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Daily Scheduling of Nurses in Operating Suites

Abstract

This paper provides a new multi-objective integer programming model for the daily schedul-

ing of nurses in operating suites. The model is designed to assign nurses to different surgery cases

based on their specialties and competency levels, subject to a series of hard and soft constraints

related to nurse satisfaction, idle time, overtime, and job changes during a shift. To find solu-

tions, two methodologies were developed. The first is based on the idea of a solution pool and

the second is a variant of modified goal programming. The model and the solution procedures

were validated using real data provided by the University of Texas MD Anderson Cancer Center

in Houston, Texas. The results show that the two methodologies can produce schedules that

satisfy all demand with 50% less overtime and 50% less idle time when benchmarked against

current practice.

1 Introduction

The growing shortage of registered nurses continues to hamper the effective delivery of healthcare

throughout the United States and much of Europe (Ulrich et al., 2002). In a clinical setting,

not being able to assign a sufficient number of qualified nurses to a shift places undue stress on

those who are called upon to take up the slack. This, in turn, leads to reduced patient safety and

substandard treatment (Bester et al., 2007, Blythe et al., 2005, Cheng et al., 1997, Chiaramonte

and Chiaramonte, 2008). In the face of personnel shortages, hospital managers are under constant

pressure to balance the need to cover demand with the available staff, but without jeopardizing job

performance and satisfaction.

Assigning each available nurse to the right place at the right time to do the right job is a

major concern for healthcare organizations. As the types of services and treatments offered by

such organizations increase so do the skill requirements of their staff. In particular, nurses are

specifically trained and certified to work in a subset of units such as orthopedics or gerontology and

cannot be floated outside their areas of expertise. To make the most efficient use of the available

workforce then, it is necessary to adjust their schedules daily as the patient population changes.

When constructing individual schedules, one must consider the relevant skill categories, time-off

requests, shift preferences, demand variability by unit, break times and seniority, as well as system-

wide factors such as regulatory and union requirements, contractual agreements, and overtime. In

addition, each unit of a hospital may have a host of specific rules that further restrict the staffing

decisions. Although most of these rules are common throughout a hospital, there are a number

of exceptions, such as the way breaks are handled, when it comes to the operating suites, the

main focus of this paper. These exceptions further frustrate our ability to generate efficient daily

schedules.

An operating suite is an area in a hospital consisting of several operating rooms (ORs) where

surgical procedures are performed. Each OR is designed to accommodate specific types of surgeries

using specialized equipment. Because the operating suites are the largest revenue source in a
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hospital (Belien and Demeulemeester, 2008) it is critical that they be scheduled to achieve maximum

utilization. Although we do not address this issue directly, it does have an impact on our research

since underutilized facilities may result in unnecessary nurse idle time, while overbooked ORs may

produce excessive overtime and high levels of staff dissatisfaction. When the prevailing nursing

shortage (Cardoen et al., 2010) is coupled with an increasing demand for surgeries linked to an

aging population, it is essential for hospital managers to maximize the use of their ORs and to

make the most efficient use of their nursing staff.

With this background in mind, the primary contribution of this research is the development of

a nurse scheduling tool designed to minimize overtime and idle time, delays due to staff shortages,

and assignment changes during the day, as well as to maximize case demand satisfaction. With

respect to the latter, it is critical to take into account nurse specialties and competency levels

along with various types of constraints such as shift limitations, contractual agreements and break

requirements when assigning them to cases. Considering the conflicting nature of these objectives

and insufficient resources to satisfy all constraints, it is not possible to identify and solve a single

optimization model. Instead, we attempt to create a pool of Pareto-optimal solutions such that

each optimizes at least one objective.

The rest of the paper is organized as follows. In Section 2 we provide a summary of the recent

nurse scheduling literature most relevant to our work. In Section 3 the planning environment is

outlined and a formal problem statement is given. In Section 4 we introduce our optimization model

for assigning nurses to surgery cases and, in Section 5, propose two competing solution algorithms

whose operations are described in detail. The first is based on the idea of a solution pool and the

second takes a modified goal programming approach. Numerical results are presented in Section

6 where it is shown that reductions in idle time and overtime of 50% or more are achievable with

respect to current practice. We close in Section 7 with several observations and suggestions for

future research. This work was done in conjunction with the University of Texas MD Anderson

Cancer Center (MDACC) who defined the problem and provided the test data.

2 Literature Review

Given the ever increasing labor costs in the healthcare industry and the fact that the nursing staff

accounts for approximately 50% of a hospital’s budget, a great deal of effort has been spent trying

to improve the nurse scheduling process (Ernst et al., 2004). Recent surveys include Cheang et al.

(2003) and Burke et al. (2004). With respect to the mid-term planning problem (up to 6 weeks),

integer programming (IP) methods have been widely used to either minimize cost or maximize

nurse preferences (Aickelin and Li, 2007, Bard and Purnomo, 2007, Ogulata et al., 2008). Others

have taken a heuristic approach including (Bai et al., 2010, Bard and Purnomo, 2007, Goodman

et al., 2009, He and Qu, 2009, Maenhout and Vanhoucke, 2010, Oddoye et al., 2006, Parr and

Thompson, 2007, Sundaramoorthi et al., 2009, Tsai and Li, 2009).

In contrast, there has been only a limited amount of research on the daily scheduling problem

which begins with the mid-term schedule and makes daily adjustments to account for changes in
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demand, absenteeism, and skill mismatches (Burke et al., 2010, Hansen et al., 2010). Bard and

Purnomo (2005) formulated the problem as a mixed integer program and developed a branch-and-

price algorithm to find solutions. The objective was to minimize a combination staff dissatisfaction

costs due to preference violations and the cost of using agency nurses to cover shortages. The model

took a hospital-wide view and considered a float pool, overtime, and call-in nurses on their days

off. Optimal solutions for instances with up to 200 nurses were obtained using a rolling horizon

framework for each shift.

As mentioned in Section 1, due the importance of surgery and the unique teaming requirements

for each case, scheduling nurses in operating suites has been considered separately from scheduling

them in other areas of the hospital. Cardoen et al. (2010) provide a comprehensive review of recent

applications of operations research methods to operating room planning and scheduling. They

evaluated multiple domains related to problem settings, performance measures, solution methods

and uncertainty considerations. Much of the ongoing work is aimed at improving existing methods

to find the the best surgery-room assignments, surgery-physician assignments, and surgery-block

time assignments (Cardoen, 2010, Dexter et al., 1999, Ozkarahan, 2000).

Feia et al. (2008) developed an integer programming model for assigning surgical cases to several

multi-functional ORs with the objective of minimizing total operating cost. A branch-and-price

procedure was used to find solutions. The results were promising and showed that the approach

is capable of solving large instances In related work, Fei et al. (2009) addressed a tactical OR

planning problem and used a set-partitioning model to assign surgical cases to ORs one week at

a time. The assignments were based on an open scheduling strategy. Two conflicting objectives

were considered: maximize OR utilization and minimize overtime. To find solutions quickly, they

relied on a column generation based heuristic. Lamiri et al. (2008) proposed a stochastic model

for OR scheduling for both elective and emergency patients. The elective patients were assigned

to the different OR blocks depending on the type of surgery needed while emergency patients were

assigned to available time slots when they arrived at the facility. The objective was to minimize

related costs and overtime. The problem was formulated as a mixed integer program and solved with

a combination of optimization techniques and Monte Carlo simulation to deal with the uncertainty

of surgical durations and emergency arrivals.

Belien and Demeulemeester (2008) developed an integrated nurse and surgery scheduling system

for a weekly planning problem. The underlying model took the form of an integer program with

the objective of meeting nurse preferences while assuring that demand requirements were satisfied

in general, but not necessarily with respect to skill type. It was assumed that adequate resources

were available to cover all demand. The basic model was extended by enumerating all possible

ways of assigning operating blocks to the different surgeons subject to surgery demand and capacity

restrictions. A branch-and-price algorithm was proposed to find solutions. The pricing subproblems

used to generate columns for the master problem were solved with a standard dynamic program

and the results compared with those obtained with a commercial optimizer.

Although there exists a vast amount of literature on OR scheduling and nurse scheduling, there

has been little if any research on the problem of scheduling nurses in operating suites, even after the
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surgeons and physicians have themselves been scheduled. Procedures for subsequently assigning

nurses are ad hoc, inefficient, and often give poor results. To the best of our knowledge, we are the

first to address this problem using an optimization approach.

3 Planning Environment and Problem Statement

Services in an OR are provided by surgeons, nurses and anesthesia professionals who have been

trained for different specialties. Figure 1 depicts the layout of MD Anderson Cancer Center’s main

operating suite, which consists of 32 ORs. Most are multi-functional and can accommodate different

types of cases depending on the equipment and instruments that are required. For example, rooms

31 and 32 can be used for both robotic and brain surgery and have some permanently installed

equipment. Most equipment, though, is stored in a nearby block of rooms which also contains break

rooms for the nurses where they can rest between assignments and do their paperwork. All ORs

are monitored from the control room where nurse managers continually check the status of each

and coordinate the resource needs of the upcoming cases. After surgery, patients are transferred to

the post-anesthesia care unit (PACU) for recovery and perhaps additional treatment.

Although operating suites are generally run the same from one hospital to the next, our de-

scription below is limited to the processes and terminology used at MD Anderson Cancer Center.

Surgery case. A surgery case is defined as a series of operations performed by a medical team

on a single patient in a single OR over the course of a day. Each case generally falls under one

of two dozen specialties typically related to a specific organ or section of the body, and can vary

greatly in procedural complexity. We define the surgery duration as the time required to finish a

case starting from transferring the patient to the OR (patient-in time), performing the procedure

(surgery time), and moving the patient to the PACU (patient-out time). For modeling purposes, all

surgery durations are given in 1/2-hour increments. Also surgery demand is defined as the number

of nurses by skill type required for each case in each time period. All of these factors are assumed

to be known at the time the schedule is constructed.

Nurse categories in an operating suite. Nurses can have different roles during a surgery

based on their skill level. The most recognized roles are circulation and scrub. A circulator is a

registered nurse who coordinates all the needs of the surgical team in the OR during a case. A

scrub is really a technician who prepares and passes supplies, equipment, and instruments to the

surgeon during the procedure. Registered nurses can do both jobs while scrub techs can only do

their job. Each surgery needs at least one circulator and one scrub – both being essential. Nurses

are also distinguished by their area of expertise, skill level and certifications. In particular, they are

categorized by specialty (e.g., Head and Neck, OPTH, ORTHO, Plastic, Surgical Oncology) and

different competency levels based on their experience and qualifications. Not all nurses can work

all surgical procedures, though, even when they are adequately trained. Given the complexity of
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Figure 1: MD Anderson Cancer Center main operating suite
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a procedure assignments are made based on the skill level and experience. Of course, nurses who

have enough experience to work on harder procedures can also work on easier ones.

Each day the scheduling department provides the nurse managers with the schedule sheets for

the next day. These sheets list the planned surgeries, the physician scheduled for each, his or her

instrument preferences, the room number, the estimated duration and procedural complexity, as

well as the nursing demand. From this information, the nurse managers construct and post the

case assignments for the nurses under their jurisdiction.

Shift limitations. Operating suites have shift restrictions along with regulatory and union re-

quirements similar to those imposed on the nurses in other areas of the hospital. We work with five

shift types defined by their length and starting time. All nurses upon being hired are assigned to

one of these shifts based on their contract. Each shift has its own lunch break and overtime rules.

During the scheduling process, available nurses are assigned to the various cases in accordance with

their qualifications and surgical needs. However, depending on the criticality of the surgery and the

condition of the patient, these rules can be overridden on a case-by-case basis. For instance, nurses

cannot leave a surgery to take a break unless the surgery is finished or someone else is available to

relieve them.

Given this environment, our aim is to develop a decision support tool that can be used by

nurse managers to assign nurses to surgery cases on a daily basis considering nurse availability,

shift restrictions, and demand requirements. It is assumed that complete information is available

on the number of nurses to be scheduled during each shift, their specialties and competencies, their

qualifications to assume certain roles, the surgery schedules and durations, case specialties and

procedural complexities, break requirements, and working contract options. The corresponding

parameter values are treated as inputs.

In next section, we present an integer programming model for making the daily nurse assign-

ments. As explained in Section 1, conflicting goals must be taken into account when deriving the

rosters so we chose not to optimize a single measure but instead to provide a set of high quality

solutions to the nurse managers. Then, by further taking into account fairness, seniority and related

issues, they can decide which assignments are “best” for their units. For comparative purposes, the

candidate schedules will be judged by staff utilization, the need for overtime, the degree to which

demand is met, and nurse satisfaction.

4 Nurse Assignment Model (NAM) - Problem Formulation

In formulating our integer programming model, it is necessary to take into account the special-

ties required for each case and the corresponding procedural complexities. As mentioned, nurses

have different competency levels and can only work on surgery cases that match their skills and

qualifications. In all, we wish to provide daily rosters that, to some extent balance five objectives

to be described presently. We start with the modeling assumptions and a series of hard and soft
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constraints.

4.1 Assumptions and Notation

The operating suites run five days a week up to 17 hours per day. We assume that each working

day can be divided into a fixed number of time intervals of 30 minutes each, giving 38 planning

periods. Shifts are defined over 8- or 10-hour periods (not including a 1-hour lunch break) and have

different starting times. All shifts include regular hours and authorized overtime hours that bring

them up to 13 hours when lunch is included. Authorized overtime hours are additional hours that

a nurse can be assigned if a surgery is not finished by the end of her regular shift and either there

is no qualified nurse available to provide relief, or some in-progress cases have unfulfilled demand.

Note that all case durations are expressed in terms of the basic time interval.

Surgery complexity levels are classified as simple, moderate or complex. Nurses with a higher

competency can perform surgery procedures with lower complexity but not vice versa. If a nurse

is idle during a shift, it is assumed that she will be assigned to a surgery case as a learning fellow

(i.e., a nurse who is assigned to an OR room for the purpose of learning) in order to increase her

experience and competency. A final assumption is that each day is independent of another so a

daily decomposition is possible; that is, a separate model needs to be solved for each day rather

than for multiple days.

We start by introducing some basic notation in this and the next subsection.

C set of cases scheduled for surgery on the current day

H time intervals in a working day

I set of available nurses

J set of available ORs

K set of roles that are required for each surgery case

P set of competency/complexity levels (1: Simple, 2: Moderate, 3: Complex)

Q set of specialties

S set of available shifts

T nurse job category(1 = RN, 2 = scrub tech)

4.2 Input Parameters

The constraints in our model are a function of ten parameters that are defined below. Parameters P1

and P2 respectively specify the shift that each nurse works, the role, specialty and competency level

of that nurse, and her job category. The next five parameters P3, P4, P5, P6 and P7 characterize the

surgery cases and their attributes. They provide information about each case duration, specialty
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and procedural complexity, number of required nurses in each role, and the time intervals in which

each is performed. Finally, parameters P8 and P9 indicate the starting time of each shift, the

regular hours of the shift and authorized overtime hours.

d2ick 1 if nurse i is assigned to case c to do job k, and 0 otherwise

P 1
is 1 if nurse i ∈ I is working in shift s ∈ S, 0 otherwise

P 2
ikqp 1 if nurse i ∈ I can do role k ∈ K in specialty q ∈ Q with competency level p ∈ P, 0

otherwise

P 3
cj 1 if case c ∈ C is scheduled to happen in OR j ∈ J , 0 otherwise

P 4
cqph 1 if case c ∈ C needs specialty q ∈ Q and has procedural complexity p ∈ P in time interval

h ∈ H, 0 otherwise

P 5
ckh required number of nurses for case c ∈ C who can perform role k ∈ K in time interval h ∈ H

P 6
ch 1 if case c ∈ C is in progress during time interval h ∈ H, 0 otherwise

P 7
c case c ∈ C duration (length of surgery)

P 8
sh 1 if shift s ∈ S contains time interval h ∈ H as regular working hours, 0 otherwise

P 9
sh 1 if shift s ∈ S contains time interval h ∈ H as authorized overtime hours, 0 otherwise

M big number estimated from other parameter values

4.3 Decision Variables

Our aim is to determine which nurse should be assigned to which surgery case, during which time

intervals, and what their role should be. The corresponding decision variable is:

yickh =




1, if nurse i ∈ I works on case c ∈ C in time interval h ∈ H doing role k ∈ K

0, otherwise

4.4 Constraints

The constraints listed in this section are applicable for all nurses without considering break hours.

They are divided into two sets. The first set corresponds to those constraints that must be satisfied

(hard) and the second to those that may be violated but at a cost (soft). The latter are related to

our various objective functions and are referred to as objective constraints.
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Hard constraints. These constraints cannot be violated under any circumstances, and concern

shift restrictions, nurse skill levels, and case requirements, to name a few. Although some nurses

are qualified to work in different roles, each nurse must be assigned to one case in each time interval

to perform one specific job. During a shift, each nurse can be given at most 8 regular hours of

work and 4 overtime hours, or 10 regular hours and 2 overtime hours. Nurses must be assigned to

surgery cases based on their specialties and competency levels.

∑

c∈C

∑

k∈K

yickh ≤ 1, i ∈ I, h ∈ H (1)

yickh ≤
∑

s∈S

(
P 1
is · (P

8
sh + P 9

sh)
)
, i ∈ I, c ∈ C, k ∈ K, h ∈ H (2)

∑

c∈C

∑

k∈K

∑

h∈H

yickh ≤
∑

s∈S

∑

h∈H

(
P 1
is · (P

8
sh + P 9

sh)
)
, i ∈ I (3)

yickh ≤ P 6
ch ·

∑

q∈Q,

∑

p∈P

(
P 4
cqph · P

2
ikqp

)
, i ∈ I, c ∈ C, k ∈ K, h ∈ H (4)

∑

i∈I

yickh ≥ P 6
ch, c ∈ C, k ∈ K, h ∈ H (5)

∑

h∈H

yickh ≤ M · d2ick, i ∈ I, c ∈ C, k ∈ K (6)

∑

k∈K

d2ick ≤ 1, i ∈ I, c ∈ C (7)

Constraints (1) limit the number of cases and roles that nurse i can be assigned in time interval

h to at most 1. Constraints (2) and (3) ensure that nurses will only be assigned to cases that are

in progress during their shift s, and that the total working hours scheduled will be less than or

equal to the total number of regular and overtime hours associated with s. Constraints (4) and (5)

ensure that, if a case is in progress, a nurse can only be assigned to it if she has the requisite skills

and competency to deal with its procedural complexities.

It is preferred that nurses be scheduled to work continuously during their shift and perform the

same job for the duration of each surgery to which they are assigned, rather than alternate between

jobs. This is enforced with constraints (6) and (7.

The latter constraints restricts the maximum number of times that a nurse can be assigned to

serve in different roles during a specific case and it is at most 1.

Soft (objective) constraints. These constraints need not be satisfied exactly but penalties will

be imposed to minimize the magnitude of their violations. Demand satisfaction, room assignments

and job changes are considered as objective constraints. Each surgery must be assigned at least one

circulator and one scrub, but it may be desirable to include more in each category. Under staffing

represents our first permissible deviation that is penalized. In a similar vein, mismatches between

supply and demand can lead to a need for overtime, job changes, room changes or excessive breaks
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during a shift. The corresponding deviations will also be penalized. With respect to the individual

nurses, we wish to minimize (i) the number of breaks in a shift, (ii) the amount of overtime assigned,

(iii) the number of different cases assigned, (iv) the number of job changes, (v) and the number of

breaks over the day. Nurses prefer to work continuously during their shifts and perform the same

role, at least for a given surgery, rather than move from one case to another.

To formulate these goals as soft constraints, we define a pair of deviation variables for each;

that is,

deckh 1 if there is a deviation in demand in case c ∈ C for job k ∈ K in time interval h ∈ H, 0

otherwise

DE maximum demand deviation for any case c ∈ C and job k ∈ K

d7ih 1 if nurse i ∈ I is idle in time interval h ∈ H, 0 otherwise

DS maximum number of nonconsecutive idle intervals for any nurse i ∈ I

d4ih 1 if nurse i ∈ I is assigned overtime in time interval h ∈ H, 0 otherwise

DF maximum amount of overtime assigned to any nurse i ∈ I

xij 1 if nurse i ∈ I is assigned to room j ∈ J , 0 otherwise

X maximum number of room assignments for any nurse i ∈ I

ncic 1 if nurse i ∈ I is assigned to case c ∈ C, 0 otherwise

cdic 1 if the assignment of nurse i ∈ I to case c ∈ C is broken, 0 otherwise

NCT maximum number of case assignments given to any nurse i ∈ I

CDT maximum number of times an individual assignment to a case is broken due to shortages

for any nurse i ∈ I

Based on these definitions, the soft constraints can be stated as follows.

∑

i∈I

yickh + deckh ≥ P 5
ckh · P

6
ch, c ∈ C, k ∈ K, h ∈ H (8)

DE ≥
∑

h∈H

deckh, c ∈ C, k ∈ K (9)

∣∣∣∣∣
∑

c∈C

∑

k∈K

yick(h+1) −
∑

c∈C

∑

k∈K

yickh

∣∣∣∣∣ ≤ d7ih, i ∈ I, h ∈ H (10)

DS ≥
∑

h∈H

d7ih, i ∈ I, (11)
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∑

c∈C

∑

k∈K

∑

h∈H

(
P 3
cj · yickh

)
≤ M · xij , i ∈ I, j ∈ J (12)

X ≥
∑

j∈J

xij , i ∈ I (13)

d4ih −
∑

s∈S

P 1
is · P

9
sh ·

∑

c∈C

∑

k∈K

yickh ≥ 0, i ∈ I, h ∈ H (14)

DF ≥
∑

h∈H

d4ih, i ∈ I (15)

∑

k∈K

∑

h∈H

yickh −
∑

h∈H

P 6
ch +M · cdic +M · (1− ncic) ≥ 0, i ∈ I, c ∈ C (16)

∑

k∈K

∑

h∈H

yickh ≤ M · ncic, i ∈ I, c ∈ C (17)

NCT ≥
∑

c∈C

ncic, i ∈ I (18)

CDT ≥
∑

c∈C

cdic. i ∈ I (19)

Constraints (8) and (9) calculate the maximum amount of under coverage for each case and

job. If a case is in progress during the time interval h, then the required number of nurses will

be assigned to it as long as a sufficient number are available. The two integer deviation variables

deckh and DE are used to account for shortages for case c and role k in time interval h and to

determine the maximum shortage, respectively. As discussed in the next section, by minimizing

DE , we assure that the demand for circulators and scrubs for each case will be satisfied as closely

as possible. The remaining variables and constraints are used for similar purposes.

To control nonconsecutive breaks in a shift, we introduce constraints (10) and (11) which are a

function of the binary deviation variables d7ih and the integer deviation variable DS. By minimizing

DS, we force the idle intervals in a nurse’s schedule to be reduced whenever it is possible to do

so without violating any of the hard constraints. As an example, given the following two feasible

assignments for five periods: on-on-off-off-on and on-off-on-off-on, the first would be preferred since

it contains only one idle interval while the second contains two.

Constraints (12) and (13) address the preference for assigning nurses to work continuously in

one OR during their shift rather than jumping from one room to another. To minimize these

movements, we make use of the two binary deviation variables xij and X . By minimizing X , we

ensure that the maximum number of ORs to which a nurse is assigned is reduced as much as

possible. To account for overtime, we introduce the binary variable d4ih, which takes a value 1 in

constraints (14) if nurse i is assigned overtime in period h, 0 otherwise, and an integer deviation

variable DF . Constraints (14) count the number of overtime periods assigned to each nurse. By

minimizing DF , we assure that overtime will only be assigned when regular hours are not available.
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Finally, constraints (16), (17), (18) and (19) with deviation variables ncic, cdic, NCT and CDT

assure that if a nurse is assigned to a case, it will be for its entire duration unless staffing shortages

dictate that she be reassigned elsewhere to avoid violating a hard constraint. Also, by minimizing

the maximum number of cases that a nurse can work, we limit her movement from period to period.

4.5 Objective Function

As implied in the above discussion, we wish to minimize six conflicting objectives. Each corresponds

to a maximum deviation from a stated goal. In particular, the objective of NAM is to minimize:

DE maximum demand deviation for any case c ∈ C and job k ∈ K

DS maximum number of nonconsecutive breaks for any nurse i ∈ I

DF maximum amount of overtime assigned to any nurse i ∈ I

X maximum number of room assignments to any nurse i ∈ I

NCT maximum number of cases assigned to any nurse i ∈ I

CDT maximum number of times an individual assignment to a case is broken due to shortages

for any nurse i ∈ I

The corresponding objective function can be written as

Minimize [DE ,DF ,DS,X ,NCT , CDT ] (20)

and is designed to ensure that the maximum deviation for each goal (worst case results) will be

minimized for all nurses and cases.

5 Solution Methods

A variety of solution techniques are available to deal with the multi-objective nature of the nurse

assignment model. One of the most common is to construct a single objective function by weighting

each term (deviation) and summing them. This was the first scheme we tried but were unable to get

optimal solutions with CPLEX after 10 hours of computations. Nevertheless, we make use of this

idea indirectly in one of our two proposed methods. The first is based on the idea of constructing

a pool of high quality solutions; the second makes use of goal programming techniques (e.g., see

Schniederjans, 1995). Each is described in the remainder of this section.

5.1 Solution Pool Approach

Rather than terminate with an “optimal” solution to an optimization problem, several of the more

powerful commercial codes offer a feature that accumulates feasible solutions in a pool. CPLEX,

for example, now has the option to save a specified number of solutions that are within a given
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percentage of the optimum (IBM, 2010). In our first approach to the NAM, called SPM, we use

this feature in CPLEX to generate a set of candidate rosters which are then evaluated with respect

to the six objectives. The methodology is outlined in Algorithm 1 and consists of three steps. In

Step 1, all input data sets, parameters and goals are initialized, and an index j is assigned to each

variable contained in (20). In Step 2, we solve a single objective problem for each deviation. All

hard constraints as well as those soft constraints associated with the current deviation are included.

For example, for the the first deviation DE , the problem is:

Minimize DE

subject to hard constraints: (1)− (7)

soft constraints: (8)− (9)

(21)

The solution pool feature is applied to this problem to generate S candidates, and the process

repeated for the remaining deviations. Since soft constraints do not affect feasibility, regardless of

the objective function in model (21), all the feasible regions contain the same hard constraints so

a feasible solution with objective j will also be feasible for objective j′ ∈ {1, . . . , J} \ {j}. Thus,

given a solution s for objective j, we can calculate the objective values associated with the other

deviation j′ at s. To be able to compare different candidates, we also calculate a cumulative weighted

index CWIjs for each solution s ∈ {1, . . . , S} and objective j ∈ {1, . . . , J}. The weights used in

forming the index are based on the decision maker’s perceived importance of each deviation. The

comparisons are performed in Step 3 and the candidate that yields the smallest CWI is reported

as the NAM solution.

Upon termination, the value of the decision variables Y ∗j∗s∗

ickh associated with CWI∗ are reported

as the solution, where CWI∗ is the smallest cumulative weighted index found at Step 3. The values

of the six deviations are also reported.

Example 1. To illustrate the approach, suppose that we have a problem with three deviations

defined in terms of the goals g1, g2 and g3, a set of hard constraints Ax ≤ B, and a pair of soft

constraints for each deviation j given by Cj(x) ≤ Dj , where, goal gj(x) is associated with constraint

Cj(x) ≤ Dj for j = 1, 2, 3. The corresponding multi-objective optimization model can be stated as

follows.

Minimize z1 = g1(x)

Minimize z2 = g2(x)

Minimize z3 = g3(x)

subject to Ax ≤ B

Cj(x) ≤ Dj ∀ j = 1, 2, 3

x ∈ Z+

(23)

For each j, the single objective model is
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Algorithm 1 Solution Pool Method (SPM)

Step 1: Initialization
• Input: data sets I, C, K, H, S, P, Q, J ; parameters P 1, P 2, P 3, P 4, P 5, P 6, P 7, P 8, P 9, P 10, M .
• Number of objectives J = 6, j ∈ {1, 2, . . . , J}, where j = 1 for deviation DE , j = 2 for deviation DF ,
j = 3 for deviation DS, j = 4 for deviation X , j = 5 for deviation NCT , j = 6 for deviation CDT .
• Number of solutions S to be generated by the solution pool feature, s ∈ {1, 2, . . . , S}.
• Deviation weights wj , j = 1, ..., J ; CPLEX optimality gap α.

Step 2: Solution Generation
for each deviation j do

• Develop a single objective optimization model equivalent to (21).
• Apply the solution pool feature to generate S candidates using an optimality gap α in CPLEX.
for each candidate solution s do

• Record components of optimal solution vector as Y ∗js
ickh

• For all j′ 6= j, calculate the value of deviation j in (20) using the optimal values Y
∗js
ickh, i.e., D̂E ,

D̂F , D̂S, X̂ , N̂ CT , and ĈDT .
• Calculate the cumulative weighted index as follows.

CWIjs = w1D̂Ejs + w2D̂Fjs + w3D̂Sjs + w4X̂js + w5N̂ CT js + w6ĈDT js (22)

• When s = S or when a predefined time limit is reached, terminate and go to Step 3.
end for

end for

Step 3: Solution Comparison
• Initialize CWI∗ = M , j∗ = 0 and s∗ = 0.
for j = {1, . . . , J} do

for s = {1, . . . , S} do
IF (CWI≥CWIjs); THEN (CWI∗ = CWIjs, j

∗ = j, s∗ = s).
end for

end for
• Output CWI∗, DE∗, DF∗, DS∗, X ∗, NCT ∗, CDT ∗, Y ∗

ickh.

Minimize zj = gj(x)

subject to Ax ≤ B

Cj(x) ≤ Dj

x ∈ Z+

(24)

After solving each model, assume that the optimal objective values are g∗1 = 1, g∗2 = 0, and

g∗3 = 1.5. Next, we apply the solution pool feature for each goal j to get, say, S = 10 candidates.

For each candidate s and goal j the value of the other goals can be evaluated. Table 1 provides

the results for j = 2 (the corresponding results for j = 1 and 3 are reported in the Appendix). As

expected, objective values for j = 2 are noticeably smaller than those associated with the other two

objectives. Now, using the weights 0.5, 0.3 and 0.2 for goals g1(x), g2(x) and g3(x), respectively,

we obtain the value of CWIjs from Eq. (25). The calculations for j = 2 are given in the bottom

row of Table 1.
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CWIjs = 0.5 · ĝ1s + 0.3 · ĝ2s + 0.2 · ĝ3s (25)

Table 1: Results obtained from SPM for single objective model for goal j = 2

Goal Solution number, s

j 1 2 3 4 5 6 7 8 9 10

1 1.5 1.2 1 1.2 1.1 1 1.3 1 1.1 1.05

2 0 0 0 0.01 0.02 0 0.015 0.03 0 0

3 1.5 2 3 1.7 1.9 2.5 1.8 1.6 2.1 3.1

CWI2s 1.05 1 1.1 0.943 0.936 1 1.0145 0.829 0.97 1.145

Comparing the CWIjs values for all goals j and solutions s in the corresponding tables, we see

that the eighth solution (s = 8) obtained from solving the single objective model for j = 2 provided

the smallest value of CWI. Therefore CWI∗ = 0.829 as highlighted in Table 1. For the given

weights and solution pool this was the best solution obtained using SPM.

5.2 Modified Goal Programming Approach

The second algorithm we developed for solving the daily nurse scheduling problem is based on

preemptive goal programming (GP) which similarly requires a prioritization of goals (Taha, 2006).

The alternative known as the weights method is closer to our first algorithm where the values

of wj , j = 1, ..., J need to be specified. In preemptive GP, a sequence of mixed-integer programs

(MIPs) are solved where each successive MIP has an additional constraint derived from the previous

solution.

To illustrate, assume that we have a bi-objective optimization problem with integer variables x

and two goals given by the functions g1(x) and g2(x). Assuming that g1(x) is the more important

goal, we begin by minimizing this function to get g∗1. When the second MIP is constructed with

objective function g2(x), the constraint g1(x) ≤ g∗1 is added to the formulation. The main drawback

of this approach is that the new constraint may drastically curtail the size of the feasible region to

the point where no other solutions exist. This would be the case if the optimal solution to the first

problem were unique. To avoid this situation and to allow for a broader exploration of the solution

space, we propose a modified approach based on an “elastic” constraint of the form

if g∗1 6= 0, then, g1(x) ≤ g∗1 · (1 + β)

else, g1(x) ≤ β (26)

where β is a new variable that measures the fractional deviation from the optimal objective value

g∗1.

Unlike SPM, our modified goal programming method (MGPM) considers all deviations simul-

taneously by minimizing their sum in a single objective problem. The first step (see Algorithm 2) is
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to initialize all input data sets, parameters and goals, and an index j is assigned to each objective.

In Step 2, a single objective optimization model equivalent to (21) is solved for each deviation

j; call the optimal objective function value OPT ∗
j for j = 1, ...J . In Step 3, we formulate the

new constraints equivalent to (26) by introducing J deviation variables β1, . . . , βJ . For example, if

DE∗ > 0 is the optimal value of the first deviation DE , then (26) becomes DE ≤ DE∗ · (1 + β1). if

DE∗ = 0, then the constraint is DE ≤ β1.

The final model is formulated in Step 4 with the objective of minimizing the sum of the β

variables. The hard constraints (1) – (7), the soft constraints (8) – (19), and the elastic constraints

are included in the model. By minimizing
∑

j∈{1,...,J} βj we ensure that the total deviations are as

small as possible, and that the final schedules are Pareto-optimal. Although there is no guarantee

that the deviations will be evenly spread over all goals, our empirical results show a near-uniform

distribution.

Algorithm 2 Modified Goal Programming Method (MGPM)

Step 1: Initialization

• Input: data sets I, C, K, H, S, P, Q, J ; parameters P 1, P 2, P 3, P 4, P 5, P 6, P 7, P 8, P 9, P 10, M .

• Number of objectives J = 6, j ∈ {1, 2, . . . , J}, where j = 1 for deviation DE , j = 2 for deviation DF ,

j = 3 for deviation DS, j = 4 for deviation X , j = 5 for deviation NCT , j = 6 for deviation CDT .

Step 2: Minimum Deviation Computations

for each deviation j do

• Set up and solve a single objective optimization problem equivalent to (24) for each deviation zj .

• For the jth problem, let the optimal objective function value be OPT ∗
j .

end for

Step 3: Optimality Constraint Generation

for each deviation j do

• Introduce deviation variable βj .

• Construct the elastic constraints as follows:

If OPT ∗
j 6= 0, then zj ≤ OPT ∗

j · (1 + βj)

else zj ≤ OPT ∗
j + βj (27)

end for

Step 4: Final Model Formulation

• Add the constraints developed in Step 3 to all hard and soft constraints.

• Solve the following problem:

Ẑ = Minimize





∑

j∈{1,...,J}

βj : subject to (1)− (7), (8)− (19), (27)



 (28)

• Output CWI∗, DE∗, DF∗, DS∗, X ∗, NCT ∗, CDT ∗, Y ∗
ickh, β

∗.
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Example 2. We illustrate MGPM using problem (23) introduced in Section 5.1. First, the single

objective model given by (24) is solved for each goal j. Let g∗1 = 1, g∗2 = 0, and g∗3 = 1.5 be the

optimal objective function values, and let βj , j = 1, 2, 3 be the corresponding deviation variables.

The elastic constraint for goal j = 1 is

gj(x) ≤ g∗j · (1 + βj) (29)

Substituting the values g∗j into Eq. (29) gives

g1(x) ≤ 1 · (1 + β1)

g2(x) ≤ β2

g3(x) ≤ 1.5 · (1 + β3)

Therefore, the final model is

Minimize β1 + β2 + β3

subject to Ax ≤ B

Cj(x) ≤ Dj ∀ j = 1, 2, 3

g1(x) ≤ 1 + β1

g2(x) ≤ β2

g3(x) ≤ 1.5 · (1 + β3)

x ∈ Z+

(30)

If the partial solution to (30) is β1 = 0.001, β2 = 0 and β3 = 0.027, then the final goal values

in model (23) are g1(x
∗) = 1.001, g2(x

∗) = 0 and g3(x
∗) = 1.54, and from Eq. (13) we get

CWIMGPM = 0.809. The latter value compares favorably with CWISPM = 0.829 which was

obtained with Algorithm 1. Thus, for this example at least, MGPM provides a better solution than

SPM.

6 Computational Experience

The two algorithms developed to solve the NAM were tested using data provided by MD Anderson

Cancer Center, one of the world’s most respected cancer treatment facilities. A typical daily roster

for a subset of nurses is depicted in Table 10 in the Appendix. In the discussion accompanying

the table, we highlight several issues that continue to thwart those responsible for constructing the

schedules.

By way of background, MD Anderson Cancer Center handles an estimated 1500 surgeries per

month with 148 nurses and scrub techs, and 140 surgeons. Most surgeries are scheduled in advance

and patients either arrive at the hospital on the day of their procedure or are transferred from

another department beforehand. The task of scheduling nurses is done manually over a 4-hour
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period from 3 PM to 7 PM the day before with the actual assignments being finalized on the

current day. Call-ins, cancellations, overtime and case-duration variability make the problem even

more complex and frustrating.

On average, 60 nurses with RN and scrub tech titles are available a various times during the

day, depending on their contractual agreements. The following five different shifts are used in the

operating suites, each spanning either 8 or 10 regular hours plus overtime and lunch.

Shift 1: 6:30 AM - 2:30 PM (8 regular hours, 4 overtime hours, 1 hour for lunch)

Shift 2: 6:30 AM - 5:30 PM (10 regular hours, 4 overtime hours, 1 hour for lunch)

Shift 3: 10:30 AM - 5:30 PM (8 regular hours, 4 overtime hours, 1 hour for lunch)

Shift 4: 10:30 AM - 7:30 PM (10 regular hours, 2 overtime hours, 1 hour for lunch)

Shift 5: 2:30 PM - 11:30 PM (8 regular hours, 4 overtime hours, 0 hours for lunch)

To construct a problem instance, we collected surgery case data and nurse attribute data for

one day in May and one day in November 2010 for the main operating suite. These data, in

collaboration with several nurse managers, allowed us to define all model parameters and preference

settings. Input information included nurse specialties and competency levels, their shifts and job

titles, case specialties, procedural complexities, and demand per case. The basic data set was built

around 28 cases to be staffed by 23 RNs and 14 scrubs each working one of the five shifts defined

above. The demand for each case was 1 circulator and 1 scrub. For modeling purposes, the day

was broken into 38 half-hour time periods starting at 6:30 AM and ending at 11:30 PM. Both

algorithms were implemented in a C++ environment and run under Windows Server 2008 R2 on a

2.83 GHz Dell workstation with 16 GB of memory. All integer programs were solved with CPLEX

12.2.

6.1 Results for Solution Pool Method

To evaluate the performance of SPM we conducted four experiments using the different weight

values shown in Table 2. Experiment 1 assigns equal weight to all six deviations. The remainder

reflect the preferences of the various nurse managers at MD Anderson Cancer Center. In all cases,

surgery demand satisfaction (DE) was deemed to be of highest importance. In Experiment 2, less

preference is given to overtime (DF) and nonconsecutive assignments (DS) than to moving between

cases (NCT ) and unfinished surgery assignments (CDT ). The third and fourth experiments can

be similarly interpreted.
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Table 2: Experimental design

Weights for deviations

DF DS DE X NCT CDT

Scenario (overtime) (nonconsecutive) (demand) (rooms) (number of cases) (breaks)

Experiment 1 100 100 100 100 100 100

Experiment 2 40 40 100 70 80 80

Experiment 3 60 70 100 80 60 80

Experiment 4 90 80 100 70 60 80

Table 3 gives the SPM results for all experiments as well as the implied results for the actual May

roster. The first output row reports the values of the deviations found by separately minimizing

each of the six deviations using a single objective model equivalent to (24). These values represent

lower bounds. The last column identifies the deviation that provided the minimum CWI∗ value

for the row obtained in Step 3 of Algorithm 1.

The first observation is that when compared to the actual roster, all four experiments provided

superior results as measured by CWI∗. For Experiment 2, CWI∗ = 780, which is only 11.4%

above the 700 minimum. Moreover, all experiments yielded schedules with less overtime (DF) and

fewer nonconsecutive beaks (DS) than the actual schedules without sacrificing coverage, which was

always satisfied. A third observation is that the values associated with the six deviations did not

vary much among experiments, with DF , DS and X being the same in all cases regardless of their

individual weights. For the first three experiments, the best solutions were obtained from model

(24) when CDT was minimized; for the fourth experiment, the best solution was found when X was

minimized. Finally, it should be mentioned that in the actual schedules, some nurses were assigned

to cases that were scheduled to start prior to their contracted shift start times. Such disparities

are not permitted in our algorithms.

Table 3: SPM results

Scenario DF DS DE X NCT CDT CWI∗
Optimal

deviation (j∗)

Single objective model (24) 2 2 0 1 2 0 700 –

Actual roster 8 10 0 2 2 0 2200 –

Experiment 1 6 4 0 2 3 0 1500 CDT

Experiment 2 6 4 0 2 3 0 780 CDT

Experiment 3 6 4 0 3 3 0 1060 CDT

Experiment 4 6 4 0 1 3 1 1190 X

Table 4 gives the individual assignments for the circulator and scrub roles by case for each

experiment. From the results, we see, for example, that nurse 27 is assigned to work as a circulator

in case 28, which starts at period and runs through period 27. This suggests that nurse 27 is the

19



best qualified person for the circulation job on case 28. In contrast, looking at case 21, which starts

at period 2 and finishes at the end of period 9, we see that nurse 4 is assigned as either a circulator

or scrub, depending on the experiment, or is assigned to a different case altogether in Experiment

4 (case 23). In the first three experiments, we can see that some nurses are assigned to cases as

learning fellows, while in Experiment 4, there are no such assignments. Given that the demand

is one circulator and 1 scrub per case, this observation comes from the fact that more than one

nurse is associated with some cases in these roles. For example, case 17 is assigned two scrubs in

Experiments 1 and 3.

In sum, the results indicate that good solutions can be obtained with SPM that are relatively

insensitive to the weights selected for each goal. In a hospital setting, a nurse manager might run

several scenarios, compare schedules, and choose the one that comes closest to her needs or to her

nurses’ preferences.

Table 4: Individual nurse assignments obtained with SPM

Duration Experiment 1 Experiment 2 Experiment 3 Experiment 4

Case (start time Nurse # Nurse # Nurse # Nurse # Nurse # Nurse # Nurse # Nurse #

number - end time) circulator scrub circulator scrub circulator scrub circulator scrub

1 2-5 6 5 1 13 27 33 25 24

2 6-9 27 5 1 24 30 24 25 24

3 10-13 27 24/33 1/4 24 4 24 25 23

4 2-5 16 35 16 37 16 21 36 21

5 8-13 16/34 31 16 37 16 17 36 21

6 14-17 1 24 10 24/37 1 33 36 21

7 2-15 30 3/28 30 28 29 22 3 22

8 16-22 6 3 14 8 23 17 3 22

9 9-14 29 12 6 13 19 31 11 8

10 15-20 34 15 2 35 19 10 16 15

11 2-17 2 13 19 12/22 14 8 19 12

12 2-9 14 10 34 15 34 20 34 2

13 10-18 10 35 34 15 34 21 34 2

14 2-15 11 8 11 14 18 37 30 37

15 2-9 25 33 27 7 3 25 23 31

16 10-17 25 32 25 7 25 7 23 31

17 18-24 30 22/33 30 22 25 22/31 23 31

18 2-9 1 20 3 25 32 7 6 20

19 10-20 14 20 29 31 30 20 6 20

20 2-17 23 22 23 33 26 6 14 33

21 2-9 32 4 4 31 4 5 1 5

22 10-18 4 5 32 5 32 5 1 5

23 2-5 29 31 6/29 5 30 24 28 4

24 2-13 18 15/17 10 35 11 10 10 35

25 2-18 19 37 18 21 2 12/3 18 13

26 2-19 36 21 36 17 36 15 29 17

27 2-14 26 7 26 20 23 28 32 26

28 15-27 27 7 27 3 27 3 27 7
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6.2 Results for Modified Goal Programming Method

Table 5 reports the results obtained with MGPM, again using the May 2010 data set. Rows 2 and

3 give the same statistics as Table 3 for model (24) and the actual roster, respectively. The last

column gives the optimal objective function value for model (28).

From the third row, we see that the MGPM schedules are as good or better than the actual

schedules in all deviations except movement between rooms (NCT ), and as good or better than all

results obtained by SPM. That is, MGPM dominates SPM. Also, the deviation values for demand

satisfaction (DE), room changes (X ) and complete case assignments (CDT ) are optimal or near-

optimal with respect to the lower bounds obtained with the single objective model (row 2). In

other words, by assigning each nurse to at most 3 surgery cases, optimal values for deviations DE ,

CDT and X can be attained.

Table 5: MGPM results for each deviation

Scenario DF DS DE X NCT CDT Ẑ =
∑

j βj

Single objective model (24) 2 2 0 1 2 0 0

Actual roster 8 10 0 2 2 0 7.5

MGPM 6 4 0 1 3 0 3.5

The roster produced by MGPM is shown in Table 6. Compared with the SPM results, for

example, nurse 27 now works as a circulator on cases 27 and 28 rather than on case 28 only, and

nurse 4 now works on cases 21 and 22 in the single role of a scrub rather than as a circular and

scrub on different cases. Another interesting result is that the MGPM schedules have no nurses

assigned as learning fellows; that is, there are no surplus nurses, implying that the schedules are

generally more efficient.
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Table 6: Individual nurse assignments obtained with MGPM

Case Duration Schedule

Number (Start Time - End Time) Nurse # Nurse #

circulator scrub

1 2-5 3 24

2 6-9 3 24

3 10-13 3 24

4 2-5 26 8

5 8-13 26 8

6 14-17 26 8

7 2-15 25 22

8 16-22 25 22

9 9-14 30 2

10 15-20 16 13

11 2-17 18 37

12 2-9 34 35

13 10-18 34 35

14 2-15 11 21

15 2-9 32 20

16 10-17 32 20

17 18-24 32 20

18 2-9 29 6

19 10-20 29 6

20 2-17 23 31

21 2-9 1 4

22 10-18 1 4

23 2-5 36 5

24 2-13 14 17

25 2-18 19 12

26 2-19 10 15

27 2-14 28 33

28 15-27 27 7

To further compare the rosters produced by SPM and MGPM with each other as well as with

the actual roster, we calculated the β values for each deviation introduced in Algorithm 2 for each

experiment presented in Table 2. Table 7 reports the results. The first observation is that the Ẑ

values associated with the SPM and MGPM solutions are smaller than the Ẑ value of 7.5 calculated

for the actual roster. This indicates that both our methods generate more efficient schedules than

the current method, at least for the sample data set.

A second observation is that the Ẑ value of 3.5 obtained from MGPM is smallest among all

experiments. This is not surprising since we saw that MGPM uniformly produced deviations

no larger than did SPM and often smaller. With respect to the computational effort, MGPM

ran in less than half the time required by SPM, a significant advantage in the real environment

given the magnitude of the runtimes. Although both methods have similar complexity, the elastic

constraints in (27) have the effect of tightening the feasible region of the MIP which is solved by
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Table 7: Comparison between SPM and MGPM results

Scenario β1 β2 β3 β4 β5 β6 Ẑ =
∑

j βj Runtime (hours)

Actual roster 3 4 0 1 0 0 7.5 –
SPM, Experiment 1 2 1 0 1 0.5 0 4.5 7.77
SPM, Experiment 2 2 1 0 1 0.5 0 4.5 7.63
SPM, Experiment 3 2 1 0 2 0.5 0 5.5 7.59
SPM, Experiment 4 2 1 0 0 0.5 1 4.5 7.73
MGPM 2 1 0 0 0.5 0 3.5 3.18

MGPM. Empirically, this was seen to reduce the size of the branch-and-bound tree generated by

CPLEX and hence speed convergence. However, SPM has the advantage of producing a pool of

solutions allowing the decision maker to choose an alternative if the scheduler does not like the

one associated with CWI∗. In contrast, if the single solution produced by MGPM has undesirable

properties, such as too many interrupted assignments or room changes, the decision maker may

not be able to modify it to her liking as witnessed by the shortcomings of the current scheduling

process.

7 Summary and Ongoing Work

In this paper, we developed and compared two approaches for solving a daily nurse scheduling

problem that arises in large operating suites. The problem is complicated by the need to account for

individual specialties, competency levels, preferences and shift limitations, as well as the procedural

complexities of each case. In addition, it was not possible to identify a single objective such as cost

or quality to optimize. Instead we worked with a variety of objectives and aimed at Pareto-optimal

solutions.

The first approach (called SPM) used the idea of generating a pool of representative solutions by

solving a series of optimization problems, each aimed a minimizing a single objective. A cumulative

weighted index was then constructed for each solution and the one with the smallest index was

reported as the “optimum.” The second approach (called MGPM) was based on preemptive goal

programming, where we first found the optimal solution for each goal separately, and then solved

a derivative optimization problem whose objective was to minimize the sum of the deviations from

those goals. Both methods were computationally challenging since they required the solution of

large-scale mixed-integer programs at intermediate steps.

The scheduling model and accompanying algorithms were developed and validated over a two-

year period. During this time, we had extensive meetings with nurse managers and continually

gathered data by shadowing nurses in the main operating suite. Based on the information de-

rived from this experience, we constructed several databases, organized the model parameters, and

obtained the real schedules used in the analysis.

Our computational experience showed that MGPM outperformed SPM by generating schedules

with smaller deviations in significantly less time. However, SPM offers the advantage of providing
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many good solutions from which the decision maker can choose, based on her individual preferences

or perceptions of fairness that might not have been captured in the models. It is an easy matter

to rank the solutions in the pool or filter out those that do not meet certain implicit goals. It

is also simple to re-rank them by adjusting the weights used to compute CWI. In any case, the

results from either model proved superior to those obtained with the current techniques in use at

MD Anderson Cancer Center so it is anticipated that the implementation of either of approach will

lead to measurable savings in the coming years.

Nevertheless, the numerical results showed that neither algorithm could provide solutions quickly,

so developing more efficient computational methods would be valuable. We are currently looking

into the use of column generation to get improved relaxed solutions and heuristics for converting

them to feasible solutions. We believe that this approach will lead to at least a twofold reduction

in runtimes.

One of the main characteristics of any OR is case continuity. A nurse cannot leave the OR

until the case is finished or she is relieved by someone with comparable qualifications. In practice,

this means that there must be a pool of nurses on call, so to speak, during a portion of the day to

take over when a lunch break is requested. We are now developing a complementary optimization

model to generate lunch schedules for those shifts that require a break. Upon completion, we

expect to wrap all the models with a graphical user interface that will facilitate daily planning, OR

monitoring, and real-time control. When nurses call out or surgeries extend beyond their planned

durations, a user friendly system is needed to get the schedules and cases back on track.
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8 Appendix

Tables 8 and 9 provide the remaining results for Example 1.

Table 8: Results obtained from SPM for single objective model for goal j = 1

Goal Solution number, s

j 1 2 3 4 5 6 7 8 9 10

1 1 1 1.01 1 1 1 1.01 1.05 1 1.05

2 0 0 1 1 1.1 1.2 2 2.5 0 0.05

3 3 2.5 1.8 1.9 2.1 2.2 2 1.5 2.3 3.2

CWI1s 1.1 1 1.165 1.18 1.25 1.3 1.505 1.575 0.96 1.18

Table 9: Results obtained from SPM for single objective model for goal j = 3

Goal Solution number, s

j 1 2 3 4 5 6 7 8 9 10

1 2 2.1 2.5 1.9 1.9 1.8 1.4 3 1.3 1.8

2 0.05 0.01 0 0 0.02 0.02 0.5 0 1 0.1

3 1.5 1.5 1.5 1.6 1.55 1.52 1.62 1.5 1.5 1.52

CWI3s 1.315 1.353 1.55 1.27 1.266 1.21 1.174 1.8 1.25 1.234

Table 10 provides a portion of a real roster obtained from MDACC. The case number is listed

in the first column, the second column gives the case duration, and the last two columns indicate

the circulators and scrubs assigned to the case. From this information we see, for example, that

nurse 9 is assigned to work on cases 21 and 22 both scheduled in OR 11. The surgery information

indicates that she is to start her work on case 21 at the beginning of period 2 (7 AM) and finish at

the end of period 9 (10:30 AM). At that point, she transitions to case 22 that extends from period

10 (11 AM) through period 18 (3 PM) in the same room. However, based on her contract, her shift

runs from 10:30 AM to 7 PM.

This type of mismatch is typical in the daily schedules produced by the manual techniques used

at MDACC. A second example relates to the quality of schedules produced, and concerns their

policy of trying to assign each nurse to only one OR per day but no more than two. In the roster

in Table 10, nurse 25 is assigned to work on case 27 in OR 16 from period 2 through period 14 and

then move to OR 17 to work on case 28 from 15 to 27. While these assignments do not violate

the stated policy, our results show that it is possible to limit nurse 25 to one OR during the day

without affecting the quality of the schedules of the other nurses.

27



Table 10: Example of a real schedule obtained from MD Anderson Cancer Center

In a similar vein, many nurses have significant idle time in their schedules while others work

continuously without a break. For example, nurse 35 starts her shift at period 1 (6:30 AM) and

finishes at the end of period 18 (3 PM) but is only assigned to case 22 from period 10 (11 AM)

through period 18 (3 PM). She is idle for 5 hours between periods 1 and 10. The same is true

for nurses 11, 20 and 31, implying that the value of the deviation variable DS is 10. As a final

example, it is informative to examine the schedule for nurse 20, whose shift runs from period 1

through period 18 (6:30 AM to 3 PM). Her first assignment is case 23 between periods 2 and 5 and

her second is case 28 between periods 15 and 27 (1:30 PM to 7:30 PM). Thus, she has 5 hours of

idle time and 4 hours off overtime – a poor schedule – which translates into a value of 8 for the

overtime deviation variable DF .
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