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Abstract

Melatonin and leptin exhibit daily rhythms that may contribute towards changes in metabolic physiology. It remains
unclear, however, whether this rhythmicity is altered in obesity or type 2 diabetes (T2DM). We tested the hypothesis that 24-
hour profiles of melatonin, leptin and leptin mRNA are altered by metabolic status in laboratory conditions. Men between
45–65 years old were recruited into lean, obese-non-diabetic or obese-T2DM groups. Volunteers followed strict sleep-wake
and dietary regimes for 1 week before the laboratory study. They were then maintained in controlled light-dark conditions,
semi-recumbent posture and fed hourly iso-energetic drinks during wake periods. Hourly blood samples were collected for
hormone analysis. Subcutaneous adipose biopsies were collected 6-hourly for gene expression analysis. Although there was
no effect of subject group on the timing of dim light melatonin onset (DLMO), nocturnal plasma melatonin concentration
was significantly higher in obese-non-diabetic subjects compared to weight-matched T2DM subjects (p,0.01) and lean
controls (p,0.05). Two T2DM subjects failed to produce any detectable melatonin, although did exhibit plasma cortisol
rhythms comparable to others in the group. Consistent with the literature, there was a significant (p,0.001) effect of
subject group on absolute plasma leptin concentration and, when expressed relative to an individual’s 24-hour mean,
plasma leptin showed significant (p,0.001) diurnal variation. However, there was no difference in amplitude or timing of
leptin rhythms between experimental groups. There was also no significant effect of time on leptin mRNA expression.
Despite an overall effect (p,0.05) of experimental group, post-hoc analysis revealed no significant pair-wise effects of group
on leptin mRNA expression. Altered plasma melatonin rhythms in weight-matched T2DM and non-diabetic individuals
supports a possible role of melatonin in T2DM aetiology. However, neither obesity nor T2DM changed 24-hour rhythms of
plasma leptin relative to cycle mean, or expression of subcutaneous adipose leptin gene expression, compared with lean
subjects.
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Introduction

The circadian timing system regulates many aspects of

physiology and circadian disruption is linked to multiple metabolic

diseases, including type 2 diabetes mellitus (T2DM) [1,2]. In

mammals, the master circadian clock is located within the

suprachiasmatic nuclei (SCN) of the hypothalamus. This SCN

clock is synchronised to the external light-dark cycle and acts to

maintain the correct phasing of clocks in other brain areas and in

most peripheral tissues [3]. In human chronobiology studies,

endogenous circadian phase is commonly defined by measuring

SCN-driven rhythms in the plasma concentration of hormones,

such as melatonin and cortisol.

It is now clear that there is a strong interaction between multiple

aspects of circadian and metabolic physiology. For example, tissue-

specific disruption of the murine liver or pancreatic circadian clock

has adverse effects on whole body glucose regulation [4–6].

Circadian clocks have also been identified in white adipose tissue

(WAT), another key metabolic tissue that is intimately linked to

glucose regulation and the risk of developing T2DM [7,8]. Robust

daily rhythms of WAT gene expression have been observed in

mice, rats and humans [9–11]. Moreover, circadian rhythms have

also been reported in WAT explants and cultured adipocytes [12].

At present, the function(s) of WAT rhythms are poorly understood,

although they may include temporal control over the secretion of

the adipose signalling molecules, adipokines [13].

Multiple adipokines exhibit 24-hour plasma rhythms in

humans. Of these, the best studied is the prototypic adipokine,

leptin, whose daily rhythm is thought to be generated by an

interaction between circadian rhythms, feeding and time awake

[14,15]. Leptin rhythms have been proposed to contribute to the

daily variation in appetite, and some studies have reported

differences in these rhythms in individuals who are obese and/or

have T2DM. There are conflicting reports, however, describing

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e37123



leptin rhythmicity in the literature [16–18]. These differences may

well derive from differences in design of the studies, many of which

did not include stringent control of circadian phase.

An important aspect of physiology that interacts with both

circadian and metabolic processes is sleep. Restriction of sleep

duration is associated with glucose dysregulation, increased

appetite and increased body weight in epidemiological and

laboratory studies [19]. These effects are believed to be mediated

in part by alterations in neuroendocrine function, including

increased sympathetic nervous activity, reduced plasma leptin and

increased plasma ghrelin concentrations. Careful control of both

circadian rhythms and sleep is therefore important for meaningful

analysis of metabolism.

In this study, we have tested the hypothesis that daily melatonin

and leptin rhythms are different in lean, obese non-diabetic and

T2DM men, following strict circadian control. Comparing

different biological rhythms within and between individuals

requires an endogenous marker of circadian timing. Using dim

light melatonin onset (DLMO), the plasma leptin data were

normalised to the phase of the melatonin rhythm, considered a

reliable circadian marker. Finally, we have used a novel serial

biopsy approach to determine daily rhythms of leptin mRNA

expression in subcutaneous WAT from the same subjects. Our

data reveal differences in melatonin rhythm amplitude, but not in

rhythms of plasma leptin or leptin mRNA.

Methods

Ethics Statement
All aspects of the study were conducted in accordance with the

Declaration of Helsinki and received a favourable ethical opinion

from the Surrey Research Ethics Committee and the institutional

ethics committee (University of Surrey Ethics Committee).

Research participants gave written informed consent before taking

part in the study.

Participants
Twenty five participants aged between 40 and 65 years

(53.561.3; mean 6 SEM) were recruited into 3 age-matched

groups (8 lean healthy, 10 obese non-diabetic, and 7 obese

T2DM). Recruitment details and calculation of homeostatic

model assessment of insulin resistance (HOMA-IR) are de-

scribed elsewhere [11]. Measurement of insulin, glucose and

HbA1c was conducted by the Clinical Biochemistry Department

at the Royal Surrey County Hospital, Guildford, UK. Two

participants of the T2DM group were diet and exercise

controlled and 5 participants were treated with combinations

of metformin, statins, ramipril and hypertension medication.

The T2DM participants had been diagnosed with T2DM for

between 2 and 22 years (7.3 2.7; mean 6 SEM). In addition to

good diabetes control, T2DM participants reported no other

major health problems and so were extremely unlikely to be

suffering from autonomic neuropathy. Information about clock

and clock-related gene expression in subcutaneous WAT

biopsies in the participants can be found elsewhere [11].

Relative to our previous work [11], this study excluded one

participant of the T2DM group as well as one participant of the

obese non-diabetic group because of insufficient plasma samples.

Pre-study Week and Laboratory Study
Protocol details of the pre-study week are described elsewhere

[11]. In brief, actigraphy, food and sleep diaries were used to

ensure that the subjects’ behaviour during the week before the

laboratory study was as controlled as possible. All experimental

procedures were carried out at the Surrey Clinical Research

Centre. Volunteers arrived in the afternoon of day 0 for a night of

adaptation. Throughout the laboratory study, they were required

to maintain a semi-recumbent posture. They were required to

remain awake with lights on between 0630 and 2230 h (440–825

lux in direction of gaze) and allowed to sleep with lights off

between 2230 and 0630 h (0 lux). During the waking period,

participants were fed with hourly nutritional drinks (Fortisip;

Nutricia, Schiphol, The Netherlands) and were allowed to drink

water ad libitum. Daily energy intake was basal metabolic rate

multiplied by 1.1, divided equally over the waking hours Light

exposure, posture and food intake were controlled throughout the

25 hour laboratory sampling period.

Plasma Melatonin Measurement
Melatonin was measured using a direct radioimmunoassay

[20]. The inter-assay coefficients of variation were 25% at

9 pg/ml (n = 13), 15% at 21 pg/ml (n = 21), 17% at 94 pg/ml

(n = 16) and 12% at 114 pg/ml (n = 15). The average detection

limit was 5.8 0.6 pg/ml (mean SEM). The dim light melatonin

onset (DLMO) was calculated using the 25% method [21]. In

brief, 25% of the difference between the baseline (mean of six

values) and the peak (average of the three highest points) was

calculated. This 25% threshold was used to determine the

timing of the crossing points of the melatonin rhythm for

calculation of the time of DLMO.

Plasma Cortisol Measurement
Cortisol was measured using a previously validated radioim-

munoassay [22]. The inter-assay coefficients of variation were

12% at 97 nM (n = 5), 21% at 348 nM (n = 5) and 15% at 606 nM

(n = 5). A cosine wave using the equation shown was fitted to the

cortisol data sets using SAS.

Plasma Leptin Measurement
A commercial human leptin radioimmunoassay kit (Millipore,

Watford, UK) was used according to the manufacturer’s

instructions. The inter-assay coefficients of variation were 10%

at 4 ng/ml (n = 6) and 19% at 15 ng/ml (n = 7). For some

analyses, leptin concentration for each individual subject was

calculated as % of the average value for that subject. These data

were then plotted according to external clock time and to

endogenous circadian time using the subject’s DLMO. A cosinor

wave was fitted to each individual leptin profile, as described for

the plasma cortisol analysis.

RNA Extraction and Quantification
Subcutaneous adipose tissue biopsies taken from the upper

buttock region were washed with saline, snap frozen and then

stored at 280C. Total RNA was extracted using TRIZOL

according to the manufacturer’s instructions, cDNA was synthe-

sised and leptin mRNA quantified using Taqman quantitative RT-

PCR. The sequences of the leptin primer probe set were 59-39

TCCTCACCAGTATGCCTTCCA; 39-59 GTGAAGAA-

GATCCCGGAGGTT and the TaqMan probe CGTGATC-

CAAATATCCAACGACCTGGA. The full method is described

in detail elsewhere [11].

Statistics
Data were analysed by either 1-way or 2-way repeated measures

ANOVA, with Bonferroni post-hoc test, or correlation following a

linear regression, as appropriate (Prism v5.0, GraphPad Software,

San Diego, USA).

Melatonin and Leptin Rhythms in Type 2 Diabetes
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Results

Pre-screen participant data are shown in Table 1. The three

subject groups were age matched with no significant (p.0.05, 1-

way ANOVA) difference between the groups. There were

significant (p,0.05) overall effects of subject group on all other

parameters. Post-hoc analysis revealed that waist circumference

and BMI were lower in the lean control group than both other

groups, with no difference between obese non-diabetic and T2DM

subjects. By contrast, fasting glucose and insulin concentrations,

HbA1c and homeostatic model assessment of insulin resistance

(HOMA-IR) were highest in the T2DM group, with no difference

between the lean and obese non-diabetic groups.

Compliance with the prescribed pre-laboratory sleep-wake

schedule was checked by actigraphy; in all cases, actigrams

showed a sharp onset of activity at 06:30 h and a sharp drop of

activity at 22:30 h (data not shown). These findings were

corroborated by the timing of morning (06:33 h 2 min) and

evening (22:28 h 7 min) voice mail recordings, together with

analyses of the sleep diaries (get up time 06:45 h 5 min; try to sleep

time 22:44 h 4 min; all times represent mean SEM). Food diaries

confirmed that the participants followed the dietary restrictions in

the week prior the study.

Melatonin rhythms were detected in all lean and obese non-

diabetic subjects and five of the seven T2DM subjects (Figure S1,

S2, and S3). There was a significant (p,0.001; 2-way repeated

measures ANOVA) effect of time and subject group, together with

a significant time x group interaction on plasma melatonin

concentrations (Figure 1a). Statistical significance was also

maintained if only values during the dark phase were analysed

(data not shown). Nocturnal melatonin concentrations in the obese

non-diabetic group were significantly higher than in the lean

(p,0.05) and T2DM (p,0.01) groups, despite no difference in

BMI or waist circumference between the obese non-diabetic and

T2DM subjects. Within the obese non-diabetic and T2DM

groups, there was no significant association between BMI and

melatonin concentration (data not shown). The DLMO time was

calculated for each participant who exhibited a clear rhythm in

melatonin. There was no significant (p.0.05; 1-way ANOVA)

difference in DLMO between the groups (Figure 1b).

As a melatonin rhythm could not be detected in two of the seven

T2DM participants, we analysed plasma cortisol concentrations in

this subject group to determine whether the absence of melatonin

rhythmicity was reflected in other SCN-driven endocrine rhythms

(Figure S4). Six of the seven T2DM subjects, including both that

lacked detectable melatonin rhythms, exhibited plasma cortisol

rhythms, as determined by significant (p,0.05) correlation of

cosinor curves with their plasma cortisol data.

There was a significant effect of group (p,0.001; 2-way

repeated measures ANOVA) but neither time nor time x group

interaction on raw plasma leptin concentrations (Figure 2a).

Cosinor curves were fitted to all the individual leptin profiles and

significant (p,0.05) rhythms were observed for all participants

(Figure S5, S6, and S7). A similar temporal pattern of plasma

leptin was observed in all subjects suggesting that the lack of effect

of time in data shown in Figure 2a may be due to individual

variation in basal leptin concentrations. Indeed, grouped plasma

leptin data plotted as a percent of each individual’s mean leptin

Table 1. Pre-screen participant data.

Variable
Lean
mean SEM

Obese
non-diabetic

Type 2
diabetic

Number 8 10 7

Age [years] 53.8 2.1 50.8 2.9 57.1 1.6

Waist circumference [cm] 88.9 2.3 105.9 1.4* 113.5 3.2*

BMI [kg/m2] 23.2 0.5 30.1 0.8* 32.0 0.9*

Fasting ?glucose [mmol/l] 4.2 0.2 4.8 0.3 6.7 0.5+*

Fasting ?insulin [pmol/l] 28.1 5.9 40.6 6.8 102.1 27.8+*

HbA1c ?[mmol/mol] 35.0 1.7 35.8 1.6 51.1 3.0+*

HOMA-IR 0.5 0.1 0.8 0.1 2.0 0.6+*

*P,0.05 compared to lean participants; +P,0.05 compared to obese non-
diabetic participants (1-way ANOVA with Bonferroni post-hoc test).
doi:10.1371/journal.pone.0037123.t001

Figure 1. Differences in amplitude, but not onset time, of
nocturnal plasma melatonin concentration. (a) Data in the top
panel represent mean 6 SEM of plasma melatonin concentrations over
25 hours. Diamonds, solid red line = lean subjects (n = 8); squares,
dashed blue line = obese non-diabetic subjects (n = 10); triangles,
dotted black lines = type 2 diabetic subjects (n = 7). The light-dark
conditions are indicated by the bar below the x-axis. There was a
significant (p0.001; 2-way repeated measures ANOVA) effect of time,
group and time x group interaction. Nocturnal melatonin concentra-
tions were significantly higher in the obese non-diabetic group
(+p,0.05, vs lean, **p,0.01 vs type 2 diabetic subjects). (b) Data in
the bottom panel represent mean 6 SEM of the dim light melatonin
onset (DLMO) in each group. There was no significant (p.0.05, 1-way
ANOVA) difference between the group averages. Lean = lean healthy
participant group; ow = obese non-diabetic group; T2DM = type 2
diabetic group.
doi:10.1371/journal.pone.0037123.g001

Melatonin and Leptin Rhythms in Type 2 Diabetes

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e37123



concentration revealed a clear 24-hour rhythm, with a nadir in the

morning and peak concentration in the early night (Figure 2b–c).

When plotted as a function of external clock time, there was a

significant effect of time (p,0.001, 2-way repeated measures

ANOVA) but neither group nor time x group interaction on leptin

concentrations (Figure 2b). We therefore also plotted the leptin

values following correction to each individual’s internal circadian

phase, estimated by the DLMO of the participant (Figure 2c). Two

way repeated measures ANOVA analysis again showed a

significant effect for time (p,0.001) but neither for group nor

time x group interaction. One-way ANOVA analysis revealed that

there was no significant effect on either the timing or amplitude of

the plasma leptin rhythms between groups (Table 2).

Expression of leptin mRNA in the WAT biopsies exhibited a

significant (p,0.05; 2-way repeated measures ANOVA) overall

effect of group, but no significant effect of time nor time x group

interaction (Figure 3a). Post-hoc analysis failed to reveal a

significant difference in leptin mRNA between the participant

groups. The 24-hour mean expression of leptin mRNA in each

subject significantly correlated with both 24-hour mean plasma

leptin concentrations (Figure 3b; p,0.05; r2 = 0.2253) and BMI

(Figure 3c; p,0.05; r2 = 0.2257). As expected, there was also a

significant correlation between 24-hour mean plasma leptin

concentration and BMI (Figure 3d; p,0.001; r2 = 0.5365).

Discussion

This study revealed significantly higher nocturnal plasma

melatonin concentrations in obese non-diabetic subjects than in

weight-matched T2DM counterparts or lean, non-diabetic

individuals. As expected, plasma leptin concentrations were

elevated in obese non-diabetic and obese T2DM groups,

compared to lean controls. Consistent with this finding, there

was an overall significant effect of subject group on subcuta-

neous leptin mRNA measured in serial subcutaneous WAT

biopsies. Although we were unable to detect a significant effect

of time on either leptin mRNA expression or raw plasma leptin

data, reproducible rhythms of plasma leptin were apparent

when the data of each individual were normalised relative to his

24-hour mean. There was no significant effect of subject group

on these daily rhythms of plasma leptin, either when expressed

relative to external clock time or to internal circadian time as

assessed by DLMO.

Melatonin rhythms provide an extremely robust endocrine

marker of internal circadian time that is routinely used in human

chronobiology. The absence of a change in DLMO between our

subject groups implies that obesity and T2DM do not alter the

phasing of the master circadian clock when studied in controlled

laboratory conditions. The altered amplitude of the melatonin

rhythm observed in our non-diabetic participants is consistent with

previous work that reported a correlation between nocturnal

melatonin concentrations and body weight in human subjects

without diabetes [23]. The mechanism driving the increased

melatonin rhythm amplitude in obese non-diabetic subjects is not

known. However, increased obesity and leptin concentration are

associated with increased sympathetic tone in some tissues [24,25],

indicating that altered sympathetic innervation of the pineal gland

may underlie the increased melatonin concentration in our obese

non-diabetic subjects.

By contrast, our T2DM subjects, who were matched with the

obese non-diabetic participants for BMI and waist circumference,

displayed significantly lower nocturnal melatonin concentration

than the obese non-diabetic group. Indeed, two T2DM subjects

failed to exhibit a detectable concentration of melatonin across the

24-hour cycle. These two subjects, however, showed normal

cortisol rhythmicity and thus the absence of a melatonin rhythm is

likely caused by an impaired clock output, rather than an impaired

SCN clock. Although there was no significant difference in plasma

melatonin between the lean and T2DM groups, this comparison is

less meaningful than the comparison between weight-matched

obese non-diabetic and T2DM groups, due to the effects of obesity

per se described above. Reduced amplitude melatonin rhythms

have been previously reported in T2DM patients with autonomic

neuropathy [26,27] and retinopathy [28]. A further study has

reported a small decrease in serum melatonin across the 24-hour

diurnal cycle in T2DM patients [29]; however, many of these

individuals were extremely obese (mean BMI = 44 for T2DM

versus 34 for non-T2DM ) and there were no other participant

details provided, making interpretation of the data extremely

difficult. The findings from our study suggest that, even in well

controlled T2DM patients with no symptoms of autonomic

neuropathy, melatonin rhythms are blunted relative to BMI-

matched individuals who exhibit normal insulin sensitivity.

Altered melatonin rhythm amplitude in our subjects may be

functionally related to changes in both insulin secretion and

sensitivity. Multiple studies have shown that melatonin can acutely

inhibit glucose-mediated insulin secretion in vitro and in vivo [30]. In

addition, 9 week nocturnal melatonin administration to rats via

drinking water decreased plasma insulin concentration [31]. In

rodent models, loss of melatonin signalling by pinealectomy [32]

or genetic ablation of MT1 melatonin receptor expression [33]

decreases insulin sensitivity. Although translation of data between

nocturnal rodents and diurnal humans has limitations, altered

melatonin signalling via polymorphism of the human melatonin

MT2 receptor is associated with abnormal glucose homeostasis

and T2DM [34–36]. This suggests that a functional link between

melatonin signalling and diabetes is conserved between species.

The intracellular mechanisms affected by altered melatonin

amplitude in T2DM subjects are not yet known. Although the

best characterised intracellular signalling pathway regulated by

melatonin is cAMP synthesis, many other signalling mechanisms

have been identified in a variety of model systems [37]. In a

circadian context, it is of interest that melatonin regulates the

expression of circadian clock genes in multiple tissues [38–41].

The relationship between plasma melatonin concentration and

clock gene expression, however, is not clearly defined. Moreover,

there are multiple SCN-derived pathways that regulate peripheral

clocks [3]. It is therefore unlikely that the changes in melatonin

rhythm amplitude observed here would result in physiologically

relevant changes in most peripheral rhythms.

Soon after the seminal discovery of leptin as an adipose

hormone [42], it was reported that human plasma leptin

concentrations exhibit a 24-hour variation. Although these

rhythms are influenced by feeding and time awake, an endogenous

circadian component has been observed [14], which may in part

be a result of circadian secretion from adipocyte cells [15].

Inconsistencies in 24-hour plasma leptin profiles and their

modulation by obesity and T2DM have been reported in the

literature [16–18]. These differences may be attributable to a lack

of circadian control prior to the laboratory study and also

differences in the BMI of participants within the obese subject

groups. Our study thus employed carefully controlled conditions to

investigate the effect of metabolic status while minimising the

confounding effects of lifestyle factors and different circadian

phases. The subjects recruited into our obese non-diabetic and

T2DM groups were not morbidly obese. Moreover, although

HOMA-IR and HbA1c values for the T2DM subjects were

significantly higher than that of the other groups, they were

Melatonin and Leptin Rhythms in Type 2 Diabetes
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Figure 2. Diurnal rhythms of plasma leptin concentrations. (a) Analysis of absolute concentration revealed a significant effect of group
(p,0.001; 2-way repeated measures ANOVA) but not of time or time x group interaction. *p,0.05 lean vs type 2 diabetic subjects. (b–c) Following
normalisation of each individual’s raw data to their own mean concentration, the group values were calculated and fitted with a cosinor curve.
Normalised data are expressed relative to (b) external time of day and (c) endogenous circadian time, estimated using DLMO where 360u = time of
DLMO. The DLMO of two participants in the type 2 diabetic participant group could not be calculated due to the absence of a peak in the melatonin
profile; their data were thus excluded. Statistical analysis showed a significant effect of time (p,0.001; 2-way repeated measures ANOVA) but not for
group or interaction in both (b) and (c). (a–b) The light-dark conditions are indicated by the bars below the x-axes. In all panels, diamonds, solid red
line = lean subjects (n = 8); square, dashed blue line = obese non-diabetic subjects (n = 10); triangle, dotted black line = type 2 diabetic subjects
(n = 7).
doi:10.1371/journal.pone.0037123.g002

Table 2. Acrophase (peak time) and amplitude of the leptin rhythms determined by cosinor analysis.

Group N
Not DLMO corrected
acrophase [h ± min] DLMO corrected Amplitude [% of mean]

Lean healthy 8 00:04 15 00:06 22 21.7 1.9

Obese non-diabetic 10 00:16 16 00:34 28 23.3 2.7

Type 2 diabetic 7 00:31 26 00:49 38 22.2 0.7

A cosine wave was fitted to each individual leptin profile. There was no significant (p.0.05; 1-way ANOVA) effect of group on either the acrophase (peak time) or
amplitude of the rhythms. The acrophase of the leptin rhythm was also corrected to the dim light melatonin onset (DLMO).
doi:10.1371/journal.pone.0037123.t002
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sufficiently low to indicate that our subjects’ diabetes was well

controlled. Data may therefore be different in individuals with

greater levels of obesity and poorly controlled diabetes; however,

this was not the focus of the current study and our data clearly

suggest that obesity and T2DM per se do not alter diurnal rhythms

of plasma leptin concentration. The possibility that lifestyle

changes or other factors tightly controlled in our study cause

disruption of diurnal and/or circadian rhythmicity remains to be

determined.

Analysis of leptin mRNA expression in serial subcutaneous

WAT biopsies did not reveal significant temporal variation. In

mice, subcutaneous WAT also exhibits little temporal variation of

leptin mRNA, despite high amplitude leptin mRNA rhythms in

epididymal WAT [43]. It is therefore possible that temporal

changes in leptin mRNA expression exist in other human WAT

depots. The 24-hour mean expression of leptin mRNA in each of

our subjects significantly correlated with both 24-hour mean

plasma leptin and BMI. However, there was a much tighter

correlation between 24-hour mean plasma leptin and BMI,

suggesting that plasma leptin is a better indicator of adiposity.

In summary, our data reveal a correlation between nocturnal

melatonin concentration and T2DM, which may support the

possible existence of a functional link between altered melatonin

production, obesity and insulin sensitivity. Our data do not

support the hypothesis that obesity or T2DM influences 24-hour

leptin rhythms in controlled laboratory conditions. Future work

will study the mechanistic relationship between melatonin and

glucose homeostasis.

Supporting Information

Figure S1 Individual plasma melatonin profiles and age
of all the lean subjects. The light-dark conditions are indicated

by the bars below the x-axes.

(TIF)

Figure 3. Expression of leptin mRNA in white adipose biopsies. (a) Data represent mean 6 SEM of leptin mRNA in 6-hourly serial biopsies.
There was a significant effect of group (p,0.05; 2-way repeated measures ANOVA), but not of time or time x group interaction. There were no
significant (p.0.05; Bonferroni post-hoc test) pair wise differences in leptin mRNA expression between the subject groups. The light-dark conditions
are indicated by the bars below the x-axis. Diamonds, solid red line = lean subjects (n = 8); squares, dashed blue line = obese non-diabetic subjects
(n = 10); triangles, dotted black line = type 2 diabetic group (n = 7). The average leptin mRNA expression for each subject was significantly (p,0.05)
correlated with both (b) average plasma leptin concentrations and (c) subjects’ BMI. (d) The average plasma leptin concentration for each subject was
significantly (p,0.001) correlated with subjects’ BMI.
doi:10.1371/journal.pone.0037123.g003
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Figure S2 Individual plasma melatonin profiles and age
of all the obese non-diabetic subjects. The light-dark

conditions are indicated by the bars below the x-axes.

(TIF)

Figure S3 Individual plasma melatonin profiles, age
and diabetes treatment regimes of all the type 2 diabetic
subjects. The light-dark conditions are indicated by the bars

below the x-axes.

(TIF)

Figure S4 Plasma cortisol profiles of the type 2 diabetic
subjects. Six out of seven subjects exhibited a plasma cortisol

rhythm as determined by significant (p,0.05) cosine fit to the data.

The light-dark conditions are indicated by the bars below the x-

axes. The top left and right panels show cortisol rhythms in

subjects that did not exhibit plasma melatonin rhythms.

(TIF)

Figure S5 Individual plasma leptin profiles of all the
lean subjects. The light-dark conditions are indicated by the

bars below the x-axes. Cosinor curve fits are shown for each

profile.

(TIF)

Figure S6 Individual plasma leptin profiles of all the
obese non-diabetic subjects. The light-dark conditions are

indicated by the bars below the x-axes. Cosinor curve fits are

shown for each profile.

(TIF)

Figure S7 Individual plasma leptin profiles of all the
type 2 diabetic subjects. The light-dark conditions are

indicated by the bars below the x-axes. Cosinor curve fits are

shown for each profile.

(TIF)
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