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BACKGROUND: Associations between dairy intake and body
mass index (BMI) have been inconsistently observed in ep-
idemiological studies, and the causal relationship remains ill
defined.

METHODS: We performed Mendelian randomization (MR)
analysis using an established dairy intake-associated genetic
polymorphism located upstream of the lactase gene (LCT-
13910 C/T, rs4988235) as an instrumental variable (IV).
Linear regression models were fitted to analyze associations
between (a) dairy intake and BMI, (b) rs4988235 and dairy
intake, and (c) rs4988235 and BMI in each study. The
causal effect of dairy intake on BMI was quantified by IV
estimators among 184802 participants from 25 studies.

RESULTS: Higher dairy intake was associated with higher
BMI (� � 0.03 kg/m2 per serving/day; 95% CI, 0.00–
0.06; P � 0.04), whereas the LCT genotype with 1 or 2 T
allele was significantly associated with 0.20 (95% CI,
0.14–0.25) serving/day higher dairy intake (P � 3.15 �
10�12) and 0.12 (95% CI, 0.06–0.17) kg/m2 higher
BMI (P � 2.11 � 10�5). MR analysis showed that the
genetically determined higher dairy intake was signifi-
cantly associated with higher BMI (� � 0.60 kg/m2 per
serving/day; 95% CI, 0.27–0.92; P � 3.0 � 10�4).

CONCLUSIONS: The present study provides strong evi-
dence to support a causal effect of higher dairy intake on
increased BMI among adults.
© 2017 American Association for Clinical Chemistry

The prevalence of obesity has been rapidly increasing
over the world and is paralleled by a historic shift of
lifestyle from traditional healthy patterns toward un-
healthy patterns (1 ). However, the causal relationships

between lifestyle factors and obesity have yet to be fully
elucidated.

A body of observational epidemiologic studies inves-
tigating the association between dairy intake and weight
status has reported inconsistent results. A recent system-
atic review of prospective cohort studies showed a negative
association of dairy consumption with risk of overweight
and obesity, but considerable heterogeneities existed (2),
making definitive conclusions difficult. Metaanalyses of
randomized controlled trials (RCTs)74 suggest that dairy
consumption may not influence body weight when all the
participants are analyzed, but it may reduce body weight
and fat mass in the context of energy restriction (3–6).
However, because of the relatively short duration of inter-
vention (often �1 years) and the special populations often
evaluated (e.g., obese individuals seeking weight loss), the
effects of habitual dairy intake on body weight in general
populations remain unclear.

Mendelian randomization (MR) analysis has be-
come widely used to assess potential causal relations of
environmental risk factors and diseases (7 ). This method
is analogous to an RCT in which randomization to ge-
notype takes place at conception (8, 9 ). In our recent
MR analysis, we demonstrated that dairy intake was not
causally related to hypertension, using an established
dairy intake-associated genetic variant near the lactase
gene LCT 75 (10 ). In the current study, we performed the
largest MR analysis thus far among 184802 adult partici-
pants from 25 cohorts to examine the causal relationship
between habitual dairy intake and body weight in general
populations.

Methods

STUDY DESIGN

The study design consisted of 2 steps. First, using cross-
sectional and prospective cohort studies, we tested the
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dairy intake-associated LCT-13910 C/T, rs4988235 for
association with diary intake and body mass index
(BMI). Second, the causal effect of dairy intake on BMI
was quantified with instrumental variable (IV) estimators
among 184802 participants from 25 studies.

STUDY PARTICIPANTS

The study was conducted within the Mendelian Ran-
domization of Dairy Consumption Working Group,
represented here by 25 cohort studies and up to 184802
individuals (see Table 1 in the Data Supplement that
accompanies the online version of this article at http://
www.clinchem.org/content/vol64/issue1). Descriptions
of each participating study are shown in Table 2 of the
online Data Supplement. Participants from all partici-
pating studies provided written informed consent, and
ethical approval was granted by local institutional review
boards (see Table 3 in the online Data Supplement).
Intake of dairy products was collected by self-reported
questionnaire in each study; detailed information on
cohort-specific data collection methods is provided in
Table 4 of the online Data Supplement. Total dairy
products included skim/low fat milk, whole milk, ice
cream, yogurt, cottage/ricotta cheese, cream cheese, other
cheese, and cream.

The primary outcome is follow-up BMI or baseline
BMI, calculated as weight in kilograms divided by the
square of height in meters. Height and body weight were
directly measured in some studies and self-reported in oth-
ers. Detailed information on the outcome measure for each
study is reported in Table 5 of the online Data Supplement.

SINGLE-NUCLEOTIDE POLYMORPHISM SELECTION AND

GENOTYPE PROPERTIES

The LCT-13910 C/T polymorphism (rs4988235), lo-
cated upstream from the LCT gene, affects the transcrip-
tion of the lactase enzyme and is associated with lactase
persistence and thereby with the ability to digest lactose,
the primary source of carbohydrates in milk (11 ). Lactase
persistence is a dominantly inherited genetic trait. The
TT and TC genotypes are associated with lactase persis-
tence, and the CC genotype is associated with nonpersis-
tence. In the present study, we chose the widely con-
firmed and extensively studied variant rs4988235 as the
IV for dairy intake (12–14). Twenty studies used direct
genotype information on rs4988235 from previously
genotyped array data. Whenever rs4988235 was not
genotyped directly, we used either (a) the HapMap II
CEU (European) reference panel-imputed genetic infor-
mation from genome-wide association studies (http://
hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2008-
10_phaseII/) for rs4988235 or (b) genotype informa-
tion from a predefined list of proxies that are in high
linkage disequilibrium with rs4988235 (n � 5, r2 �
0.9). Genotyping platforms, genotype frequencies, Hardy–

Weinberg equilibrium P values, and call rates (median of
98.8%) for LCT-13910 C/T are listed in Tables 1 and 6 of
the online Data Supplement.

STATISTICAL ANALYSIS

A standard analysis protocol was applied to each individ-
ual study to produce comparable results. As lactase per-
sistence is a dominantly inherited genetic trait, we exam-
ined the genetic association primarily under a dominant
model (CC vs CT � TT). We also applied an additive
model and recessive model (CC � CT vs TT) to examine
the genetic association of LCT-13910 C/T with dairy
intake and BMI. Linear regression was used to test the
association of dairy intake with BMI after adjustment for
age, sex, ethnicity, region, years of follow-up, and other
baseline covariates (smoking status, physical activity, to-
tal energy intake, and alcohol intake), as available. Linear
regression was used to test the association of LCT-13910
C/T with dairy intake or BMI after adjustment for age,
sex, ethnicity, region, and total energy. Table 5 in the
online Data Supplement shows the BMI outcome
information.

METAANALYSIS AND BETWEEN-STUDY HETEROGENEITY

Metaanalyses were conducted using individual partici-
pant data in each study and then pooled � coefficients
across studies using random-effects or fixed-effects meta-
analysis. Metaanalyses were conducted in Stata version
13.0 (StataCorp, www.stata.com). All P values reported
were 2-sided. We assessed between-study heterogeneity
via Cochrane’s Q and I2 statistics (15–17). For the pro-
posed cutoff of I2 � 0.25, we found nonnegligible het-
erogeneity between studies, in particular among the
dairy–BMI associations, but also for the association be-
tween LCT-13910 C/T and dairy intake (I2 � 0.55). As
a consequence, we used random-effects metaanalysis
throughout. Furthermore, metaregression was used to in-
vestigate the extent to which statistical heterogeneity be-
tween results of studies could be related to 1 or more
characteristics of the studies.

SE AND INFERENCE FOR THE IV ESTIMATOR

After metaanalysis, we used the IV estimator to quantify
the strength of the causal association of dairy intake and
BMI (18 ). The IV estimator was calculated as the � of
the regression coefficients for LCT-13910 C/T-BMI and
LCT-13910 C/T-dairy and is identical to that derived by
the widely used 2-stage least-squares method (19 ) (see
Material section in the online Data Supplement).

Results

BASELINE CHARACTERISTICS OF PARTICIPATING STUDIES

Baseline characteristics of the 184802 participants from
25 studies are shown in Table 1 here and in Table 1 of the
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online Data Supplement. A description of each study and
additional characteristics of participants are presented in
Tables 1 through 6 of the online Data Supplement.
Twenty studies provided data for LCT-13910 C/T, and
5 studies provided results for the proxy single-nucleotide
polymorphism (defined on the basis of r2 � 0.90 with
rs4988235 in individuals; see Table 6 in the online Data
Supplement). Findings from �2 tests showed that the
CCHS, CGPS, FamHS, and GLACIER did not achieve
Hardy–Weinberg equilibrium (see Table 6 in the online
Data Supplement).

DAIRY INTAKE AND BMI

Random-effects metaanalysis was used to pool the asso-
ciation between dairy intake and BMI in the 176100
participants from 24 studies. We observed that high dairy
intake was significantly associated with higher BMI (� �
0.03 kg/m2 per serving/day; 95% CI, 0.00–0.06; P �

0.04). The � coefficient estimates of effect sizes for the
association between dairy intake and BMI ranged from
�0.18 to 0.20 kg/m2 per serving/day of dairy intake,
yielding an I2 for heterogeneity between studies of 79.7%
(Fig. 1). Metaregression analysis showed that age signif-
icantly influenced the association of dairy consumption
with BMI (P � 0.02). Stratified analysis by age showed
that dairy consumption was significantly associated with
higher BMI among participants �50 years (� � 0.05
kg/m2 per serving/day; 95% CI, 0.02–0.07) but tended
to be associated with lower BMI among participants �50
years (� � �0.04 kg/m2 per serving/day; 95% CI,
�0.11 to 0.03).

GENETIC ASSOCIATION OF LCT-13910 C/T WITH DAIRY

INTAKE AND BMI

Random-effects metaanalysis, with a dominant model,
was used to pool the genetic association of the LCT-

Table 1. Baseline characteristics of participating studies.

Studies
Sample

size
Study
design

Baseline
year

Follow-up
time, year Age, year BMI, kg/m2

ARIC-AA 1889 Cohort 1987 5.8 53.2 ± 5.7 29.7 ± 5.9

ARIC-EA 8233 Cohort 1987 6 54.3 ± 5.6 27.0 ± 4.7

BPHRSa 845 Cohort 2003 2.4 57.0 ± 8.0 32 ± 7.0

CCHS 8702 Cohort 1991–1994 20 60.0 ± 8.0 25 ± 4.0

CGPSa 74128 Cohort 2003–2011 5.7 57.0 ± 8.0 25.6 ± 4.0

CHS 1943 Cohort 1989–1990 8.9 71.1 ± 4.3 26.4 ± 4.2

DESIR 3468 Cohort 1994–1996 9 47.2 ± 9.9 24.6 ± 3.6

DCH 1297 Nested cohort 1993–1997 5 55.9 ± 4.4 25.2 ± 3.5

Diogenes-C 1002 Nested case–cohort 1993–1997 5 53.6 ± 2.60 25.5 ± 3.6

Diogenes-W 813 Nested case–cohort 1993–1997 5 53.4 ± 2.6 26.9 ± 4.0

FamHS 2167 Family-based cohort 1992 7.9 50.6 ± 10.0 28.8 ± 5.0

GESUSa 14751 Cohort 2010–2013 2.1 56.0 ± 4.0 26.1 ± 4.0

GLACIER 3129 Cohort 1991–2001 9.9 45.2 ± 6.7 25.1 ± 3.7

GOLDNa 818 Cohort — 0 49.0 ± 1.06 28.0 ± 5.0

HPFS 7599 Cohort 1990 10 57.7 ± 11.8 25.9 ± 3.3

INCHa 647 Cohort 1998 8.7 63.4 ± 14.8 27.1 ± 4.0

Inter99 6161 Cohort 1999 5 46.2 ± 7.9 26.3 ± 4.6

MDCS 3199 Cohort 1991–1996 16.7 56.3 ± 5.7 25.4 ± 3.7

MESA 2423 Cohort 1990 10 60.7 ± 9.6 28.2 ± 5.2

NHS 12039 Cohort 1990 10 57.3 ± 9.6 26.2 ± 5.2

PREDIMED-Valencia 940 Cohort 2003 2 67.0 ± 7.0 30.1 ± 4.2

RAINE 730 Cohort 2010 2.1 19.9 ± 0.3 24.3 ± 5.1

RS 3215 Cohort 1990 6.5 65.8 ± 6.8 26.3 ± 3.5

WGHS 23294 Cohort 1992 2 54.2 ± 7.1 25.9 ± 4.9

YFS 1370 Cohort 1980 4 38.1 ± 4.0 25.8 ± 5.0

a Data were analyzed cross-sectionally.
ARIC-AA, ARIC (African Ancestry); ARIC-EA, ARIC (European Ancestry).
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13910 C/T with dairy intake in the 176100 participants
from 24 studies (I2 � 83.0%). We found that the LCT-
13910 C/T CT � TT genotype was significantly associ-
ated with 0.20 more dairy servings per day (� � 0.20
serving/day; 95% CI, 0.14–0.25; P � 3.15 � 10�12).
We also pooled the genetic association with BMI in the
184802 participants from 25 studies using fixed-effects
metaanalysis (I2 � 14.4%; P � 0.258) and found that
the LCT-13910 C/T CT � TT genotype was signifi-
cantly associated with 0.12 higher BMI unit (kg/m2)
(� � 0.12; 95% CI, 0.06 – 0.17; P � 2.11 � 10�5)
(Fig. 2).

In sensitivity analyses, we found similarly significant
genetic associations of LCT-13910 C/T with dairy intake
(� � 0.09 serving/day; 95% CI, 0.06–0.12; P � 4.24 �
10�9), and genetic association with BMI (� � 0.09 serv-
ing/day; 95% CI, 0.04–0.14; P � 0.0003) under the
additive model (see Fig. 1 in the online Data Supple-
ment). Significant genetic associations were also observed
under the recessive model (see Table 7 in the online Data
Supplement).

IV ESTIMATED CAUSALITY BETWEEN DAIRY INTAKE AND BMI

After we pooled estimated effect sizes from each study
using metaanalysis, we used the IV estimators to quantify
the strength of the causal association of dairy intake and
BMI, with the LCT-13910 C/T used as an IV. The MR
estimate was computed from the ratio of the coefficient
of the association between the LCT-13910 C/T and BMI
to that of the association between the LCT-13910 C/T
and dairy intake. This IV estimate reflects the potential
causal effect of dairy intake on BMI. Fig. 3 presents the
observational association of dairy intake with BMI, as
well as the IV estimated causal effect of dairy intake on
BMI. The pooled results show that genetically higher
dairy intake was significantly associated with higher BMI
(� � 0.60 kg/m2 per 1 serving/day; 95% CI, 0.27–0.92;
P � 3.0 � 10�4) under the dominant model. We also
found evidence of significant causal association between
dairy intake and BMI under the additive model (� � 1.00
kg/m2; 95% CI, 0.30–1.69; P � 4.0 � 10�3) and the
recessive model (� � 1.59 kg/m2; 95% CI, 0.28–2.91; P �
0.009) (see Fig. 1 and Table 7 in the online Data Supple-

Study name

ARIC-AA
ARIC-EA
BPRHS
CGPS
CHS
DDCH
DESIR
Diogenes-C
Diogenes-W
FamHS
GESUS
GLACIER
GOLDN
HPFS
InCHIANTI
Inter99
MDC
MESA
NHS
PREDIMED
Raine
Rotterdam
WGHS
YFS
Overall (I2 = 79.7%; P = 0.000)

Note: Weights are from random-effects analysis

0.14 (0.03, 0.24)
0.02 (−0.02, 0.06)
0.20 (−0.06, 0.46)
0.06 (0.04, 0.09)
0.11 (−0.05, 0.27)
0.12 (−0.05, 0.29)
−0.07 (−0.11, −0.02)
−0.01 (−0.17, 0.16)
0.06 (−0.14, 0.26)
−0.08 (−0.16, 0.00)
0.05 (0.00, 0.10)
−0.05 (−0.11, 0.01)
−0.18 (−0.43, 0.07)
0.16 (0.12, 0.20)
0.09 (−0.17, 0.34)
−0.08 (−0.12, 0.10)
−0.00 (−0.05, 0.05)
0.03 (−0.04, 0.10)
0.03 (−0.00, 0.05)
0.11 (−0.04, 0.26)
0.16 (−0.02, 0.33)
0.00 (−0.03, 0.03)
0.03 (0.00, 0.05)
0.02 (−0.03, 0.07)
0.03 (0.00, 0.06)

3.43
6.37
0.92
6.98
1.98
1.80
6.08
1.92
1.42
4.34
5.96
5.36
1.00
6.55
0.94
3.30
5.89
4.95
6.94
2.23
1.74
6.89
7.12
5.89
100.00

ES, 95% Cl Weight, %

−0.458 0.4580

Fig. 1. Association between dairy intake and BMI among 176 100 participants from 24 studies.
Linear regression was used to test the association of dairy intake (serving/day) with BMI (kg/m2) after adjustment of sex, ethnicity, region, years
of follow-up, and other baseline covariates if available (age, smoking status, physical activity, total energy intake, and alcohol intake) in each
study. We pooled � coefficients across 24 studies using random-effects metaanalysis because of the heterogeneity between studies (I2 =
79.7%; P < 0.001). ARIC-AA, ARIC (African Ancestry); ARIC-EA, ARIC (European Ancestry); PREDIMED, PREDIMED-Valencia; ES, effect size.
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ment). We did not observe significant differences in obser-
vational results or IV estimated results (P � 0.63).

We further conducted stratified analyses of genetic
association with dairy intake and BMI and estimated
causality by age, BMI, follow-up years, sample size, study
design, and ethnic group. Table 2 presents the genetic
associations and the IV estimate for the association of
dairy intake with BMI from overall and subgroup analy-
ses. Genetic associations of the LCT-13910 C/T with

BMI and a causal effect of dairy intake on BMI were
observed only among those of European ancestry and in
studies with mean age �50 years, BMI �25 kg/m2,
follow-up time �5 years, and sample size �1000.

Discussion

In thus far the largest MR analysis study, including
184802 adults from 25 cohorts, our results support a

Genetic association with dairy consumption
Study name

ARIC-AA
ARIC-EA
BPRHS
CGPS
CHS
DDCH
DESIR
Diogenes-C
Diogenes-W
FamHS
GESUS
GLACIER
GOLDN
HPFS
lnCHIANTI
lnter99
MDC
MESA
NHS
PREDIMED
Raine
Rotterdam
WGHS
YFS
Overall (I2 = 83.0%; P = 0.000)

−0.05 (−0.16, 0.07)
0.33 (0.23, 0.43)
0.37 (0.17, 0.57)
0.26 (0.22, 0.29)
0.14(−0.03, 0.31)
0.21 (−0.10, 0.52)
−0.04 (−0.16, 0.08)
0.28 (−0.16, 0.71)
−0.14 (−0.67, 0.39)
0.39 (0.21, 0.57)
0.06 (0.02, 0.10)
0.22 (0.00, 0.44)
0.43 (0.13, 0.72)
0.22 (0.10, 0.34)
−0.08 (−0.21, 0.05)
0.24 (0.16, 0.32)
0.38 (0.06, 0.70)
0.25 (0.08, 0.42)
0.21 (0.16, 0.26)
0.12 (−0.03, 0.26)
0.25 (0.07, 0.43)
0.31 (0.03, 0.59)
0.19 (0.13, 0.25)
0.69 (0.33, 1.05)
0.20 (0.14, 0.25)

5.32
5.64
3.67
6.69
4.21
2.16
5.19
1.31
0.94
3.99
6.66
3.37
2.33
5.29
5.01
5.97
2.10
4.13
6.59
4.75
3.94
2.52
6.44
1.77
100.00

−0.36 (−0.99, 0.27)
0.40 (0.01, 0.79)
0.44 (−0.45, 1.33)
0.25 (−0.11, 0.62)
0.12 (−0.01, 0.25)
−0.28 (−1.31, 0.75)
0.71 (−0.19, 1.62)
0.35 (0.03, 0.67)
0.58 (−0.37, 1.53)
0.70 (−0.57, 1.98)
1.01 (0.25, 1.78)
0.07 (−0.26, 0.40)
0.07 (−0.48, 0.62)
0.32 (−0.91, 1.54)
0.15 (0.05, 0.25)
−0.07 (−0.50, 0.36)
0.08 (−0.13, 0.29)
−0.07 (−0.73, 0.58)
−0.17 (−0.47, 0.13)
0.09 (−0.01, 0.19)
−0.15 (−0.49, 0.19)
−0.92 (−1.99, 0.14)
0.16 (−0.31, 0.63)
0.14 (−0.08, 0.36)
0.11 (−0.60, 0.82)
0.12 (0.06, 0.17)

0.65
1.70
0.33
1.95
15.43
0.24
0.31
2.52
0.29
0.16
0.44
2.38
0.85
0.17
26.26
1.40
5.67
0.60
2.88
26.36
2.24
0.23
1.18
5.26
0.51
100.00

ARIC-AA
ARIC-EA
BPRHS
CCHS
CGPS
CHS
DDCH
DESIR
Diogenes-C
Diogenes-w
FamHS
GESUS
GLACIER
GOLDN
HPFS
lnCHIANTI
lnter99
MOC
MESA
NHS
PREDIMED
Raine
Rotterdam
WGHS
YFS
Overall (I2 = 14.4%; P = 0.258)

Note: Weights are from random-effects analysis

ES, 95% CI ES, 95% CIWeight, % Weight, %
Genetic association with BMI
Study name

−1.05 −1.99 1.9901.050

Fig. 2. Genetic association and estimated causality between dairy intake and BMI in dominant model.
The LCT-13910 C/T located upstream of the lactase (LCT) gene was selected as IV. The TT and TC genotypes are associated with lactase
persistence, and the CC genotype is associated with nonpersistence. Random-effects metaanalysis was used to pool the genetic association
with dairy intake in 176 100 participants from 24 studies because of the heterogeneity between studies (I2 =83.0%). Fixed-effects metaanaly-
sis was used to pool the genetic association with BMI association in 184 802 participants from 25 studies (I2 =14.4%). PREDIMED, PREDIMED-
Valencia; ES, effect size.

Fig. 3. MR triangulation for BMI.
The IV estimator was used to quantify the strength of the causal association of dairy intake with BMI using LCT-13910 C/T as IV.
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causal relation between higher dairy intake and increased
BMI in the absence of caloric restriction.

A number of recent prospective cohort studies ex-
ploring the association between intake of dairy foods and
weight status have generated inconsistent results
(12, 20–22). Evidence from a systematic review showed
that much confusion remains about this relationship (2 ).
Possible reasons for such apparent inconsistencies in
findings include varying sample sizes, residual and un-
measured confounding, and reverse causality because of
changes in outcome and factors over time. In addition, 1
metaanalysis of RCTs showed that ad libitum dairy in-
terventions in long-term trials might increase body
weight (5 ). However, several RCTs with energy restric-
tion reported opposing effects (5 ). Differences in dose of
dairy, foods included as diary, mode of administration,
duration of intervention, energy restriction, or baseline
differences in dairy intake or body weight between the
trials may be prone to bias, undermining their validity.

Furthermore, the types of dairy products may also partly
account for this apparent discrepancy. A limited number
of studies have examined the impact of type of dairy
product on body composition. In 1 metaanalysis study,
both whole fat and low fat dairy food intervention signif-
icantly increased body weight (4 ). In addition, fermented
milk products such as yogurt have shown beneficial ef-
fects in the control of body weight (23 ), whereas cheese
intake has exhibited a positive association with obesity
(24 ). Taken together, previous evidence makes definitive
conclusions on the relation between dairy consumption
and adiposity difficult.

Recently, genetic analysis has become widely used to
infer causality of environmental factors on human disease
(7 ). The MR analysis is a method that uses genetic vari-
ants that are robustly associated with such modifiable
factors to generate more reliable evidence regarding
which interventions should produce health benefits (25 ).
The MR analysis is not prone to confounding or reverse

Table 2. Stratified analyses of estimated causality between dairy intake and BMI in dominant model.

Subgroup

Dairy (outcome), serving/day BMI (outcome), kg/m2

Estimated causalityStudies SNP (IV) Studies SNP (IV)

No. � (95% CI) P value No. � (95% CI) P value � (95% CI) P value

Age, years

≥50 19 0.19 (0.12–0.26) <0.001 19 0.12 (0.05–0.19) <0.001 0.64 (0.22–1.07) <0.001

<50 5 0.35 (0.17–0.53) <0.001 6 0.06 (−0.13 to 0.24) 0.513 0.16 (−0.38 to 0.69) 0.371

BMI, kg/m2

≥25 19 0.20 (0.14–0.27) <0.001 19 0.11 (0.06–0.17) 0.001 0.55 (0.23–0.88) <0.001

<25 5 0.21 (0.15–0.27) <0.001 6 0.15 (−0.17 to 0.47) 0.147 0.68 (−0.83 to 2.20) 0.269

Follow-up, years

≥5 13 0.20 (0.13–0.27) <0.001 14 0.11 (0.03–0.19) 0.001 0.55 (0.09–1.00) <0.001

<5 11 0.24 (0.13–0.36) <0.001 11 0.13 (−0.01 to 0.26) 0.112 0.51 (−0.07 to 1.10) 0.074

Sample size

≥1000 20 0.23 (0.17–0.29) <0.001 21 0.12 (0.05–0.18) <0.001 0.51 (0.19–0.83) <0.001

<1000 4 0.21 (0.15–0.27) <0.001 4 0.04 (−0.35 to 0.43) 0.912 0.18 (−1.63 to 2.00) 0.615

Ethnic group

European 19 0.21 (0.15–0.28) <0.001 20 0.13 (0.08–0.18) <0.001 0.62 (0.30–0.93) <0.001

Non-European 5 0.22 (0.04–0.41) <0.001 5 −0.18 (−0.42 to 0.07) 0.611 −0.79 (−2.07 to 0.49) 0.662

Study design

Cohort 19 0.20 (0.17–0.22) <0.001 20 0.12 (0.06–0.17) <0.001 0.60 (0.32–0.88) <0.001

Cross-sectional 5 0.1 (0.13–0.19) <0.001 5 0.11 (−0.01 to 0.22) 0.231 0.69 (−0.04 to 1.41) 0.06

HWE

≤0.05 20 0.23 (0.16–0.28) <0.001 21 0.12 (0.07–0.19) <0.001 0.52 (0.18–0.82) <0.001

>0.05 4 0.21 (0.16–0.28) <0.001 4 0.05 (−0.34 to 0.45) 0.753 0.19 (−1.57 to 1.76) 0.714

SNP, single-nucleotide polymorphism; HWE, Hardy–Weinberg equilibrium.
Linear regression was used to test the association of MCM6 variant rs4988235 with dairy intake or BMI after adjustment of age, sex, ethnicity, region, total energy, and principal
component for population stratification, as appropriate.
We pooled � coefficients across studies using random-effect metaanalysis because of the heterogeneity between studies (I2 > 50%; P < 0.001).
We used the IV estimators to quantify the strength of the causal association of dairy intake and BMI in each study. The IV estimator that is identical to that derived by the widely used
2-stage least-squares method will be calculated as the � of the regression coefficients MCM6 rs4988235-BMI and MCM6 rs4988235-dairy.
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causation. It is well known that alleles that are randomly
assigned at meiosis are independent of nongenetic con-
founding and are unmodified by health conditions.
Therefore, MR is analogous to an RCT and can be used
to support the hypothesis that the association of dairy
intake with BMI is causal. Recently, a genetic analysis
from the 1982 Pelotas (Brazil) Birth Cohort (26 ) did not
support a causal relationship between high dairy intake
and increased BMI. However, this study was limited by
small sample size (n � 2808) and low power to derive
valid conclusions. In our well-powered study, we individ-
ually analyzed 184802 individuals from 25 cohorts and
provide strong evidence that high dairy intake was causally
associated with higher BMI. Results from our MR and mul-
tivariable analyses were highly consistent, both confirming
higher BMI in those eating more dairy products.

The potential mechanisms underlying the impact of
dairy intake on the regulation of body weight have not
been clearly elucidated. The most postulated mechanism
is that the hormone estrone found in dairy products may
promote increases in body weight (20, 27 ). In addition,
intake of dairy foods is associated with higher plasma
insulin-like growth factor I, which may contribute to
weight gain (28 ). Furthermore, previous studies sug-
gested that extra dairy intake in ad libitum dietary inter-
ventions may lead to increased energy intake, which may
result in weight gain, offsetting the otherwise potential
protective effect of the dairy intervention (5 ). In contrast,
in most energy-restricted trials, energy intakes were bet-
ter controlled. Thus, the potential benefits of dairy on
body weight could be interpreted as the effect of the
substitution of dairy products for certain other foods (5 ).
Therefore, total energy intake needs to be considered
when assessing the role of dairy intake in weight control
(3–6 ). In addition, metaanalysis of RCTs showed that
dairy consumption increased lean (muscle) mass and de-
creased body fat (3 ). Increased protein intake from dairy
products may promote maintenance of lean mass (6 ).
Thus, in the present study, it is possible that the higher
BMI related to high dairy intake could be mainly because
of increased lean muscle mass. Future research is needed
to further illustrate potential mechanisms of dairy prod-
ucts on body weight and composition in the context of
energy restriction.

Our study has several strengths. First, to the best of
our knowledge, this is thus far the largest MR analysis on
the causality of high dairy intake on BMI. The large
sample size allowed us to assess the consistency of associ-
ations across multiple studies and to gain sufficient power
for conclusive estimation of causal effect. Second, the
MR design used in our genetic analyses should have
largely prevented potentially distorting influences.
Third, the lactose-tolerance variant is a well-established
genetic marker for dairy intake, with solid biological basis
and, therefore, a valid IV for dairy intake (10, 13 ). Lastly,

most of the studies included were homogeneous, and we
performed analysis individually in each study. Therefore,
the effect of population stratification on the instrumental
results should be minimal.

Potential limitations with the MR approach include
the possibility of pleiotropy and population stratifica-
tion. Pleiotropy refers to a situation in which a gene af-
fects �2 apparently unrelated phenotypic traits; we
could not exclude the possibility of pleiotropic effects of
the LCT genotype. However, to our knowledge, no
pleiotropic effect has been reported. Furthermore, the
associations of rs4988235 with lactase persistence and
milk intake vary across populations. We adjusted for only
geographical region and ethnicity in the statistical mod-
els. Hence, bias from population stratification is deemed
likely (29 ). Finally, although many important covariates
were adjusted in our models, some residual and unmea-
sured confounding might remain.

Conclusions

In summary, the present study suggests a causal effect of
higher dairy intake on increased BMI; our results also
emphasize that total energy intake needs to be considered
when assessing the role of dairy intake in weight control.
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