.
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The restriction that only bundles that are l-th roots contribute to the partition function

can be implemented at the level of the path integral by modifying this equation to

∑

ξ∈H1(X,Zn)

∑

β∈H1(X,Zn)

χ∈Hd−1(X,Zn)

exp

(
2πi

∫

X
(ξ − lβ)⌣ χ

)
Z(ξ) , (4.69)

where the integral is just the pairing against the Zn fundamental class of the manifold

(which is henceforth assumed to be Zn-orientable). The sum over χ runs over Hd−1(X,Zn),

and thus χ might be regarded as the characteristic class classifying a Zn (d− 1)-gerbe over

the manifold; so (4.69) means coupling to the topological field theory which describes the

gauging of a Zn (d− 2) generalized global symmetry [102].

We will now prove that (4.69) implements the restriction on bundles we advertised.

To do this, we just have to show that the function

δ(α) =
1

N

∑

χ∈Hd−1(X,Zn)

exp

(
2πi

∫

X
α ⌣ χ

)
, (4.70)

where N is the order of Hd−1(X,Zn), evaluates to 1 if α vanishes, and to 0 otherwise.

Since Ext1
Z
(H0(X,Z),Zn) = 0, the universal coefficient theorem for cohomology gives an

isomorphism

H1(X,Zn) ≈ HomZn
(H1(X,Z),Zn). (4.71)

In fact, this isomorphism is precisely (see [31]),

α→ α(c) =

∫

µ(c)
α, (4.72)

where α ∈ H1(X,Zn), c ∈ H1(X,Z), µ is the canonical map in the universal coefficient

theorem for homology sending a class in H1(X,Z) to one in H1(X,Zn), and
∫
c α is the

Kronecker pairing

H1(X,Zn)×H1(X,Zn) → Zn. (4.73)

In fact, since Tor(H0(X,Z),Zn) = 0, we have

HomZn
(H1(X,Z),Zn) = HomZn

(H1(X,Z)⊗ Zn,Zn) = HomZn
(H1(X,Zn),Zn) (4.74)

which means that the map µ is an isomorphism. As a result, the Kronecker pairing is

nondegenerate. We can now use Poincaré duality (assuming the manifold is Zn-orientable)

to obtain a perfect bilinear pairing between Zn modules

H1(X,Zn)×Hd−1(X,Zn) → Zn, (4.75)

which we will denote by

∫

X
α ⌣ χ, α ∈ H1(X,Zn), χ ∈ Hd−1(X,Zn). (4.76)
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One may then recognize (4.70) as an expression for the Dirac delta on discrete groups. In

more detail, pick a generating set of {χi} such that the order of χj is Nj , and N =
∏
j Nj .

χ =
∑

i

diχi,

∫

X
α ⌣ χi = ci. (4.77)

Then, (4.70) can be rewritten as

δ(α) =
∏

j


 1

Nj

Nj∑

dj=1

e2πi djcj


 =

∏

j

δcj ,0. (4.78)

But if cj = 0 for all j, it must be the case that α = 0, since the pairing is nondegenerate.

4.6.3 Green-Schwarz and the topological superconductor

It is also possible to cancel Dai-Freed anomalies a la Green-Schwarz in the standard topo-

logical superconductor. Reference [103] introduces several tQFT’s which have the anomaly

of ν copies of the topological superconductor, for ν = 2, 8.

On their own own, these theories do not yield an acceptable partition function. For

instance, the ν = 8 theory fails to be reflection positive [5]. However, we can now couple

this topological theory to 8 copies of the topological superconductor to obtain a Dai-Freed

anomaly free theory.

Via the Smith homomorphism, we can uplift the anomaly theory of 8 copies of the

topological superconductor to the SpinZ4 case. As discussed in subsection 4.3 and [5],

a SpinZ4 manifold comes equipped with a Z2 bundle V , and the Smith homomorphism

describes fermions living in the Poincaré dual locus to w1(V ). As a result, the 4d term∫
w4 can be rewritten in terms of a 5d manifold Y as

∫

Y
w4(TY )⌣ w1(V ). (4.79)

Although we have not been able to write down a 4d topological field theory that gives rise

to (4.79) as an anomaly theory, the Smith homomorphism suggests that it does exist.

5 K-theoretic θ angles

The Dai-Freed prescription introduced in section 2 provides a way to define the phase of the

partition function for a null-bordant manifold X = ∂Y . However, it is not always the case

that Y exists. For instance, in four dimensions, ΩSpin
4 = Z, generated by K3. So the Dai-

Freed prescription as we introduced it does not work for defining the phase of the partition

functions on K3. We will now review how to understand these cases, following [104] (see

also [105]).

Let us start by describing what happens when the relevant bordism group is discrete,

for instance ΩSpinc

1 (BZn) = Zn. While the Dai-Freed prescription does not apply to the

generator X of ΩSpinc

1 (BZn), it does apply to the manifold obtained by taking n disjoint

copies of X. We would like to define the phase of the partition function on X by taking
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an n-th root, but this procedure is ambiguous, so we need to specify additional data (a

choice of n-th root). Different choices differ from each other by a map from ΩSpinc

1 (BZn) to

a phase. We can think of this map as a topological field theory that we can couple to our

system, parametrized in terms of a coupling defined modulo n — a sort of discrete θ angle.

It is easy to see that the case in which the bordism group includes free factors can be

understood in similar terms. There is an ambiguity in the Dai-Freed procedure that we fix

by specifying the phase in the generator of the bordism group; this removes the ambiguity.

Different choices of this phase are related by coupling to a topological field theory. For

instance, the non-trivial elements in ΩSpin
4 = Z are measured by

∫
p1(TX), and the (now

continuous) coupling is the usual gravitational θ angle.

There is one interesting question arising naturally from this viewpoint, which we now

briefly explore. It arises from the fact that it is not true that every non-trivial bordism

class can be detected by integrating characteristic classes. Rather, often one must resort

to computations in K-theory [106–108]. That is, we can detect certain bordism classes by

taking indices (perhaps mod 2) of suitable Dirac operators. So the more general possibil-

ity is that we have “K-theoretic θ angles”: bordism-invariant characteristic numbers not

expressible as integrals of characteristic classes. A five-dimensional example is simply the

η invariant that appears in Witten’s SU(2) anomaly [2]. We can view this as a Z2-valued

TQFT, and introduce a discrete θ angle. This angle is the usual “discrete θ angle” in 5d.

The same happens in 9d, see for example [109], which implies that Sethi’s string [110] can

also be understood in this framework.

Can we find any example of this phenomenon for Lie groups in four dimensions? A

review of the results in previous sections does not give rise to any example, suggesting that

the answer may be negative, at least on Spin manifolds.34 More specifically, the argument in

section 3.1.2 shows that for all simply connected forms of semi-simple Lie groups ΩSpin
4 (BG)

only receives contributions that can be measured via characteristic classes. One obtains the

same result for various non-simply connected cases: SO(n) in section 3.6.2, and SU(n)/Zn
in section 3.5, at least when n is an odd prime power; these have not yielded any examples

of K-theoretic angles either.

Another potential candidate comes from manifolds with SpinZ4 structure, discussed in

appendix C.4, but we argue there that there is no K-theoretic θ angle in this case either.

We can in fact prove that, at least in the four-dimensional case, there are no purely

real K-theoretic θ angles. By definition, a K-theory θ angle is a topological field theory

that only depends on a (real) K-theory class. Such a class can always be represented by

a stable real vector bundle, i.e. a SO(n) vector bundle with n large enough. In [111], it

is proven that such a bundle over an arbitrary four-dimensional manifold is completely

determined by its second and fourth Stiefel-Whitney classes together with its Pontryagin

class (see [112] for a partial result in dimension up to 8). This means that all K-theory

34Similarly to how ΩSpin
d (pt) bordism groups themselves provide examples of such exotic angles in one

and two dimensions, ΩPin+

4 (pt) = Z16 provides an example in four dimensions. (This group is generated

by RP
4.) So there is a notion of K-theoretic θ angle in the gravitational sector once one allows for non-

orientable Pin+ manifolds. In the text we are interested in “gauge-theoretic” angles, namely those in the

reduced Spin bordism group (see appendix A).
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G
ΩSpin

d (BG)

0 1 2 3 4 5 6 7 8

SU(2) Z Z2 Z2 0 2Z Z2 Z2 0 4Z

SU(n > 2) Z Z2 Z2 0 2Z 0 — — —

USp(2k > 2) Z Z2 Z2 0 2Z Z2 Z2 0 5Z

U(1) Z Z2 Z2 ⊕ Z 0 2Z 0 — — —

PSU(2k) Z Z2 Z2 ⊕ Z2k 0 — — — — —

PSU(pk, p odd) Z Z2 Z2 ⊕ Zpk 0 2Z 0 — — —

Spin(n ≥ 8) Z Z2 Z2 0 2Z 0 — — —

SO(3) Z Z2 e(Z2,Z2) 0 2Z 0 — — —

SO(n > 3) Z Z2 e(Z2,Z2) 0 e(Z,Z⊕ Z2) 0 — — —

E6, E7, E8 Z Z2 Z2 0 2Z 0 0 0 2Z

G2 Z Z2 Z2 0 2Z 0 — — —

F4 Z Z2 Z2 0 2Z 0 0 0 —

Table 4. Bordism groups of semisimple Lie groups computed in the text. The discrete groups we

use have been computed in [56] (see also appendix C).

invariants can be described in terms of cohomology. However, we emphasize that this does

not mean that all topological couplings in 4d can be described via cohomology; this is just

the case if the relevant data can be encoded as a real K theory class. While this is often the

case e.g. for the index of a Dirac operator, there may be more general topological theories

which rely on finer topological data. We hope to come back to this issue in future work.

6 Conclusion and summary

We have explored Dai-Freed anomalies in four-dimensional theories, both for continuous

and discrete groups, as well as a few selected higher-dimensional examples. Morally, these

anomalies can be understood as an extension of the traditional global anomaly computation

where the mapping torus is replaced by a more general manifold, as in figure 4.

Since, in the absence of local anomalies, the η invariant used to study the anomaly

is a bordism invariant, the first step is the computation of the relevant bordism groups.

We have summarized our results in table 4. The fact that the GUT groups SU(5) and

Spin(10) have a vanishing group means that they are free of Dai-Freed anomalies. We have

also argued that this conclusion also extends to the SM gauge group, whatever its global

structure. Overall, we find that for simple Lie groups there are no new anomalies, since all

the nonzero entries in table 4 can be accounted for by known global anomalies.

We also studied discrete symmetries in four dimensions. In this case, the result is

different, and one gets genuinely new Dai-Freed anomalies. The constraints we obtain are

stronger than the (linear) Ibañez-Ross constraints. A particularly interesting case is the Z3

or Z6 discrete symmetries that are commonly imposed in the MSSM to guarantee proton
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stability. While these have long been known to be free of Ibañez-Ross anomalies even for

a single generation, we find a nonvanishing modulo 9 Dai-Freed anomaly. The charge of a

single generation is 3 modulo 9, so while the MSSM with one generation is anomalous, the

full MSSM with three generations is Dai-Freed anomaly free.

These particular Dai-Freed anomalies can also be cancelled by coupling to a suitable

topological quantum field theory, in a discrete version of the Green-Schwarz mechanism.

This coupling forbids the bundles which give rise to the anomalies, thereby removing the

constraints from the spectrum. As a result, cancellation of Dai-Freed anomalies is not

necessary for consistency of the IR theory - but these anomalies provide information about

topological terms in the theory and on which manifolds does the theory make sense. For

instance, proton triality in the MSSM with just one generation cannot be coupled to an

arbitrary Z3 bundle, in spite of the fact that the IR theory seems to have a Z3 symmetry.

One of the first discussions of Dai-Freed anomalies was in the condensed matter liter-

ature, where it was found that a 3d Majorana fermion (topological superconductor) on a

nonorientable manifold has a modulo 16 anomaly, so we need 16 fermions to cancel it. In-

terestingly, the Standard Model with right-handed neutrinos also has 16 (four-dimensional)

fermions per generation. We were able to relate these two 16’s, if we gauge a particular Z4

symmetry of the Standard Model + right-handed neutrinos to make sense of the theory on

manifolds with a SpinZ4 structure.

Interestingly, the same construction is possible in the MSSM — the theory makes sense

on manifolds with a SpinZ4 structure. This may be either a coincidence, or a clue about

the UV completion; for instance, a geometric Z2 symmetry in the internal space can give

rise to a SpinZ4 structure.

The same theories that we use to describe anomalies in d dimensions also provide

interesting topological field theories in (d + 1) dimensions. These can be viewed as a

generalization of θ angles. Sometimes these angles are purely KO-theoretic, i.e. they cannot

be described by the integral of a cohomology class. We discussed the situation in four

dimensions in section 5.

We have only explored cancellation of Dai-Freed anomalies in a few examples, and

it is possible that we missed some phenomenologically interesting cases. A more system-

atic exploration of anomaly cancellation for discrete symmetries seems very worthwhile.

And more generally, it would also be important to determine whether examples of mixed

discrete-GSM anomalies exist, where GSM = (SU(3)×SU(2)×U(1))/Γ is the gauge group

of the standard model.

Furthermore, our discussion for Lie groups in section 3 admits a very natural general-

ization. The classifying space of an abelian group is another abelian group, so we can view

abelian p-form theories as the gauge theories for the abelian groups K(Z, p). So one could

try to compute the bordism groups for any of these theories. These will have potential

anomalies (recall the results for K(Z, 4) [33]), and it would be rather interesting to under-

stand if any of these non-trivial bordism groups give rise to non-trivial physical anomalies.

A related direction is to compute the bordism groups for K(Γ, p), with Γ some discrete

group. Presumably, these would classify anomalies of discrete generalized symmetries.
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Heidenreich, Chang-Tse Hsieh, Luis Ibañez, Angel Uranga and Gianluca Zoccarato for very

useful discussions and comments on the manuscript. We especially thank Diego Regalado

for initial collaboration, and many illuminating discussions. We also thank the organizers

and participants of Strings 2018 and StringPheno 2018 for many fruitful conversations.

MM is supported by a postdoctoral fellowship from the Research Foundation — Flanders.

A On reduced bordism groups

Consider the bordism group Ωd, which we think of as the group of d-dimensional manifolds

(possibly with some structure, such as an orientation, framing, Spin structure, . . . ), under

the equivalence relation X1 = X2 iff there is some manifold Y such that ∂Y = X1 −X2.

The group operation is given by the disjoint union of manifolds.

We can construct the group Ωd(Z) by decorating the structure above with maps

µ : X → Z and ν : Y → Z, compatible in the natural way. (Clearly, Ωd = Ωd(pt).)

This provides a potential refinement of the bordism classes: a pair (X1, µ1) may not be

equivalent to (X2, µ2), even if X1 ∼ X2 in Ωd.

In this appendix we would like to discuss the forgetful map

Φ: Ωd(Z) → Ωd(pt) ∼= Ωd (A.1)

defined by Φ([X,µ]) = [X], where we have picked an arbitrary representative of a given class

ω ∈ Ωd(Z). This map is well defined: if (X1, µ1), (X2, µ2) are two distinct representatives

of ω, we can choose any (Y, ν) such that ∂Y = X1 −X2 (and ν|∂Y = (µ1, µ2)), and then Y

gives a bordism between X1 and X2 in Ωd.

Furthermore, this map in surjective: every element in Ωd can be understood as Φ(ω)

for some (potentially many) ω ∈ Ωd(Z). To see this, note that we can construct a partial

converse Ψ: Ωd(pt) → Ωd(Z): pick an arbitrary point “pt” in Z. Choosing a representative

X of ω, we set Ψ(X) = (X, pt).35 This map is well defined: given Y such that ∂Y =

X1−X2, we have that (Y, pt) is a bordism in Ωd(Z) between (X1, pt) and (X2, pt). Clearly,

Φ ◦Ψ is the identity.

Since Φ is surjective, we can construct the short exact sequence

0 → kerΦ → Ωd(Z)
Φ−→ Ωd(pt) → 0 . (A.2)

A convenient notation is Ω̃d(Z) ≡ kerΦ, and Ω̃d(Z) is usually called the “reduced bor-

dism group”.

It is perhaps not immediately clear whether (A.2) splits, but the answer follows from

the fact that Φ ◦Ψ = 1 and the splitting lemma for abelian groups [11]. We have

Ωd(Z) ∼= Ωd(pt)⊕ Ω̃d(Z) . (A.3)

35In all the applications in this paper Z will be the classifying space of some group, so the statement

that we are making in this case is that there is a natural notion of decorating an arbitrary manifold with a

trivial principal bundle of the group.
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These facts about the map Φ can in principle be useful when computing the action of

AHSS differentials: the end result should never be “smaller” than the bordism class of a

point, and we get partial information about the extension problem from the splitting of

the exact sequence. They also have an interesting physical interpretation: in some sense

Ωd(BG) encodes all anomalies of the theory, both gravitational, gauge and mixed, while

Ω̃d(BG) encodes the purely gauge and mixed gravity-gauge ones. So coupling to a gauge

bundle cannot remove gravitational anomalies, as one intuitively expects.

B Tables of bordism groups of a point

For reference, here we list tables of Ωd(pt) for different bordism theories that appear in the

text. The original reference is [32] for the Spin case (see [33] for explicit tables), [113] for

Pin+, [114] for Pin−, and [48] for Spinc and Pinc. A similar table appears in [3].

d 0 1 2 3 4 5 6 7 8 9 10

ΩSpin
d (pt) Z Z2 Z2 0 Z 0 0 0 2Z 2Z2 3Z2

ΩPin−

d (pt) Z2 Z2 Z8 0 0 0 Z16 0 2Z2 2Z2
Z2 ⊕ Z8

⊕Z128

ΩSpinc

d (pt) Z 0 Z 0 2Z 0 2Z 0 4Z 0 4Z

ΩPin+

d (pt) Z2 0 Z2 Z2 Z16 0 0 0 Z2 ⊕ Z32 0 3Z2

ΩPinc

d (pt) Z2 0 Z4 0 Z2 ⊕ Z8

⊕Z16
0 Z4 ⊕ Z16 0 2Z2 ⊕ Z8

⊕Z32
0 Z2 ⊕ 2Z4

⊕Z16

(B.1)

C Bordism groups for Zk

We want to compute various bordism groups for BZn, the classifying space for Zn. We

have that BZn = K(Zn, 1) is the infinite dimensional lens space L∞
n defined as follows

(see §1.B of [11]). Consider the space C
k, and take the S2k−1 embedded in it at radius

one, using the natural metric. Consider the action given by multiplication of all the zi
coordinates of Ck by a simultaneous phase ωn ≡ e2πi/n

Λ: (z1, . . . , zk) → (ωnz1, . . . , ωnzn) . (C.1)

We denote Lkn = S2k−1/Λ. There is an obvious family of inclusions ι : Lkn ⊂ Lk+1
n , obtained

by setting zk+1 = 0 in Lk+1
n . These embeddings in fact provide generators for the (torsion)

odd homology groups of Lk+1
n . The homology groups of Lkn are ([11], Example 2.43)

Hi(L
k
n,Z) =





Z when i = 0 ,

Zn when 1 ≤ i < 2n− 1 and i ∈ 2Z+ 1 ,

Z when i = 2n− 1 ,

0 otherwise.

(C.2)
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Figure 19. E2 page of the AHSS for ΩSpinc

∗ (BZn), with the odd degree entries shaded.

We define BZn = L∞

n to be the formal limit of the inclusions ι when k → ∞, with the

homology

Hi(L
∞

n ,Z) =















Z when i = 0 ,

Zn when i ∈ 2Z+ 1 ,

0 otherwise.

(C.3)

As above, we are ultimately interested in the case with coefficients in some bordism

ring. We obtain these by application of the universal coefficient theorem (3.2), which in

our current context can be easily seen to imply

Hi(BZn,Ω) =















Ω when i = 0 ,

Ω⊗ Zn
∼= Ω/nΩ when i ∈ 2Z+ 1 ,

Tor(Zn,Ω) otherwise.

(C.4)

For the cases of interest to use we will need that [11]

Tor(Zn,Z) = 0 and Tor(Zn,Zk) = Zn ⊗ Zk = Zgcd(k,n) . (C.5)

C.1 Spinc bordism

We will start by computing the Spinc bordism groups, in order to compare with the results

in [56]. The basic ingredient will be the ΩSpinc

k (pt) groups, given by [56]

n 0 1 2 3 4 5 6 7 8 9 10

ΩSpinc
n (pt) Z 0 Z 0 2Z 0 2Z 0 4Z 0 4Z⊕ Z2

(C.6)

It is now immediate to construct the first page of the AHSS spectral sequence, which we

show in figure 19.
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One simplifying feature of the Spinc case is that there is no torsion in ΩSpinc

k (pt) for

k < 10, so using the fact that d : Zn → Z necessarily vanishes (either for degree reasons,

or because Zn → Z homomorphisms are always vanishing) we see that E2
p,q = E∞

p,q for

p+ q < 10. So we immediately conclude that ΩSpinc

k (BZn) = ΩSpinc

k (pt) for k < 10, k ∈ 2Z.

Since all torsion in ΩSpinc(pt) comes from Z2 factors [56], in the case that n ∈ 2Z+1 we

have that all differentials vanish, the spectral sequence collapses at the second page already,

and in addition (looking to the degree of the differentials) ΩSpinc

k (BZn) = ΩSpinc

k (pt) for all

k ∈ 2Z.

For k ∈ {1, 3, . . . , 9} we also have that the relevant differentials all vanish, so we

conclude that

ΩSpinc

1 (BZn) = Zn ; ΩSpinc

3 (BZn) = e(Zn,Zn) ; ΩSpinc

5 (BZn) = e(2Zn,Zn,Zn)

ΩSpinc

7 (BZn) = e(2Zn, 2Zn,Zn,Zn) ; ΩSpinc

9 (BZn) = e(4Zn, 2Zn, 2Zn,Zn,Zn) .

(C.7)

Here we have defined e(A,B) to be some (yet unknown) extension of B by A, i.e. some C

such that 0 → A→ C → B → 0 is exact. We then define

e(A1, A2, . . . , An) = e(e(e(. . . e(A1, A2), A3), . . . An) (C.8)

to be the left associative generalization of e(A,B).

One can easily compare these results to those listed in [56]. For instance, consider

the case n = 4. According to [56] we have ΩSpinc

3 (BZn) = Z8 ⊕ Z2. This is compatible

with (C.7) since

0 → Z4
f−→ Z8 ⊕ Z2

g−→ Z4 → 0 . (C.9)

is exact if we choose f(1) = (2, 1) and g(1, 0) = 1, g(0, 1) = 2.

To finish the comparison with [56], let us note that for even n there is a non-vanishing

contribution to E2
2,10 from

Tor(Zn,Ω
Spinc

10 (pt)) = Tor(Zn, 4Z⊕ Z2) = Tor(Zn,Z2) = Z2 , (C.10)

which explains the Z2 contribution to ΩSpinc

12 (BZn) shown in [56]. (Note that [56] lists

the reduced bordism groups, the full bordism group is ΩSpinc

12 (BZn) = ΩSpinc

12 (pt) ⊕ Z2 =

7Z⊕ Z2.)

C.2 Spin bordism, with n odd

The exercise for ΩSpin(BZn) proceeds similarly. For simplicity we specialize to n ∈ 2Z+1.

In this case, since Tor(Zn,Z2) = 0 = Zn ⊗ Z2, we are led to a rather simple spectral

sequence, shown in figure 20.

We will restrict to p + q < 9. Since the differentials dr have bidegree (−r, r − 1)

we immediately see that there is no non-vanishing differential acting on the degrees of
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Figure 20. E2 page of the AHSS for ΩSpin
∗ (BZn), for n odd. We have shaded the contributions

relevant for the computation of four-dimensional anomalies.

interest.36 We find

d 0 1 2 3 4 5

ΩSpin
d

(BZn) Z Z2 ⊕ Zn Z2 Zn Z e(Zn,Zn)
(C.11)

and also

d 6 7 8 9 10

ΩSpin
d

(BZn) 0 e(Zn,Zn) 2Z 2Z2 ⊕ e(2Zn,Zn,Zn) 3Z2

(C.12)

C.3 Spin bordism for BZ2

The case of even n is more involved, as there are many more non-vanishing entries. We do

not attempt a general discussion here, but rather focus on some features of the Z2 case.

As we discuss below, there is a more efficient way of computing ΩSpin
∗ (BZ2) than using

the Atiyah-Hirzebruch spectral sequence, but the spectral sequence computation will come

useful in the next section. The homology groups relevant for this case can be read off

from (C.4)

Hi(BZ2,Z) =















Z when i = 0 ,

Z2 when i ∈ 2Z+ 1 ,

0 otherwise.

(C.13)

and Hi(BZ2,Z2) = Z2 for all i ≥ 0. (Alternatively, these results follow simply from the

fact that BZ2 = RP
∞.)

36One can show that the torsion components of ΩSpin(pt) are all of the form Z2m [32, 115], so the result

follows in general. We then have that ΩSpin

k
(pt)⊗ Zn = Zn if k ∈ 4Z, and vanishes otherwise.
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Figure 21. E2 page of the AHSS for ΩSpin
∗ (BZ2). We show the non-vanishing differentials d2 in

solid black, and a d3 in dashed blue that should vanish in order to reproduce the results of the

Smith isomorphism (C.17).

The second page of the AHSS resulting from this is shown in figure 21. We see that

there are many potentially differentials, and many extension problems to be solved, so we

will not solve the issue completely. Nevertheless, some useful information can be teased

out of the spectral sequence. Clearly, ΩSpin
0 (BZ2) = Z and ΩSpin

1 (BZ2) = Z2 ⊕ Z2, simply

because there are no differentials that could enter act on the corresponding entries of the

spectral sequence. (In the second identity we have used the splitting result (A.3).)

Going beyond this requires computing some differentials, using the technology dis-

cussed in section 2.2.3. We have that, as a ring, H∗(BZ2,Z2) is freely generated by w1,

the generator of H1(BZ2,Z2):

H∗(BZ2,Z2) = H∗(RP∞,Z2) = Z2[w1] . (C.14)

Using the properties (2.28) it is then simple to show the relations

Sq1(wn) = wSq1(wn−1) + wn+1 ; Sq2(wn) = w2Sq1(wn−1) + wSq2(wn−1) . (C.15)

Using Sq1(w) = w2 and Sq2(w) = 0, these are solved by

Sq1(wn) = nwn+1 and Sq2(wn) =
n(n− 1)

2
wn+2 , (C.16)

with coefficients understood modulo 2. The result is that the differentials which are non-

vanishing on the second page are those shown in figure 21, where we have used in addition

that the reduction modulo two map ρ : H2k+1(BZ2,Z) → H2k+1(BZ2,Z2) is surjective,

which follows easily from H2k(BZ2,Z) = 0 and exactness of (2.29).

It is not straightforward to make much further progress using the Atiyah-Hirzebruch

spectral sequence, but luckily there is a Smith isomorphism that comes to the rescue

here [3]:

ΩSpin
d

(BZ2) ∼= ΩPin−

d−1 (pt)⊕ ΩSpin
d

(pt) . (C.17)
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Figure 22. E2 page of the AHSS for ΩSpinZ4

(pt). We have shaded the entries relevant for the

computation of four dimensional θ angles.

Using this isomorphism one finds

d 0 1 2 3 4 5 6 7 8

ΩSpin
d (BZ2) Z 2Z2 2Z2 Z8 Z 0 0 Z16 2Z

(C.18)

which can be easily checked to be compatible with the structure of the exact sequence above.

C.4 SpinZ4 bordism in four dimensions

As discussed in [34, 35], the Atiyah-Hirzebruch spectral sequence for ΩSpinZ4 agrees on the

first page with the one for ΩSpin
∗ (BZ2) we have just computed, but the differentials are

different, being twisted.

Clearly the E
(0,4)
2 = Z entry survives to E∞. We would now like to argue that E

(2,2)
2

does too. To see this, notice that it can only be killed either by being the target of a

differential coming from a term of total degree 5. But no such differential can exist, since

otherwise |ΩSpinZ4
5 | < 16, and this was proven not to be the case in [58]. On the other

hand, the differential dw2 : E
(3,1)
2 → E

(1,2)
2 is non-vanishing. This is because dw2 is the

dual of Sq2w [34, 35], defined as Sq2w(x) = Sq2(x) + w2 ⌣ x, with w2 the generator of

H2(BZ2,Z2). We Sq2w = 0, so Sq2w(w) = w3 �= 0.

We then find that

0 → Z → ΩSpinZ4
4 (pt) → Z2 → 0 (C.19)

is exact. The physical interpretation of this computation depends on whether this extension

is trivial or not. If it is trivial, and ΩSpinZ4
4 (pt) = Z⊕Z2, this would give a candidate for the

K-theoretical θ angles discussed in 5. If the extension is non-trivial, so that ΩSpinZ4
4 (pt) = Z,

we would instead have that there are some SpinZ4 manifolds which have
∫
Â = 1

24p1 = 1.

(Recall that for four dimensional Spin manifolds one has
∫
Â ∈ 2Z.)
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Either way, an example of a four-dimensional space that is not Spin but it is SpinZ4 is

given by the Enriques surface E = K3/σ (see [116] for a review), where σ is a fixed-point-

free Z2 action on K3. This surface is not Spin: its signature is 8, while Rochlin’s theorem

states that the signature is always a multiple of 16 on four-dimensional Spin manifolds.

Nevertheless, it admits a SpinZ4 structure: consider the Voisin-Borcea (Calabi-Yau, and

thus Spin) manifold X = (K3 × T 2)/σ̂, where σ̂ acts as σ on K3, and as reflection along

both coordinates of the T 2. This space can be understood as a T 2 fibration with base E .

If we consider spinors on X, and reduce along the T 2, we obtain a natural SpinZ4 structure

on E (since reflections square to (−1)F , on fermions they act as a Z4).

We can now discard the possibility of a trivial extension by the following argument.

Assume that the sequence (C.19) does split. We then have that K3 is a generator of

ΩSpinZ4

d = Z⊕ Z2. The other generator is some space X which is not Spin, and such that

2X ∼ 0 in SpinZ4 bordism. Since we showed above that E is SpinZ4 , it should be the case

that 2E ∼ 0 in ΩSpinZ4
4 . But this is not the case: the embedding Z4 → U(1) induces an

homomorphism (Spin(d)×Z4)/Z2 → (Spin(d)×U(1))/Z2 which in turn induces a natural

homomorphism

σ : ΩSpinZ4

d → ΩSpinc

d . (C.20)

So 2E ∼ 0 in ΩSpinZ4
4 would induce the relation 2E ∼ 0 in Spinc. A manifold is trivial in

Spinc iff all its Pontryagin and Stiefel-Whitney characteristic numbers vanish (see theorem

3.1.1 of [56]), but we have p1(E ) = 24, so p1(2E ) = 2p1(E ) = 48, and we arrive to a

contradiction.37

Finally, let us list some low degree groups that are easily computable from the Atiyah-

Hirzebruch spectral sequence:

d 0 1 2 3 4 5 6

ΩSpinZ4

d (pt) Z e(Z2,Z2) 0 0 Z Z16 0
(C.21)

D 3d currents

Suppose we have two 3d fermions λ1, λ2, with Lagrangian

λT1 ǫ/∂λ1 + λT2 ǫ/∂λ2. (D.1)

This system has a U(1) symmetry
(
λ1
λ2

)
→
(
cos θ − sin θ

sin θ cos θ

)(
λ1
λ2

)
. (D.2)

which is associated via Noether’s theorem to the current

Jµ = λT1 ǫγ
µλ2. (D.3)

37In fact, one has 2E ∼ K3 in ΩSpinc

4 . We can show this by comparing their characteristic numbers, and

using theorem 3.1.1 of [56]. The Stiefel-Whitney numbers of 2E vanish identically, since Stiefel-Whitney

classes are additive under disjoint union. For the integral characteristic numbers, c21 = 0 in both cases, and

p1(E ) = 1
2
p1(K3) = −24, which completes the proof.
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Symmetry λTi ǫλi λTi ǫλj

S−1 ✗ ✗

S+1 ✗ ✓

Q ✓ ✗

Table 5. Different symmetry generators and the mass terms they allow. S+1 is enough to forbid

all mass terms - this is the symmetry of the topological superconductor. The combination of Q and

S−1 are also enough to forbid all mass terms - this is the symmetry of the topological insulator.

Neither Q or S+1 on their own are able to ensure the existence of a massless fermion.

Mass terms can be constructed with the invariant ǫ tensor. There is just one possibility

compatible with the U(1) symmetry, namely

λT1 ǫλ1 + λT2 ǫλ2. (D.4)

We can also consider a R or CR discrete symmetry, which we will call S, which acts on

the fermions with a phase:

Sαλ1 = λ1, Sαλ2 = αλ2. (D.5)

The sign α in the second term can be mapped to whether or not S commutes or anticom-

mutes with the generator of U(1) rotations. If α = −1, it anticommutes: when continuing

Sα to Minkowskian signature, it will become a T transformation which commutes with the

electric charge, as is usually the case. If α = +1, it commutes, which corresponds after

analytic continuation to a twisted gauge field which transforms under parity reversal as an

ordinary 1-form.

Both possibilities are acceptable, and they both lead to symmetry protected topological

phases, but the mechanism in each case is different:

• If α = +1, then parity forbids not only the mass term (D.4), but also the only

additional possibility

λT1 ǫλ2. (D.6)

Thus, these fermions are protected by virtue of Sα-symmetry alone; the fact that they

are also charged under a U(1) is irrelevant to the question of existence of protected

massless modes. The system is actually the ν = 2 topological superconductor [5];

from this discussion we have only learnt that it can be consistently coupled to a

twisted gauge field. Since gauge transformations commute with inversions, this is a

Pinc structure.

• If α = −1, then Sα-symmetry would allow for a mass term (D.6), so it is not enough to

protect the existence of massless modes. However, this mass term is in turn forbidden

by the U(1) symmetry, so that the massless fermions are indeed protected: this is

the standard topological insulator [5].

This state of affairs is summarized in table 5.
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E Alternate generators for ΩSpin
5 (BZn)

Here, we present an alternate set of generators for ΩSpin
5 (BZn), different to the one used

in section 4.1. To do this, we have to generalize the notion of a lens space. Pick a vector

~q = (q1, q2, . . . , ql), where all the entries are coprime. Then we define the generalized lens

space L(n; ~q) as the quotient of the unit sphere S2l−1 ⊂ C
l by the equivalence relation

(z1, . . . , zl) ≡ (z1e
2πiq1

n , . . . , zle
2πiql

n ). (E.1)

With this notation, we have Ll(n) = L(n; 1, 1 . . .). There is a general expression [56] for

the η invariant

η(Ll(n; ~q), s) = −d
n
Tdl(n, q1, . . . ql; s− l(q1 + . . .+ ql), (E.2)

where Tdl is a specific linear combination of Todd polynomials (we refer the reader to [56]

for details), and d is an integer that must satisfy dq1 . . . ql ≡ 0mod 24n.

Reference [56] also shows that the bordism group ΩSpin
5 (BZn) is generated by

L(n; 1, 1, 1) and L(n; 1, 1, 2). The L(n; 1, 1, 1) case is straightforward and worked out in

the main text.

The L(n; 1, 1, 2) case is more involved. This is because gcd(2, 24n) 6= 1, so we cannot

straightforwardly apply theorem 4.5.4 of [56]. Nevertheless, it is clear from the definitions

above that L(n; 1, 1, 2) = L(n; 1, 1, 2 + 3n), and it is easy show that gcd(2 + 3n, 24n) = 1

for n odd.38 So the conditions of the theorem apply to this presentation of the space. A

somewhat tricky point now comes from d, which is defined to be the inverse of (2 + 3n)

modulo 24n. We would like to find a polynomial expression for d such that

d(2 + 3n) ≡ 1 mod 24n . (E.3)

From Euler’s theorem:

d ≡ (2 + 3n)−1 ≡ (2 + 3n)φ(24n)−1 mod 24n (E.4)

where φ(x) is Euler’s totient function (counting the number of positive integers smaller or

equal to x that are relatively prime to x). Expanding, we have

(2 + 3n)φ(24n)−1 =

φ(24n)−1∑

p=0

(
φ(24n)− 1

p

)
2p(3n)φ(24n)−1−p . (E.5)

Since we work modulo 24n = 23 · 3n we can drop the terms in the sum with φ(24n)− 2 ≥
p ≥ 3, and we find

(2 + 3n)φ(24n)−1 ≡ (3n)φ(24n)−1 + (φ(24n)− 1)2(3n)φ(24n)−2

+
1

2
(φ(24n)− 1)(φ(24n)− 2)22(3n)φ(24n)−3 + 2(φ(24n)−1) mod 24n .

(E.6)

38This is most easily done in terms of k = (n+1)/2. Then the equality becomes gcd(6k−1, 48k−24) = 1.

The second term is divisible by 8, while the first is not, so gcd(6k−1, 48k−24) = gcd(6k−1, 6k−3). Since

gcd(a, a+ 2) is either one or 2, and a is odd here, the result follows.
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Using φ(24n) = φ(8)φ(3n) = 4φ(3n), this simplifies to:

(2 + 3n)4φ(3n)−1 ≡ (3n)4φ(3n)−1 − 2(3n)4φ(3n)−2 + 4(3n)4φ(3n)−3 + 2(4φ(3n)−1) mod 24n .

(E.7)

We can simplify this further using that:

(3n)4φ(3n)−1 ≡ 3n mod 24n , (E.8a)

(3n)4φ(3n)−2 ≡ 9n2 mod 12n , (E.8b)

(3n)4φ(3n)−3 ≡ 3n mod 6n . (E.8c)

These relations can be proven as follows. Consider for instance (E.8a). Since 4φ(3n)−1 > 0

for the cases of interest, both sides include a common factor of 3n. So (E.8a) is equivalent to

(3n)4φ(3n)−2 ≡ 1 mod 8 . (E.9)

We have gcd(8, 3n) = 1 and φ(8) = 4, so (3n)4 = 1 mod 8, which implies

(3n)4φ(3n)−2 ≡ (3n)2 mod 8 . (E.10)

Subtracting both equations, we get

(3n)2 − 1 ≡ (3n+ 1)(3n− 1) ≡ 0 mod 8 . (E.11)

This follows since we are multiplying two consecutive even numbers, which necessarily

gives a multiple of 8. The two other relations can be proven similarly: (E.8c) follows from

3nk ≡ 1 mod 2 for all k > 0 (since 3n is odd), while (E.8b) follows from

(3n)4φ(3n)−3 ≡ 3n mod 4 . (E.12)

Using these relations, we find that

(2 + 3n)4φ(3n)−1 ≡ 3n(5− 6n) + 2(4φ(3n)−1) mod 24n . (E.13)

We can in fact do better. From Euler’s theorem we have that

(2 + 3n)4φ(3n)−1(2 + 3n) ≡
[
3n(5− 6n) + 2(4φ(3n)−1)

]
(2 + 3n) ≡ 1 mod 24n . (E.14)

Expanding, this leads to

2 · 2(4φ(3n)−1) ≡ 1− (3n)2 mod 24n . (E.15)

As explained above, (3n)2 − 1 is a multiple of 8, so we can try dividing both sides by 2

to get a stronger result. Since gcd(2, 24n) 6= 1 we should not expect that dividing by two

gives a correct result. And indeed, after some trial and error we obtain an ansatz (which

we will prove to be correct momentarily) with a correction term:

2(4φ(3n)−1) ≡ 1

2
(1− 3n2) +

1

2
(3n)(3n2 − 8n+ 13)

≡ 1

2
· (9n3 − 33n2 + 39n+ 1) mod 24n

(E.16)
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for all odd n. Our final result is then that

d ≡ (2 + 3n)−1 ≡ 1

2
(9n3 − 69n2 + 69n+ 1) mod 24n . (E.17)

It is easy to check that d(2 + 3n) ≡ 1 mod 24n for n odd holds, as required.

Using this expression we obtain (again after some simplifications)

η(L(n; 1, 1, 2), s) ≡ 1

24n

(
(6n2 − 2)s3 − (7n2 − 3)s

)
mod 1 . (E.18)

Summarizing, so far we find that a Zn symmetry, with n odd, is anomaly-free if and

only if both ∑

i

[
4s3i − (n2 + 3)si

]
≡ 0 mod 24n (E.19)

and (E.18) vanish modulo integers, when summed over all fermions:

∑

i

[
4s3i − (n2 + 3)si

]
≡
∑

i

[
(6n2 − 2)s3i − (7n2 − 3)si

]
≡ 0 mod 24n . (E.20)

These equations can be simplified: expressing them in terms of k = (n + 1)/2, and

removing an overall factor, they become:

∑

i

[
s3i − (k2 − k + 1)si

]
≡ 0 mod 6(2k − 1) (E.21a)

∑

i

[
(6k2 − 6k + 1)s3i − (7k2 − 7k + 1)si

]
≡ 0 mod 6(2k − 1) . (E.21b)

Subtracting (6k2 − 6k + 1) times the first equation from the second we are led to:

k2(k − 1)2
∑

i

si ≡ 0 mod (2k − 1) . (E.22)

Since gcd(k2(k − 1)2, 2k − 1) = 1,39 we can invert the coefficient, and we obtain the

equivalent equation ∑

i

si ≡ 0 mod (2k − 1) . (E.23)

So we have simplified (E.21) to

∑

i

[
s3i − (k2 − k + 1)si

]
≡ 0 mod 6(2k − 1) (E.24a)

∑

i

si ≡ 0 mod (2k − 1) . (E.24b)

39Clearly k2 and (k − 1)2 do not share any factors, so it suffices to show gcd(k, 2k − 1) = 1 and gcd(k −

1, 2k − 1) = 1 separately. To prove the first relation, assume k = pu, 2k − 1 = pv, for p > 1 a prime and

u, v ∈ Z. We have 2(pu)−1 = pv or equivalently p(2u−v) = 1. But p has no inverse over Z. For the second

relation we proceed similarly: k − 1 = pu, 2k − 1 = pv. Subtracting both equations we learn k = p(v − u),

which is incompatible with k = pu+ 1 unless p = 1.
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or equivalently in terms of n

∑

i

[
s3i −

1

4
(n2 + 3)si

]
≡ 0 mod 6n (E.25a)

∑

i

si ≡ 0 mod n . (E.25b)

which are precisely (4.7b).
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Lausanne, Lausanne, Switzerland (1996).

[65] A. Clément, Integral cohomology of finite Postnikov towers, Ph.D. thesis, Université de

Lausanne, Lausanne, Switzerland (2002).

[66] M. Feshbach, The integral cohomology rings of the classifying spaces of o(n) and so(n),

Indiana Univ. Math. J. 32 (1983) 511.

[67] E. H. Brown, The cohomology of BSOn and BOn with integer coefficients, Proc. Amer.

Math. Soc. 85 (1982) 283.

[68] M. Feshbach, The integral cohomology rings of the classifying spaces of o(n) and so(n),

Indiana Univ, Math. Lett. 32 (1983) 511.

[69] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups.,

Math. Ann. 194 (1971) 197.

[70] A. Kono, On the integral cohomology of bspin(n), J. Math. Kyoto Univ. 26 (1986) 333.

[71] M. Kameko and M. Mimura, On the Rothenberg-Steenrod spectral sequence for the mod 2

cohomology of classifying spaces of spinor groups, arXiv:0904.0800.

[72] S.R. Edwards, On the spin bordism of b(e8 × e8), Illinois J. Math. 35 (1991) 683.
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