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Transmission of SARS-CoV-2 by both presymptomatic and 
asymptomatic individuals has been a major contributor to 
the explosive spread of this virus1–5. Recent epidemiological 

investigations of community outbreaks have indicated that trans-
mission of SARS-CoV-2 is highly heterogeneous, with a small frac-
tion of infected individuals (often referred to as superspreaders) 
contributing a disproportionate share of forward transmission6–8. 
Transmission heterogeneity has also been implicated in the epidemic 
spread of several other important viral pathogens, including measles 
and smallpox9. Numerous behavioural and environmental expla-
nations have been offered to explain transmission heterogeneity,  

but the extent to which the underlying features of the infection pro-
cess within individual hosts contribute towards the superspreading 
phenomenon remains unclear. Addressing this gap in knowledge 
will inform the design of more targeted and effective strategies for 
controlling community spread.

Viral infection is a highly complex process in which viral rep-
lication and shedding dynamics are shaped by the complex inter-
play between host and viral factors. Recent studies have suggested 
that the magnitude and/or duration of viral shedding in both nasal 
and saliva samples correlate with disease severity, highlighting the 
potential importance of viral dynamics in influencing infection 
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outcomes10–13. Variation in viral load has also been suggested to 
correlate with transmission risk14. In addition to implications for 
pathogenesis and transmission, defining the contours of viral shed-
ding dynamics is also critical for designing effective surveillance, 
screening and testing strategies15. To date, studies aimed at describ-
ing the longitudinal dynamics of SARS-CoV-2 shedding have been 
limited by (1) sparse sampling frequency, (2) failure to capture 
the early stages of infection when transmission is most likely, (3) 
absence of individual-level data on infectious virus shedding kinet-
ics and (4) biasing towards the most severe clinical outcomes16–21. 
This is also true for viruses beyond SARS-CoV-2, because the 
dynamics of natural infection in humans have not been described 
in detail for any acute viral pathogen.

Here we capture the longitudinal viral dynamics of mild and 
asymptomatic early acute SARS-CoV-2 infection in 60 people by 
recording daily measurements of both viral RNA shedding (from 
mid-turbinate nasal swabs and saliva samples) and infectious virus 
shedding (from mid-turbinate nasal swabs) for up to 14 days. We 
reveal a striking degree of individual-level heterogeneity in infec-
tious virus shedding between individuals, thus providing a partial 
explanation for the central role of superspreaders in community 
transmission of SARS-CoV-2. We also directly compare the shed-
ding dynamics of Alpha (B.1.1.7) and previously circulating 
non-Alpha viruses, revealing no substantial differences in nasal or 
saliva shedding. Altogether, these results provide a high-resolution, 
multiparameter empirical profile of acute SARS-CoV-2 infection 
in humans and implicate person-to-person variation in infectious 
virus shedding in driving patterns of epidemiological spread of the 
pandemic.

Description of cohort and study design
During the fall of 2020 and spring of 2021, all faculty, staff and 
students at the University of Illinois at Urbana-Champaign were 
required to undergo at least twice weekly quantitative PCR with 
reverse transcription (RT–qPCR) testing for SARS-CoV-2 (ref. 22).  
We leveraged this large-scale, high-frequency screening pro-
gramme to enrol symptomatic, presymptomatic and asymptomatic 
SARS-CoV-2-infected individuals. We enroled university faculty, 
staff and students who reported a negative RT–qPCR test result 
in the past 7 days and were either (1) within 24 h of a positive RT–
qPCR result or (2) within 5 days of exposure to someone with a 
confirmed positive RT–qPCR result. These criteria ensured that we 
enroled people within the first days of infection.

We collected both nasal and saliva samples daily for up to 14 days 
to generate a high-resolution portrait of viral dynamics during the 
early stages of SARS-CoV-2 infection. Participants also completed 
a daily online symptom survey. Our study cohort was primarily 
young (median age, 28 years; range, 19–73 years), non-Hispanic 
white and skewed slightly towards males (Supplementary Table 1). 
All infections were either mild or asymptomatic, and none of the 
participants were ever hospitalized for COVID-19. All participants 
in this cohort reported that they had never been previously infected 
with SARS-CoV-2, and none were vaccinated against SARS-CoV-2 
at the time of enrolment.

Early SARS-CoV-2 viral dynamics vary significantly 
between individuals
To examine viral dynamics at the individual level, we plotted cycle 
theshold (Ct)/cycle number (CN) values from both saliva and nasal 
swab samples (the RT–qPCR assay used for nasal swab samples 
reports CN values, an objective measure of the cycle number of the 
maximal rate of PCR signal increase, rather than Ct values. CN and 
Ct values are equivalent in suitability for quantitative estimates23, 
Quidel SARS Sofia 2 antigen fluorescent immunoassay (FIA) results 
and viral culture data from nasal swabs, as a function of time relative 
to the lowest observed CN values (Fig. 1a and Extended Data Fig. 1).  

In many cases we captured both the rise and fall of viral genome 
shedding in nasal and/or saliva samples. A comparison between 
individuals revealed substantial heterogeneity in shedding dynam-
ics, with obvious differences in the duration of detectable infectious 
virus shedding, clearance kinetics and the temporal relationship 
between shedding in nasal and saliva compartments. Further, nine 
out of 60 individuals had no detectable infectious virus in nasal 
samples (Fig. 1a and Extended Data Fig. 1).

Generally, earlier positivity results in the viral culture assay 
(which suggests higher infectious viral loads) were associated with 
lower CN values in nasal samples (Fig. 1b). This is unsurprising, 
as both nasal viral genome load and viral infectivity were assayed 
using the same sample. Saliva Ct values tended to be higher than 
matched nasal samples, probably due in part to the lower molecular 
sensitivity of the specific saliva RT–qPCR assay used, which does 
not include an RNA extraction step24. For both sample types the 
relationship between viral culture results and Ct/CN values was not 
absolute, because several nasal swab samples with CN values >30 
also tested positive for infectious virus. These data indicate that cau-
tion must be exercised when using a simple Ct/CN value cutoff as a 
surrogate for infectious status.

We also assessed the relationship between antigen FIA and 
viral culture results, and found that participants tested positive by 
antigen FIA on 93% of the days on which they also tested posi-
tive by viral culture (Fig. 1c). This finding is consistent with earlier 
cross-sectional studies examining the relationship between antigen 
test positivity and infectious virus shedding25,26.

While the symptom profiles self-reported by study participants 
varied widely across individuals, all cases were mild and did not 
require medical treatment (Extended Data Fig. 2). To determine 
whether any specific symptoms correlated with viral culture posi-
tivity, we compared the reported frequencies for each symptom 
on days where individuals tested viral culture positive or negative 
(Extended Data Fig. 3). Muscle aches, runny nose and scratchy 
throat were significantly more likely to be reported on days when 
participants were viral culture positive, suggesting these specific 
symptoms as potential indicators of infectious status. No other 
symptoms examined exhibited a clear association with viral culture 
status. Self-reported symptom data from this study may be partially 
skewed by having been collected after participants were notified of 
their initial positive test result or potential exposure.

Within-host mechanistic models capture viral dynamics in 
nasal and saliva samples
To better quantify the specific features of viral dynamics within 
individuals, we implemented five within-host mechanistic models 
based on models developed previously for SARS-CoV-2 and influ-
enza infection (Methods, Fig. 2a and Extended Data Fig. 4)27–29.  
We fit these models to viral genome loads derived from the 
observed Ct/CN values using a population mixed-effect model-
ling approach (Methods). The viral dynamics in nasal and saliva 
samples were distinct from each other in most individuals, indicat-
ing strong compartmentalization of the oral and nasal cavities. We 
thus fit the models to data from nasal and saliva samples separately. 
For each sample type, viral genome loads from four individuals 
remained very low or undetectable throughout the sampling period 
(Extended Data Fig. 1), suggesting that these individuals either (1) 
were enroled late during infection despite having a recent nega-
tive test result or (2) exhibited highly irregular shedding dynamics. 
Because we were primarily interested in early infection dynamics, 
data from these individuals were excluded. Altogether, we selected 
data from 56 out of 60 individuals for each sample type for model 
fitting. Addition of the excluded individuals did not change the 
main conclusions (analysis not shown).

To identify factors that might partially explain the observed 
variation in individual-level dynamics, for each model we tested 
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whether the age of participants or the infecting viral genotype (that 
is, non-B.1.1.7 versus B.1.1.7) covaried with any of the estimated 
model parameters in the model fitting. A total of 114 model varia-
tions were tested (see Methods). We compared the relative abili-
ties of these model variations to capture RT–qPCR data using the  

corrected Akaike information criterion (AICc) and found that, in 
general, the refractory and effector cell models best describe data 
from nasal and saliva samples, respectively (Supplementary Tables 2  
and 3). In the refractory model (Fig. 2a), we assumed that target 
cells can be rendered refractory to infection through the activity  
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Fig. 1 | SARS-CoV-2 viral dynamics captured through daily sampling. a, Temporal trends for saliva RT–qPCR (teal dots), nasal swab RT–qPCR (navy blue 
dots), nasal swab viral culture (red crosses) and positive nasal swab antigen test results (dark mustard shaded area). The left-hand y axis indicates Ct 
values for saliva RT–qPCR assay (covidSHIELD) and CN values for nasal swab RT–qPCR assay (Abbott Alinity); the right-hand y axis indicates results of 
viral culture assays, where day of culture positivity indicates the day of incubation at which >50% of Vero-TMPRSS2 cells infected with the sample were 
positive for cytopathic effect. The vertical dotted line shows the day at which the lowest nasal CN value was observed while the horizontal dashed line 
indicates the limit of detection of RT–qPCR and viral culture assays. The title of each plot corresponds to the participant ID for the top 30 individuals with 
the most data points (the remaining 30 participants are shown in Supplementary Fig. 1). Asterisks next to participant ID indicate variant B.1.1.7. b, Individual 
Ct (for saliva) and CN (for nasal swabs) values from samples plotted based on concurrent results from viral culture assay. Negative indicates samples for 
which viral culture assay showed no viral growth after 5 days. The boxplot shows first and third quartiles (interquartile range, IQR), where the horizontal 
line is the median value and whiskers are 1.5× IQR. c, Plot showing antigen FIA results from day where participants tested either positive or negative by viral 
culture. Text within bars indicates the percentage of antigen FIA results that were positive when concurrent viral culture sample was positive or negative.
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of soluble immune mediators released by infected cells such as 
interferon30. In the best-fit immune effector cell model (Fig. 2a), we 
assumed that innate and adaptive immune cells are activated and 
recruited to eliminate infected cells, leading to increased viral clear-
ance28. See Supplementary Tables 4–6 for estimated values of the 
population and individual parameters and the fixed parameter val-
ues, respectively. Overall, these models described the observed Ct/
CN values in both nasal and saliva samples very well (Fig. 2b).

The frequent longitudinal sampling of participants during early 
infection provided a unique opportunity for precise quantification 
of viral load kinetics during the viral expansion phase, before the 
peak in genome shedding. We estimated the mean early exponential 
expansion rate, r, before peak viral load (growth rate, for short) to 
be 4.4 d–1 (s.d. ± 0.5 d–1) in the nasal compartment. The growth rate 
is 8.8 d–1 (s.d. ± 1.8 d–1) in the saliva compartment, much higher than 
in the nasal compartment (Fig. 2c,d).

Viral clearance kinetics clearly differed between nasal and 
saliva samples (Fig. 2b–d). For nasal samples, viral genome loads 
decreased relatively quickly after peak, mostly driven by loss of 
productively infected cells, and we estimated an average death 
rate of productively infected cells at 2.5 d–1 (s.d. ± 0.4 d–1); how-
ever, viral decline slowed over time. In saliva, post-peak viral 
genome loads declined initially at a slower rate than that in 
nasal samples. Consequently, we estimated a much smaller aver-
age death rate of productively infected cells in saliva during this 
phase, at 0.4 d–1 (s.d. ± 0.3 d–1). However, our model suggested the 
existence of a second clearance phase with a more rapid decline 
occurring 1–2 weeks after infection, potentially due to the onset 
of effector cell and/or neutralizing antibody responses. Overall, 
we estimate that it takes on average 4.9 d (s.d. ± 0.5 d) and 3.9 d 
(s.d. ± 0.8 d) from infection to peak viral loads in the nasal and 
the saliva compartments, respectively (Fig. 2c,d). The average 
period from peak to undetectable genome viral load was 22.3 d 
(s.d. ± 8.3 d) and 14.9 d (s.d. ± 3.2 d) in the nasal and saliva com-
partments, respectively.

Interestingly, the model predicts a significant correlation 
(P < 0.01) in nasal samples between age and the Φ parameter, which 
describes the effectiveness of the antiviral immune response in ren-
dering target cells refractory to infection (Fig. 2e). This suggests that 
innate immune responses are less effective at limiting SARS-CoV-2 
in the nasal compartment of older individuals within our cohort, 
consistent with previous studies describing dysregulation of innate 
immunity to viral infection in aged individuals31–33. There was no 
significant correlation between age and either growth rate or clear-
ance rate in nasal samples (Extended Data Fig. 5).

Overall, we noted a surprising degree of discordance in viral 
dynamics between nasal and saliva samples for many participants. 
In most individuals (46 out of 54 analysed), viral genome shedding 
peaked at least 1 day earlier in saliva than in nasal samples (Fig. 2f). 

In contrast, the peak in nasal shedding preceded the saliva peak by 
at least 1 day in four individuals.

Significant heterogeneity in the infectious potential of 
individuals
We next examined the duration of infectious virus shedding in nasal 
samples, as a surrogate for the infectious potential of an individual. 
There exists a large variation in the number of days for which an 
individual tested positive for cell culture on nasal swabs (Fig. 3a). 
Nine out of 60 individuals tested negative by viral culture through-
out the sampling period, whereas one individual tested positive for 
9 days (Fig. 3a). We found a weak positive correlation between the 
duration of viral culture positivity and participant age (Fig. 3b). Of 
note, many study participants were viral culture positive on the first 
day of sample collection, suggesting that we failed to capture the 
onset of viral culture positivity for these individuals and thus may 
be underestimating the duration of infectious virus shedding for a 
subset of study participants.

To better quantify the infectious potential of each individual, we 
first used viral culture data as a measure for intrinsic infectiousness 
(infectiousness for short, below) to characterize how infectiousness 
depends on viral genome load. We fitted three alternative models as 
previously proposed27 to paired nasal RT–qPCR and viral culture data 
collected from each individual using a non-linear mixed-effect mod-
elling approach (see Extended Data Fig. 6 for workflow and Methods 
for details). Comparing models using AICc scores, we found that 
the relationship is best described by a saturation model where the 
infectious virus load is a Hill-type function of viral genome load 
(Fig. 3c, Extended Data Fig. 7 and and Supplementary Table 7). See 
Supplementary Table 8 for the best-fit parameter values.

Using the best-fit models, we estimated the infectiousness of 
each individual over the course of infection from their predicted 
genome viral loads and infectious viral loads (Extended Data Fig. 
8). Note that the dataset allows us to estimate only a quantity that 
is a constant proportion of the infectious virus load (rather than 
its absolute value) across time and between individuals, and thus 
we report the predicted values in arbitrary units (a.u.) as a rela-
tive measure of infectiousness. Our model predicts that infectious 
virus shedding increases sharply when nasal CN values fall <22, 
and that the average amount of infectious virus shed is zero for CN 
values >29 (Fig. 3d). Importantly, there exists a high level of het-
erogeneity in infectiousness across different individuals that is not 
fully explained by differences in viral genome load (Fig. 3d). For 
example, at nasal CN values around 13, infectious virus shedding 
reached values >20 a.u. in three individuals while in 11 individuals 
it was <4 a.u. This suggests that viral Ct/CN values are not precisely 
predictive of infectiousness.

We next estimated the total infectiousness of each individual by 
integrating the area under the infectious virus load curve over the 

Fig. 2 | Model fits quantify heterogeneity in viral dynamics and discordance in genome shedding between nasal and saliva samples. a, Diagrams 
outlining structures of the refractory cell and immune effector cell models that best fit nasal swab and saliva RT–qPCR data, respectively. In the refractory 
cell model, target cells (T) are infected by viruses (V) at rate β. Infected cells first become eclipse cells (E) and do not produce viruses; at rate k, eclipse 
cells become productively infected cells (I) producing both viruses and interferon (F) at rates π and s, respectively; they die at rate δ. Binding of interferons 
with target cells induces an antiviral response that converts target cells into cells refractory to infection (R). The rate of induction of the antiviral response 
is Φ. Refractory cells can revert to target cells at rate ρ. In the effector cell model we assume that, over the course of infection, immune effector cells 
(X) that clear infected cells are activated and recruited, leading to an increase in infected cell death rate from δ1 to δ1 + δ2. b, Model fits to nasal sample 
(navy blue) and saliva (teal) RT–qPCR results from the same subset of individuals shown in Fig. 1a; includes last recorded negative saliva RT–qPCR result 
before study enrolment. Dotted lines represent the limit of detection (LoD) for RT–qPCR assays; dots on dotted lines denote measurements under LoD. 
c,d, Distributions of exponential viral growth rates, days from infection to peak viral genome load and days from peak to undetectable viral genome loads 
predicted by the refractory cell model (nasal data, c) and the immune effector model (saliva data, d) across 56 individuals in this cohort. e, Association 
between age and the estimated strength of innate immune response (Φ) based on nasal sample data. The y axis is shown on a log10 scale. Associations 
were examined using standard linear regression analysis, with R2 and P values reported. f, Distribution of differences in estimated times of peak viral 
genome loads between saliva and nasal samples. Bars coloured teal and navy blue represent estimated saliva peaks that occurred at least 0.5 day earlier or 
later than nasal samples, respectively; grey bar indicates the number of individuals with similar timing in peaks.
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course of infection. This approach again revealed a large degree of 
heterogeneity in individual-level infectiousness, with >57-fold dif-
ference between the highest and lowest estimated infectiousness 
(104.0 and 1.8 a.u., respectively; Fig. 3e). We found that a gamma 
distribution with a shape parameter of 1.6 describes the distribu-
tion of individual infectiousness well (Fig. 3e). These data suggest 
that the previously reported heterogeneity in secondary transmis-
sion rates6,7 is likely to arise from a combination of heterogeneity 
in contact structure and heterogeneity in intrinsic infectiousness34. 
This emphasizes the potential for a small subset of individuals that 
exhibit high intrinsic infectiousness to function as superspreaders if 
they have frequent and/or high-risk contacts during the infectious 
period. Finally, we observed a significant correlation between age 
and total infectiousness (P < 0.01, R2 = 0.21; Fig. 3f).

Analysis of B.1.1.7 viral dynamics
Finally, we asked whether infection with the B.1.1.7 (Alpha) vari-
ant of concern (VOC) is associated with any significant differ-
ences in viral dynamics that could potentially explain the enhanced 
transmissibility of this genotype35–37. Previous studies have sug-
gested that B.1.1.7 infection may result in higher peak viral loads 
or prolonged shedding compared with previously circulating geno-
types38–40. Within our cohort, 16 out of 60 individuals were infected  
with B.1.1.7.

Both the empirical data and our model analysis (Fig. 4a,c) 
suggest that the overall viral genome shedding dynamics in both 
nasal and saliva samples are indistinguishable between B.1.1.7 and 
non-B.1.1.7 infections (none of the latter were VOC genotypes 
except for a single P.1 (Gamma) infection; Supplementary Table 9).  

Although comparison of parameter estimates in nasal samples sug-
gested a slightly slower growth rate and time to peak for B.1.1.7 ver-
sus non-B.1.1.7 (Fig. 4b), it is not clear whether this difference is 
biologically meaningful (Fig. 4a). Most importantly, we estimate that 
there is no significant difference between B.1.1.7 and non-B.1.1.7 
viruses in total infectiousness in the nasal compartment (Fig. 4b). 
Previously, we have shown that the area under the logarithm of 
genome viral loads, denoted as AUC(log), may serve as a surrogate 
for infectiousness27. Here we calculated AUC(log) from predicted 
viral load trajectories in the saliva compartment in each individual 
and found no difference between B.1.1.7 and non-B.1.1.7 viruses 
(Fig. 4d). These data indicate that other mechanisms not reflected 
in viral shedding dynamics drive the increased transmissibility of 
the B.1.1.7 (Alpha) variant.

Discussion
This study describes the results of daily multicompartment sam-
pling of viral dynamics within dozens of individuals newly infected 
with SARS-CoV-2 and provides a comprehensive, high-resolution 
description of viral shedding and clearance dynamics in humans.

Superspreading, in which a small subset of infected individuals 
are responsible for a disproportionately large share of transmission 
events, has been identified as a major driver of community spread of 
SARS-CoV-2, SARS-CoV and many other acute viral pathogens6,7,9. 
Superspreading is believed to arise from heterogeneity in both (1) 
contact structure between individuals arising from behavioural 
and environmental factors and (2) the intrinsic infectiousness of 
individuals9,34,41. While heterogeneity in contact structure has been 
studied extensively42–45, the extent of heterogeneity in infectiousness 
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Fig. 3 | Substantial heterogeneity in infectious virus shedding between individuals. a, Distribution in the numbers of days in which participants tested 
positive by viral culture on nasal swabs following study enrolment. b, Association between age of study participants and number of days of positive viral 
culture using standard linear regression analysis. R2 and P values are reported. c, Relationship between CN value in nasal samples and probability of the 
sample being viral culture positive, summarized across all individuals. Individual samples were binned based on their CN values. Dots indicate the observed 
percentage of positive samples within a bin that were viral culture positive. Solid line and shaded area represent mean and 90% CIs, respectively, of 
trajectories generated using the best-fit parameters of the saturation model (see Extended Data Fig. 7 for individual fits). d, Relationship between infectious 
virus shed and CN values by the saturation model for 56 individuals in our analysis. e, Distribution of estimated total cumulative level of infectious virus  
shed from nasal passages by each participant over the course of infection. Solid line shows the best-fit gamma distribution with a shape parameter of 1.6.  
f, Association between age and estimated total infectious virus shed by each individual. b,f, R2 and the P values from linear regression (dashed line) are shown.
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arising from individual-level viral dynamics remains unknown. 
Although several studies have attempted to quantify this20,34, the 
lack of empirical measurement of viral genome load and infectious 
virus shedding dynamics during early infection, which is a critical 
period for SARS-CoV-2 transmission, prevents precise estimation.

To address this question, we empirically quantified infectious 
virus shedding through daily longitudinal sampling of individu-
als infected with SARS-CoV-2. The substantial heterogeneity in 
infectious virus shedding that we observed among individuals 
indicates that superspreading is probably driven by individual-level 
variation in specific features of the infection process, in addition 
to behavioural and environmental factors. We also found that het-
erogeneity in infectious virus shedding is only partly explained by 
individual-level heterogeneity in viral genome load dynamics, sug-
gesting that additional factors such as variation in the timing and 
magnitude of the neutralizing antibody response might contrib-
ute46. Our results here suggest caution in assessing the infectious-
ness of an individual using viral genome load data alone. Further, 
the absence of clear viral genetic correlates of infectiousness within 
this dataset suggests the existence of specific host determinants of 
superspreading potential. While we identified age as a significant 
correlate of infectiousness, additional determinants probably exist. 
Defining these correlates could aid future efforts to mitigate com-
munity spread of the virus by helping identify individuals with ele-
vated risk of becoming superspreaders.

Our finding that viral shedding often peaks earlier in saliva ver-
sus the nasal compartment, sometimes by several days, corrobo-
rates a recent study of four individuals47 and has several important 
implications. First, saliva screening may be a more effective sample 
type than nasal swabs for detection of infected individuals before 
or early in the infectious period48. Early detection and isolation of 
infected individuals is absolutely critical for breaking transmission 
chains15. Moreover, early viral shedding from the oral cavity may 
contribute to the high prevalence of presymptomatic SARS-CoV-2 
transmission. We were unable to directly assess viral infectivity 

in saliva, so it remains unclear whether the earlier peaks in viral 
RNA shedding that we observed in saliva reflect earlier shedding 
of transmission-competent virus. The earlier detection of virus in 
saliva also raises questions about the initial site of SARS-CoV-2 
infection. A recent study demonstrated that both salivary glands 
and oral mucosal epithelium can support SARS-CoV-2 replication, 
suggesting that infection could be initiated within the oral cav-
ity49. Alternatively, if infection is initiated in the nasopharynx or 
soft palate, viral RNA might be detectable in saliva before detec-
tion in the mid-turbinate swabs used in this study. The discor-
dance in shedding dynamics between oral and nasal samples that 
we observed in many participants is consistent with a significant 
degree of compartmentalization between these adjacent but dis-
tinct tissue sites, as has been observed in animal models of influ-
enza virus infection50,51.

The specific mechanisms driving the enhanced transmissibility 
of the B.1.1.7 variant remain poorly understood. Recent studies have 
identified alterations in the structural conformation of the spike 
protein and enhanced antagonism of innate immunity by B.1.1.7 
as potential contributors52,53. Contrary to previous clinical studies, 
we observed no significant differences in either peak viral loads 
or clearance kinetics between B.1.1.7 and non-B.1.1.7 viruses as 
measured in either nasal swabs or saliva. Our results are consistent 
with studies demonstrating the absence of a growth advantage for 
B.1.1.7 in primary human respiratory epithelial cells54,55. Similarly, 
a recent longitudinal study of RNA shedding observed no signifi-
cant differences in mean peak viral RNA loads, clearance kinetics 
or infection duration of the Alpha and Delta variants compared 
with non-VOCs39. If the timing of symptom onset differs between 
B.1.1.7 and non-B.1.1.7 infections, it could potentially explain why 
cross-sectional analyses of viral loads might register lower Ct val-
ues for B.1.1.7 samples. These data suggest that the enhanced trans-
missibility of the B.1.1.7 variant may also be driven by features not 
reflected in shedding dynamics—for example, enhanced environ-
mental stability or a lower infectious dose threshold.
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This study has several limitations that must be considered. First, 
our study cohort was limited to faculty, students and staff of the 
University of Illinois at Urbana-Champaign and did not include 
anyone who was hospitalized for COVID-19. The limited demo-
graphic and clinical profile of this cohort means that our results 
may not reflect the dynamics that occur during severe and lethal 
infections and/or in populations not well represented in our study. 
Second, there are multiple potential sources of technical variation 
that could contribute to noise in our experimental measurements. 
These include variability in sample collection quality and the poten-
tial for detection of subgenomic viral RNA in our RT–qPCR assays. 
While we took steps to minimize variation in sample collection qual-
ity, including having all sample collections remotely observed by 
trained study staff, it is possible that some of the sample-to-sample 
variation we observed is due to differences in sample quality. Finally, 
it must be noted that the results of viral culture assays performed on 
nasal swabs may not perfectly correlate with the actual transmission 
potential of an individual.

Altogether, our data provide a high-resolution view of the lon-
gitudinal viral dynamics of SARS-CoV-2 infection in humans and 
implicate individual-level heterogeneity in viral shedding as playing 
a critical role in community spread of this virus.

Methods
This study was approved by the Western Institutional Review Board, and all 
participants provided informed consent.

Participants. All on-campus students and employees of the University of Illinois 
at Urbana-Champaign are required to submit saliva for RT–qPCR testing 
every 2–4 days as part of the SHIELD campus surveillance testing programme. 
Individuals testing positive were instructed to isolate and were eligible to enrol in 
this study for a period of 24 h following receipt of their positive test result. Close 
contacts of individuals who test positive (particularly those co-housed with them) 
are instructed to quarantine and were eligible to enrol for up to 5 days after their 
last known exposure to an infected individual. All participants were also required 
to have received a negative saliva RT–qPCR result 7 days before enrolment.

Individuals were recruited via either a link shared in an automated text message 
providing isolation information sent within 30 min of a positive test result, a call 
from a study recruiter or a link shared by an enroled study participant or included 
in information provided to all quarantining close contacts. In addition, signs were 
used at each testing location and a website was available to inform the community 
about the study.

Participants were required to be at least 18 years of age, have a valid university 
ID, speak English, have Internet access and live within 8 miles of the university 
campus. After enrolment and consent, participants completed an initial survey to 
collect information on demographics and health history and were provided with 
sample collection supplies. Participants who tested positive before enrolment or 
during quarantine were followed for up to 14 days. Quarantining participants who 
continued to test negative by saliva RT–qPCR were followed for up to 7 days after 
their last exposure. All participants’ data and survey responses were collected 
in the Eureka digital study platform. All study participants were asked whether 
they had previously tested positive for SARS-CoV-2 or been vaccinated against 
SARS-CoV-2. All participants included in this cohort reported no previous 
SARS-CoV-2 infection and were unvaccinated at the time of enrolment.

Sample collection. Each day, participants were remotely observed by trained study 
staff, who collected the following samples.

	(1)	 Saliva (2 ml), into a 50-ml conical tube
	(2)	 One nasal swab from a single nostril using a foam-tipped swab that was 

placed within a dry collection tube
	(3)	 One nasal swab from the other nostril using a flocked swab that was subse-

quently placed in a collection vial containing 3 ml of viral transport medium 
(VTM). Swab and VTM manufacturer were not changed throughout the study.

The order of nostrils (left versus right) used for the two different swabs was 
randomized. For nasal swabs, participants were instructed to insert the soft tip 
of the swab at least 1 cm into the indicated nostril until they encountered mild 
resistance, rotate the swab around the nostril five times and leave it in place for 
10–15 s. After daily sample collection, participants completed a symptom survey. A 
courier collected all participant samples within 1 h of sampling using a no-contact 
pickup protocol designed to minimize courier exposure to infected participants.

Saliva RT–qPCR. After collection, saliva samples were stored at room temperature 
and RT–qPCR was run within 12 h of initial collection in a Clinical Laboratory 

Improvement Amendments (CLIA)-certified diagnostic laboratory. The protocol 
for the covidSHIELD direct saliva-to-RT–qPCR assay used has been detailed 
previously24. In brief, saliva samples were heated at 95 °C for 30 min followed by the 
addition of 2× Tris/Borate/EDTA buffer (TBE) at a 1:1 ratio (final concentration 
1× TBE) and Tween-20 to a final concentration of 0.5%. Samples were assayed 
using the Thermo Taqpath COVID-19 assay.

Antigen testing. Foam-tipped nasal swabs were placed in collection tubes, 
transported in cold packs and stored at 4 °C overnight based on guidance from 
the manufacturer. The morning after collection, swabs were run through the Sofia 
SARS antigen FIA on Sofia devices according to the manufacturer’s protocol.

Nasal swab RT–qPCR. Collection tubes containing VTM and flocked nasal swabs 
were stored at −80 °C after collection and were subsequently shipped to Johns 
Hopkins University for RT–qPCR and virus culture testing. After thawing, VTM 
was aliquoted for RT–qPCR and infectivity assays. One millilitre of VTM from 
the nasal swab was assayed on the Abbott Alinity, according to the manufacturer’s 
instructions, in a College of American Pathologist and CLIA-certified laboratory.

Calibration curve for nasal swab RT–qPCR assay. Calibration curves for 
Alinity assay were determined using digital droplet PCR (ddPCR) as previously 
described56. Nasal swab samples previously quantified using the Alinity assay 
were stored in a freezer at −80 °C between initial quantification and extraction 
for calibration curves. Samples were extracted simultaneously using the Perkin 
Elmer Chemagic 360 automated extraction platform, with sample input and eluate 
volumes of 300 and 60 µl, respectively. RNA eluates were stored at −80 °C. Digital 
droplet RT–PCR was performed following the Bio-Rad EUA assay package insert 
(https://www.fda.gov/media/137579/download). A master mix was prepared per 
sample using the reagents provided in the ddPCR Supermix for Probes kit as 
follows: 5.5 µl of SuperMix (Bio-Rad), 2.2 µl of reverse transcriptase (Bio-Rad), 
1.1 µl of dithiothreitol (Bio-Rad), 1.1 µl of CDC triplex SARS-CoV-2 primer  
and probe mix (IDT) and 7.1 µl of nuclease-free water; 17 µl of master mix was  
then transferred to a 96-well PCR plate and combined with 5 µl of RNA in eluate, 
and the plate was then loaded on to a QX-200 automated droplet generator 
(Bio-Rad). The droplet-containing plate was then heat sealed with foil in a plate 
sealer (Bio-Rad) and placed on a C1000 Touch thermal cycler (Bio-Rad) to 
perform reverse transcription and amplification. Droplets were read using  
the QX-200 droplet reader (Bio-Rad). Data were analysed with QuantaSoft 
Analysis Pro 1.0 software.

Virus culture from nasal swabs. Vero-TMPRSS2 cells were grown in complete 
medium (CM) consisting of DMEM with 10% foetal bovine serum (Gibco), 
1 mM glutamine (Invitrogen), 1 mM sodium pyruvate (Invitrogen), 100 U ml–1 
penicillin (Invitrogen) and 100 μg ml–1 streptomycin (Invitrogen)57. Viral 
infectivity was assessed on Vero-TMPRSS2 cells as previously described using 
infection medium (identical to CM except that FBS is reduced to 2.5%)26. When a 
cytopathic effect was visible in >50% of cells in a given well, the supernatant was 
harvested. The presence of SARS-CoV-2 was confirmed through RT–qPCR, as 
described previously, by extracting RNA from the cell culture supernatant using 
the Qiagen viral RNA isolation kit and performing RT–qPCR using N1 and N2 
SARS-CoV-2-specific primers and probes, in addition to primers and probes for 
the human RNaseP gene with the CDC research-use-only 2019-Novel Coronavirus 
(2019-nCoV) Real-time RT–PCR primer and probes sequences, and utilizing 
synthetic RNA target sequences to establish a standard curve58.

Viral genome sequencing and analysis. Viral RNA was extracted from 140 µl of 
heat-inactivated (30 min at 95 °C, as part of the protocol detailed in ref. 24) saliva 
samples using the QIAamp viral RNA mini kit (Qiagen); 100 ng of viral RNA 
was used to generate complementary DNA using the SuperScript IV first strand 
synthesis kit (Invitrogen). Viral cDNA was then used to generate sequencing 
libraries utilizing the Swift SNAP Amplicon SARS CoV2 kit with additional 
coverage panel and unique dual indexing (Swift Biosciences), which were 
sequenced on an Illumina Novaseq SP lane. Data were run through the nf-core/
viralrecon workflow (https://nf-co.re/viralrecon/1.1.0) using the Wuhan-Hu-1 
reference genome (NCBI accession NC_045512.2). Swift v.2 primer sequences were 
trimmed before variant analysis from iVar v.1.3.1 (https://doi.org/10.1186/s13059-
018-1618-7), retaining all calls with a minimum allele frequency of 0.01 and higher. 
Viral lineages were called using the Pangolin tool (https://github.com/cov-lineages/
pangolin) v.2.4.2, pango v.1.2.6 and the 5/19/21 version of the pangoLEARN model 
based on the nomenclature system described in ref. 59.

Statistics and reproducibility. Details of statistical analysis methods are given 
below. No statistical method was used to predetermine sample size. For some 
analyses, a small number of individuals were excluded for reasons detailed above, 
where relevant. Experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Statistical analyses. The difference in the distribution of a parameter of interest 
between the non-B.1.1.7 and B.1.1.7 infection groups was assessed using univariate 
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analysis, and P values calculated using the Wilcoxon rank-sum test. Comparison 
of infectious virus shedding between the two groups was performed using 
multivariate analysis with age as an additional variate. Levels of infectious viral 
shedding, after adjusting for age, were predicted by assuming an age of 28 years—
that, is the median age of the cohort (Fig. 4c).

Generation of figures. All figures, except for Fig. 2a, were generated using 
RStudio. Figure 2a was generated using Microsoft Powerpoint.

Overview of model construction and parameter estimation. The goal of 
quantitative analyses is to use mathematical models to characterize viral shedding 
dynamics based on both viral genome loads (as measured by RT–qPCR) and 
the presence or absence of infectious virus (as measured by viral culture assay). 
Analysing the model results, we quantify individual-level heterogeneity in both 
viral genome shedding dynamics and individual infectiousness. See Extended Data 
Fig. 6 for an overview of the analysis workflow.

First, we performed experiments to derive the calibration curves for 
transformation of Ct/CN values from RT–qPCR to viral genome loads (Viral 
genome load calibration from Ct/CN values). Note that, due to the nature of 
RT–qPCR assays and sampling noise, viral genome loads derived using calibration 
curves represent a proxy for the actual quantities. Nonetheless, this approach is 
the best available to derive viral genome loads for the purpose of viral dynamic 
modelling, and is widely used in understanding SARS-CoV-2 dynamics21,60.

Second, we constructed viral dynamic models and fit these to viral genome 
loads (Viral dynamics models). We estimated key parameters governing infection 
processes in the nasal- and the saliva-associated compartments, such as viral 
exponential growth rate before peak viral genome load and viral clearance rate. 
This allows us to characterize individual-level heterogeneity in infection kinetics.

Third, we constructed mathematical models to describe how the amount 
of infectious virus shed relates to changes in viral genome load, as measured 
by RT–qPCR (Modelling infectiousness of an individual). We fit the models to 
viral culture assay data. Using the best model and predicted viral genome load 
kinetics from the viral dynamics model, we predicted the extent of infectious virus 
shedding—that is the infectiousness, for each individual—and thus quantified the 
individual-level heterogeneity in infectiousness.

Viral genome load calibration from Ct/CN values. Viral genome load 
calibration: nasal samples. To calculate viral genome loads from CN values 
reported for nasal samples, we performed calibration curve experiments to 
empirically define the relationship between CN values obtained from the 
RT–qPCR assay used on nasal swab samples, and absolute viral genome loads 
within samples, as quantified by ddPCR. We quantified viral genome loads for 
62 nasal samples with CN values ranging between 17 and 38. For each sample, 
absolute copy numbers of viral genomes were measured using two different 
N-gene-specific primer sets (N1 and N2). To account for technical noise 
between samples, we also determined the concentration of the host RNAse P 
(RP) transcript as a control (Supplementary Table 10). We then normalized copy 
numbers of N1 and N2 targets by dividing by their corresponding RP target 
numbers, then multiplied the mean of RP concentration across all samples. Note 
that the unit of these measurements is per millilitre: this is because nasal swab 
samples were each collected in 3 ml of VTM.

Plotting the logarithm of normalized viral genome loads against the 
associated CN values shows a clear linear relationship, justifying the use of linear 
regression below. Linear regression lines with similar coefficients were used as 
calibration curves in other studies21,60. We also note that the noise in genome 
viral loads is high when CN values are high (for example, >33), probably a 
reflection of increased noise when the signal is low26. However, this high level 
of variation at high CN values will not impact on the conclusion of our study, 
because the range of viral loads relevant to transmission is much higher (>106 
copies ml–1; Fig. 3d).

We then performed linear regression on measured CN values and log10 viral 
genome loads (Extended Data Fig. 9). This led to the following formula for the 
relationship between CN values and viral genome load:

log10 V = 11.35 − 0.25CN

where V and CN denote the viral genome load and CN value, respectively. Note 
that, because of the high number of data points measured, the level of uncertainty 
in the regression line is minimal (Extended Data Fig. 9).

Viral genome load calibration: saliva samples. Unlike for nasal samples, we 
were unable to measure the calibration curve using saliva samples taken from 
participants. To quantify the efficiency of the RT–qPCR assay used on saliva 
samples, we used data from calibration experiments in which saliva samples 
obtained from healthy donors were spiked with SARS-CoV-2 genomic RNA. 
More specifically, 0.9 ml of saliva from a healthy donor was spiked with 0.1 ml of 
1.8 × 108, 5.4 × 105 or 6.0 × 104 RNA copies ml–1. For samples spiked with 1.8 × 108 
RNA copies ml–1, tenfold serial dilutions were performed to a final concentration of 
1.8 × 104 RNA copies ml–1. A total of 24 samples were collected and Ct values of the 
N gene then measured (Supplementary Table 11).

As above, we plotted the logarithm of viral loads against Ct values (Extended 
Data Fig. 10). The plot shows a clear linear relationship, justifying the use of linear 
regression below. We then performed linear regression on measured CN values and 
log10 viral genome loads (Extended Data Fig. 10). This led to the following formula 
for the relationship between CN values and viral genome load:

log10 V = 14.24 − 0.28Ct

where V and Ct denote viral genome load and Ct value, respectively. In regard 
to the nasal calibration curve, the level of uncertainties in the regression line is 
minimal (Extended Data Fig. 10).

Note that a major difference between samples spiked with viral genomes and 
those taken from infected individuals is that the latter are likely to be noisier 
because of variation in the sample collection process. However, the two approaches 
should not differ substantially in assessing the efficiency of the RT–PCR protocol. 
The impact of noise in the nasal sample can be minimized by taking a large 
number of samples over a wide range of CN values, as we did for the nasal samples. 
Therefore, the calibration curves derived above represent an accurate translation of 
Ct/CN values to viral load.

Viral dynamics models. We constructed viral dynamics models to describe the 
dynamic changes in viral genome load. The viral genome load patterns in  
nasal and saliva samples are distinct from each other in many individuals, 
suggesting compartmentalization of infection dynamics in these two sample sites. 
Therefore, we use the models below to describe data collected from these two 
compartments separately. See Fig. 2a and Extended Data Fig. 4 for schematics of 
these models.

The target-cell-limited model. We first constructed a within-host model based on 
the target-cell-limited (TCL) model used for other respiratory viruses such as 
influenza61 and, more recently, SARS-CoV-2 (refs. 27,29,62). We keep track of the 
total numbers of target cells (T), cells in the eclipse phase of infection (E)—that is, 
infected cells not yet producing virus, productively infected cells (I) and viruses 
(V). The ordinary differential equations are:

dT
dt = −βVT
dE
dt = βVT − kE
dI
dt = kE − δI
dV
dt = πI − cV

(1)

In this model, target cells are infected by virus with rate constant β, cells 
in the eclipse phase become productively infected cells at per-capita rate k and 
productively infected cells die at per-capita rate δ. We use V to describe viruses 
measured in nasal or saliva samples, representing a proportion of the total virus 
in the compartment under consideration. Therefore, rate π is the product of viral 
production rate per infected cell and the proportion of virus that is sampled (see 
Ke et al.27 for a detailed derivation). Viruses are cleared at per-capita rate c.

Refractory cell model. We extend the TCL model by including an early innate 
response—that is the type-I/III interferon response, where interferons are secreted 
from infected cells and bind to receptors on uninfected target cells, stimulating an 
antiviral response that renders them refractory to viral infection. Note that this is 
the best model to describe the viral genome load dynamics as measured by RT–
qPCR from nasal samples.

We keep track of interferon (F) and cells refractory to infection (R), in addition 
to other quantities in the TCL model. The full ordinary differential equations 
(ODEs) for target cells, refractory cells and interferon are

dT
dt = −βVT − ϕFT + ρR
dR
dt = ϕFT − ρR
dE
dt = βVT − kE
dI
dt = kE − δI
dV
dt = πI − cV
dF
dt = sI − μF

(2)

In this model, the impact of the innate immune response is to convert target 
cells into refractory cells at rate ϕFT where ϕ is a rate constant. Refractory cells can 
become target cells again at rate ρ. Interferon is produced and cleared at rates s and 
μ, respectively.

For simplicity, and due to a lack of empirical data on interferon responses in 
our study, we simplify the model by making the quasi-steady-state assumption that 
the interferon dynamics are much faster than the dynamics of infected cells and 
assume that dFdt = 0. Thus sI = μF  or F =

s
μ
I .

Let Φ = ϕ s
μ
, so that the ODEs for the innate immunity model become:
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dT
dt = −βVT − ΦIT + ρR
dR
dt = ΦIT − ρR
dE
dt = βVT − kE
dI
dt = kE − δI
dV
dt = πI − cV

(3)

Viral production reduction model. In addition to making target cells refractory 
to infection, the impact of interferons may include reducing virus production 
from infected cells. We include this action of interferons in the viral production 
reduction model. As above, we make the quasi-steady-state assumption that 
interferon dynamics are much faster than those of infected cells and assume that F 
is proportional to I. The ODEs for the model are:

dT
dt = −βVT
dE
dt = βVT − kE
dI
dt = kE − δI
dV
dt =

π
1+γI I − cV

(4)

where γ is a constant representing the effect of interferon in reducing viral 
production.

Immune effector cell model. Over the course of infection, immune effector cells are 
activated and recruited to kill infected cells. These immune effector cells include 
innate immune cells such as macrophages and natural killer cells, as well as cells 
developed during the adaptive immune response such as cytotoxic T lymphocytes and 
antibody-secreting B cells. To consider the impact of these immune effector cells, we 
develop a model—the effector cell model—based on a previous model for influenza 
infection28. In this model, we assume that the death rate of infected cells is δ1 at the 
beginning of the infection. This may reflect the cytotoxic effects of viral infection. 
After time t1, the death rate of infected cells increases by δ2, where δ2 models the 
killing of infected cells by immune effector cells. The ODEs for the model are:

dT
dt = −βVT
dE
dt = βVT − kE
dI
dt = kE − δ(t)I
dV
dt = πI − cV

δ (t) =

{

δ1 t < t1

δ1 + δ2 t ≥ t1

(5)

Note that this is the best model to describe the viral genome load dynamics as 
measured by RT–qPCR from saliva samples.

Combined model. In the full model, we combine the refractory cell model and 
immune effector cell model to consider both the immediate interferon response 
and immune effector response. The ODEs for the model are:

dT
dt = −βVT − ΦIT + ρR
dR
dt = ΦIT − ρR
dE
dt = βVT − kE
dI
dt = kE − δ(t)I
dV
dt = πI − cV

δ (t) =

{

δ1 t < t1

δ1 + δ2 t ≥ t1

(6)

Choice parameter values. Total target cell numbers. We calculate the total numbers 
of target cells in the nasal and saliva compartments by multiplying the total 
number of epithelial cells in these two compartments by the fraction of epithelial 
cells expected to be targets for SARS-CoV-2 infection.

For the total number of epithelial cells in the nasal compartment, we use the 
estimate from Baccam et al.61, 4 × 108 cells. This is calculated from the estimate 
that the surface area of the nasal turbinates is 160 cm2 (ref. 63) and the surface 
area per epithelial cell is 2 × 10−11 to 4 × 10−11 m2 per cell (ref. 61). For the saliva 
compartment, the total surface area of the mouth was estimated to be 214.7 cm2 
(ref. 64). Therefore, we estimate that the total number of epithelial cells in the 
mouth is approximately 4 × 108 × 214.7/160 = 5.4 × 108.

Hou et al. estimated that the fraction of cells expressing angiotensin-converting 
enzyme 2—that is, the receptor for SARS-CoV-2 entry—on the cell surface is 
approximately 20% in the upper respiratory tract65. Therefore, in our model, the 
initial numbers of target cells in the nasal and saliva compartments are calculated 
as 4 × 108 × 20% = 8 × 107 and 5.4 × 108 × 20% = 1.08 × 108, respectively.

Note that these estimates are approximations using available best estimates 
in the literature. For a standard viral dynamics model, the number of initial 
target cells and virus production rate are unidentifiable and only their product is 
identifiable66. Thus, if the actual number of target cells differs from that estimated 
here, an increase in the initial number of target cells will lead to a corresponding 
decrease in the estimate of virus production rate, and vice versa.

Initial number of infected cells. We assume that one cell in the compartment of 
interest is infected at the start of infection, E0 = one cell, consistent with refs. 27,67. 
The small number of infected cells is also consistent with a recent work which 
estimated from sequencing data that the transmission bottleneck is small for 
SARS-CoV-2 and that there are probably between one and three infected cells at 
the initiation of infection68–70. Note that, in an earlier work, we showed that changes 
in the number of initially infected cells of between one and five in the model do not 
substaintially change the inference results27.

Initial viral growth rate, r. For all models above, the initial growth of the viral 
population before peak viral genome load is dominated by viral infection. This means 
that the immune responses considered in our models act to change the viral growth 
trajectory substantially only at later time points71. Thus, we derive an approximation 
to the initial viral growth rate using the TCL model only (equation (1)). This 
approximation also represents a good approximation for other models.

We first make two simplifying assumptions commonly used in analysis of 
the initial dynamics of viral dynamic models72,73. First, because at the initial stage 
of infection the number of infected cells is orders of magnitude lower than the 
number of target cells, we assume that the number of target cells is at a constant 
level, T0. Second, the dynamics of viruses are much faster than those of infected 
cells. For example, the rate of viral clearance is in the time scale of minutes and 
hours whereas the death of productively infected cells is in days. Therefore, we 
make the quasi-steady-state assumption, dVdt ≈ 0, such that the concentrations 
of viruses are always in proportion to the concentration of productively infected 
cells—that is, πI ≈ cV . This gives V ≈

π
c I .

With these two assumptions, equation (1) becomes a system of linear ODEs 
with two variables, E and I:

dE
dt = β π

c IT0 − kE
dI
dt = kE − δI

(7)

The Jacobian matrix, J, for this system of ODEs is:

J =
[

−k β π
c T0

k −δ

]

The initial growth rate, r, is the leading eigenvalue of the Jacobian matrix of the 
ODE system. We calculate the eigenvalues, λ, for the Jacobian matrix above from 
|J − λI| = 0, where I is the identity matrix, and get:

λ =
1
2

[

− (k + δ) ±
√

(k + δ)2 + 4kδ (R0 − 1)
]

, where R0 =
βπ

δc T0.

Then, the leading eigenvalue—that is, the initial growth rate r— is:

r = 1
2

[

− (k + δ) +

√

(k + δ)2 + 4kδ (R0 − 1)
]

. (8)

Model fitting strategy. Fitting viral dynamic models to viral genome load data. We 
took a non-linear mixed-effect modelling approach to fit the viral dynamic models 
to viral genome load data from all individuals simultaneously. All estimations 
were performed using Monolix (Monolix Suite 2019R2, Lixoft: https://lixoft.com/
products/monolix/). We allowed random effects on the fitted parameters (unless 
specified otherwise). All population parameters, except for the starting time of 
simulation, t0, are positive and therefore we assume that they follow log-normal 
distributions. For t0 we assume a normal distribution because t0 can be positive  
or negative.

The parameters β and π in the viral dynamic models strongly correlate with 
each other when the models are fitted to viral genome load data66. We tested three 
choices in handling this correlation in fitting all five viral dynamic models: (1) a 
correlation is assumed between parameter β and π in Monolix; (2) parameter β has 
a fixed effect only (that is, its value is set to be the same across all individuals); and 
(3) parameter π has a fixed effect only.

To test whether the age of the individuals and/or the infecting viral genotype 
(categorized as either non-B.1.1.7 or B.1.1.7) explains the heterogenous patterns 
in viral genome load trajectories across the cohort, we tested whether they covary 
with any of the fitted parameters in the model by setting the two variables as a 
continuous and a categorical covariate, respectively, in Monolix.
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The assumptions on parameters β and π and the choice of parameters that 
covariate with age or viral strain of infection led to a large number of model 
choices for fitting. Therefore, we took the following strategy to ensure that we 
identified the best model and parameter combinations to describe the data.
•	 First, we tested the three assumptions about parameters β and π in the five 

viral dynamic models without any covariate and selected the best assumption 
for further analysis based on their corrected Akaike information criterion 
(AICc) scores.

•	 Second, using the best assumption, we tested the model by including the 
age of the individuals as a continuous covariate of all fitted parameter values 
with a random effect first. We then took an iterative approach to test whether 
the covariate should be removed from any of the parameters in the model 
using Pearson’s correlation test in Monolix. The parameter(s) that has a 
non-significant P value (P > 0.05) or with the lowest P value is removed from 
next round of parameter fitting. We iterated the process until all parameters 
were removed.

•	 The best model variant with the lowest AICc score was then selected for 
analysis on whether parameter estimates differed in individuals infected by 
different viral strains. As before, we took an iterative approach. We first set 
the viral strain—that is, non-B.1.1.7 or B.1.1.7—as a categorical covariate of 
all fitted parameter values with a random effect in the model. We then tested 
whether the covariate should be removed from any of the parameters in the 
model using the analysis of variance in Monolix. The parameter(s) that has a 
non-significant P value (P > 0.05) or with the lowest P value is removed from 
the next round of parameter fitting. We iterated the process until all param-
eters were removed.

•	 Finally, the model variant with the lowest AICc score was selected as the best 
model.

Prediction of viral genome load trajectories for non-B.1.1.7 and B.1.1.7 strains. We 
randomly sampled 5,000 sets of parameter combinations from the distribution 
specified by the best-fit population parameters (Supplementary Table 4). For the 
effector cell model for the saliva compartment, β and π are strongly correlated. We 
thus applied formulations such that correlations between the two parameter values 
are preserved in the random sampling in accordance with the estimated correlation 
coefficient. We simulated the best-fit model using the 5,000 sets of parameter 
combinations for each of the strain. The median and the fifth and 95th quantilse of 
viral genome loads at each time points are reported.

Modelling infectiousness of an individual. We model how infectiousness 
depends on the viral genome load in an individual, similarly to the framework 
proposed in Ke et al.27. Specifically, we first use the viral culture data collected in 
this study to infer how the level of infectious virus shed relates to viral genome 
loads as measured by RT–qPCR. From this model, we predict how the level of 
infectious virus shedding changes over time in each individual and how the overall 
infectiousness of the infection varies among participants.

Relationship between viral genome load and infectious viruses. We first consider 
three alternative models describing how the amount of infectious virus in a sample 
is related to viral genome load (derived from the CN values): the ‘linear’ model, 
‘power-law’ model and ‘saturation’ model. In these models, due to the nature of 
stochasticity in sampling, we assume the number of infectious viruses that was 
in the sample for cell culture experiment to be a random variable, Y, that follows 
a Poisson distribution, with Vinf representing the expected number of infectious 
viruses—that is, Vinf = E(Y).
	(1)	 The linear model: 

We assume that Vinf, is proportional to the viral genome load, V, in the 
sample:

Vinf = E(Y) = AV (9)

where A is a constant.
	(2)	 The power-law model: 

We assume that Vinf is related to the viral genome load, V, by a power 
function:

Vinf = E(Y) = BV h (10)

where B and h are constants.
	(3)	 The saturation model:

We assume that Vinf is related to the viral genome load, V, by a Hill function:

Vinf = E(Y) = Vm
Vh

Vh + Kh
m

(11)

where Vm and Km are constants and h is the Hill coefficient.

Probability of cell culture being positive. If each infectious virus has a probability 
ϱ to establish infection such that the cell culture becomes positive, the number of 

viruses that successfully establish an infection in cell culture is Poisson distributed 
with parameter λ = E (Y) ϱ = Vinfϱ. Thus, the probability of one or more viruses 
successfully infecting the culture so that it tests positive is

ppositive = 1 − exp (−λ) = 1 − exp(−Vinfϱ) (12)

Substituting the expressions of Vinf from the three models above, we get the 
following expressions for ppositive from the three models (note that we use the 
subscripts ‘1’, ’2’ and ‘3’ to denote the three models for Vinf):

ppositive,1 = 1 − exp (−Vinfϱ) = 1 − exp (−DV) (13)

where D = Aϱ.

ppositive,2 = 1 − exp (−Vinfϱ) = 1 − exp
(

−GV h
)

(14)

where G = Bϱ.

ppositive,3 = 1 − exp (−Vinfϱ) = 1 − exp
(

−J Vh

Vh + Kh
m

)

(15)

where J = Vmϱ.
Note that, from the expressions above, it becomes clear that we will  

not be able to estimate parameters A, B and Vm in the three models because they 
appear as products with the unknown parameter ϱ in the equations. This means 
that the viral culture data do not allow us to estimate the absolute number of 
infectious viruses in a sample or provide a viral genome load; instead, we  
are able to estimate a quantity that is a constant proportion of the actual  
number of infectious viruses over time and across individuals. Therefore,  
we report estimations of infectious viruses in arbitrary units. These estimates 
represent a relative measure of infectiousness. Two estimates measured  
at different time points and/or from different individuals can be compared  
using this method.

Model fitting using a population effect modelling approach. For each sample, 
viral genome load and cell culture positivity were measured. Using these data, 
we estimate parameter values in the three models by minimizing the negative 
log-likelihood of the data.

More specifically, the likelihood of the mth observation being positive or 
negative in cell culture is calculated as:

pi,m =

{

ppositive,i(Vm), if the kth observation is positive

1 − ppositive,i (Vm) , if the kth observation is negative
(16)

where Vm is the viral genome load of the mth observation.
Because we have the paired nasal RT–qPCR and viral culture data for each 

individual, we fit the three mathematical models using a nonlinear mixed-effect 
modelling approach. Again, all estimations were performed using Monolix. We 
allowed random effects on the fitted parameters (unless specified otherwise). All 
population parameters with a random effect are assumed to follow log-normal 
distributions.

To find the best model explaining the data, we tested models with different 
combinations of parameters either with or without a random effect  
(Supplementary Table 7). The model with the lowest AIC score was selected as  
the best model.

Note that, for each of the three models, we tested a model variation where all 
parameters in the models have fixed effects only—that is, a single set of parameters 
is used to explain viral culture data from every individual. In this case, there 
is no heterogeneity in parameter values across individuals. The resulting AIC 
scores are significantly worse than the best-fit model assuming random effects on 
parameters (Supplementary Table 7). This indicates that there is a substantial level 
of individual heterogeneity in the relationship between infectious virus shedding 
and viral genome loads (as shown in Fig. 3d).

Calculation of CIs of the cell culture positivity curve (Fig. 3c). Similar to the 
procedures performed for prediction of CIs of viral genome load trajectories,  
we randomly sampled 5,000 sets of parameter combinations from the distribution 
specified by the best-fit population parameters of the best model—that is,  
the saturation model assuming that Km has only a fixed effect (Supplementary 
Table 8). More specifically, we sampled parameters from a log-normal  
distribution for J and h, with their means and standard deviations at the  
best-fit values. Using the parameter combinations, we generated curves of 
probability of cell culture positivity at CN values ranging between 10 and 40.  
The median and the fifth and 95th quantiles of viral genome loads at each CN 
values are reported.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Data availability
All raw data used are included as a Supplementary table. Raw sequence data files 
can be found under BioProject ID PRJNA809434.

Code availability
Computer codes for the mathematical analyses in this paper are available at both 
https://github.com/BROOKELAB/Viral-dynamics-modeling and https://doi.
org/10.5281/zenodo.6311388.
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Extended Data Fig. 1 | Remainder of individual plots. Plots of longitudinal assay results from study participants not shown in Fig. 1a. Single asterisk next to 
the participant ID indicates B.1.1.7 variant infection, while double asterisks indicate P1 variant infection.

Nature Microbiology | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


Articles Nature MicrobiologyArticles Nature Microbiology

Extended Data Fig. 2 | Individual-level symptom data. Self-reported symptom data from study participants, overlaid with viral culture status. Participants 
were asked to complete a survey through the Eureka digital study platform inquiring about the presence or absence of the indicated set of symptoms each 
day after sample collection.
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Extended Data Fig. 3 | Comparison of symptoms and viral culture status. Plots show the proportions of either viral culture negative or viral culture 
positive days for which participants reported the indicated symptoms. The p-values for the Wilcoxon rank-sum test are reported. Data are only shown for 
individuals who reported the indicated symptom at least once.
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Extended Data Fig. 4 | Model structures. Diagrams showing the structures of the additional three models (not shown in Fig. 2a) considered for describing 
viral load data. See Supporting Text for descriptions of the models.
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Extended Data Fig. 5 | Model parameter estimates as a function of age. Plots showing the relationship between age and the indicated model parameter 
estimates for (A) the refractory cell model (nasal data) and the (B) the immune effector cell model (saliva data). Linear regressions were performed on 
the data. R2 values and p-values are shown.
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Extended Data Fig. 6 | Analysis workflow. Diagram indicating how empirical RTqPCR and viral culture data were used to generate estimations of 
individual level viral dynamics and infectiousness.
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Extended Data Fig. 7 | The saturation model accurately predicts the cell culture positivity data. Lines denote the predicted probability of cell culture 
being positive. Dots denotes cell culture positivity data, where a dot is at 1 or 0 when the cell culture is positive or negative, respectively.
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Extended Data Fig. 8 | Individual infectiousness plots. Estimated infectiousness over time plotted for individual study participants. Dashed lines indicate 
inferred peak in infectiousness.
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Extended Data Fig. 9 | The relationship between genome viral load (y-axis; on a log10 scale) and CN value of the nasal samples. The black line, that is the 
center of the error band, represents the linear regression calibration curve. The shading around the black line shows the standard error for the regression.
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Extended Data Fig. 10 | The relationship between genome viral load (y-axis; on a log10 scale) and Ct value of the saliva samples. The black line, that 
is the center of the error band, represents the linear regression calibration curve. The shading around the black line shows the standard error for the 
regression.

Nature Microbiology | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


1

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Corresponding author(s): Christopher Brooke

Last updated by author(s): 03/03/2022

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All participants’ data and survey responses were collected in the Eureka digital study platform.  

Data analysis All figures were generated using r studio.  
Viral dynamics models were generated using custom codes in the R programing language and environment. The codes cannot be shared due 
to institutional policies of Los Alamos National Laboratory. All simulation results of the models can be fully reproduced from the equations in 
the Supporting Text and the parameter values listed in Supplementary Tables. 
All model fitting estimations were performed using Monolix. 
Viral genome sequence data was analyzed using the nf-core/viralrecon workflow.  Viral lineages were called using Pangolin version 2.4.2, 
pango version 1.2.6, and the 5/19/21 version of the pangoLEARN model. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The computer codes for the mathematical analyses in this paper are available at https://github.com/BROOKELAB/Viral-dynamics-modeling and are available at doi: 
10.5281/zenodo.6311388. All raw data used is included as a supplemental table. Raw sequence data files can be found under BioProject ID PRJNA809434.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Study cohort size was determined by overall study enrollment criterion. No sample size calculation for the analyses included in this 
manuscript was performed.

Data exclusions For some analyses, data from a small number of participants were excluded due to limited sample numbers. In all cases this is indicated in the 
text.

Replication Replication is not applicable to this study because samples were collected under the non-replicatable conditions of a global pandemic. All 
analyses can be replicated using the raw data and code provided.

Randomization Randomization was not required due to the absence of clinical interventions.

Blinding Investigators only saw a random participant ID number during the study, with no other identifying information.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) Vero-TMPRSS2 cells: National Institute of Infectious Diseases, Japan 

Authentication Representative aliquots of the cell stock used in this study were evaluated by morphological observation and testing for 
SARS-CoV-2 susceptibility 

Mycoplasma contamination Absence of mycoplasma was tested using MycoSeq from AppliedBiosystems when the cell line aliquots were initially frozen 
down. 
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(See ICLAC register)

No commonly misidentified cell lines were used

Human research participants
Policy information about studies involving human research participants

Population characteristics Participants were required to be at least 18 years of age, have a valid University of Illinois ID, speak English, have internet 
access, and live within 8 miles of the university campus. Participants were required to be within 24 hours of a positive on-
campus COVID test or within 5 days of exposure to a COVID+ individual. Participants must have a documented on-campus 
negative COVID result within the previous 7 days. All demographic information on the study cohort, including covariate-
relevant characteristics such as age and health status are detailed in supplemental table 1. Where relevant, the potential of 
age to act as a co-variate was accounted for in the analyses, as detailed in the methods section

Recruitment Individuals were recruited via either a link shared in an automated text message providing isolation information sent within 
30 minutes of a positive test result, a call from a study recruiter, or a link shared by an enrolled study participant or included 
in information provided to all quarantining close contacts. In addition, signs were used at each testing location and a website 
was available to inform the community about the study.

Ethics oversight This study was approved by the Western Institutional Review Board, and all participants provided informed consent. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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