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Abstract. This paper explores the possibility of using low-level activity
spotting for daily routine recognition. Using occurrence statistics of low-
level activities and simple classifiers based on their statistics allows to
train a discriminative classifier for daily routine activities such as work-
ing and commuting. Using a recently published data set we find that the
number of required low-level activities is surprisingly low, thus, enabling
efficient algorithms for daily routine recognition through low-level activ-
ity spotting. More specifically we employ the JointBoosting-framework
using low-level activity spotters as weak classiers. By using certain low-
level activities as support, we achieve an overall recall rate of over 90%
and precision rate of over 88%. Tuning down the weak classifiers using
only 2.61% of the original data still yields recall and precision rates of
80% and 83%.
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1 Introduction

Human activity is an important ingredient for context-aware systems. Its recog-
nition has gained a lot of interest recently for diverse domains spanning from
industrial applications to modeling of human behaviour in medical care. The
different requirements of these domains have led to a multitude of approaches
targeting recognition on different scales and complexities ranging from gesture
recognition (happening within seconds) to complex daily routines (lasting often
for hours and consisting of multiple activities).

Many state-of-the-art activity recognition approaches use and model all sen-
sor data generated during the user’s activity. For example a Hidden Markov
Model can be used to model the sensor data of a particular activity. However,
modeling and recognizing highly variable and in particular long-lasting activities
such as daily routines (e.g., lunch or commuting activities) using such holistic
approaches might be suboptimal and even infeasible in the presence of limited
training data. In contrast, activity spotting aims to identify those activities that
are most distinctive for a particular long-term activity. Identifying those distinc-
tive parts of an activity and spotting them for recognition has at least two major
advantages. First, the computational requirements can be reduced significantly



and second, even limited amounts of training data can suffice to obtain good
recognition performance.

Another predominant aspect of most recent activity recognition approaches
is that the recognition of complex (high-level) activities follows a bottom up
approach. The classification of low-level activities is used as a basis to model
and infer more complex activities. This work takes rather the perspective of a
top down approach. Having the annotation of high level routines, the aim is to
identify low level activities, which have a high descriptive power to distinguish
the routines. For this we use a feature selection algorithm to reveal the low level
activities which matter most for classifying a routine.

The main contribution of this paper is to investigate the feasibility of spot-
ting distinctive low-level activities to recognize complex activities, in our case
daily routine activities. We achieve this by an automatic discriminative analysis
of the routines and spotting the discriminative part of the routine’s data. Ex-
perimental results show that far less data is needed than one might intuitively
expect and that only a small subset of lowlevel activities suffice to support the
classification of daily routines. As large portions of the data are not used and
therefore irrelevant for activity classification, the approach is highly efficient.
As a result the approach lends itself to computationally inexpensive embedded
activity recognition.

The paper is organized as follows. First we situate our work within related
work (section 2). After presenting our approach in detail (section 3), we introduce
a publicly available dataset (section 4), on which the evaluation is done (section
5). We complete this paper with a conclusion (section 6).

2 Related Work

In human activity recognition, many different methods have been proposed fo-
cusing on different types, scales and complexities of activities. However, surpris-
ingly little literature exists on long-term and high-level activity recognition and
therefore remains an open research challenge. The following summarizes the most
related work even though we are not aware of any prior work to use low-level
activity spotting to recognize complex or high-level activities.

2.1 Layered Activity Recognition

A popular approach to activity recognition is a layered inference of complex ac-
tivities based on prior classification of simple activities as subcomponents. In [7]
the authors show that Hidden Markov Models (HMM) have the ability to cap-
ture different levels of abstraction with respect to time granularity. Constructing
a cascade of HMMs, low-level video and audio data is used for a first HMM and
its output is fed into a second set of HMMs. The evaluation is done on office
activities, like attending a presentation or making a phone call.

In the work of Dong Zhang et al. [11] a two-level classifier is used on auditory
and visual data to recognize human interactions patterns in meetings. In the first



layer individual actions are recognized such as speaking, writing, and idle. The
output of these models is then used as input for the second layer, which models
group interaction such as presentation, discussion, monologue, and white-board.

Clarkson and Pentland [1] propose a method to discover events and scenes on
ambulatory audio and video data. The authors find that clustering with regular
HMMs only separates specific events (e.g, cashier beeps, supermarket music,
walking through aisles), but does not capture the fact, that these events occur
together in a scene. Using a hierarchy of HMMs, capturing first the lowlevel
events, scenes such as being at the supermarket, at a busy street or in the video
store can be discovered.

In [5], an approach is used to separate classes such as walking, jogging, or
driving a car on sample level discriminatively. The posterior probabilities of the
classification are then fed into an HMM, which captures the temporal context
and hereby improving the results of the discriminative inference.

2.2 Activity Spotting

Following the paradigm of activity spotting, the aim is to find subcomponents of
activities that allow to distinguish different classes. The authors of [6] approach
the discovery of activities by identifying motifs in multivariate time series. In
their context, motifs mean reoccurring subsequences, which have a high intra-
motif similarity and can be distinguished from other subsequences. They use
unsupervised techniques to identify these motifs. To evaluate their approach,
they record a set of different dumbbell exercises.

In [12], gesture recognition on continuous streams is approached by identify-
ing segments of interest. These simple segments are then combined as subparts
of a certain gesture.

2.3 Longterm Activity Recognition

Research on long-term activity recognition is still in its infancy. Besides the
difficulty of the task, also practical reasons have hindered progress: recording
of long-term data is a non trivial task and annotating the data tends to be
cumbersome and time consuming. In [4], a probabilistic model (originated from
text-document analysis) is used to discover daily routines. By discretizing low
level sensor data into a ’word’-type of representation, routines can be interpreted
as ’documents’. Using topic models, the authors can discover daily routines such
as going for lunch or commuting.

Others investigate the recognition of activities on a larger timescale such as
shopping or doing housework without having low level activities as a prerequisite
and using standard algorithms to infer labeled activities on larger timescales [3].
Van Laerhoven et al. [9] use a model of the user’s rhythms to improve the recog-
nition on a dataset of 27 days and compare their approach to the exclusive use
of sensor data, such as motion, light and temperature. The model is constructed
by a daily probability distribution of the user’s annotated activities.



3 Activity Spotting for Daily Routine Recognition

The main goal of this work is to use low-level activity spotting to recognize
high-level activities such as daily routines. Given a particular set of such high-
level activities we therefore need to identify parts of the sensor data that enable
reliable discrimination of the activities. For this we employ a boosting framework
using low-level activity spotters as weak classifiers.

In this paper we use the occurrence statistics of low-level sensor data as
the basic representation of sensor data. This representation closely follows the
representation previously used for daily routine modeling and recognition [4]. We
first perform unsupervised clustering of the low-level sensor data. For a given
time-window we then compute the occurrence statistics of the cluster centers.
This is the basic representation of the sensor and is used as input for the boosting
framework. Figure 1 illustrates the steps in more detail. After extracting the
features (1), distances to the cluster centers are computed (2) and the occurrence
statistics are calculated (3). The result of boosting is a set of scores for the
activity classes (4).
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Fig. 1. (1) Feature extraction over a sliding window of raw sensor data. (2) All data
points are (softly) assigned to cluster centers. (3) Occurrence statistics of the cluster
centers are computed for the sliding window and stored in a histogram. (4) Each his-
togram is classified using JointBoosting resulting in scores, i.e., posterior probabilities
for each activity. Note that boosting selects the most discriminative cluster centers (=
histogram bins) for classification, thereby reducing the required sensor data substan-
tially.

The following describes the major components in more detail. The next sec-
tion describes the feature calculation (according to step (2) and (3) from Fig.
1). Then we introduce the feature selection method based on JointBoosting and
describe how it is being used to automatically discover discriminative low-level
activities.



3.1 Extracting low level events

Given activity data in form of acceleration data, we first cluster its features using
K-means clustering. The obtained cluster centers are then used to assign each
data sample the n nearest cluster centers. In the experiments below we use n = 1
for hard assignments as well as n > 1 for soft assignments. In this work we set
n = 3. For soft assignment we use the standard softmax function:

wi =
exp{−di

σ
}

∑K

j=1
exp{−

dj

σ
}

(1)

with di being the distance to the cluster and σ the standard deviation of all
distances.

In the second step we calculate the occurrence statistics, by summing the soft
assignment over a certain window length. This way we include the duration of a
specific activity. Alternatively, to get the distribution of hard assigned clusters,
we count the occurrence of each assigned cluster within the window. As time has
proven to be a powerful cue for daily routine recognition, we added a time-of-day
timestamp to the feature vector.

We use occurrence statistics and timestamps as input for the JointBoosting.
v0 corresponds to the timestamp and all other entries vi correspond to one bin
of the occurrence statistics, containing the sum of the weighted assignments of
cluster center i within a window. Hence, the size of the feature dimension |v|
corresponds to the number of centers K plus one dimension for the timestamp.
These are then labeled with the highlevel daily routines.

3.2 JointBoosting

In general, boosting [2] is used to combine a pool of weak classifiers to form a
single strong classifier. The mechanism of boosting is interesting in many ways.
Besides the classification improvement compared to individual weak classifiers,
boosting can be used to find the most discriminant features [10]. In this work
we employ regression stumps of the following form as weak classifiers:

hm(v) = a · δ(vf > θ) + b · δ(vf ≤ θ) (2)

given a feature vector {vf : f = 1, .., Nfeatures}. θ is the optimal threshold being
automatically found, so that hm is positive if vf > θ or negative if vf ≤ θ. The
Kronecker-δ results in 1 or 0, depending on the condition being true or false.
Weak classifiers are combined additively to a strong predictor as defined:

H(v) =

M∑

m=1

hm(v) (3)

The number of weak classifiers M is also referred to as rounds.
The regression stump parameters

a =

∑
i wiziδ(vi

f > θ)∑
i wiδ(vi

f > θ)
(4)



b =

∑
i wiziδ(vi

f ≤ θ)∑
i wiδ(vi

f ≤ θ)
(5)

are computed from the weighted square error of the training data and can be
seen as a weak classifier voting for or against a class. wi denotes the weight for
each training sample. In each round these weights are updated and increased for
samples which are misclassified and decreased for samples which are correctly
classified. This makes the training focus on harder training samples in future
rounds. zi = {+1,−1} denotes the binary class membership label. Intuitively, a

is the confidence in judging a sample positively, if the feature is greater than θ.
b is the confidence this sample not being part of the class.

To analyze how well a weak classifier separates one class from the remaining
classes, we take the difference of the regression stump parameters a and b:

voteconfidence = sign(a) · |(a − b)| (6)

The sign of a indicates wether this classifier votes for (when positive) or against
(when negative) a specific class.

In [8], Boosting is extended by the ability to share features across different
classes. The basic idea is to not only to separate between two classes but to find
subsets of classes (for each weak classifier) that are best separated. This increases
the computational cost during training and typically greedy a search is used to
reduce training times [8]. During testing however, this extension allows to reduce
the computational costs significantly as weak classifiers are shared across classes.

Besides the computational advantage, JointBoosting also allows the analysis
which low-level activities can be used jointly to discriminate between multiple
high-level activities. How the parameters of the JointBoosting can be interpreted
to allow such an analysis is described in section 5.2.

4 Dataset

To test our approach of selecting the most significant low level subcomponents of
an activity, we evaluate it on a realistic and representative dataset of activities
and routines of daily living. We briefly describe the dataset, and refer to [4] for
further details on the recording.

Routine Duration

Dinner 217.5 min
Commuting 289.0 min
Lunch 391.3 min
Office Work 2814.7 min

Table 1. Daily routines observed over seven days

Two 3-axis-acceleration sensors, sampling at a rate of 100Hz are worn, one
at the wrist and one in the right pocket. As features, mean and variance are



calculated over a window of 0.4s, resulting in approximately 2.5Hz. The dataset
contains 7 days of continuous data leaving out the sleeping phases. Table 1
shows the four annotated daily routines. These contain different types of low-
level activities. The routine dinner for instance groups low-level activities such as
preparing food, having dinner (eating), and washing dishes. In total the data set
contains 34 labeled low-level activities of which a subset of 24 activities occurred
during the routines. A complete list of the low level activities occurring during
these routines is provided in Table 2. The total duration of each activity is given
as well as the mean duration for each instant of one activity.

Activity Average duration Occurrences Total

sitting / desk activities 49.41 min 54 3016.0 min
unlabeled 1.35 min 239 931.3 min
having dinner 17.62 min 6 125.3 min
walking freely 2.86 min 38 124.2 min
driving car 10.37 min 10 120.3 min
having lunch 10.95 min 7 75.1 min
discussing at whiteboard 12.80 min 5 62.7 min
attending a presentation 48.9 min 1 48.9 min
driving bike 11.82 min 4 46.3 min
walking while carrying something 1.43 min 10 23.1 min
walking 2.71 min 7 23.0 min
picking up mensa food 3.30 min 7 22.6 min
sitting / having a coffee 5.56 min 4 21.8 min
queuing in line 2.89 min 7 19.8 min
using the toilet 1.95 min 2 16.7 min
washing dishes 3.37 min 3 12.8 min
standing / having a coffee 6.7 min 1 6.7 min
preparing food 4.6 min 1 4.6 min
washing hands 0.32 min 3 2.2 min
running 1.0 min 1 1.0 min
wiping the whiteboard 0.8 min 1 0.8 min

Table 2. Low level activities occuring during the routines

5 Experimental Results

This section reports on experimental results for the dataset introduced in sec-
tion 4. We begin with a quantitative analysis of the algorithm’s performance
and compare the results with [4] (section 5.1). Then we discuss in more detail
the classifiers obtained with JointBoosting (section 5.2). In particular we give
an interpretation which part of the low-level activities are characteristic and
therefore chosen by JointBoosting to recognize daily routines.



100

90

80

70

60

50

40

30

20

10

0
0 20 40 60 80 100 120 140 160

in
 %

rounds

Precision

Recall

data

centers
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JointBoosting rounds and soft assignments of K-means clusters. Centers denotes the
percentage of selected features of all given features (= K-mean-centers) and data, the
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5.1 Quantitative Results

To make our results comparable to published results on the same dataset we
aimed to follow the original parameter settings as closely as possible [4]. There-
fore we used the following parameters: for K-means clustering we set K to 60
and we calculated histograms over a window of 30 min with an overlap of 5
min. As mentioned previously we also added a dimension for the time-stamp
resulting in a feature vector with dimension 61. We evaluated the approach on
a seven-fold crossvalidation, training a classifier on 6 days and leaving one day
out for testing.

Overall Performance The overall recognition results for different numbers of
rounds are given in Fig. 2. The highest precision and recall rates are 87.81% and
90.17% at 80 rounds. Using more rounds results in a slight decrease in recall and
a small increase in precision. Table 3 shows several results in more detail.

Using 4 rounds, the classifier yields a precision of 82.85% and a recall of
83.67% by using 12.78% of the given data. Applying boosting with 10 rounds
increases the recall by about 5%, but has no noticeable effect on precision. In-
creasing the rounds to 80 improves the precision about 5% and recall about
6.5%. Here more then half of the clusters (57.93%) and nearly 3/4 of the data
(74.30%) are used.

Table 3 also shows a comparison of our results to the probabilistic approach
given in [4]. It can be seen that our discriminant approach yields clearly better
results. What is quite surprising though is that already using but four boosting



rounds (i.e. four low-level activity spotter) allows to achieve a clear gain in over-
all performance. Table 4 gives a more detailed comparison by not only showing
the overall performance but also showing the performance for each routine sepa-
rately. Here we compare the results of [4] with the results obtained with 4 and 80
boosting rounds. Using 80 rounds always outperforms the approach of [4] with
one exception: precision for commuting. Again it is surprising that using 4 boost-
ing rounds outperforms the approach of [4] for three out of four daily routine
activities and only obtains lower precision and recall for commuting. This clearly
shows the applicability of the proposed approach of low-level activity spotting
for daily routine recognition.

Soft Assigments to K-means centers

Rounds 4 10 20 80 160 Huyhn et al [4]

Precision 82.85% 82.98% 80.91% 87.81% 88.87% 76.90%
Recall 83.67% 88.12% 87.09% 90.17% 87.16% 65.80%

Used Centers 5.20% 11.39% 15.70% 57.93% 76.25% -
Used Data 12.78% 17.74% 21.81% 74.30% 91.41% -

Hard Assigments to K-means centers
Rounds 4 10 20 80 160
Precision 72.71% 77.34% 82.19% 86.40% 88.37%
Recall 82.67% 82.39% 87.09% 90.32% 89.18%
Used Centers 5.19% 12.14% 22.26% 50.82% 56.13%
Used Data 2.11% 4.94% 14.27% 45.42% 49.75%

Table 3. Overall recognition results for different numbers (4, 10, 20, 80 and 160) of
rounds of the JointBoosting algorithm using soft- (top) and hard-assigments (bottom)
to the K-means cluster centers.

4 rounds 80 rounds Huyhn et al [4]

Routine Precision Recall Precision Recall Precision Recall
Dinner 84.31% 100.0% 85.27% 90.48% 56.90% 40.20%

Commuting 70.04% 60.27% 81.77% 82.36% 83.50% 71.10%
Lunch 78.85% 81.79% 84.56% 90.04% 73.80% 70.20%

Office Work 97.86% 92.61% 98.12% 93.63% 93.40% 81.80%

Table 4. Results per Routine using soft assignment of K-means cluster centers.

Fig. 3 illustrates the classification on one day of the seven day dataset using
the same number of boosting rounds as in Table 3. It can be seen that the borders
of two routines are seldomly precise. For instance, using 10 boosting rounds the
lunch routine is predicted before it actually happens (which is reflected in a



lower precision). However, the transitions from one routine to another happens
smoothly, that is, there is often no exact start and end point. As the obtained
classifiers also show the same smooth transitions between the routines we think
that the results are indeed sufficient for many applications.

09:31 11:44 14:08 16:20 20:22

0

0.5

1

Dinner Commuting Lunch Office Work

0

0.5

1

0

0.5

1

0

0.5

1

4
 ro

u
n
d
s
 

1
0
 ro

u
n
d
s

8
0
 ro

u
n
d
s

1
6
0
 ro

u
n
d
s

Ground truth

s
c
o
re

s
 (

0
.0

 t
o
 1

.0
)

Fig. 3. Top: Ground truth for one day. Below the classification by the JointBoosting
algorithm using 160, 80, 10 and 4 rounds.

So far we reported results for soft assignments of the clusters. As hard as-
signments have the potential to reduce the amount of data that needs to be
considered for classification we also evaluated hard assignments of the K-means
centers(, i.e., each sample is assigned to exactly one cluster). The overall results
using 1 to 160 rounds are depicted in Fig 4.

We note the maximum at 40 rounds with 87% precision and 93% recall using
30% of the data and 37% of the centers. Table 3 shows the results in more detail.
At 4 rounds we obtain a precision of 72.71% and a recall of 82.67%. This is a
decline of 15% of precision and about 11% recall compared to the maximum.
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However, the usage of data with 2.11% is minimal and considerably lower than
for soft assignments. Adding one round, already improves the result to a precision
of 79.75% and a recall of 83.40% using less than 1% more data (2.6%). This is
due to the fact that only the major vote, that is the winning K-means centers
can be observed even if some others have almost the same distance. Preserving
the information of distances to a few centers using a soft assignment seems to
be beneficial for lower number of classifiers.

We also have started to experiment with smaller window sizes. E.g. using a
window length of 15 min results in a reduced precision (for 4 rounds) of 71.06%
but with only a small decrease in recall (80.07%). Such a decrease in performance
is in agreement with previous results [4]. As this is an important and interesting
direction to pursue we plan to investigate this further.

5.2 JointBoosting Classifier Discussion and Visualization

Moving from activity recognition into the paradigm of activity spotting our goal
is to analyze which and how much data needs to be observed to reliably recognize
daily routines such as the ones used above. Applying JointBoosting, we get a
selection of the most important features to discriminate the given classes. As
JointBoosting selects the most important (= discriminative) occurences of a
specific cluster, we can identify which parts of low-level data is important for
the daily routine classification task.

To identify the amount of data used for classification, we count how often
these clusters occur during the total length of the data. For soft assignments
we look if the selected clusters appear in the top 3 assignments. While soft-
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assignment increases the amount of data used it also has the potential to reduce
the number of weak classifiers required for good performance.

For a better understanding which data is selected we use the provided low-
level activity annotation and assign to each cluster a set of low-level activity
labels. In the following we use the distribution of the top five assigned labels to
each cluster center.

Fig. 5 visualizes the first ten weak classifiers chosen by boosting. The color
indicates the confidence of the weak classifier, predicting the sample to be from
a specific class. The corresponding thresholds are given inside the boxes. Posi-
tive weights are colored green, respectively marked with a plus-symbol, negative
weights are colored red and marked with a minus-symbol. Intuitively the reader
can interprete the color as a voting for a specific routine when colored green or
against it when colored red. The intensity of the color represents the absolute
difference between the regression stump parameters a and b, given in equation
6 (Section 3.2).

Starting with round one from the top (one weak classifier), it separates dinner
from the rest using time as feature. In the second round, the weak classifier
separates lunch from the rest by observing the occurence of cluster 36 (= feature
36). This cluster corresponds mostly to walking freely which turns out to be
more discriminant than other low-level activities such as having lunch. This can



be easily explained by the fact that having lunch is too similar to other low-
level activities such as having dinner or sitting/desk activities and is therefore
not chosen by boosting. The third classifier separates commuting from the other
classes using cluster 6. This cluster is dominated by activities occurring during
commuting: sitting/desk activities, driving car and driving bike. In the forth
round cluster 42 is chosen to classify routine office work which mostly contains
sitting/desk activities. Note that the threshold shows a comparatively high value,
which means the activities of this cluster have to appear often.
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Fig. 6. The top feature occurrences during one day. (Top) The groundtruth for one day.
(Bottom) The sum of weights of the soft assigned kmean-centers for each sample. The
ranking of the selected features is as follows: 20:01:42 (time), 36, 6, 42, 48, 19:01:16
(time), 29, 13, 53.

In the eighth round cluster 29 is used to separate dinner and office work from
commuting and lunch. More specifically the classifier votes against dinner and
office work, if the given data sample is bigger than the treshold. The threshold
of 0.18 indicates that the occurrence of this activity is fairly low, but enough to
discriminate between classes. For each feature, i.e. the cluster center the top five
low level-activities (Table 2) are given to get an intuition why the cluster is used.
It can be seen that cluster 29 shares the labels walking, walking freely, picking up
mensa food etc. Due to the fact that these activities only happen during lunch
and commuting it is a good cue that dinner and office work are not happening.

An interesting observation is that the first 4 rounds separate each routine
without sharing any features. Time turns out to be sufficient as feature to sep-
arate dinner from the others. After 8:00pm the confidence that dinner is the



current routine is very high. On the other hand, looking at round 7, commuting,
lunch and office work is less likely to happen after 7pm and added as another
weak classifier.

We did not compare JointBoosting with Adaboost quantitatively. However,
looking at the first 10 rounds depicted in Fig. 5, note that fewer features are
shared as expected. Given this dataset, jointBoosting ranks those features first,
which are discriminative enough for each class individually. This leads to the
assumption that jointBoosting might yield similar results compared to AdaBoost
for a low number of weak classifiers. However we observe at higher rounds that
more features are shared. E.g., in rounds 10 to 20 seven features are jointly
used, which is not possible with AdaBoost. JointBoosting therefore leads to a
computationally more efficient solution.

Low Level Activities Figure 6 illustrates the occurrences over time of the
selected features in the tenth round. We encourage the reader to use Fig. 5 as
reference to lookup the low level activities per cluster. Given the routine office
work one can observe that the occurrence of cluster 42, which is selected as a weak
classifier for this routine, is most of the time above the threshold of 38.06 to vote
for this routine. One can see that cluster 53 and 42, which classify lunch and office
work happens also during the dinner routine. However none of those routines
happen after 19:01:16, whereas dinner is likely to happen after 20:01:42 and the
combination of each of these classifiers leads to a higher posterior probability of
the routine dinner. Cluster 53 is used by a weak classifier voting for the lunch
routine. It is mainly assigned to the low level activity queuing in line. Although
this cluster has a high occurrence during the office work in the morning before
lunch, its confidence is weaker than the confidence of cluster representing sitting
at the desk, yielding a higher score for office work than lunch.

Observing the assigned labels to the used clusters, it can be noticed that,
e.g, for the routine lunch it is not the activity having lunch discriminant. But
activities which surround the actual activity of this routine, which are walking
(freely), queuing in line and picking up cafeteria food. The explanation is simple
- as having lunch is virtually the same as having dinner or similar to sitting at
the desk and can be easily confused. Whereas walking or standing in line at a
certain time can be very discriminative.

5.3 Discussion

The previous sections showed that discriminative classification and spotting of
low-level activities yields promising results when applied to complex and highly
variable daily routines. The proposed approach achieves good overall results with
recall and precision above 80% in general to recognize the presented daily rou-
tines. Using a small number of classifiers (that is a small number of JointBoosting
rounds) already achieves good performance. It is important to note that by using
small numbers of classifiers, it is possible to reduce the required data substan-
tially. Using only 2.6% of the data (i.e., 5 rounds and hard assigment to K-mean



centers), it is possible to distinguish between different routines with a recall of
79.75% and a precision of 83.40%. We can determine a tradeoff between used
data and performance, which favors using less data, as performance decrease is
marginal.

6 Conclusion

This paper investigates the possibilities of activity spotting to recognize complex
activities, like daily routines consisting of a series of low level activities. A top-
down perspective is taken using a feature selection algorithm and the annotation
of those higher-level routines to automatically spot discriminant low level data,
respectively activities.

Our findings show that the approach of activity spotting leads to viable re-
sults. It could be seen that a surprisingly small amount of data is discriminant
enough to differentiate routines such as lunch or commuting and yield to results
that are better than those of current research. Our algorithm discovers success-
fully meaningful low level activities, which can be intuitively connected to the
high level routines.

Applying this approach we are able to filter insignificant data, which does
not support recognition. Once the training is done offline, the most discriminant
spots in the data are obtained, which the classifier has to process. This allows
to reduce the computational costs in the classification task, while the distance
to only a few K-means centers needs to be calculated. Thresholding the distance
filters the unimportant data. Additionally, we reduce the amount of data which
has to be stored. Implementing such classification on embedded systems will
greatly benefit from this reduced complexity.

Acknowledgments. This work has been supported by the DFG Graduate
School Topology of Technology. The authors of this paper gratefully acknowl-
edges Christian Wojek for providing them with a JointBoosting implementation.

References

1. B. Clarkson and A. Pentland. Unsupervised clustering of ambulatory audio and
video. In ICASSP, 1999.

2. J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical
view of boosting (With discussion and a rejoinder by the authors). Ann. Statist,
28(2):337–407, 2000.

3. T. Huynh, U. Blanke, and B. Schiele. Scalable recognition of daily activities
with wearable sensors. In 3rd International Symposium on Location- and Context-
Awareness (LoCA). Springer, 2007.

4. T. Huynh, M. Fritz, and B. Schiele. Discovery of activity patterns using topic mod-
els. In Proceedings of the 10th International Conference on Ubiquitous Computing
(Ubicomp), 2008.



5. J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford. A hybrid
discriminative/generative approach for modeling human activities. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), 2005.

6. D. Minnen, T. Starner, I. Essa, and C. Isbell. Discovering characteristic actions
from on-body sensor data. In Proceedings of the 10th IEEE International Sympo-
sium on Wearable Computers (ISWC), 2006.

7. N. Oliver, E. Horvitz, and A. Garg. Layered representations for human activ-
ity recognition. In In Proceedings of the 4th IEEE International Conference on
Multimodal Interfaces, 2002.

8. A. Torralba, K. Murphy, and W. Freeman. Sharing visual features for multiclass
and multiview object detection. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2004.

9. K. Van Laerhoven, D. Kilian, and B. Schiele. Using rhythm awareness in long-term
activity recognition. In Proceedings of the 12th IEEE International Symposium on
Wearable Computers (ISWC), 2008.

10. P. Viola, P. Viola, M. Jones, and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Computer Vision and Pattern Recognition (CVPR),
2001.

11. D. Zhang, D. Gatica-Perez, S. Bengio, I. McCowan, and G. Lathoud. Modelling in-
dividual and group actions in meetings: a two-layer hmm framework. In Computer
Vision and Pattern Recognition Workshop, 2004.

12. A. Zinnen and B. Schiele. A new approach to enable gesture recognition in con-
tinuous data streams. In Proceedings of the 12th IEEE International Symposium
on Wearable Computers, 2008.


