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ABSTRACT: Two methods are investigated for interpolating daily minimum and maximum air temper- 
atures (I,,, and T,,,,,) at a 1 km spatial resolution over a large mountainous region (830000 km2) in the 
U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect 
of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neu- 
tral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert 
measured temperatures and elevations to sea-level potential temperatures. The potential temperatures 
were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the ele- 
vation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment 
(LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of 

the potential temperature equation. Cross-validation analyses were performed using the NSA and 
LLRA methods to interpolate Tm,, and T,,,, each day for the 1990 water year, and the methods were 
evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias 
for sites associated with vertical extrapolation. A correction based on clmate statiodgrid cell elevation 
differences was developed and found to successfully remove the bias. The LLRA method was tested 
using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and 
the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 

and 1.3"C), and produced very similar temperature surfaces based on image difference statistics. In 
terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods 
tested. 
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1. INTRODUCTION 

Air temperature is an important input to a variety of 

spatially distributed hydrological and ecological mod- 

els. These models use air temperature to drive 

processes such as  evapotranspiration, snowmelt, soil 

decomposition, and plant productivity. Since most 

near-surface air-temperature data are collected a t  

irregularly spaced point locations rather than over con- 
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tinuous surfaces, the point-based temperatures must 

be accurately distributed over the landscape in order to 

be useful in spatially distributed modeling. The objec- 

tive of this study is to analyze and compare 2 methods 

for interpolating air temperature at high spatial (1 km 

grid) and temporal (daily) resolution over a large 

mountainous region (830 000 km2). The methods were 

selected because of their ability to account for the rela- 

tionship between elevation and temperature, and to 

handle large volumes of data. 

Several methods exist for spatial interpolation of 

point-based data, including inverse-distance weight- 

ing, kriging, 2-dimensional splines, and trend-surface 

regression (Myers 1994). These methods often work 

well over relatively flat, homogeneous terrain. In 

mountainous terrain, however, the strong relationship 

between temperature and elevation precludes a sim- 
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ple interpolation of point-based temperature observa- 

tions. Unless the effect of elevation on temperature is 

explicitly accounted for, an interpolation of tempera- 

ture can produce grossly inaccurate results. For exam- 

ple, in the case where a set of temperature obser- 

vations exist around the base of a mountain, an 

interpolation which ignores elevation would seriously 

overestimate the temperature at  the mountain top, as it 

would not account for the fact that temperature gener- 

ally decreases with increasing elevation. 

An additional problem with point-based tempera- 

ture data is that the locations of meteorological stations 

tend to be biased toward lower elevations. High- 

elevation regions are represented poorly by the spatial 

distribution of most meteorological station networks 

(Robeson 1995). These 2 difficulties-the correlation 

between temperature and elevation, and the skewed 

elevational distribution of temperature-recording sta- 

tions-present a considerable challenge to deriving 

accurate air-temperature surfaces over mountainous 

terrain. 

The data generated in this study were one part of a 

larger database-production and  ecological-modeling 

project. Our task was to derive daily surfaces for mini- 

mum and maximum air temperature at a 1 km grid res- 

olution over a large mountainous region. Given the 

computational size of this task, we limited our choice 

of temperature-interpolation algorithms to a class of 

methods which are  simple to implement and relatively 

fast. These algorithms have both been used in the liter- 

ature but to our knowledge have not been subjected to 

any rigorous accuracy assessment at  high spatial and 

temporal resolution. One algorithm assumes neutral 

atmospheric stability and the other assumes a constant 

linear lapse rate. Our objectives in this study were to 

assess the accuracy of each temperature-interpolation 

algorithm, and to determine, if possible, which algo- 

rithm is the better one to use based on simplicity, 

speed,  and accuracy. 

2. STUDY AREA 

The study area encompassed the Columbia River 

Basin, an  area of approximately 670000 km2 in the 

northwest U.S. and southwestern Canada,  plus the 

coastal areas of Oregon and Washington (Fig l ) ,  mak- 

ing a total area of about 830 000 km2. The terrain of this 

region is heterogeneous and includes 3 mountain 

ranges (the Pacific Coast Range, the Cascade Range, 

and  the Rocky Mountains) as well as relatively flat 

regions (the Willamette Valley, the Columbia Plateau, 

the Snake River Valley, and the Puget Trough). 

The study area was represented by a 15-arc-second 

digital elevation model (DEM) (S. Jensen, US Geologi- 

cal Survey, EROS Data Center, pers. comm. 1989). The 

DEM was projected to an  Albers equal-area conic map 

projection and resampled to 1 km resolution using the 

Image Processing Workbench software package (Frew 

1990, Longley et  al. 1992). 

2.1. Meteorological station data 

The temperature data used in this analysis came 

from a combined set of SNOTEL, USDA Forest Service, 

and Canadian meteorological stations (USDA-SCS 

1988, EarthInfo 1990, Environment Canada 1989). 

These stations provide daily measurements of mini- 

mum and maximum temperature (T,,, and T,,,,,, re- 

spectively) for sites specified by location and  elevation. 

Most of the station measurements were made with 

high-quality electronic thermistors, which have a typl- 

cal calibration accuracy of +OS°C, with a measure- 

ment precision of 0 . l0C (USDA 1989, Marks et al. 

1992). Some of the stations, however, were manually 

operated and provided measurement precisions as 

coarse as 0.2B°C (O.S°F). The time period considered in 

this analysis is the 1990 water year (October 1,  1989 to 

September 30, 1990). 1990 was chosen because it rep- 

resents a climatologically 'typical' year based on the 

historical climate record (Greenland 1994), and 

because it coincides with a comprehensive database of 

AVHRR satellite imagery (EROS Data Center 1991). 

The temperature data were checked extensively for 

impossible and implausible values (Davidson 1996, 

p. 127) and for excessive amounts of missing values. 

Stations with more than 100 days of missing data were 

not considered in the analysis, nor were stations with 

reported elevations that differed from their corre- 

sponding DEM elevations by more than 500 m, making 

a total of 907 stations, 679 of which are  within the study 

area boundaries. 1.37% of the daily temperature 

observations consisted of missing values. The spatial 

distribution of meteorological stations is shown in 

Fig. 1. Fig. 2 shows the distribution of elevations for the 

station data and for the DEM cells within the study 

area. It is clear from this figure that there are  propor- 

tionally more low-elevation stations than there are  

low-elevation DEM cells in the study area. 

3. INCORPORATING ELEVATION EFFECTS ON 

AIR TEMPERATURE 

The main difficulty in accurately interpolating tem- 

perature data in mountainous terrain is the effect of 

elevation on temperature. Mountains, acting as physi- 

cal barriers, force air to move vertically, a process 

called orographic uplift. When an air parcel rises, it 
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Fig. 1. Shaded-relief map of a 1 km DEM (digital elevation model) over the Columbia River Basin study area (828 595 km2) north- 
western U.S. and Canada. Crosses denote meteorological station locations (907 total, 679 within the study area). Map projection 

is Albers equal-area conic 

expands and cools. If no heat is exchanged with the 

outside system, this cooling is termed adiabatic. The 

rate at which air cools with elevation change, the lapse 
rate, varies from about -9.8"C km-' for dry air (the dry 

adiabatic lapse rate) to about -4.0°C km-' for very 

warm saturated air (the saturated adiabatic lapse rate) 

(Barry & Chorley 1987, p. 76). The lapse rate is seldom 

purely adiabatic due to outside heat exchange caused 

by radiational heating or cooling at the surface, hon- 

zontal mixing (advection) of air masses, and evapora- 

tion or condensation of moisture. The actual lapse rate 

at a given place and time is termed the environmental 
lapse rate. A typical value used for the global mean 

environmental lapse rate is -6.5"C km-' (Barry & Chor- 

ley 1987, p. 56). 

Several methods exist in the literature for dealing 

with elevation effects when interpolating temperature. 

One method is to compute temperature deviations, 

also called anomalies, by subtracting a monthly or 

annual mean from each temperature observation and 

then to interpolate the temperature anomaly data 

rather than the raw temperatures. This method does a 

good job at removing elevation effects in the investiga- 

tion of temperature trends over time (Robeson 1993), 

however it is not well-suited to ecological or hydrolog- 

ical applications where the actual temperatures are of 

interest rather than the temperature anomalies. 

Another method, climatologically aided interpola- 

tion (CAI), is related to the anomaly approach (Robe- 

son 1993, Willmott & Robeson 1995). CA1 involves 

computing temperature anomalies at each station, 

interpolating the anomalies, and using the interpolated 

anomaly surface to modulate a climatology (a pre- 

existing surface of long-term mean temperatures). 

Robeson (1993) employs CA1 to create mean annual 

temperature surfaces for the land area of the globe, 

using the Legates & Willmott (1990) temperature data 

set as the climatology. Two disadvantages to this 
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method are first, that the climatology surface often 

does not account for elevation, as is the case for the 

Legates & Willmott (1990) climatology, and second, 

that high-quality climatologies may not exist for a 

given region of interest, especially at  higher spatial 

and temporal resolutions. 

Hutchinson (1989) uses multi-dimensional thin-plate 

splines to fit temperature surfaces to 3 variables-lati- 

tude, longitude, and elevation-over the Australian 

continent. This approach creates a smooth surface of 

temperatures by minimizing the roughness of the 

interpolated surface. Hutchinson estimates a smooth- 

ing parameter by minimizing the generalized cross- 

validation errors of the f~t ted surface. The thin-plate 

spline method is reported to work as well as kriging 

while requiring less parameterization, however thin- 

plate splines are computationally demanding and com- 

plicated to implement. 

The creators of the IIASA database (Leemans & 

Cramer 1991) use a simpler technique for incorporat- 

ing elevation effects. Temperature values were first 

normalized to sea-level equivalents, using the station 

elevation and a constant linear lapse rate adjustment of 

-6.0°C km-'. The adjusted sea-level temperatures 

were then interpolated using a combination triangula- 

tion/smooth surface fitting approach. Finally, the inter- 

polated sea-level temperatures were adjusted back to 

actual temperatures using the same lapse rate function 

and a surface of elevation values stored in a DEM. 

Based on visual inspection and comparison with the 

Legates & Willmott database (1990), Leemans & 

Cramer (1991) conclude that their temperature sur- 

faces do a good job at resolving temperature features 

in mountainous regions. However, they also note that 

certain high-altitude and data-sparse regions (e.g. the 

Tibetan Plateau) are consistently colder than expected, 

possibly because of over-estimating the magnitude of 

the lapse rate in these regions. No rigorous accuracy 

assessment is performed. 

Willmott & Matsuura (1995) explore 2 methods for 

incorporating elevation effects. Their first method, 

g 5 t o  Fig. 2. Histograms of eleva- 
tion for all meteorological 

stations (solid bars) and all 
DEM cells within the study 

area (dashed bars) 

'topographically informed interpolation', is essentially 

the same as the Leemans & Cramer (1991) method 

above, except for a different lapse rate (-6.5"C km-') 

and spatial interpolation algorithm (a form of inverse- 

distance weighting using spherical geometry). The 

second method, 'topographically and climatologically 

informed interpolation', combines their first method 

with the CA1 method described above (Robeson 1993, 

Willmott & Robeson 1995). Willmott & Matsuura per- 

form a detailed accuracy assessment based on cross- 

validated interpolation errors for annual average air 

temperatures in the United States from 1920 to 1987. 

They find that their methods are considerably more 

accurate than simpler interpolation methods, with the 

topographically and climatologically informed interpo- 

lation method performing best. 

Marks (1990) presents a method for elevation correc- 

tion that is similar to, but slightly more complicated 

than, the linear lapse rate adjustment used by Lee- 

mans & Cramer (1991) and Willmott & Matsuura 

(1995). The basic procedure is the same: temperature 

observations are adjusted to sea-level equivalents; the 

sea-level temperatures are interpolated; and the sur- 

face of sea-level temperatures is converted to actual 

temperatures by mapping it to the elevations of a DEM 

surface. The difference here is in the way actual tem- 

peratures are adjusted to sea-level: instead of using a 

constant linear adjustment based on elevation and 

lapse rate, Marks employs the hydrostatic equation 

(Byers 1974, p. 82-85) to estimate air pressure at each 

station based on the station's elevation. The station 

temperature and pressure are then used, under an 

assumption of neutral atmospheric stability, in the 

potential temperature equation (Barry & Chorley 1987, 

p. 77) to compute sea-level potential temperatures. 

This approach has been implemented by Dolph et al. 

(1992), Marks et al. (1993), and Phillips & Marks (1996) 

to create temperature surfaces used in spatially distrib- 

uted hydrological modeling, however these studies 

focus on modeling potential evapotranspiration and 

not specifically on the interpolation methods used to 
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create the model inputs. An in-depth assessment of the 

method's accuracy has not been done. 

Given the size of our temperature interpolation task, 

w e  decided against a thin-plate spline approach due to 

its computational complexity. We rejected the CA1 

method due to the lack of a pre-existing high-resolu- 

tion climatology suitable for use at a daily time step. 

We also rejected the anomaly approach because the 

actual temperature data, rather than the deviations, 

were of interest. We felt that the class of methods 

which convert temperatures to sea-level reference 

temperatures, interpolate, and then convert back to 

actual temperatures showed the most promise in terms 

of both computational feasibility and accounting for 

elevation effects. Therefore for this study we chose the 

constant linear lapse rate adjustment employed by 

Leemans & Cramer (1991) and Willmott & Matsuura 

(1995), and the neutral stability assumption procedure 

used by Marks (1990). We will refer to the former as 

Linear Lapse Rate Adjustment (LLRA), and the latter as 

the Neutral Stability Algorithm (NSA). 

For the spatial interpolation step in the LLRA and NSA 

methods, we chose inverse-squared-distance interpola- 

tion (Isaaks & Srivastava 1989) for its speed, simplicity, 

and ease of implementation. Inverse-squared-distance 

interpolation is part of a general class of Inverse Distance 

Weighting interpolators, and will be referred to as IDW. 

Note that Leemans & Cramer did not use IDW in their 

implementation of LLRA, and that Willmott & Matsuura 

used a different, more sophisticated form of IDW in their 

work. We use simple IDW here in order to more easily 

compare results from the LLRA and NSA methods. 

4. THE NEUTRAL STABILITY ALGORITHM (NSA) 

The overall procedure of the NSA is: convert air tem- 

perature measurements (T,) to sea-level potential tem- 

peratures (O,), spatially interpolate 0, points to a grid 

surface, and use the inverse of the potential tempera- 

ture function to map the @, surface to DEM elevations. 

This procedure assumes that the atmosphere in the 

vicinity of a measurement site is neutrally stable. Neu- 

tral atmospheric stability implies that O, is effectively 

the same for neighboring grid cells regardless of their 

elevations. Note that the atmosphere is, strictly speak- 

ing, not often neutrally stable. Neutral stability is a 

simplifying assumption which enables the processing 

of large volumes of data. 

Air temperatures T, (K) were converted to potential 

temperatures O, (K) :  

where PO is 1.0 X 105 Pa (approximately sea-level pres- 

sure), P, is the air pressure (Pa) at elevation z (m), R is 

the gas constant (8.3143 J mol-' K-'), m is the molecu- 

lar weight of dry air (0.02897 kg  mol-'), and  C,, is the 

specific heat of dry air at  constant pressure (1005 J kg-' 

K-'). 

Measurement site elevations were used to derive the 

air pressures using a form of the hydrostatic equation 

(Byers 1974, Barry & Chorley 1987): 

where Tb is an assumed sea level temperature (300 K), 

h is an  assumed temperature lapse rate (-0.0065 K 

m-'), z is the station elevation (m), and g is the acceler- 

ation due  to gravity (9.80616 m S-'). This form of the 

hydrostatic equation uses a constant lapse rate in order 

to compute pressure, however when combined with 

the potential temperature equation the effective lapse 

rate is variable and tends to decrease in magnitude 

with increasing elevation or decreasing temperature. 

We performed a short sensitivity analysis of the NSA 

method to the parameters h and Tb. Assuming a station 

at  1500 m elevation with T, values of -10.0 and 10.O°C, 

we used NSA to derive neighboring T, values at 0 ,500,  

1000, 2000, 2500, and 3000 m elevations. We used a 

range of values for h (-0.002 to -0.010 K m-') and Tb 

(290 to 310 K), and compared the predicted T, values 

to those using NSA with our assumed defaults of 

-0.0065 K m-' for h, and 300 K for Tb. For most combi- 

nations of k and Tb, the final Ta values differed by no 

more than 0.5"C from the NSA using default parame- 

ters, and these discrepancies occurred at  only the 

largest vertical extrapolations (station elevation * 
1500 m).  Two combinations of parameters ( h =  -0.010 K 

m-2, T, = 290 K) and (h = -0.002 K m-2, T, = 310 K )  pro- 

duced larger discrepancies (up to l.O°C), again only at  

(station elevation * 1500 m). At elevations closer to sta- 

tion elevation, NSA was less sensitive to the h and  Tb 

parameters. 

4.1. The spatial interpolation algorithm 

Potential temperatures at the meteorological station 

locations were interpolated to the geographic grid 

spacing of the DEM data using a simple inverse dis- 

tance weighting (IDW) approach. Within the general 

class of IDW methods, we used an  inverse-squared- 

distance weighting function and a neighborhood size 

of 8 (i.e. the 8 nearest neighbors). We decided that 8 

was  a reasonable number of neighbors to use in terms 

of reducing computation time while maintaining a 

smooth surface. From our experience with inverse- 

squared-distance interpolation, moving beyond 5 or 6 

neighbors adds little additional information. 

Due to the uneven density of stations across the 

study area,  a maximum neighbor distance threshold 
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was not used. In the case where some neighbors are 

very far from the interpolation point, the l / d 2  weight- 

ing function ensures that distant stations receive pro- 

portionally little weight. When a missing value was 

encountered during the interpolation, that station was 

ignored and the nearest 8 stations with valid data were 

used. 

The IDW interpolation is: 

V,, = [X,(V;/~~~)]/[Z,(~.O/~;~)] (3) 

where V,, is the interpolated value at a grid cell, v, is 

the measured value of the ith nearest neighbor, and d, 

is the distance to the i th nearest neighbor. In the case 

where d = 0.0 for a particular vi, Vgc is assigned the 

value of v,, making IDW an  exact interpolator. 

The IDW interpolation algorithm was chosen 

because it is simple, relatively fast, and easy to imple- 

ment. Robeson (1994) investigated 3 methods of spa- 

tially interpolating temperature anomaly data and 

found that, on average, the inverse-distance method 

gave about the same results as the other 2 methods, tri- 

angulated surface patches and thin-plate splines. 

Using a subset of the Columbia River Basin data set 

and a 10 km grid cell resolution, we compared the re- 

sults of interpolating potential temperatures by kriging 

(Phillips & Marks 1996) versus IDW (Table 1). The krig- 

ing method tended to smooth the data slightly by re- 

ducing the extreme values, however the surfaces inter- 

polated by kriging and IDW were very similar, with 

mean absolute pixel differences of 0214°C or less be- 

tween predicted 0, for each of the days during which 

the comparison was made. The similarity between the 

kriging and IDW results is a compelling argument in 

favor of the simpler and faster IDW method. 

4.2. The cold bias 

The interpolated surfaces of O, were converted back 

to air temperature (T,) by inverting Eq. (1) and using 

the DEM surface to map 0, to the elevations of the 

DEM grid. A typical air temperature surface made by 

NSA (minimum temperature on January 1, 1990) is 

shown in Fig. 3. The general spatial pattern of temper- 

atures is intuitively consistent. Low elevations (coastal 

areas, intenor valleys) tend to be warmer than h ~ g h  

elevations, and inland areas have cooler minimum 

temperature values than coastal areas. However, 

closer examination revealed that the estimated tem- 

peratures for some mountain cells were far cooler than 

expected. Daily temperatures for selected cells were 

plotted for the entire year and indicated a possible bias 

in the interpolated surfaces. For example, a cell in the 

Olympic Peninsula at 2080 m elevation had an  average 

annual T,,, of -3.9"C (median = -4.5"C). The average 

Table 1. Comparison of potential temperature interpolation 

using kriging and inverse-distance weighting (IDW) on 743 

station values to estimate 5693 ten km grid cells for the U.S. 

portion of the Columbia River Basin. Data are from Phillips & 
Marks (1996). Units are 'C. MPD. mean pixel difference; 

MAPD: mean absolute pixel difference. Pixel differences were 

computed as (IDW surface minus kriging surface) 

Kriging IDW 

January 10,1990 

Min. 2.94 -3.69 

Max. 21.97 24.84 

Median 11.97 11.82 

Mean 11.91 11.87 

S D 4.36 4.47 

MPD -0.04 
MAPD 0.54 

April 5, 1990 

Min. 

Max. 

Median 

Mean 

SD 

MPD 
MAPD 

August 3, 1990 
Min. 

Max. 
Median 

Mean 

S D 
MPD -0.02 

MAPD 0.49 

summer T,,, (June, July, August) was 3.2"C (median = 

2.8"C). Over the entire year, 256 days had a T,,, less 

than O.O°C. For comparison purposes, we looked at 

T,,, statistics for the nearest comparable station. The 

station with the most similar elevation and latitude to 

the Olympic Peninsula grid cell was in western Mon- 

tana at an elevation of 2103 m and a latitude 35 km 

south of the grid cell's latitude. For this station, the 

mean T,,, was 7.2"C; the mean summer T,,, was 

17.1°C, and the number of sub-zero T,,, days was 102. 

The Olympic Peninsula grid cell was rather extreme, 

but many other high-elevation cells exhibited similar 

behavior and led us to suspect some sort of bias in the 

NSA temperature surfaces. 

5. CROSS-VALIDATION ANALYSIS OF THE NSA 

In order to assess the accuracy of the NSA, we per- 

formed a cross-validation analys~s using all stations 

within the study area (n  = 679), and interpolating both 

Tmi, and T,,, each day for the entire year. The cross- 

validation procedure was as follows: For each meteoro- 
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Fig. 3. Map of minimum temperature on January 1, 1990, interpolated with the neutral stability algorithm 

logical station point, find the DEM grid cell that con- 

tains the station location and estimate Tmin and T,,, for 

each day of the year from the nearest 8 stations which 

are outside the grid cell. Compute the interpolation 

error (IE) as the observed temperature (at the station 

inside the grid cell) minus the interpolated tempera- 

ture (interpolated from the 8 stations outside the grid 

cell). Note that the DEM cell and the station it contains 

do not necessarily have identical elevations. The mean 

elevation difference (DEM - station) is 32 m (standard 

deviation = 98 m). 
The cross-validation analysis produced, for each of 

the 679 stations, 365 interpolation errors for both T,, 

and T,,,. Fig. 4a shows the cross-validation results for 

a high-elevation (2286 m) station in southern Idaho. 

The interpolated value (dashed line) is consistently 

lower than the known temperature (solid line) 

throughout the year. The interpolation error (observed 

minus interpolated value) for this point is graphed in 

Fig. 4b. While there is considerable noise in the signal 

of daily interpolation error, it is clear that this point is, 

in general, being predicted too cold. Rather than deal 

with the noisy daily errors, in the following analyses 

we use the mean annual interpolation errors for T,,, 

and T,,, (2 sets of 679 values). These 2 sets of mean 

annual errors were combined into a single data set (n = 

1358). 

A histogram of the mean annual interpolation errors 

(Fig. 5) shows a relatively symmetrical distribution 

centered near zero with a mean value of 0.22OC (i.e. on 

average, each point was predicted 0.22"C too cold). A 

plot of station elevation versus interpolation error 

(Fig. 6) shows a very weak positive relationship for ele- 

vation values above about 1000 m, but in general the 

relationship between elevation and interpolation error 

is nonexistent. 

5.1. The A Z  measure 

A map of the T,,, interpolation errors (Fig. 7) shows 

a few spatlal patterns of interest. A band of relatively 

high-magnitude errors occurs along the Cascade 

Range, while the interior valleys have mostly low-mag- 
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Day of water year 1990 

b 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Day of water year 1990 

Fig. 4 (a)  Daily minimum temperature for a representative high-elevation meteorological station In southern Idaho (2286 m). The 
solid line 1s the observed temperature and the dashed line is the cross-validated interpolated temperature using the NSA method. 

(b)  Dady ~nterpolation error (observed minus cross-validated interpolated temperature) for the station depicted In (a) 

Mean annual interpolation error (deg C) 

Fig. 5. Histogram of NSA mean annual interpolation error (observed minus cross-validated interpolated temperature) for 
combined T,,, and T,,,, over the 679 stations within the study area 

nitude errors. The mountains of central Idaho tend to 

have errors at about the same magnitude as those in 

the Cascades, even though the Cascades have lower 

elevations. It appears that the interpolation errors are 

related to changes in elevation across the landscape 

rather than to absolute magnitudes of elevation. 

These spatial patterns of interpolation error led to 

the development of a measure we call AZ, which is the 

difference between a DEM grid-cell elevation and the 

weighted mean of the DEM elevations of a neighbor- 

ing set of stations: 

where Zg, is the DEM elevation (m) of the grid cell 

under consideration, zj is the DEM elevation of the ith 

nearest station (1  = 1 to 8), and di is the distance to the 

i th nearest station. The purpose of the AZmeasure is to 

quantitatively flag regions of the study area which are 

likely to be susceptible to interpolation error. Grid cells 

with high positive (negative) values of AZ are cells 

which are much higher (lower) in elevation than the 

neighboring stations used for interpolating tempera- 
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Elevation (m) 

Fig. 6. Station elevation versus mean annual interpolation error for comb~ned T,, and T,,, over the 679 study area stations 

Obsetmd rnlnus ~nlarpolatwl Tmin (deg Cl 

e 9  0 -9 

6 0 -6 

3 0 -3 

Star~ons w ~ t h  a b W a  err- 
less than  0.5 deg C 

Fig. 7. Map of mean annual interpolation error for Tmi,. Circle diameters are proportional to error magnitude. Errors less than 
+0.5"C are denoted by a cross 

ture, and therefore represent areas where significant Cells with low-magnitude values of AZare at about the 

vertical extrapolation occurs when potential tempera- same elevation as neighboring stations and are not 

tures are  converted to DEM-elevation temperatures. expected to have serious problen~s associated with 

We suspect that it is this type of extrapolation that is extrapolation. 

responsible for the very cold temperatures observed in Fig. 8 shows the spatial distribution of AZ across 

the initial set of interpolated temperature surfaces. the study area. As expected, we see high positive AZ 
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Fig. 8. Map of AZ (grid cell elevation minus we~ghted mean station elevation). Positive AZ values denote grid cells which are 

higher in elevation than the nearest 8 meteorological stations; negative AZ denotes cells which are lower than the 8 neighboring 

stations. 

values associated with mountain tops, e .g .  Mount 

Rainier (DEM elevation = 4210 m; AZ = 2739 m) 

and  Mount Adams (DEM elevation 3650 m; AZ = 

2446 m). A more interesting, and less obvious, pat- 

tern is the  large group of very high AZ values in the 

mountains of Washington's Olympic Peninsula. Only 

a few grid cells in the Olympic Mountains have ele- 

vations above 2000 m, yet most of the AZ values for 

these cells are  extreme (greater than 1000 m). This is 

due  to the fact that these mountains are  devoid of 

any meteorological stations and are  surrounded by 

stations very close to sea level (the highest neighbor- 

ing station 1s at  134 m) .  As for areas which are lower 

than neighboring stations, the high-magnitude nega- 

tive AZ values in Fig. 8 are  fewer in number and are  

mostly confined to valley bottoms and narrow 

canyons. 

If we compute a AZ value for each grid cell that con- 

tains a meteorological station, while ignoring the sta- 

tion within that gnd  cell, then the resulting set of AZ 

values corresponds to the situation in which we 

ignored a station during the cross-validation of tem- 

perature interpolations. We will denote these values as 

CVAZ. When the CVAZ are  plotted against the inter- 

polation errors, we see an  obvious and relatively 

strong positive relationship (Fig. 9a).  

The relationship depicted in Fig. 9a confirn~s our 

suspicion of a bias: high positive values of AZ tend to 

have high positive interpolation errors (i.e. tend to be 

predicted too cold). Fig. 9a also shows that the con- 

verse is true: high negative values of AZ tend to be 

predicted too warm. A simple linear regression of 

CVAZ on interpolation error (IE) yields a meaningful 

fit (R2 = 0.43) and the following equation: IE = 0.297 + 
0.004449(CVAZ) (n = 1358) Thus the interpolation 

errors tend to increase 4.449"C for each 1000 m 

increase in AZ. Note that spatial autocorrelation in 

the temperature data prevents the unbiased assess- 

ment of statistical significance in the regression 

analysis. 
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Cross-validated delta2 (m) 

3 

Cross-validated delta2 (m) 

Interpolation error (deg. C) 

Fig. 9. (a) CVAZ versus mean annual interpolation error for the unadjusted NSA method, with a linear regression line (dashed). 
Data are combined T,,,, and T,,, from 679 stations (n = 1358). The regression equation was: IE = 0.297 + 0.004449 CVAZ (R2 = 

0.43). (b) CVAZversus mean annual interpolation error for the bias-corrected NSA method, with a linear regression line (dashed). 
The regression equation was: IE = 0.297 - 0.0000003 CVAZ (R2 = 0.00). (C) Histograms of mean annual interpolation error for NSA: 

uncorrected (dashed bars, mean = 0.21, MAE = 1.58) and bias-corrected (solid bars, mean = 0.30, MAE = 1.27) 

To remove the interpolation bias, we used the slope 

of the regression above1 as a bias correction factor 

(BCF). The cross-validated temperature estimates 

were adjusted by 4.44g°C for each km of CVAZ. These 

adjusted temperatures were subtracted from the 

observed data to obtain adjusted interpolation errors, 

which were plotted against CVAZ in Fig. 9b. A visual 

inspection of this figure reveals no apparent relation- 

ship, and a regression of CVAZ on adjusted interpola- 

'The intercept is assumed zero so that known data values 
(where AZ is zero) are not altered during the bias correction 
procedure described in Section 5.2 

tion error yields a n  R2 of 0.0. The histogram of adjusted 

interpolation errors (Fig. 9c) shows that the bias cor- 

rection resulted in a modest increase of interpolation 

accuracy. When compared to the raw, unadjusted 

errors, the solid histogram of Fig. 9c has smaller tails 

(fewer large errors) and larger central bars (more small 

errors) than the dashed histogram. Mean absolute 

error (MAE) decreased from 1.58 to 1.27"C, and the 

standard deviation decreased from 2.28 to 1.73"C). 

The above BCF (4.44goC km-') was computed using 

temperatures over a n  entire year and  over a large geo- 

graphic region. To assess the stability of the correction 

factor in space and time, it was  re-computed using 
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Table 2 Regress~on and ~nterpolahon error (IE) statlstlcs for spa- 

tial and  temporal subsets of the study area ,  for each ~nterpola-  

tion method The 'lnt , 'Slope', and R2  columns pertaln to the 

intercept, slope, and f ~ t  of the regression where cross-vahdated 

AZ IS used to predict IE IE pertains to mean ~nterpolahon error 

for pooled dally T,, and T ,,,, 'IE,,,' and 'IE,,d,,' a re  the mean 

absolute error and standard dev~at ion  of IE, respectively Error 

standard devia t~on IS also known as  root mean square error 

(RMSE) Slope unlts a r e  ("C km-'), Int and  IE unlts a re  ("C) 

SubseUMethod Int. Slope IE~AAE IEstdev 

NSA-raw 
Daily, e n t ~ r e  study area 0.30 4.45 0 43 1.58 2.28 

Monthly, entire study area 0.29 4.51 0.43 1.59 2.30 

Daily, J an  0.31 3.42 0.29 1.51 2.14 
Daily, Aug 0.29 5.10 0.45 1.75 2.52 
Dally, Oct-Mar 0.30 3 78 0.36 1 4 5  2.10 
Daily, Sep-Apr 0.29 5.12 0.46 1.76 2.53 

Dally, NW quadrant 0.25 4.62 0.52 1.40 2.05 
Dally, NE quadrant 0.34 3.79 0.46 1.46 2.08 
Dally, SW quadrant 0.37 4.90 0.44 1.67 2.39 
Dally, SE quadrant 0.25 4.57 0.35 1.78 2.55 

NSA-adj 
Daily, entire study area  0.30 0 00 0.00 1.27 1.73 
Monthly, entire study area  0.29 0.00 0.00 1.28 1.73 

Dally, J an  0.31 -1 03 0.03 1.41 1.84 
Dally, Aug 0.29 0 65 0 01 1.33 1.88 
Dally, Oct-Mar 0.30 -0.67 0 02 1.26 1.69 

Dally, Sep-Apr 0.29 0.67 0 01 1.36 1 8 7  
Dally, NW quadrant 0.25 0.17 0 00 1.02 1.42 
Dally, NE quadrant 0 34 -0.65 0 02 1.21 1 5 5  

Dally, SW quadrant 0 37 0.45 0 01 1.35 1 8 1  
Dally, SE quadrant 0 25 0.12 0.00 1.51 2.05 

LLRA3.9 
Dally, entire study area 0 13 -0 96 0 03 1.30 l 75 
Monthly, entire study area 0 14 -0 91 0 03 1.31 1.75 

Dally, J a n  0.15 -2.02 0.12 1.47 1.93 

Daily, Aug 013-0 .06  0 0 0  1.31 1 8 3  
Dally, Oct-Mar 0 14 -1.55 0 09 1.30 1.75 

Dally, Sep-Apr 0.13 -0 37 0 00 1.37 1.85 
Daily, NW quadrant 0.08 -0.72 0.03 1.02 1.41 

Dally, NE quadrant 0 13 -1.61 0.13 1.26 1.64 

Dally, SW quadrant 0.22 -0.52 0 01 1.38 1.81 
Dally, SE quadrant 0.13 -0.90 0.02 1.56 2.07 

LLRA4.8 
Daily, e n t ~ r e  study area 0.17 0.00 0 00 1.26 1.72 
Monthly, e n t ~ r e  study area 0.17 0.06 0 00 1.26 1.73 

Daily, J a n  0.18 -1 04 0.04 1.40 1.85 
Daily, Aug 0.16 0.84 0.02 1.30 1.86 
Daily, Oct-Mar 0.17 -0 59 0.01 1.23 1.68 

Daily, Sep-Apr 0 1 6  0 5 9  0 0 1  134  1 8 6  
Daily, NW quadrant 0 1 1  024  0.00 1 0 0  1.40 

Daily. NE quadrant 0 1 7 - 0 6 4  0.02 1.17 1.55 
Dally, SW quadrant 0 25 0 44 0.01 134 1.81 

Dally, SE quadrant 0 1 5  0.05 0.00 1.51 2 0 5  

LLRA6.5 
Dally, entire study area 0.22 1 61 0 09 1 26 1 81 
Monthly, entire study area 0 22 l 67 0 09 1 27 1.82 

Dally, J an  0 23 0.57 0.01 1.36 1 82 
Dally, Aug 0 21 2.45 0.16 1.38 2.01 
Dally, Oct-~Var  0 2 3  1.02 004  1.20 171  

Dally, Sep-Apr 0.21 2.20 0.14 1.39 2.00 
Dally, NW quadrant 0.17 1.84 0 1 5  1.05 1.53 

Daily, NE quadrant 0.24 0.98 0 05 1.13 1 5 8  
Daily, SW quadrant 0.30 2.05 0.12 1.36 1.92 

Dally, SE quadrant 0.20 1.67 0 07 1.50 2 13 

smaller time periods and spatial subsets of the study area 

(Table 2,  'NSA-raw'). The BCF did not change by more 

than about l.O°C km-' when computed over just the 

warm months (April to September), the cold months (Oc- 

tober to March), the warmest month (August), and the 

coolest month (January). When computed using mean 

monthly temperatures instead of daily temperatures (re- 

ducing the computation time by a factor of 30), the BCF 

differed by only 0.064"C km-'. When the study area was 

partitioned spatially into quadrants (using the median of 

the X,Y station coordinates to define the quadrants), the 

BCF was stable to within 0.65"C km-'. 

5.2. Bias-correcting the interpolated NSA 

temperatures 

Since the bias correction of the cross-validated tem- 

perature estimates was successful and the correction 

factor appeared to be fairly stable over space and time, 

we applied the procedure to the daily temperature sur- 

faces. The bias correction of interpolated temperature 

for a given grid cell is: 

Tddl = Traw + BCF(AZ) (5) 

where Tadl is the temperature ("C) adjusted for bias 

correction, T,,,, is the raw temperature ("C) interpo- 

lated with NSA, BCF is the bias correction factor 

(0.004449"C m-') and AZis the AZvalue (m) of the grid 

cell. The AZ measure works well as a basis for adjust- 

ing temperatures for 2 reasons. First, the AZ surface is 

relatively smooth and continuous, thus a correction 

based on AZ wlll tend to produce a surface free of 

sharp breaks and discontinuities. This is desirable 

since air temperature varies smoothly over space. The 

second reason that AZ works well is that the correction 

will not alter known data points. We ensured this by 

setting the intercept value from the regression in 

Fig. 9a (0.297"C) to zero. Grid cells that contain a sta- 

tion point will have a AZvalue near zero, since the con- 

tained station will dominate the l ld2  weight computa- 

tion. Therefore the bias correction at these cells ( l  e .  

the value added to T,,,,) will be near zero. 

6. THE LINEAR LAPSE RATE ADJUSTMENT 

(LLRA) METHOD 

The LLRA analysis was done in order to answer 2 

questions. First, is the NSA method, with its additional 

amount of computational complexity and its bias, any 

more accurate than the simpler LLRA method and 

therefore worth the trouble of bias correction? Second, 

will the bias occur with the LLRA method or is it strictly 

a problem with NSA? 
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The LLRA method involves the same procedure as 

the NSA, except that instead of using Eqs. (1) and (2) to 

compute potential temperatures, the following equa- 

tion is used to con~pute  sea-level reference tempera- 

tures (T,,): 

where TSI is the sea-level reference temperature ("C), 

T, is the measured air temperature ("C), h is the lapse 

rate ("C km-') ,  and z is the station elevation (km).  The 

only parameter that needs to be determined is h. 

6.1. Choosing the lapse rate 

The observed bias in the NSA method occurs pre- 

sumably because the NSA lapse rate is too steep. The 

effective lapse rate used by NSA varies with tempera- 

ture and elevation, but is usually within about a degree 

of the dry adiabatic lapse rate (DALR) of -9.8"C km-'. 

Thus it would seen1 that an optimal lapse rate exists, 

less steep than the DALR, which would not cause a 

bias in the interpolated temperature surfaces. Since 

there are many ways to empirically derive a lapse rate 

from a set of observed air temperatures and elevations, 

we initially used 2 approaches for deriving h and per- 

formed a cross-validation analysis on each approach. 

In the first approach, T,,, and T,,, were used to 

compute mean annual temperature (Tan,) for all sta- 

tions which had no missing values for T,,, or T,,, (n = 

669). Station elevation (Z, in meters) was regressed on 

Tan,, resulting in a reasonably strong fit (R2 = 0.72) and 

the following equation: Tan, = 12.18 - 0.003931Z 

(Fig. 10). The regression slope (-3.93l0C km-') was 

taken as the lapse rate. 

The Tann/elevation regression approach aggregates 

the data spatially and temporally and computes a sin- 

gle lapse rate. The second method used a less aggre- 

gated approach to compute a large number of regional 

monthly lapse rates. For the same set of 669 stations, 

elevation was regressed on monthly mean T,,, and 

T,,, using a moving spatial window which considered 

all stations within a 100 km radius. The 100 km thresh- 

old was chosen as a distance small enough to represent 

a relatively local area yet large enough to produce a 

reasonable sample size for bivariate regression. The 

sample sizes ranged from 1 to 41, with a mean of 19.5. 

For a particular regression to be included in the calcu- 

lation of the overall lapse rate, we considered only 

those with sample sizes of at least 10 and with R2 val- 

ues of at  least 0.7, where 0.7 was chosen as a threshold 

for a meaningful relationship. The constraint on sam- 

ple size brings the total number of stations available for 

this analysis down to 605. 

The local regressions were run on each valid station, 

for each month, for both T,,, and T,,,. The slopes 

(lapse rates) for all regressions which satisfied the 

0.7 threshold were averaged in order to produce a 

single lapse rate estimate for the region of -6.506"C 

km-'. The T,,, data produced a larger number of valid 

regressions (where > 0.7) than did the T,,, data. The 

mean number of valid regressions per month (out of a 

possible 605) was 167 for T,, and 390 for T,,,. These 

numbers suggest that, at a region size of 100 km, the 

T,,, lapse rate is more stable over space than that of 

T,,,. One possible explanation for this is that T,,, is 

more susceptible to cold air drainage effects which 

would tend to create local temperature inversions and 

confound the elevation/temperature relationship with- 

in the moving spatial window. 

6.2. Cross-validation analysis of LLRA 

Given the 2 derived lapse rates of -3.931 and 

-6.506"C km-', we performed cross-validation analy- 

ses on the LLRA method just as was done with NSA. 

Elevation (m) 

Fig. 10. Elevation versus mean annual temperature for all stations with no missing values (n = 669), with a hnear regression line 
(dashed). The regression equation was: Tan, = 12.18 - 0.0039312 (R2 = 0.72) 
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Cross-validated delta2 (m) 

Interpolation error (deg. C) 

Fig. 11 (a) CVAZ versus mean annual interpolation error for the LLRA3.9 method, with a linear regression line (dashed). Data 
are combined T,,, and T,,, from 679 stations (n = 1358). The regression equation was: IE = 0.135 - 0.00096CVAZ (R2 = 0.03). 

( b )  Histogram of mean annual interpolat~on error for LLRA3 9 (mean = 0.15, MAE = 1.30) 

These 2 analyses will be denoted LLRA3.9 and 

LLRA6.5. The LLRA3.9 method (Fig. 11) produced a 

mean interpolation error of 0.15"C and a standard 

deviation of 1.75. A regression of CVAZ on IE pro- 

duced the equation: IE = 0.135 - 0.00096CVAZ (R2 = 

0.03). For the LLRA6.5 method (Fig. 12), the mean IE 

was 0.19"C with a standard deviation of 1.81. The 

regression equation was: IE = 0.220 + 0.001611 CVAZ 

(RZ = 0.09). Neither of the regressions showed a strong 

relationship between CVAZ and IE, however both had 

non-zero slopes, and the NSA bias correction proce- 

dure resulted in a very slight reduction in the interpo- 

lation errors for both methods. The bias-corrected 

LLRA data were generated only to test whether LLRA 

can benefit from bias-correction. The following analy- 

ses and discussion pertain to uncorrected LLRA data. 

In the regressions of CVAZ and IE, the negative 

slope of the LLRA3.9 method (-0.960°C km-') and the 

positive slope of the LLRA6.5 method (1.61 1°C km-') 

suggest that a lapse rate between -3.931 and -6.506"C 

km-' exists where the associated regression slope is 

zero. For a final LLRA analysis, we assumed a h e a r  

relationship between the lapse rates input to LLRA (i.e. 

-3.931 and -6.506"C km-')  and the associated regres- 

sion slopes (i.e. -0.960 and 1.611°C km-'). Solving for 

(slope = 0.0) gave an 'optimal' lapse rate of -4.893"C 

km-', where the R2 relationship between CVAZ and IE 

should be exactly zero. We ran another cross-valida- 

hon analysis using this optimal lapse rate (Fig. 13), and 

the resulting interpolation errors had a mean of 0.17"C 

and a standard deviation of 1.72. The regression equa- 

tion was: IE = 0.167 -0.0000015CVAZ (R2 = 0.00). This 

method will be denoted LLRA4.8 in the discussion 

below. Table 2 shows the spatial and temporal sensi- 

tivity of the CVAZ/IE regressions and summary statis- 

tics of IE for each of the LLRA methods. 

7. DISCUSSION 

The NSA method uses standard principles and for- 

mulas from the meteorological literature (Byers 1974, 

Barry & Chorley 1987) combined with a commonly- 

used spatial interpolation routine (IDW) to distribute 

point-based measurements of daily air temperature. 

When a single station is used to predict a nearby grid 

cell's temperature, the effective lapse rate of the NSA 

can be back-calculated from the elevations and tem- 

peratures of the station and grid cell [(Tqrld - TStatlon)/ 

(Z,,,, - Z ,,,,,,, ) ] .  To get at the root of the AZ bias, we 
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Fig. 12. (a) CVAZversus mean annual interpolation error for the LLRA6.5 method, with a linear regression line (dashed). Data are 

combined T,,,, and Tm,, from 679 stations (n = 1358). The regression equation was- IE = 0.220 + 0 001611 CVAZ (R' = 0.09). 

(b)  Histogram of mean annual interpolation error for LLRA6.5 (mean = 0 19, MAE = 1.26) 
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computed the effective NSA lapse rate, using a wide 

range of station temperature (-40 to 40°C), elevation 

(0 to 4000 m), h (-2.0 to -lO.O°C km-'), and Tb (290 to 

310 K) values. In most cases the effective NSA lapse 

rate was steeper than -8.0°C km-'. In the extreme 

case where a sea-level station temperature of -40°C is 

used to predict a DEM cell at 4000 m (with h = -2.0 

and Tb = 310), the effective lapse rate goes as shallow 

as -?.O°C km-'. The consistently-steep lapse rates 

imposed by NSA are the source of the AZ bias. The 

physics of the hydrostatic and potential temperature 

equations fails to account for the non-adiabatic 

processes at work in the environment, such as hori- 

zontal advection or inversions caused by cold air 

drainage. 

The LLRA methods, on the other hand, make use of a 

lapse rate derived explicitly from the observed data 

which better reflects the physical realities of the study 

area. The LLRA results confirm the relationship 

between lapse rate and A Z  bias. In Table 2, the slope 

and R2 columns reflect the strength of the AZ bias. At 

the shallow lapse rate of LLRA3.9, the slope is always 

negative, indicating that high-elevation cells tend to 

be predicted slightly too warm. At the optimal LLRA4.8 

lapse rate, the slope wavers around zero, indicating no 

K 
-1 000 -500 0 500 1000 

Cross-validated delta2 (m) 

systematic relationship with AZ.  And at the steeper 

LLRA6.5 lapse rate, the slope is consistently positive, 

indicating that high-elevation cells tend to be pre- 

dicted slightly too cold. Note that in all cases the R2 

value denotes a very poor or non-existent fit, however 

it tends to stay closer to zero at LLRA4.8 and to rise 

slightly when the lapse rate changes to LLRA3.9 and 

LLRA6.5. At the very high lapse rates used by the 

NSA-raw method, the slope is much higher and the RZ 

rises enough to indicate signs of a meaningful relation- 

ship. 

Table 3. Interpolation error (IE) statistics for various interpola- 

tion methods (n  = 1358 stations). Units are "C. MAE: mean 

absolute error; Med: median. The mean IE is also known as  

mean bias error (MBE). Error standard deviation is also 

known as  root mean square error (RMSE) 

Method Min. Max. Mean Med. SD MAE 
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Cross-validated delta2 (m) 

Interpolation error (deg. C) 

Fig. 13. (a) CVAZ versus mean annual interpolation error for the LLRA4.8 method, with a linear regression line (dashed). Data 

are combined T,,, and T,, from 679 stations (n = 1358). The regression equation was: IE = 0.167 - 0.0000015 CVAZ (R2 = 0.00). 

(b) Histogram of mean annual interpolation error for LLRA4.8 (mean = 0.17, MAE = 1.26) 

error for each of the methods under investigation. The 

errors for the NSA method are reported both before 

and after the A Z  bias adjustment, and are denoted 

'NSA-raw' and 'NSA-adj'. The NSA bias adjustment 

corrected the larger interpolation errors and slightly 

improved the overall accuracy of the method by lower- 

ing the MAE and standard deviation. However, the 

bias adjustment slightly raised the overall bias of the 

method by moving the mean interpolation error farther 

from zero (from 0.21 to 0.30°C). The overall bias indi- 

cates that, on average, each cross-validated station 

was predicted 0.30°C too cold. This is different from 

the AZ bias, which indicates a systematic relationship 

between vertical extrapolation ( A 4  and interpolation 

error. The bias correction procedure effectively re- 

moves the AZ bias. The 3 LLRA methods in Table 3 

show very similar results. LLRA4.8 has the lowest over- 

all error in terms of MAE and standard deviation, while 

LLRA3.9 has lower-magnitude extrema and LLRA6.5 

has a median error closer to zero. The accuracy of all 

methods (except NSA-raw), as measured by MAE and 

standard deviation, is essentially the same to within 

0 . l0C.  

The cross-validation technique used for assessing 

interpolation accuracy is useful and informative, how- 

ever its value is limited as it only provides information 

on areas associated with observed data (Robeson 

1994). Cross-validation tells us nothing about areas 

between measurement stations, especially those areas 

which are beyond the elevational range of the stations. 

While it is impossible to assess accuracy in areas with- 

out measured data, these areas should at least be 

examined and evaluated with exploratory data analy- 

sis techniques (Tukey 1977). To this end, we picked 

January 1 and July 1 as examples of cold and warm 

days and examined the entire distribution of interpo- 

lated T,,, and T,,, using all NSA and LLRA methods. 

Fig. 14 shows boxplots of these temperature surfaces 

as well as the station data used to derive the surfaces. 

The discrepancy between the minimum station values 

and the minimum interpolated values in Fig. 14 reflects 

the elevational bias in the station sample (illustrated in 

Fig. 2). We know that the study area contains higher 

elevations than the station data, therefore we expect 

the interpolated data to have lower minima. However, 

there is little basis for determining how much lower the 

interpolated data should go. It is probably safe to dis- 

miss the NSA-raw method because of its relatively 

high interpolation errors and its extremely low minima 

(e.g. the minimum July T,,, of -9.7"C seen in Fig. 14d, 
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Table 4. Image difference statistics for January 1 and July 1 (n = 828595 pixels). 

Units are "C. MAD: mean absolute difference; Med.: median 

Methods Min. Max. Med. Mean SD MAD 

T,,,,,. Jan 1 
NSA-adj minus LLRA3.9 -5 63 0.99 -0 07 -0.12 0.31 0.22 

NSA-adj minus LLRA4.8 -4.38 1.39 0.07 0.08 0 24 0.18 

NSA-adj minus LLRA6.5 -4.34 6.04 0.23 0.41 0.76 0.59 

LLRA4.8 minus LLRA3.9 -2.82 0.94 0.00 -0.20 0.38 0.28 

LLRA4.8minusLLRA6.5 - 1 8 9  4.69 0.32 0.33 0.62 0.46 

LLRA3.9 minus LLRA6.5 -2 83 7.53 0.34 0.53 0.97 0.74 

T,,,, Jan 1 
NSA-adj minus LLRA3.9 -5.63 1.26 -0 10 -0.15 0 36 0.27 

NSA-adj minus LLRA4.8 -4.43 1.28 0.05 0.04 0.22 0.15 

NSA-adj minus LLRA6.5 -4.33 5.73 0.21 0.37 0.69 0.53 

dure which depended on some sub- 

jective parameters (i.e. minimum 

regression sample size, distance 

radius, and threshold R2 value). The 

LLRA3.9 lapse rate required only a 

single regression: elevation versus 

mean annual temperature. The NSA 

method, on the other hand, depends 

on a cross-validation analysis to derive 

the bias correction factor and then 

requires the additional processing of 

the bias correction procedure. The 

LLRA4.8 method requires 2 cross-vali- 

dation analyses in order to derive the 

NSA-ad; minus LLRA4.8 

NSA-adj minus LLRA6.5 
LLRA4.8 minus LLRA3.9 

LLRA4.8 minus LLRA6.5 

LLRA3.9 minus LLRA6.5 

T A ,  Jul l 
NSA-adj minus LLRA3.9 

NSA-ad] minus LLRA4.8 
NSA-adj minus LLRA6 5 

LLRA4 8 minus LLRA3.9 

LLRA4.8 minus LLRA6.5 

LLRA3.9 minus LLRA6.5 

LLRA4.8 minus LLRA3.9 -2.80 1.28 -0.13 -0.20 0.39 0.31 

LLRA4.8 minus LLRA6.5 -1 83 4.48 0.17 0.33 0.62 0.48 

LLRA3 9 minus LLRA6.5 -2 83 7.20 0.34 0.53 0 97 0.74 

T,,,. J u ~  1 
NSA-adi minus LLRA3.9 -2.39 4.18 -0.1 1 -0.17 0.41 0.32 

(Table 4) .  Of all the methods compared in Table 4 ,  the 

pair which differed the most was LLRA3.9 and  

LLRA6.5, with a mean absolute difference (MAD) of 

0.73 to 0.74OC. The NSA-adj and LLRA4.8 methods 

were the most similar, with MADs of 0.13 to 0.22"C. 

Based on the error statistics (Table 3) and the image 

difference statistics (Table 4,  Fig. 14), all methods 

(aside from NSA-raw) perform about the same. The 

rationale for choosing the 'best' method, then, becomes 

a question of simplicity. A single cross-validation 

analys~s ,  where Tm, and T,,,,, are  computed for 365 d 

over 679 stations, running simultaneously on four 

SPARC 20 and  two SPARC 10 CPUs, takes approxi- 

mately 48 h to complete2 Cross-vaIidation is desirable 

as a means for assessing accuracy, but it is not r equ~red  

by every interpolation method considered in this study. 

The LLRA3.9 and LLRA6.5 methods rely only on the 

calculation of a lapse rate. For LLRA6.5 this involved a 

rather complicated moving-window regression proce- 

'optimal' lapse rate where the bias 

correction factor is exactly zero. Note, 

however, that the NSA method, run at 

a monthly timestep, produced essen- 

'Exact times varied depending on system and network load. 

The cross-val~dation jobs were not run a t  maximum priority. 

The cross-validallon procedure was implemented as a set of 

linked PERL scripts whlch use IPW routines (Frew 1990, Lon- 

gley et al 1992) to perform spatial processing tasks 

0.18 0.13 tially the same bias correction factor 
0.61 0.48 as  the daily timestep (Table 2) while 
0.38 0.27 

0.61 0.46 
reducing the computation time by a 

0.96 0.73 factor of 30. This time-reduction may 

also hold true for deriving a n  'optimal' 

0.57 0.46 LLRA lapse rate. 
0.28 0.22 Our results suggest that the best of 
0.47 0.35 the methods investigated is LLRA, 
0 39 0.28 

0.61 0.46 using a lapse rate determined by the 

0.96 0.73 relationship between mean annual 
temperature and elevation (LLRA3.9 

in our case). LLRA3.9 was by far the 

simplest method to implement, and differs only slightly 

from the 'optimal lapse rate' method of LLRA4.8 (e.g. 

the maximum MAD of the 2 methods was only 0.31°C; 

Table 4). If time and resources permit a number of 

cross-validation analyses, then it might be  worthwhile 

to compute an  optimal LLRA lapse rate (LLRA4.8 in our 

case). 

8. CONCLUSIONS 

The temperature interpolation methods considered 

in this study were selected specifically for the task of 

processing very large amounts of data. As such, they 

make some unrealistic simplifying assumptions. The 

NSA effectively imposes a lapse rate close to the dry 

adiabatic lapse rate. Since there are numerous non- 

adiabatic processes a t  work in the environment, such 

as radiational heating/cooling at  the surface and hori- 

zontal advection, the lapse rates imposed by NSA tend 

to be too steep, causing a blas with respect to vertical 

extrapolation (the A Z  bias). The AZ bias is later cor- 

rected, however the effect on areas outside the eleva- 

tional range of the station data is unknown. The LLRA 

uses a better approximation of the overall environmen- 
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tal lapse rate, however the notion of a lapse rate which 

is constant over space and time is flawed. Lapse rates 

fluctuate a t  many scales: seasonally, diurnally, and 

regionally, and in the case of temperature inversions 

may even change sign (Barry & Chorley 1987, p. 56). 

Other sources of error which have undoubtedly intro- 

duced noise into all of the analyses include recording 

errors, instrument bias, uncertainty in the measured 

air temperatures, incorrectly reported locations and 

elevations of the measurement stations, DEM uncer- 

tainty, and the presence of missing values in the tem- 

perature data set. Also note that daily T,,, and T,,, 

measurements tend to be much more noisy, and there- 

fore more difficult to interpolate, than monthly or 

annually averaged temperature data. 

More sophisticated procedures exist for modeling a 

changing relationship between 2 variables over space, 

such as the moving-window regression logic of the 

PRISM model (Daly et al. 1994), where smoothed ele- 

vation is regressed on precipitation over a set of topo- 

graphically similar slope facets. However, such models 

are difficult to implement, usually require considerable 

parameterization, and are often too slow to be used 

over large areas at high resolutions. 

Air temperature surfaces are rarely developed as  an 

end in themselves. Often they are used as  one of a set 

of inputs to a spatially distributed model. Unfortu- 

nately, there are few instances in the literature where 

a spatially-distributed ecological or hydrologic model- 

ing project included a rigorous accuracy assessment of 

all input data. Indeed, statements of accuracy in digital 

spatial databases are still somewhat rare (Goodchild 

1993). An accuracy statement for the best temperature 

surfaces created in this study would read something 

like the following: 

At elevations below about 2500 m, errors in inter- 

polated temperatures have an expected value near 

zero and a n  average magnitude (MAE) of about 

1.3"C. Individual errors with magnitudes up  to 7 or 

8°C are likely. At elevations above 2500 m, accu- 

racy is unknown, but is probably less than the 

accuracy at lower elevations. 

More sophisticated methods will undoubtedly 

improve on accuracy as measured by cross-validation, 

but error will always be present, especially as temporal 

resolution, spatial resolution, and ruggedness of the 

terrain increase. In particular, the bias toward lower 

elevations in meteorological station networks will 

always make interpolated values in high-elevation 

mountainous regions suspect. Cross-validation is a t  

best a rough indicator of the accuracy of the interpo- 

lated surface. Given the reasonable levels of cross-val- 

idation accuracy obtained by the LLRA and NSA meth- 

ods, it is debatable whether the extra effort of a highly 

complex interpolation method is warranted in order to 

shave a few tenths of a degree off of the cross-vali- 

dated MAE. The methods investigated in this study 

require very little parameterization, are easy to imple- 

ment and fast to execute (LLRA in particular), and pre- 

dict temperature at a reasonable level of accuracy. 

They should provide adequate inputs for use in spa- 

tially distributed modeling in mountainous regions. 

Further work on temperature interpolation methods is 

certainly needed, but perhaps more important are 

methods for modeling the errors themselves. Meaning- 

ful and realistic error surfaces would enable sensitivity 

analyses to be performed on the spatial models which 

rely on air temperature surfaces as  input. 
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