
SAND REPORT
SAND2001-3796
Unlimited Release
Printed April 2002

DAKOTA,
A Multilevel Parallel Object-Oriented
Framework for Design Optimization,
Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis

Version 3.0 Users Manual
Michael S. Eldred, Anthony A. Giunta, Bart G. van Bloemen Waanders,
Steven F. Wojtkiewicz, Jr., William E. Hart, and Mario P. Alleva

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department

of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of

the United States Government. Neither the United States Government, nor any

agency thereof, nor any of their employees, nor any of their contractors,

subcontractors, or their employees, make any warranty, express or implied, or assume

any legal liability or responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represent that its use would

not infringe privately owned rights. Reference herein to any specific commercial

product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring

by the United States Government, any agency thereof, or any of their contractors or

subcontractors. The views and opinions expressed herein do not necessarily state or

reflect those of the United States Government, any agency thereof, or any of their

contractors.

Printed in the United States of America. This report has been reproduced directly

from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865)576-8401

Facsimile: (865)576-5728

E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800)553-6847

Facsimile: (703)605-6900

E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

3

SAND2001-3796
Unlimited Release
Printed April 2002

DAKOTA, A Multilevel Parallel Object-Oriented Framework
for Design Optimization, Parameter Estimation, Uncertainty

Quantification, and Sensitivity Analysis

Version 3.0 Users Manual

Michael S. Eldred, Anthony A. Giunta, and Bart G. van Bloemen Waanders

Optimization and Uncertainty Estimation Department

Steven F. Wojtkiewicz, Jr.

Structural Dynamics Research Department

William E. Hart

Optimization and Uncertainty Estimation Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-0847

Mario P. Alleva

Compaq Federal
Albuquerque, New Mexico 87109-3432

Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit
provides a flexible and extensible interface between simulation codes and iterative analysis
methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based
methods; uncertainty quantification with sampling, analytic reliability, and stochastic finite
element methods; parameter estimation with nonlinear least squares methods; and sensitivity
analysis with design of experiments and parameter study methods. These capabilities may be used
on their own or as components within advanced strategies such as surrogate-based optimization,
mixed integer nonlinear programming, or optimization under uncertainty. By employing object-
oriented design to implement abstractions of the key components required for iterative systems
analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment
for design and performance analysis of computational models on high performance computers.

This report serves as a user’s manual for the DAKOTA software and provides capability
overviews and procedures for software execution, as well as a variety of example studies.

4

Intentionally Left Blank

DAKOTA Users Manual Table of Contents 5

Table of Contents

Table of Contents ... 5

Preface ... 12

Ch 1 -Introduction... 14

Motivation for DAKOTA Development... 14

Capabilities of DAKOTA ... 14

How Does DAKOTA Work?.. 15

Background and Mathematical Formulations... 16

Optimization ... 16

Nonlinear Least Squares for Parameter Estimation.. 18

Sensitivity Analysis and Parameter Studies.. 19

Design of Experiments.. 20

Uncertainty Quantification.. 21

Using this Manual ... 22

Ch 2 -Getting Started with DAKOTA .. 23

Installation Guide.. 23

How to Obtain DAKOTA - External to Sandia Labs 23

How to Obtain DAKOTA - Internal to Sandia Labs 23

Installing DAKOTA - Binary Executable Files.. 24

Installing DAKOTA - Source Code Files... 24

Running DAKOTA... 24

Rosenbrock and Textbook Test Problems .. 25

DAKOTA Input File Format .. 29

Example Problems .. 31

Two-Dimensional Parameter Study.. 31

Vector Parameter Study .. 32

Gradient-based Unconstrained Optimization.. 33

Gradient-based Constrained Optimization.. 36

Nonlinear Least Squares Methods for Optimization 39

Nongradient-based Optimization via Pattern Search...................................... 41

Nongradient-based Optimization via Genetic Algorithm............................... 44

Monte Carlo Sampling.. 47

Optimization with a User-Supplied Simulation Code 49

DAKOTA Users Manual Table of Contents 6

Where to Go from Here .. 51

Ch 3 - DAKOTA Capabilities... 52

Overview... 52

Parameter Study Methods... 52

Sampling Methods and Design of Experiments.. 52

Uncertainty Quantification.. 53

Optimization Software Packages .. 53

Additional Optimization and Parameter Estimation Capabilities............................... 55

Optimization Strategies... 56

Surface Fitting Methods.. 57

Parallel Computing ... 58

Summary... 58

Ch 4 -Variables ... 60

Overview... 60

Design Variables... 60

Continuous Design Variables ... 60

Discrete Design Variables... 60

Uncertain Variables .. 61

State Variables .. 62

Mixed Variables.. 63

DAKOTA Parameters File Data Format... 63

Parameters file format (standard).. 63

Parameters file format (APREPRO) ... 65

The Active Set Vector... 67

Active set vector control ... 67

Ch 5 -Interfaces... 68

Overview... 68

The Direct Function Application Interface... 68

The System Call Application Interface... 69

The Fork Application Interface... 69

Fork or System Call: Which to Use? .. 70

Interface Components ... 70

Single analysis driver without filters .. 71

DAKOTA Users Manual Table of Contents 7

Single analysis driver with filters ... 72

Multiple analysis drivers without filters ... 73

Multiple analysis drivers with filters .. 74

File Management .. 75

File Saving .. 75

File Tagging for Evaluations .. 75

UNIX Temporary Files ... 76

File Tagging for Analysis Drivers .. 76

File Management Examples.. 77

Parameter to Response Mappings... 78

Ch 6 -Response Data... 82

Overview... 82

Response function types ... 82

Gradient availability.. 82

Hessian availability... 83

DAKOTA Results File Data Format... 83

Active Variables for Derivatives .. 84

Ch 7 -Output from DAKOTA... 86

Overview of Output Formats .. 86

Standard Output .. 86

Tabular Output Data ... 90

Graphics Output .. 91

Error Messages Output ... 93

Ch 8 - Parameter Study Capabilities... 95

Overview... 95

Initial Values... 95

Vector Parameter Study .. 96

List Parameter Study... 98

Centered Parameter Study... 98

Multidimensional Parameter Study... 99

Ch 9 -Sampling Methods and Design of Experiments.. 102

Overview... 102

LHS... 102

DAKOTA Users Manual Table of Contents 8

DDACE Background .. 103

Ch 10 -Nondeterministic Analysis and Uncertainty Quantification..................................... 105

Overview... 105

Sampling Methods .. 105

Uncertainty Quantification Example using Sampling Methods 106

Analytical Reliability Methods... 108

Uncertainty Quantification Example using MV and FORM 110

Polynomial Chaos Methods .. 113

Uncertainty Quantification Example using Polynomial Chaos 113

Future Nondeterministic Methods .. 115

Ch 11 -Optimization Software Packages .. 116

Overview... 116

Constrained Minimization (CONMIN) Library.. 116

Design Optimization Tools (DOT) Library .. 117

NPSOL Library... 118

OPT++ Library ... 118

SGOPT Library... 119

Parallel Integer Combinatorial Optimization (PICO)... 120

Ch 12 -Additional Optimization and Parameter Estimation Capabilities............................. 121

Overview... 121

Nonlinear Least Squares for Parameter Estimation.. 121

Solution Techniques.. 122

Examples... 122

Multiobjective Optimization... 123

Simultaneous Analysis and Design (SAND) Optimization...................................... 125

Ch 13 -Advanced Optimization Strategies ... 126

Overview... 126

Multilevel Hybrid Optimization ... 126

Multistart Local Optimization... 128

Pareto Optimization .. 129

Mixed Integer Nonlinear Programming (MINLP).. 130

Example MINLP Problem .. 131

Optimization Under Uncertainty (OUU) .. 134

DAKOTA Users Manual Table of Contents 9

Surrogate-Based Optimization (SBO) .. 137

SBO with Surface Fit Models ... 137

SBO with Multifidelity Models .. 139

Ch 14 -Surface Fitting Methods.. 141

Overview... 141

Procedures for Surface Fitting .. 141

Quadratic Polynomial Models .. 141

First-order Taylor Series Models .. 142

Kriging Spatial Interpolation Models ... 143

Artificial Neural Network (ANN) Models.. 144

Multivariate Adaptive Regression Spline (MARS) Models 144

Ch 15 -Parallel Computing ... 146

Overview... 146

Parallel Algorithms ... 148

Parallel iterators .. 148

Parallel strategies .. 148

Local Simulation Invocation Components.. 149

Direct function synchronization.. 149

System call synchronization ... 150

Fork synchronization .. 151

Message Passing Components .. 151

Partitioning of levels ... 152

Scheduling within levels ... 153

Putting the Components Together .. 154

Running a Parallel DAKOTA Job .. 157

Single-processor execution ... 157

Multiprocessor execution.. 157

Caveats.. 158

Specifying Parallelism .. 158

The interface specification.. 159

The strategy specification ... 160

Single-processor DAKOTA specification .. 160

Multiprocessor DAKOTA specification... 161

Ch 16 -Advanced Simulation Code Interfaces.. 166

DAKOTA Users Manual Table of Contents 10

Building an Interface to a Engineering Simulation Code ... 166

Review of RosenSimulator Files .. 166

Adapting These Scripts to Another Simulation .. 171

Additional Examples... 172

Adding Simulations to the Direct Application Interface .. 172

Ch 17 -DAKOTA Usage Guidelines .. 174

Problem Exploration ... 174

Optimization Method Selection .. 174

UQ Method Selection ... 177

Parameter Study/DACE/Sampling Method Selection .. 178

Ch 18 -Restart Capabilities and Utilities .. 180

Restart Management ... 180

The DAKOTA Restart Utility... 181

Print... 181

To/From Neutral File Format.. 182

To Tabular Format .. 183

Concatenation of Multiple Restart Files ... 183

Removal of Corrupted Data.. 184

Ch 19 -Simulation Code Failure Capturing .. 185

Failure detection.. 185

Failure communication ... 185

Failure recovery .. 186

Abort ... 186

Retry.. 186

Recover ... 186

Continuation.. 187

Ch 20 - Additional Examples.. 188

Textbook Problem Formulation.. 188

Methods... 189

Optimization Results... 189

Least Squares Results ... 190

Rosenbrock Problem Formulation .. 190

Methods... 191

Results... 192

DAKOTA Users Manual Table of Contents 11

Cylinder Head Problem Formulation.. 194

Methods... 195

Optimization Results... 195

Container Example.. 196

Ch 21 -References... 200

DAKOTA Users Manual Preface- 12

Preface

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) project
started in 1994 as an internal research and development activity at Sandia National Laboratories
in Albuquerque, New Mexico. The original goal of this effort was to provide a common set of
optimization tools for a group of engineers who were solving structural analysis and design
problems. Prior to the start of the DAKOTA project, there was not a focused effort to archive the
optimization methods for reuse on other projects. Thus, for each new project the engineers found
themselves custom building new interfaces between the engineering analysis software and the
optimization software. This was a particular burden when attempts were made to use parallel
computing resources, where each project required the development of a unique master program
that coordinated multiple concurrent simulations on a network of workstations or a parallel
computer. The initial DAKOTA toolkit provided the engineering and analysis community at
Sandia Labs with access to a variety of different optimization methods and algorithms, with
much of the complexity of the optimization software interfaces hidden from the user. Thus, the
engineers were easily able to switch between optimization software packages simply by
changing a few lines in the DAKOTA commands file. In addition to applications in structural
analysis, DAKOTA has been applied to a wide variety of applications such as computational
fluid dynamics, shock physics, heat transfer, and other engineering disciplines.

DAKOTA has grown significantly beyond its original focus as a toolkit of optimization methods.
In addition to having many state-of-the-art optimization methods, DAKOTA now includes
methods for sensitivity analysis, parameter estimation, design-of-experiments, uncertainty
quantification, and multidimensional surface mapping. Underlying all of these methods is
support for parallel computation; ranging from the level of a desktop multiprocessor computer up
to massively parallel computers found at national laboratories and supercomputer centers.

The objective of the public release of the DAKOTA software is to facilitate collaborations
among the developers of DAKOTA at Sandia National Laboratories and other institutions,
including academic, governmental, and corporate entities. We are interested in developing
relationships with persons or groups who would like to assist us in extending the capabilities of
DAKOTA. We feel that this goal is best pursued by making the source code of our software
freely available to others. In doing so, we expect that some of our errors will be found and
corrected, and that new capabilities will be added to future versions of DAKOTA. Currently,
DAKOTA is licensed for public release under a GNU General Public License. Seehttp://
www.gnu.org/licenses/gpl.html for more information on the GPL software use
agreement.

The core DAKOTA team members are Mike Eldred, Tony Giunta, Bart van Bloemen Waanders,
Steve Wojtkiewicz, Bill Hart, Mario Alleva, and Roscoe Bartlett. The DAKOTA toolkit makes
use of several software libraries including SGOPT, PICO, OPT++, DDACE, APPS, DAKOTA/

DAKOTA Users Manual Preface- 13

UQ, and rSQP++. Contributors to these projects include Cindy Phillips, John Red-Horse, Juan
Meza, Pam Williams, Patty Hough, Tammy Kolda, Leslea Lehoucq, Kevin Long, and Paul
Boggs. Academic collaborators involved with DAKOTA or the related libraries include Prof.
Roger Ghanem (Johns Hopkins University) and Prof. Jonathan Eckstein (Rutgers University).

Contact Information:
Michael Eldred, Principal Investigator - DAKOTA Project
Sandia National Laboratories
P.O. Box 5800
Mail Stop 0847
Albuquerque, NM 87185-0847

email: dakota@sandia.gov
web: http://endo.sandia.gov/DAKOTA

DAKOTA Users Manual - Introduction 14

1.0 Introduction

1.1 Motivation for DAKOTA Development

Computational models are commonly used in engineering design activities for simulating
complex physical systems in disciplines such as fluid mechanics, structural dynamics, heat
transfer, nonlinear structural mechanics, shock physics, and many others. These simulators can
be an enormous aid to engineers who want to develop an understanding and/or predictive
capability for the complex behaviors that are often observed in the respective physical systems.
Often, these simulators are employed as virtual prototypes, where a set of predefined system
parameters, such as size or location dimensions and material properties, are adjusted to improve
or optimize the performance of a particular system, as defined by one or more system
performance objectives. Optimization of the virtual prototype then requires execution of the
simulator, evaluation of the performance objective(s), and adjustment of the system parameters in
an iterative and directed way, such that an improved or optimal solution is obtained for the
simulation as measured by the performance objective(s). System performance objectives can be
formulated, for example, to minimize weight, cost, or defects; to limit a critical temperature,
stress, or vibration response; or to maximize performance, reliability, throughput, agility, or
design robustness.

One of the primary motivations for the development of DAKOTA (Design Analysis Kit for
Optimization and Terascale Applications) has been to provide engineers with a systematic and
rapid means of obtaining improved or optimal designs using their simulator-based models.
Making this capability available to engineers generally leads to better designs and improved
system performance at earlier stages of the design phase, and eliminates some of the dependence
on real prototypes and testing, thereby shortening the design cycle and reducing overall product
development costs. In addition to providing this environment for answering systems performance
questions, the DAKOTA toolkit also provides an extensible platform for the research and rapid
prototyping of customized methods and strategies [22].

1.2 Capabilities of DAKOTA

The DAKOTA toolkit provides a flexible, extensible interface between your simulation code and
a variety of iterative methods and strategies. While DAKOTA was originally conceived as an
easy-to-use interface between simulation codes and optimization algorithms, recent versions
have been expanded to interface with other types of iterative analysis methods such as
uncertainty quantification with nondeterministic propagation methods, parameter estimation with
nonlinear least squares solution methods, and sensitivity analysis with general-purpose parameter
study capabilities. These capabilities may be used on their own or as building blocks within more
sophisticated strategies such as hybrid optimization, surrogate-based optimization, mixed integer
nonlinear programming, or optimization under uncertainty.

DAKOTA Users Manual - Introduction 15

Thus, one of the primary advantages that DAKOTA has to offer is that access to a very broad
range of iterative capabilities can be obtained through a single, relatively simple interface
between DAKOTA and your simulator. Should you want to try a different type of iterative
method or strategy with your simulator, it is only necessary to change a few commands in the
DAKOTA input and start a new analysis. The need to learn a completely different style of
command syntax and the need to construct a new interface each time you want to use a new
algorithm are eliminated.

1.3 How Does DAKOTA Work?

Figure 1.1 depicts the loosely-coupled, or ‘‘black-box,’’ relationship between DAKOTA and the
simulation code(s). This loose coupling is the simplest approach and is the one that most
DAKOTA users will employ. Data is exchanged between DAKOTA and the simulation code by
reading and writing short data files, and DAKOTA does not require access to the source code of
the user’s simulation software. DAKOTA is executed using commands that the user supplies in
an input file (not shown in Figure 1.1) which specify the type of analysis to be performed (e.g.,
parameter study, optimization, uncertainty estimation, etc.), along with the file names associated
with the user’s simulation code. During its operation, DAKOTA automatically executes the user’s
simulation code by creating a separate UNIX process that is external to DAKOTA.

The solid lines in Figure 1.1 denote file input/output (I/O) operations that are part of DAKOTA or
the user’s simulation code. The dotted lines indicate the passing of information that must be
handled by the user. As DAKOTA is running, it writes out a parameters file that contains the
values of the current variables. DAKOTA then starts the user’s simulation code (or, often, a short
driver script), and when the simulation has completed, DAKOTA reads in the response data from

Figure 1.1 The loosely-coupled or ‘‘black-box’’ interface between DAKOTA

and a user-supplied simulation code.

DAKOTA
DAKOTA

Simulation
User’s
Simulation
Code

Data

Pre-processing

Data

Post-processing

Parameters File

Input File

DAKOTA
Results File

Simulation
Output File

DAKOTA Users Manual - Introduction 16

a results file. This process is repeated until all of the simulation code runs required by the
iterative study have been completed.

In some cases it is advantageous to have a close coupling between DAKOTA and the user’s
simulation code. This close coupling is an advanced feature of DAKOTA and is accomplished
through either a direct interface or a SAND (simultaneous analysis and design) interface. For the
direct interface, the user’s simulation code is modified to behave as a function or subroutine
under DAKOTA. This requires relatively minor modifications to the simulation code and is done
to eliminate the overhead expense of creating a separate UNIX process. It can also be a useful
tool for parallel processing, by encapsulating everything within a single executable. The SAND
interface approach requires further modifications to the simulation code so that DAKOTA has
access to the internal vectors and matrices computed by the simulation code. With the SAND
approach, both the optimization method in DAKOTA and a nonlinear simulation code are
converged simultaneously. While this approach can greatly reduce the computational expense of
optimization, considerable software development effort must be expended to achieve this
intrusive coupling between DAKOTA and the simulation code.

1.4 Background and Mathematical Formulations

This section provides a basic introduction to the mathematical formulation of optimization,
nonlinear least squares, sensitivity analysis, design of experiments, and uncertainty
quantification problems. The primary goal of this section is to introduce terms relating to these
topics, and is not intended to be a description of theory or numerical algorithms. There are
numerous sources of information on these topics ([3],[30],[38],[39],[52],[62]) and the interested
reader is advised to consult one or more of these texts.

1.4.1 Optimization

A general optimization problem is formulated as follows:

(1)

minimize: f x()

x ℜ n∈
subject to:gL g≤ x() gU≤

h x() ht=

aL Aix aU≤ ≤

Aex at=

xL x xU≤ ≤

DAKOTA Users Manual - Introduction 17

where vector and matrix terms are marked in bold typeface. In this formulation,

 is an n-dimensional vector of real-valueddesign variables or design

parameters. The n-dimensional vectors, and , are the lower and upper bounds,

respectively, on the design parameters. These bounds define the allowable values for the

elements of , and the set of all allowable values is termed thedesign space or theparameter

space. A design point or asample point is a set of values for that fall within the parameter

space.

The optimization goal is to minimize theobjective function, , while satisfying the

constraints. Constraints can be categorized as either linear or nonlinear and as either inequality or

equality. Thenonlinear inequality constraints, , are “2-sided,” in that they have both lower

and upper bounds, and , respectively. Thenonlinear equality constraints, , have

target values specified by . Thelinear inequality constraints create a linear systemAix,

whereAi is the coefficient matrix for the linear system. These constraints are also 2-sided as

they have and as lower and upper bounds, respectively. Thelinear equality constraints

create a linear systemAex, whereAe is the coefficient matrix for the linear system and are

the target values. The constraints partition the parameter space into feasible and infeasible
regions. A design point is said to befeasible if and only if it satisfies all of the constraints.
Correspondingly, a design point is said to beinfeasible if it violates one or more of the
constraints.

Many different methods exist to solve the optimization problem given by Equation 1, all of

which iterate on in some manner. That is, an initial value for each parameter in is chosen,

theresponse quantities, , are computed, and some algorithm is applied to

generate a new that will either reduce the objective function, reduce the amount of

infeasibility, or both. To facilitate a general presentation of these methods, three criteria will be
used in the following discussion to differentiate them:optimization problem type,search goal,
andsearch method.

Theoptimization problem type can be characterized both by the types of constraints present in
the problem and by the linearity or nonlinearity of the objective and constraint functions. For
constraint categorization, a hierarchy of complexity exists for optimization algorithms, ranging
from simple bound constraints, through linear constraints, to full nonlinear constraints. By the
nature of this increasing complexity, optimization problem categorizations are inclusive of all
constraint types up to a particular level of complexity. That is, anunconstrained problem has no
constraints, abound-constrained problem has only lower and upper bounds on the design
parameters, alinearly-constrained problem has both linear and bound constraints, and a

x x1 x2 … xn, , ,[]=

xL xU

x

x

f x()

g x()
gL gU h x()

ht

aL aU

at

x x

f x() g x() h x(),,
x

DAKOTA Users Manual - Introduction 18

nonlinearly-constrained problem may contain the full range of nonlinear, linear, and bound
constraints. If all of the linear and nonlinear constraints are equality constraints, then this is
referred to as anequality-constrained problem, and if all of the linear and nonlinear constraints
are inequality constraints, then this is referred to as aninequality-constrained problem. Further
categorizations can be made based on the linearity of the objective and constraint functions. A
problem where the objective function and all constraints are linear is called alinear
programming (LP) problem. These types of problems commonly arise in scheduling, logistics,
and resource allocation applications. Likewise, a problem where at least some of the objective
and constraint functions are nonlinear is called anonlinear programming (NLP) problem. These
NLP problems predominate in engineering applications and are the primary focus of DAKOTA.

Thesearch goal refers to the ultimate objective of the optimization algorithm, i.e., either global
or local optimization. Inglobal optimization, the goal is to find the design point that gives the
lowest feasible objective function value over the entire parameter space. In contrast, inlocal
optimization, the goal is to find a design point that is lowest relative to a ‘‘nearby’’ region of the
parameter space. In almost all cases, global optimization will be more computationally expensive
than local optimization. Thus, the user must choose an optimization algorithm with an
appropriate search scope that best fits the problem goals and the computational budget.

Thesearch method refers to the approach taken in the optimization algorithm to locate a new
design point that has a lower objective function or is more feasible than the current design point.
The search method can be classified as eithergradient-based or nongradient-based. In a
gradient-based algorithm, gradients of the response functions are computed to find the direction
of improvement. Gradient-based optimization is the search method that underlies many efficient
local optimization methods. However, a drawback to this approach is that gradients can be
computationally expensive, inaccurate, or even nonexistent. In such situations, nongradient-
based search methods may be useful. There are numerous approaches to nongradient-based
optimization. Some of the more well known of these include pattern search methods
(nongradient-based local techniques) and genetic algorithms (nongradient-based global
techniques).

The overview of optimization methods presented above underscores that there is no single
optimization method or algorithm that works best for all types of optimization problems. Chapter
17 provides some guidelines on choosing which DAKOTA optimization algorithm is best
matched to your specific optimization problem.

1.4.2 Nonlinear Least Squares for Parameter Estimation

Specialized least squares solution algorithms can exploit the structure of a sum of the squares
objective function of the form:

DAKOTA Users Manual - Introduction 19

(2)

where is the objective function to be minimized and is the ith least squares term.

These specialized least squares algorithms employ the Gauss-Newton approximation. When

differentiating twice, terms of and result. By assuming that the

former term tends toward zero near the solution since tends toward zero, then the Hessian

matrix of second derivatives of can be approximated using only first derivatives of .

As a result, Gauss-Newton algorithms exhibit quadratic convergence rates near the solution,
where the Gauss-Newton approximation is a good approximation. Thus, by exploiting the
structure of the problem, the second order convergence characteristics of a full Newton algorithm
can be obtained using only first order information from the least squares terms.

A common example for might be the difference between experimental data and model

predictions for a response quantity at a particular location and/or time step, i.e.:

(3)

where is the response quantity predicted by the model and is the corresponding

experimental data. In this case, would have the meaning of model parameters which are not
precisely known and are being calibrated to match available data. This class of problem is known
by the terms parameter estimation, system identification, model calibration, test/analysis
reconciliation, etc.

1.4.3 Sensitivity Analysis and Parameter Studies

In many engineering design applications, sensitivity analysis techniques and parameter study
methods are useful in identifying which of the design parameters have the most influence on the
response quantities. This information is helpful prior to an optimization study as it can be used to
remove design parameters that do not strongly influence the responses. In addition, these
techniques can provide assessments as to the behavior of the response functions (smooth or
nonsmooth, unimodal or multimodal) which can be invaluable in algorithm selection for
optimization, uncertainty quantification, and related methods. In a post-optimization role,
sensitivity information is useful is determining whether or not the response functions are robust
with respect to small changes in the optimum design point.

minimize: f x() Ti x()[] 2

i 1=

n

∑=

x ℜ n∈
subject to:xL x xU≤ ≤

f x() Ti x()

f x() Ti x()Ti'' x() Ti' x()[] 2

Ti x()

f x() Ti x()

Ti x()

Ti x() Ri x() Ri–=

Ri x() Ri

x

DAKOTA Users Manual - Introduction 20

In some instances, the term sensitivity analysis is used in a local sense to denote the computation
of response derivatives at a point. These derivatives are then used in a simple analysis to make
design decisions. DAKOTA supports this type of study through numerical finite-differencing or
retrieval of analytic gradients computed within the analysis code. The desired gradient data is
specified in the responses section of the DAKOTA input file and the collection of this data at a
single point is accomplished through a parameter study method with no steps. This approach to
sensitivity analysis should be distinguished from the activity of augmenting analysis codes to
internally compute derivatives using techniques such as direct or adjoint differentiation,
automatic differentiation (e.g., ADIFOR), or complex step modifications. These sensitivity
augmentation activities are completely separate from DAKOTA and are outside the scope of this
manual. However, once completed, DAKOTA can utilize these analytic gradients to perform
optimization, uncertainty quantification, and related studies more reliably and efficiently.

In other instances, the term sensitivity analysis is used in a more global sense to denote the
investigation of variability in the response functions. DAKOTA supports this type of study
through computation of response data sets (typically function values only, but all data sets are
supported) at a series of points in the parameter space. The series of points is defined using either
a vector, list, centered, or multidimensional parameter study method. For example, a set of
closely-spaced points in a vector parameter study could be used to assess the smoothness of the
response functions in order to select a finite difference step size, and a set of more widely-spaced
points in a centered or multidimensional parameter study could be used to determine whether the
response function variation is likely to be unimodal or multimodal. See Chapter 8 for additional
information on these methods. These more global approaches to sensitivity analysis can be used
to obtain trend data even in situations when gradients are unavailable or unreliable, and they are
conceptually similar to the design of experiments methods and sampling approaches to
uncertainty quantification described in the following sections.

1.4.4 Design of Experiments

Classical design of experiments (DoE) methods and the more modern design and analysis of
computer experiments (DACE) methods are both techniques which seek to extract as much trend
data from a parameter space as possible using a limited number of sample points. Classical DoE
techniques arose from technical disciplines that assumed some randomness and nonrepeatability
in field experiments (e.g., agricultural yield, experimental chemistry). DoE approaches such as
central composite design, Box-Behnken design, and full and fractional factorial design generally
put sample points at the extremes of the parameter space, since these designs offer more reliable
trend extraction in the presence of nonrepeatability. DACE methods are distinguished from DoE
methods in that the nonrepeatability component can be omitted since computer simulations are
involved. In these cases, space filling designs such as orthogonal array sampling and latin
hypercube sampling are more commonly employed in order to accurately extract trend
information.

DAKOTA supports both DoE and DACE techniques. In common usage, only parameter bounds
are used in selecting the samples within the parameter space. Thus, DoE and DACE can be

DAKOTA Users Manual - Introduction 21

viewed as special cases of the more general probabilistic sampling for uncertainty quantification
(see following section), in which the DoE/DACE parameters are treated as having uniform
probability distributions. The DoE/DACE techniques are commonly used for investigation of
global response trends, identification of significant parameters (i.e., primary effects), and as data
generation methods for building response surface approximations.

1.4.5 Uncertainty Quantification

Uncertainty quantification (UQ) is related to sensitivity analysis in that the common goal is to
gain an understanding of how variations in the parameters affect the response functions of the
engineering design problem. However, for uncertainty quantification, some or all of the

components of the parameter vector, , are considered to be uncertain and not precisely known.
The uncertain parameter values are specified by a probability distribution (e.g., normal, Weibull)
rather than a unique value.

The impact on the response functions due to the probabilistic nature of the parameters is often
estimated using a sampling-based approach such as Monte Carlo sampling or one of its variants
(latin hypercube, quasi-Monte Carlo, Markov-chain Monte Carlo, etc.). In these sampling
approaches, a random number generator is used to select different values of the parameters with
probability specified by their probability distributions. This is the point that distinguishes UQ
sampling from DoE/DACE sampling, in that the former supports general probabilistic
descriptions of the parameter set and the latter generally supports only a bounded parameter
space description (i.e., uniform probabilities). A particular set of parameter values is often called
a sample point, or simply asample. After a user-selected number of sample points has been
generated, the response functions for each sample are evaluated. Then, a statistical analysis is
performed on the response function values to yield information on their characteristics. While
this approach is straightforward, and readily amenable to parallel computing, it can be
computationally expensive depending on the accuracy requirements of the statistical information
(which links directly to the number of sample points).

When sampling methods are too expensive to apply, various analytic and quasi-analytic
reliability methods can be applied to UQ problems. These include the Advanced Mean Value
(AMV) and AMV+ algorithms, along with the first-order reliability method (FORM) and the
second-order reliability method (SORM) [39]. These techniques all solve internal optimization
problems in order to locate the most probable point (MPP) of failure. The MPP is then used as
the point about which approximate probabilities are integrated.

In addition, stochastic finite element (SFE) approaches using polynomial chaos expansions are
also available for characterizing the response of systems whose governing equations involve
stochastic coefficients. The sampling, analytic reliability, and SFE approaches are described in
more detail in Chapter 10.

x

DAKOTA Users Manual - Introduction 22

1.5 Using this Manual

The previous sections in this chapter have provided a brief overview of the capabilities in
DAKOTA, and have introduced some of the common terms that are used in the fields of
optimization, parameter estimation, sensitivity analysis, design of experiments, and uncertainty
quantification. The DAKOTA user that is new to these techniques is advised to consult the
references cited earlier in this chapter to obtain more detailed descriptions of methods and
algorithms in these disciplines.

Chapter 2 provides information on how to obtain, install, and use DAKOTA. In addition,
example problems are presented in this chapter to demonstrate some of DAKOTA’s capabilities
for parameter studies, optimization, and UQ. Chapter 3 provides a brief overview of all of the
different software packages and capabilities in DAKOTA. Chapter 4 through Chapter 6 provide
information on model components which are involved in parameter to response mappings and
Chapter 7 describes the output created by DAKOTA. Chapter 8 through Chapter 12 provide
details on the iterative algorithms supported in DAKOTA, and Chapter 13 describes DAKOTA’s
advanced optimization strategies. Chapter 14 describes the approximation methods available in
DAKOTA, Chapter 15 covers DAKOTA’s parallel computing capabilities, and Chapter 16
provides information on DAKOTA’s advanced interface capabilities. Finally, Chapter 17 provides
some guidelines on using DAKOTA with real-world applications and Chapter 20 describes some
additional test problems that are available.

DAKOTA Users Manual - Getting Started with DAKOTA 23

2.0 Getting Started with DAKOTA

2.1 Installation Guide

DAKOTA can be compiled for most common computer systems that run the UNIX and LINUX
operating systems. Currently, DAKOTA is not available for computers that run either the
Microsoft Windows operation system or the Macintosh operating system.

The computers and operating systems currently supported by the DAKOTA project include:

• Sun Solaris 2.8

• SGI IRIX 6.5

• Compaq/DEC OSF 4.0

• Intel Pentium Redhat LINUX versions 6.2, 7.1

• IBM AIX (coming in early 2002)

Additional details are provided in the file/Dakota/README in the distribution (see the
following section for download instructions).

2.1.1 How to Obtain DAKOTA - External to Sandia Labs

If you are outside of Sandia National Laboratories, the DAKOTA binary executable files and
source code files are available through the following web site:

http://endo.sandia.gov/DAKOTA

To receive the binary or source code files, you are required to fill out a short online registration
form. This information will be used by the DAKOTA development team to track the level of
interest in our software package.

If you are a new DAKOTA user, we suggest that you download one of the binary executable
distribution files rather than the source code files. The compilation process can be somewhat
involved, and it will be easier for you to first gain an understanding of DAKOTA by running the
example problems that are provided with DAKOTA’s binary executable file. For more
experienced users, DAKOTA can be customized with additional packages and ported to
additional computer platforms when building from the source code files.

2.1.2 How to Obtain DAKOTA - Internal to Sandia Labs

DAKOTA binary executable files have been compiled and distributed to several of the local area
networks and common compute servers at Sandia National Laboratories. Common locations
include/usr/local/bin/dakota and/projects/dakota/bin/dakota. To see if
DAKOTA is available on your computer system and accessible in your UNIX environment path
settings, type the commandwhich dakota at the UNIX prompt. If the DAKOTA executable
file is in your path, its location will be echoed to the terminal. If the DAKOTA executable file is

DAKOTA Users Manual - Getting Started with DAKOTA 24

available on your system but not in your path, then you will need to locate it and add its directory
to your path. The UNIXwhereis andfind commands are useful for locating a DAKOTA
executable that is not in your path.

If DAKOTA is not available on your system, the current preferred options are to either get an
account on one of the common compute servers where DAKOTA is maintained, or if this is not
practical, contact one of the DAKOTA team members so that we can provide you with DAKOTA
executable files that are as complete as possible (i.e., that include Sandia-specific and site-
licensed software that is not yet publicly available). Alternatively, you can follow the instructions
given in the previous section to obtain the public version of the DAKOTA binary and/or source
codes files. In the future, a download facility on the internal restricted network may be added to
simplify internal distributions.

2.1.3 Installing DAKOTA - Binary Executable Files

Once you have downloaded DAKOTA from the web site listed above, you will have a UNIX tar
file that has a name similar toDakota_OSversion_number.tar.gz. Use the UNIX utility
gunzip to uncompress the tar file and the UNIXtar utility to extract the files from the archive
by executing the following commands:

gunzip Dakota_OSversion_number.tar.gz
tar -xvf Dakota_OSversion_number.tar

The tar utility will create a subdirectory named/Dakota in which the DAKOTA binary
executable files, example files, and subdirectories will be stored. The binary files are in/
Dakota/bin, and the example problems are in/Dakota/GettingStarted/Examples
and in/Dakota/test.

2.1.4 Installing DAKOTA - Source Code Files

The installation process for the DAKOTA source code files is more involved than the installation
process for the binary files. Detailed instructions for installing DAKOTA are given in the file/
Dakota/INSTALL.

2.1.5 Running DAKOTA

The DAKOTA executable file is nameddakota. If this command is entered at the UNIX
prompt without any arguments, the following usage message is returned to the user:

usage: dakota [options and <args>]
-help (Print this summary)
-version (Print Dakota version number)
-input <$val> (REQUIRED Dakota Problem Description file $val)
-read_restart <$val> (Read an existing Dakota restart file $val)
-stop_restart <$val> (Stop restart file processing at evaluation $val)
-write_restart <$val> (Write a new Dakota restart file $val)

Of these available command line inputs, only the “-input” option is required; all others are
optional. The “-help” option prints the usage message above. The “-version” option prints
the version number of the executable. The “-input” option provides the name of the DAKOTA

DAKOTA Users Manual - Getting Started with DAKOTA 25

input file. The “-read_restart” and “-write_restart” command line inputs provide
the names of restart databases to read from and write to, respectively. The “-stop_restart”
command line input limits the number of function evaluations read from the restart database (the
default is all the evaluations) for those cases in which some evaluations were erroneous or
corrupted. Restart management is an important technique for retaining data from expensive
engineering applications. This is an advanced topic that is discussed in detail in Chapter 17. Note
that these command line inputs can be abbreviated so long as the abbreviation is unique (the
current set of command line options do not have any possibility for abbreviation ambiguity). For
example, “-i” is commonly used in place of “-input.”

To run DAKOTA with a particular input file, the following syntax can be used:
dakota -i dakota.in

This will echo the standard output (stdout) and standard error (stderr) messages to the terminal.
To redirect output to a file, any of a variety of UNIX redirection variants can be used. The
simplest of these redirects stdout to another file:

dakota -i dakota.in > dakota.out

To append to a file rather than overwrite it, “>>” is used in place of “>”. To redirect stderr as well
as stdout, a “&” is appended with no embedded space, i.e. “>&” or “>>&” is used. To override
the noclobber environment variable (if set) in order to allow overwriting of an existing output file
or appending of a file that does not yet exist, a “!” is appended with no embedded space, i.e.
“>!”, “>&!”, “>>!”, or “>>&!” is used.

To run the dakota process in the background, append an ampersand symbol (&) to the command
with an embedded space, e.g.:

dakota -i dakota.in > dakota.out &

Refer to [1] for more information on UNIX redirection and background commands.

2.2 Rosenbrock and Textbook Test Problems

Many of the example problems in this chapter use the Rosenbrock function [30], which has the
form:

(4)

A three-dimensional plot of this function is shown in Figure 2.1, where both x1 and x2 range in

value from -2 to 2. Figure 2.2 shows a contour plot for Rosenbrock’s function. An optimization
problem using Rosenbrock’s function is formulated as follows:

f x1 x2,() 100 x2 x1
2

–()
2

1 x1–()2
+=

DAKOTA Users Manual - Getting Started with DAKOTA 26

(5)

Note that there are no linear or nonlinear constraints in this formulation, so this is a bound
constrained optimization problem. The unique solution to this problem lies at the point (x1, x2) =

(1,1) where the function value is zero.

Figure 2.1 A 3-D plot of Rosenbrock’s function.

minimize: f x1 x2,()

x ℜ 2∈
subject to: 2 x1≤– 2≤

2 x2 2≤ ≤–

DAKOTA Users Manual - Getting Started with DAKOTA 27

Figure 2.2 Contours of Rosenbrock’s function with variable x1 on the bottom

axis.

The two-variable version of the “textbook” example problem provides a nonlinearly constrained
optimization test case. It is formulated as:

minimize

(6)

subject to

(7)

(8)

(9)

(10)

Contours of this example problem are illustrated in Figure 2.3, with a close-up view of the
feasible region given in Figure 2.4.

f x1 1–()4 x2 1–()4+=

g1 x1
2 x2

2
------–= 0≤

g2 x2
2 x1

2
------–= 0≤

0.5 x≤ 1 5.8≤

2.9– x≤ 2 2.9≤

DAKOTA Users Manual - Getting Started with DAKOTA 28

Figure 2.3 Contours of the textbook optimization problem showing

constraints g1 (solid) and g2 (dashed). The feasible region lies at the

intersection of the two constraints.

Figure 2.4 A close-up view of the feasible region for the textbook example

problem. The constrained optimum point is at (x1, x2) = (0.5, 0.5).

DAKOTA Users Manual - Getting Started with DAKOTA 29

For the textbook example problem, the unconstrained minimum occurs at (x1, x2) = (1,1).

However, the inclusion of the constraints moves the minimum to (x1, x2) = (0.5, 0.5).

Two other example problems are used in this text. These are the “container” and “cylinder head”
problem formulations. See Chapter 20 for a description of these example problems as well as
further discussion of the Rosenbrock and “textbook” example problems.

2.3 DAKOTA Input File Format

All of the DAKOTA input files for the simple example problems presented here are included in
the distribution tar file in the directory/Dakota/GettingStarted/Examples. A simple
DAKOTA input file for a two-dimensional parameter study on Rosenbrock’s function is shown in
Figure 2.5 (filename:dakota_rosenbrock_2d.in). This input file will be used to describe
the basic format and syntax used in all DAKOTA input files.

There are five specification blocks that may appear in DAKOTA input files. These are identified
in the input file using the following keywords:variables, interface, responses, method, and
strategy. These keyword blocks can appear in any order in a DAKOTA input file. At least one
variables, interface, responses, andmethod specification must appear, and no more than one
strategy specification should appear. In Figure 2.5, one of each of the keyword blocks is used.
Additional syntax features include the use of the backslash symbol (\) to escape the newline
character in order to split a keyword onto multiple lines for readability, use of the # symbol to
indicate a comment, use of single quotes for string inputs (e.g., ‘x1’), the use of commas and/or
white space for separation of specifications, and the use of “=” symbols to optionally enhance the

DAKOTA example problem: 2-D parameter study on
Rosenbrock's function

variables, \
continuous_design = 2 \
 cdv_descriptor 'x1' 'x2' \
 cdv_lower_bounds -2.0 -2.0 \
 cdv_upper_bounds 2.0 2.0

interface, \
application direct, \
 analysis_driver = 'rosenbrock'

responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

method, \
multidim_parameter_study \
 partitions = 8 8

strategy, \
single_method \

graphics \
tabular_graphics_data

Figure 2.5 The DAKOTA input file for the 2-D parameter study

example problem.

DAKOTA Users Manual - Getting Started with DAKOTA 30

association of supplied data. See the DAKOTA Reference Manual [17] for additional details on
this input file syntax.

Thevariables section of the input file specifies the characteristics of the parameters that will be
used in the problem formulation. The variables can be continuous or discrete, and can be
classified as design variables, uncertain variables, or state variables. See Chapter 4 for more
information on the types of variables supported by DAKOTA. Thevariables section shown in
Figure 2.5 specifies that there are two continuous design variables. The sub-specifications for
continuous design variables use the abbreviationcdv in the input file and include the descriptors
“x1” and “x2” as well as lower and upper bounds for these variables. The information about the
variables is organized in column format for readability. So, both variables x1 and x2 have a lower

bound of -2.0 and an upper bound of 2.0.

Theinterface section of the input file specifies what approach will be used to map variables into
responses as well as details on how DAKOTA will pass data to and from a simulation code. In
this example, a test function internal to DAKOTA is used, but the data may also be obtained from
a simulation code that is external to DAKOTA. The keywordapplication indicates the use
of an interface to an application code (as opposed to anapproximation interface) and the
keyworddirect indicates the use of a test function linked directly into DAKOTA. The
analysis_driver keyword indicates the name of the test function. This is all that is needed
since files will not be used to pass data between DAKOTA and the simulation code.

Theresponses section of the input file specifies the types of data that the interface will return to
DAKOTA. For the example shown in Figure 2.5, there is only one objective function, as
indicated by the keywordnum_objective_functions = 1. Since there are no constraints
associated with Rosenbrock’s function, the keywords associated with constraint specifications are
omitted. The keywordsno_gradients andno_hessians indicate that gradient and
Hessian data are not needed.

Themethod section of the input file specifies the iterative technique that DAKOTA will employ,
such as a parameter study, optimization method, data sampling technique, etc. In Figure 2.5, the
keywordmultidim_parameter_study specifies a multidimensional parameter study,
while the keywordpartitions denotes the number of steps per variable. In this case, there
will be eight steps (nine data points) evaluated between the lower and upper bounds of both
variables (values for the bounds provided in thevariables section), for a total of 81 response
function evaluations.

The final section of the input file shown in Figure 2.5 is thestrategy section. This keyword
section is used to specify some of DAKOTA’s advanced meta-procedures such as multi-level
optimization, surrogate-based optimization, branch-and-bound optimization, and optimization
under uncertainty. See Chapter 13 for more information on these meta-procedures. Thestrategy
section also contains the settings for DAKOTA’s graphical output (via thegraphics flag) and
the tabular data output (via thetabular_graphics_data keyword).

DAKOTA Users Manual - Getting Started with DAKOTA 31

2.4 Example Problems

2.4.1 Two-Dimensional Parameter Study

The 2-D parameter study example problem listed in Figure 2.5 is executed by DAKOTA using
the following command:

dakota -i dakota_rosenbrock_2d.in > 2d.out

The output of the DAKOTA run is directed to the file named2d.out. For comparison, the file
2d.out.sav is included in the/Dakota/GettingStarted/Examples directory. As for
many of the examples, DAKOTA provides a report on the best design point located during the
study at the end of these output files.

This 2-D parameter study produces the grid of data samples shown in Figure 2.6. Note that the
graphics flag in thestrategy section of the input file has been commented out since, for this
example, the iteration history plots created by DAKOTA are not particularly instructive. More
interesting visualizations can be created by importing DAKOTA’s tabular data into an external
graphics/plotting package. Common graphics and plotting packages include Mathematica,
Matlab, Microsoft Excel, Origin, Tecplot, and many others (Sandia National Laboratories and the
DAKOTA developers do not endorse any of these commercial products).

Figure 2.6 The dots indicate the location of the design

points evaluated in the 2-D parameter study.

DAKOTA Users Manual - Getting Started with DAKOTA 32

2.4.2 Vector Parameter Study

In addition to the multidimensional parameter study, DAKOTA can perform a vector parameter
study, i.e., a parameter study between any two design points in ann-dimensional parameter
space.

An input file for the vector parameter study is shown in Figure 2.7. The primary differences
between this input file and the previous input files are found in thevariables andmethod
sections. In the variables section, the keywords for the bounds are removed and replaced with the
keywordcdv_initial_point that specifies the starting point for the parameter study. In the
method section, thevector_parameter_study keyword is used. Thefinal_point
keyword indicates the stopping point for the parameter study, andnum_steps specifies the
number of steps taken between the initial and final points in the parameter study.

The vector parameter study example problem is executed using the command
dakota -i dakota_rosenbrock_vector.in > vector.out

Figure 2.8 shows the graphics output created by DAKOTA. Since the vector parameter study is
unidirectional, the simple DAKOTA graphics are useful for visualizing the results. Figure 2.9
shows the locations of the 11 sample points generated in this study. The output file
vector.out.sav is provided in the/Dakota/GettingStarted/Examples directory.

In addition to the vector and multidimensional examples shown, DAKOTA also supports list and
centered parameter study methods. Refer to Chapter 8 for additional information.

DAKOTA example problem: vector parameter
study on Rosenbrock's function

variables, \
continuous_design = 2 \
 cdv_initial_point -0.3 0.2 \
 cdv_descriptor 'x1' 'x2'

interface, \
application direct, \
 analysis_driver = 'rosenbrock'

responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

method, \
vector_parameter_study \
 final_point = 1.1 1.3 \
 num_steps = 10

strategy, \
single_method \
tabular_graphics_data \
graphics

Figure 2.7 The DAKOTA input file for the vector parameter

study example problem.

DAKOTA Users Manual - Getting Started with DAKOTA 33

2.4.3 Gradient-based Unconstrained Optimization

A DAKOTA input file for a gradient-based optimization of Rosenbrock’s function is listed in
Figure 2.10. The format of the input file is similar to that used for the parameter studies, but there

Figure 2.8 A screen capture of the DAKOTA graphics that are

generated from the vector parameter study

Figure 2.9 The dots indicate the location of the design

points evaluated in the vector parameter study.

DAKOTA Users Manual - Getting Started with DAKOTA 34

are some new keywords in the responses and method sections. First, in the responses section of
the input file, the keyword block starting withnumerical_gradients specifies that a finite
difference method will be used to compute gradients for the optimization algorithm. Note that the
Rosenbrock function evaluation code inside DAKOTA has the capability to give analytical
gradient values. To switch from finite difference gradient estimates to analytic gradients,
uncomment theanalytic_gradients keyword and comment out the four lines associated
with thenumerical_gradients specification. Next, in the method section of the input file,
several new keywords have been added. In this section, the keywordconmin_frcg indicates
the use of the Fletcher-Reeves conjugate gradient algorithm in the CONMIN optimization
software package [61] for bound-constrained optimization. The keywordmax_iterations is
used to indicate the computational budget for this optimization (in this case, a single iteration
includes multiple evaluations of Rosenbrock’s function for the gradient computation steps and
the line search steps). The keywordconvergence_tolerance is used to specify one of
CONMIN’s convergence criteria (here, CONMIN terminates if the objective function value
differs by less than the absolute value of the convergence tolerance for three successive
iterations). And, finally, theoutput verbosity is set toquiet.

This DAKOTA input file is executed using the following command:
dakota -i dakota_rosenbrock_grad_opt.in > grad_opt.out

DAKOTA example problem: gradient-based
unconstrained optimization
study on Rosenbrock's function

variables, \
continuous_design = 2 \
 cdv_descriptor 'x1' 'x2' \
 cdv_initial_point -1.2 1.0 \
 cdv_lower_bounds -2.0 -2.0 \
 cdv_upper_bounds 2.0 2.0

interface, \
application direct, \
 analysis_driver = 'rosenbrock'

responses, \
num_objective_functions = 1 \

analytic_gradients \
numerical_gradients \
 method_source dakota \
 interval_type forward \
 fd_step_size = .00001 \
no_hessians

method, \
dot_bfgs \

conmin_frcg \
 convergence_tolerance = 1.0e-4 \
 max_iterations = 100
 output quiet

strategy, \
single_method \
 tabular_graphics_data \
 graphics

Figure 2.10 The DAKOTA input file for the gradient-based

optimization example problem.

DAKOTA Users Manual - Getting Started with DAKOTA 35

A sample output file namedgrad_opt.out.sav is included in the/Dakota/
GettingStarted/Examples directory. When this example problem is executed, DAKOTA
creates some iteration history graphics similar to the screen capture shown in Figure 2.11. These
plots show how the objective function and design parameters change in value during the
optimization steps. The scaling of the horizontal and vertical axes can be changed by moving the
scroll knobs on each plot. Also, the “Options” button allows the user to plot the vertical axes
using a logarithmic scale. Note that log-scaling is only allowed if the values on the vertical axis
are strictly greater than zero.

Figure 2.12 shows the iteration history of the optimization algorithm. The optimization starts at
the point (x1, x2) = (-1.2, 1.0) as given in the DAKOTA input file. Subsequent iterations follow

the banana-shaped valley that curves around toward the minimum point at (x1, x2) = (1.0, 1.0).

Note that the function evaluations associated with the line search phase of each CONMIN
iteration are not shown on the plot. At the end of the DAKOTA run, information is written to the
output file to provide data on the optimal design point. This data includes the optimum design
point parameter values, the optimum objective and constraint function values (if any), plus the
number of function evaluations that occurred and the amount of time that elapsed during the
optimization study.

Figure 2.11 A screen capture of the DAKOTA output graphics showing the

iteration history for the gradient-based optimization example.

DAKOTA Users Manual - Getting Started with DAKOTA 36

2.4.4 Gradient-based Constrained Optimization

This example demonstrates the use of a gradient-based optimization algorithm on a nonlinearly
constrained problem. The “textbook” example problem (see Section 2.2) is used for this purpose
and the DAKOTA input file for this example problem is shown in Figure 2.13. This input file is
similar to the input file for the unconstrained gradient-based optimization example problem
involving the Rosenbrock function. Note the addition of commands in the responses section of
the input file that identify the number and type of constraints, along with the upper bounds on
these constraints. The commandsdirect andanalysis_driver = ’text_book’
specify that DAKOTA will execute its internal version of the textbook example problem.

This example problem is executed by using the following command:
dakota -i dakota_textbook.in > textbook.out

For comparison purposes, the filetextbook.out.sav is included in/Dakota/
GettingStarted/Examples. The results of the optimization example problem are listed at
the end of thetextbook.out file. This information shows that the optimizer stopped at the
point (x1, x2) = (0.5, 0.5), where both constraints are satisfied, and where the objective function

value is 0.125. This progress of the optimization algorithm is shown in Figure 2.14 where the
dots correspond to end point of each iteration in the algorithm. The starting point is (x1, x2) =

(4.0, 0.0) where constraint g1 is violated and constraint g2 is satisfied. The optimizer takes a

Figure 2.12 The sequence of design points evaluated during the gradient-based

optimization of Rosenbrock’s function (line search points omitted).

DAKOTA Users Manual - Getting Started with DAKOTA 37

sequence of steps to minimize the objective function while reducing the infeasibility of g1 and

retaining the feasibility of g2. This optimization history is also shown in Figure 2.15 which is a

screen capture of the DAKOTA output graphics.
DAKOTA example problem: gradient-based constrained
optimization using the “textbook” example problem

strategy, \
single_method \
graphics \
tabular_graphics_data

method, \
dot_mmfd, \

conmin_mfd \
 max_iterations = 50, \
 convergence_tolerance = 1e-4 \
 output verbose \
 optimization_type minimize

variables, \
continuous_design = 2 \
 cdv_initial_point 4.0 0.0 \
 cdv_upper_bounds 5.8 2.9 \
 cdv_lower_bounds 0.5 -2.9 \
 cdv_descriptor ‘x1’ ‘x2’

interface, \
application direct \
 analysis_driver = ‘text_book’ \

file_tag \
file_save

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
nonlinear_inequality_upper_bounds = 0.0 0.0 \

analytic_gradients \
numerical_gradients \
 method_source dakota \
 interval_type central \
 fd_step_size = .00001 \
no_hessians

Figure 2.13 The DAKOTA input file for the nonlinearly constrained

gradient-based optimization example problem.

DAKOTA Users Manual - Getting Started with DAKOTA 38

Figure 2.14 The iteration history of the textbook example problem is

marked by the solid dots. The starting point is (x1, x2) =

(4.0, 0.0) and the optimum is (x1, x2) = (0.5, 0.5).

DAKOTA Users Manual - Getting Started with DAKOTA 39

2.4.5 Nonlinear Least Squares Methods for Optimization

Both the Rosenbrock and textbook example problems can be formulated as least squares
minimization problems (see Chapter 20). For example, the Rosenbrock problem can be cast as

minimize (f1)
2 + (f2)

2

wheref1 = 10(x2-x1
2) andf2 = (1-x1). When using a least squares approach to

minimize a function, each of the terms f1, f2,... is driven to zero. This formulation permits the use

of specialized algorithms that can be more efficient than general purpose optimization
algorithms. See Chapter 12 for more detail on the algorithms used for least squares minimization,
as well as a discussion on the types of engineering design problems (e.g., parameter estimation)
that can make use of the least squares approach.

Figure 2.16 is a listing of the DAKOTA input filedakota_rosenbrock_ls.in. This input
file differs from the input file shown in Figure 2.10 in several key areas. The responses section of
the input file uses the keywordnum_least_squares_terms = 2 instead of the

Figure 2.15 The iteration history of the textbook example problem shows how the objective

function was reduced during the search for a feasible design point.

DAKOTA Users Manual - Getting Started with DAKOTA 40

num_objective_functions = 1. The keywords in the interface section show that the
UNIX system call method is used to run the C++ analysis code namedrosenbrock_ls.
[Note thatrosenbrock_ls is not linked into DAKOTA as arerosenbrock and
text_book. The executable file forrosenbrock_ls is located in the directory/Dakota/
test. Use the UNIX symbolic link command (ln -s) to create a link from/Dakota/test/
rosenbrock_ls to/Dakota/GettingStarted/Examples before running this
example problem.] The method section of the input file shows that the Gauss-Newton algorithm
from the OPT++ library [47] (optpp_g_newton) is used in this example. For DAKOTA
Version 3.0, the unconstrained and bound-constrained Gauss-Newton algorithms utilizing
OPT++ are the only methods available for exploiting the special mathematical structure of least
squares minimization problems.

The input file listed in Figure 2.16 is executed using the command:
dakota -i dakota_rosenbrock_ls.in > leastsquares.out

The fileleastsquares.out.sav is included in the directory/Dakota/
GettingStarted/Examples. The optimization results at the end of this file show that the
least squares minimization approach has found the same optimum design point, (x1, x2) = (1.0,

1.0), as was found using the conventional gradient-based optimization approach. The iteration
history of the least squares minimization is given in Figure 2.17, and shows that 90 function
evaluations were needed for convergence. In this example the least squares approach required
about the same number of function evaluations as did conventional gradient-based optimization.

DAKOTA example problem: a least squares
approach to minimize Rosenbrock's function

strategy, \
single_method \
graphics

method, \
optpp_g_newton, \
max_iterations = 50, \
convergence_tolerance = 1e-4

variables, \
continuous_design = 2 \
 cdv_initial_point -1.2 1.0 \
 cdv_lower_bounds -2.0 -2.0 \
 cdv_upper_bounds 2.0 2.0 \
 cdv_descriptor 'x1' 'x2'

interface, \
application system, \

analysis_driver = 'rosenbrock' \
 analysis_driver = 'rosenbrock_ls'

responses, \
num_objective_functions = 1 \

num_least_squares_terms = 2 \
analytic_gradients \
no_hessians

Figure 2.16 DAKOTA input file for minimizing the Rosenbrock

function using a least squares formulation.

DAKOTA Users Manual - Getting Started with DAKOTA 41

However, in many cases the least squares algorithm will be more efficient since it exploits the
special structure of the least squares problem formulation.

2.4.6 Nongradient-based Optimization via Pattern Search

In addition to gradient-based optimization algorithms, DAKOTA also contains a variety of
nongradient-based algorithms. One particular nongradient-based algorithm for local optimization
is known as pattern search (see Chapter 1 for a discussion of local versus global optimization).
The DAKOTA input file shown in Figure 2.18 applies a pattern search method to minimize the
Rosenbrock function. While this provides for an interesting comparison to the previous example
problems in this chapter, the Rosenbrock function is not the best test case for a pattern search
method. That is, pattern search methods are better suited to problems where the gradients are too
expensive to evaluate, inaccurate, or nonexistent; situations common among many engineering
optimization problems. It also should be noted that nongradient-based algorithms generally are
applicable only to unconstrained or bound-constrained optimization problems, although the
inclusion of constraints is nongradient-based algorithms an active area of research in the

Figure 2.17 The iteration history for least squares terms f1 and

f2 when minimizing the Rosenbrock function.

DAKOTA Users Manual - Getting Started with DAKOTA 42

optimization community. For most users who wish to use nongradient-based algorithms on
constrained optimization problems, the easiest route is to create a penalty function, i.e., a
composite function that contains the objective function and the constraints, and then optimize
then optimize the penalty function. Most optimization textbooks will provide guidance on
selecting and using penalty functions.

This DAKOTA input file shown in Figure 2.18 is similar to the input file for the gradient-based
optimization, except it has a different set of keywords in the method section of the input file and
the gradient specification in the responses section has been changed tono_gradients. The
pattern search optimization algorithm used is part of the SGOPT library [40]. See the DAKOTA
Reference Manual [17] for more information on themethods section commands that can be used
with SGOPT algorithms.

This DAKOTA input file is executed using the following command:

dakota -i dakota_rosenbrock_ps_opt.in > ps_opt.out

The fileps_opt.out.sav is included in the/Dakota/GettingStarted/Examples
directory. In this case, the optimizer was given an initial design point of (x1, x2) = (0.0, 0.0).

After 2000 function evaluations, the pattern search algorithm was terminated. In this case the
pattern search algorithm stopped short of the optimum at (x1, x2) = (1.0, 1,0), although it was

DAKOTA example problem: nongradient-based pattern
search optimization

variables, \
continuous_design = 2 \
 cdv_initial_point 0.0 0.0 \
 cdv_lower_bounds -2.0 -2.0 \
 cdv_upper_bounds 2.0 2.0 \
 cdv_descriptor 'x1' 'x2'

interface, \
application direct, \
 analysis_driver = 'rosenbrock'

responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

methods \
sgopt_pattern_search \
 max_iterations = 1000 \
 max_function_evaluations = 2000 \
 solution_accuracy = 1.0e-4 \
 initial_delta = 0.05 \
 threshold_delta = 1.0e-8 \
 exploratory_moves best_all \
 contraction_factor = 0.75

strategy, \
single_method \
 tabular_graphics_data \
 graphics

Figure 2.18 A DAKOTA input file for a nongradient-based

optimization example.

DAKOTA Users Manual - Getting Started with DAKOTA 43

making progress in that direction when it was terminated (eventually, it would have reached the
minimum point).

The iteration history is provided in Figure 2.19 which shows the locations of the function
evaluations used in the pattern search algorithm. Figure 2.20 provides a close-up view of the
pattern search function evaluations used at the start of the algorithm. The simplex pattern is
clearly visible at the start of the iteration history, and the decreasing size of the simplex pattern is
evident at the design points move toward (x1, x2) = (1.0, 1.0).

While pattern search algorithms are useful in many optimization problems, this example shows
some of the drawbacks to this algorithm. While a pattern search method may make good initial
progress towards an optimum, it is often slow to converge. On a smooth, differentiable function
such as Rosenbrock’s function, a nongradient-based method will not be as efficient as a gradient-
based method. However, there are many engineering design applications where gradient
information is inaccurate or unavailable, which renders gradient-based optimizers ineffective.
Thus, pattern search algorithms (and other nongradient-based algorithms such as genetic
algorithms and simulated annealing) are often good choices in complex engineering applications
when the quality of gradient data is suspect.

In some cases, it may be useful to couple nongradient-based methods with gradient-based
methods to form what we have termedmultilevel hybrid optimization. This approach uses
nongradient-based optimization algorithms to provide the initial search for a good region of the
parameter space (low objective function and/or feasible constraints), and then gradient-based

Figure 2.19 The sequence of design points evaluated during a nongradient-

based pattern search optimization of Rosenbrock’s function.

DAKOTA Users Manual - Getting Started with DAKOTA 44

algorithm to perform an efficient local search for an optimum design point. More information on
multilevel hybrid optimization is provided in Chapter 13.

2.4.7 Nongradient-based Optimization via Genetic Algorithm

In contrast to pattern search algorithms, which are local optimization methods, genetic
algorithms (GA) are global optimization methods. As was described above for the pattern search
algorithm, the Rosenbrock function is not an ideal test problem for showcasing the capabilities of
genetic algorithms. Rather, GAs are best suited to optimization problems that have multiple local
optima, and where gradients are either too expensive to compute or do not exist.

Genetic algorithms, also known as Evolutionary Algorithms (EAs), are based on Darwin’s theory
of survival of the fittest. The GA algorithm starts with a randomly selected population of design
points in the parameter space, where the values of the design parameters form a “genetic string,”
which is analogous to DNA in a biological system, that uniquely represents each design point in
the population. The GA then follows a sequence of generations, where the best design points in
the population (i.e., those having low objective function values) are considered to be the most
“fit” and are allowed to survive and reproduce. The GA simulates the evolutionary process by
employing the mathematical analogs of processes such as natural selection, breeding, and
mutation. Ultimately, the GA identifies a design point, or a family of design points, that
minimize the objective function of the optimization problem. An extensive discussion of GAs is
beyond the scope of this text, but may be found in a variety of sources (cf., [38] pp. 149-158;
[35]). Detailed information on the GA algorithms available in DAKOTA is given in the

Figure 2.20 A close-up view shows the shape of the simplex pattern

used at the start of the pattern search algorithm.

DAKOTA Users Manual - Getting Started with DAKOTA 45

DAKOTA Reference Manual [17]. The SGOPT library, which provides the GA software that has
been linked into DAKOTA, is described in Reference [40].

Figure 2.21 shows a DAKOTA input file that uses a genetic algorithm to minimize the
Rosenbrock function. For this example the GA has a population size of 50. At the start of the first
generation, a random number generator is used to select 50 design points that will comprise the
initial population.[A specific seed value is used in this example to generate repeatable results,
although, in general, one should use the default setting which allows the GA to choose a random
seed.] A two-point crossover technique is used to exchange genetic string values between the
members of the population during the GA breeding process. The result of the breeding process is
a population comprised of 50 “parent” design points plus 50 new “child” design points. For
subsequent generations, an elitist strategy is used to promote the 10 most fit design points from
the current population to the next population, with the remaining 40 design points randomly
selected from the set of child design points. The GA optimization process will be terminated
after either 10,000 iterations (generations of the GA) or 10,000 function evaluations. The GA
software available in DAKOTA provides the user with much flexibility in choosing the settings
used in the optimization process. See [17] and [40] for details on these settings.

The input file is executed by DAKOTA using the following command:
dakota -i dakota_rosenbrock_ga_opt.in >! ga_opt.out

DAKOTA Example problem: genetic algorithm
used to minimize Rosenbrock's function

variables, \
continuous_design = 2 \
 cdv_initial_point 0.00.0 \
 cdv_lower_bounds -2.0 -2.0 \
 cdv_upper_bounds 2.02.0 \
 cdv_descriptor 'x1' 'x2'

interface, \
application direct, \
 analysis_driver = 'rosenbrock'

responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

method, \
sgopt_pga_real \
 seed = 11011011 \
 population_size = 50 \
 replacement_type elitist = 10 \
 crossover_type two_point \
max_iterations = 10000 \
max_function_evaluations = 10000 \
output verbose

strategy, \
single_method \
tabular_graphics_data \

graphics

Figure 2.21 A DAKOTA input file that specifies the use of a genetic

algorithm for optimizing Rosenbrock’s function.

DAKOTA Users Manual - Getting Started with DAKOTA 46

where the filega_opt.out.sav has been included in/Dakota/GettingStarted/
Examples. The GA optimization results are printed at the end of the file named
ga_opt.out.sav, and show that the best design point found was (x1, x2) = (0.96, 0.93). The

file ga_tabular.dat.sav provides a listing of the design parameter values and objective
function values for all 10,000 design points evaluated during the running of the GA. Figure 2.22
shows the population of 50 randomly selected design points that comprise the first generation of
the GA. Figure 2.23 shows the final population of 50 design points, where most of the 50 points
are clustered near (x1, x2) = (0.96, 0.93).

As described above, a GA is not well-suited to an optimization problem involving a smooth,
differentiable objective such as the Rosenbrock function. Rather, GAs are better suited to
optimization problems where conventional, gradient-based optimization fails such as situations
where there are multiple local optima and/or gradients cannot be computed. In such cases, the
computational expense of a GA is warranted since other optimization methods are not applicable
or impractical. In many optimization problems, GAs often quickly identify promising regions of
the design space where the global minimum may be located. However, a GA can be slow to
converge to the optimum. For this reason, it is common practice within the DAKOTA team to
start an optimization problem using a few iterations of a GA, and then switch to a local gradient-
based optimization algorithm. In this approach the best design point found by the GA is used as
the starting point of the gradient-based optimization. An example of thismultilevel hybrid
optimization approach is described in Chapter 13.

Figure 2.22 The 50 design points in the initial population

selected by the genetic algorithm.

DAKOTA Users Manual - Getting Started with DAKOTA 47

2.4.8 Monte Carlo Sampling

Figure 2.24 shows the DAKOTA input file for an example problem which demonstrates some of
the random sampling capabilities available in DAKOTA. In this example, the design parameters,
x1 and x2, will be treated as uncertain parameters that have uniform distributions over the interval

[-2, 2]. This is specified in the variables section of the input file, beginning with the keyword
uniform_uncertain. For comparison, the keywords from the previous examples are
retained, but have been commented out. Another change in the input file occurs in the responses
section where the keywordnum_response_functions is used in place of
num_objective_functions. The final changes to the input file occur in the method
section, where the keywordnond_sampling (nond is an abbreviation for nondeterministic) is
used. The other keywords in the methods section of the input file specify the number of samples
(200), the seed for the random number generator (17), the sampling method (random), and the
response threshold (100.0). Theseed specification allows a user to obtain repeatable results
from multiple runs. If a seed value is not specified, then DAKOTA’s sampling methods are
designed to generate nonrepeatable behavior. The keywordresponse_thresholds allows
the user to specify threshold values for which DAKOTA will compute statistics on the response
function output. Note that a unique threshold value can be specified for each response function.

Figure 2.23 The 50 design points in the final population selected by the genetic

algorithm. Most of the points are clustered near (x1, x2) = (0.96, 0.93).

DAKOTA Users Manual - Getting Started with DAKOTA 48

In this example, DAKOTA will select 200 design points from within the parameter space,
evaluate the value of Rosenbrock’s function at all 200 points, and then perform some basic
statistical calculations on the 200 response values.

This DAKOTA input file is executed using the following command:
 dakota -i dakota_rosenbrock_nond.in > nond.out

See the filenond.out.sav in /Dakota/GettingStarted/Examples for comparison
to the results produced by DAKOTA. Note that your results will differ from those in this file if
yourseed value differs or if noseed is specified.

The statistical data on the 200 Monte Carlo samples is printed at the end of the output file in the
section that starts with “Statistics for each response function....” In this section, DAKOTA
outputs the mean and standard deviation for each of the response functions, followed by the
percentages of the response function values that are above and below the response threshold
values specified in the input file. Figure 2.25 shows the locations of the 200 sample sites within
the parameter space of the Rosenbrock function.

DAKOTA example problem: Monte Carlo sampling
study on Rosenbrock's function

variables, \
continuous_design = 2 \
cdv_initial_point 0.0 0.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptor 'x1' 'x2' \

uniform_uncertain = 2 \
 uuv_dist_lower_bounds = -2.0 -2.0 \
 uuv_dist_upper_bounds = 2.0 2.0 \
 uuv_descriptor = 'x1' 'x2'

interface, \
application direct, \
 analysis_driver = 'rosenbrock'

responses, \
num_objective_functions = 1 \

num_response_functions = 1 \
no_gradients \
no_hessians

method, \
nond_sampling \
 samples = 200 \
 seed = 17 \
 sample_type random \
 response_thresholds = 100.0

strategy, \
single_method \
tabular_graphics_data \
graphics

Figure 2.24 The DAKOTA input file for the Monte Carlo

sampling example problem.

DAKOTA Users Manual - Getting Started with DAKOTA 49

Figure 2.25 Locations in the parameter space of the 200 Monte Carlo samples

using a uniform distribution for both x1 and x2.

2.4.9 Optimization with a User-Supplied Simulation Code

The previous examples made use of thedirect interface to access the Rosenbrock test function
that is compiled into DAKOTA. In engineering applications, it is much more common to use the
system orfork interface approaches within DAKOTA to manage external simulation codes.
In both of these cases, the communication between DAKOTA and the external code is conducted
through the reading and writing of short text files. For this example, the C++ program
rosenbrock.C in /Dakota/test is used as the simulation code. This file is compiled to
create the stand-alonerosenbrock executable that is referenced as theanalysis_driver
in Figure 2.26. This stand-alone program performs the same function evaluations as DAKOTA’s
internal Rosenbrock test function.

Figure 2.26 shows the text of the DAKOTA input file named
dakota_rosenbrock_syscall.in that is provided in the directory/Dakota/
GettingStarted/Examples. The only differences between this input file and the one in
Figure 2.10 occur in theinterface keyword section. The keywordsystem indicates that
DAKOTA will use system calls to create separate UNIX processes for executions of the user-
supplied simulation code. The name of the simulation code, and the names for DAKOTA’s
parameters and results file are specified using theanalysis_driver, parameters_file,
andresults_file keywords, respectively.

DAKOTA Users Manual - Getting Started with DAKOTA 50

This example problem is executed using the command:

dakota -i dakota_rosenbrock_syscall.in > syscall.out

This run of DAKOTA takes longer to complete than the previous gradient-based optimization
example since thesystem interface method has additional process creation and file I/O
overhead, as compared to the internal communication that occurs when thedirect interface
method is used. The filesyscall.out.sav is provided in the/Dakota/
GettingStarted/Examples directory for comparison to the output results produced when
executing the command given above.

To gain a better understanding of what exactly DAKOTA is doing with thesystem interface
method, edit the input file to remove the comment symbols that are in front of the keywords
file_tag andfile_save and re-run DAKOTA. Check the listing of the local directory and
you will see many new files with names such asparams.in.1, params.in.2, etc., and
results.out.1, results.out.2, etc. There is oneparams.in.X file and one

DAKOTA example problem: The system-call
interface method is demonstrated on a
gradient-based unconstrained optimization
of Rosenbrock’s function.

variables \
continuous_design = 2 \
 cdv_descriptor ’x1’ ’x2’ \
 cdv_initial_point -1.2 1.0 \
 cdv_lower_bounds -2.0 -2.0 \
 cdv_upper_bounds 2.0 2.0

interface, \
application system, \
 analysis_driver = ’rosenbrock’ \
 parameters_file = ’params.in’ \
 results_file = ’results.out’ \

file_tag \
file_save

responses, \
num_objective_functions = 1 \
numerical_gradients \
 method_source dakota \
 interval_type forward \
 fd_step_size = .000001 \
no_hessians

method, \
dot_bfgs \

conmin_frcg \
 convergence_tolerance = 1.0e-4 \
 max_iterations = 100 \
 output quiet

strategy, \
single_method \
 graphics \
 tabular_graphics_data

Figure 2.26 DAKOTA input file for gradient-based optimization using

the system call interface to an external rosenbrock simulator.

DAKOTA Users Manual - Getting Started with DAKOTA 51

results.out.X file for each of the function evaluations performed by DAKOTA. This is the
file listing forparams.in.1:

2 variables 1 functions
-1.2000000000e+00 x1
1.0000000000e+00 x2
1 ASV_1

The first line gives the number of variables and the number of response functions. For
optimization on Rosenbrock’s function, there are two variables (x1 and x2) and one function (the

objective function). The values of the variables are listed next in the file, with the descriptor tag
(‘x1’ or ‘x2’ from the DAKOTA input file) following the numerical value. The last line of the
parameters file is the syntax for DAKOTA’s active set vector (ASV). There is one ASV line
printed in the parameters file for each response function. In this case, the ASV value of 1
indicates that DAKOTA is requesting that the simulation code return the response function value
to the fileresults.out.X. (ASV syntax: 1 = value of response function, 2 = gradient of
response function, 4 = Hessian of response function, and any combination up to 7 = value,
gradient, and Hessian of the response function. See Section 4.7 for more detail.)

The executable programrosenbrock reads in theparams.in.X file and evaluates the
objective function at the given values for x1 and x2. Then,rosenbrock writes out the objective

function data to theresults.out.X file. Here is the listing for the fileresults.out.1:
2.4200000000e+01 f

The value shown above is the value of the objective function, and the descriptor ‘f’ is an optional
tag returned by the simulation code. When the system call has completed, DAKOTA reads in the
data from theresults.in.X file. Then, DAKOTA continues with executions of the
rosenbrock program until the optimization process is complete.

2.5 Where to Go from Here

This chapter has provided an introduction to the basic capabilities of DAKOTA including
parameter studies, various types of optimization, and Monte Carlo sampling. More information
on the DAKOTA input file syntax is provided in the remaining chapters in this text and in the
DAKOTA Reference Manual [17]. Additional example problems that demonstrate some of
DAKOTA’s advanced capabilities are provided in Chapter 10, Chapter 13, Chapter 16, and
Chapter 20.

DAKOTA Users Manual - DAKOTA Capabilities 52

3.0 DAKOTA Capabilities

3.1 Overview

This chapter provides a brief, but comprehensive, overview of DAKOTA’s capabilities.
Additional details and example problems are provided in subsequent chapters in this manual.

3.2 Parameter Study Methods

Parameter studies are often performed during engineering design problems. DAKOTA includes
four parameter study methods that may be selected by the user.

Multidimensional: Forms a regular lattice or grid in an n-dimensional parameter space, where
the user specifies the number of intervals used for each parameter.

Vector: Performs a parameter study along a line between any two points in an n-dimensional
parameter space, where the user specifies the number of steps used in the study.

Centered: Given a point in an n-dimensional parameter space, this method evaluates nearby
points along the coordinate axes of the parameter space. The user selects the number of steps and
the step size.

List: The user supplies a list of points in an n-dimensional space where DAKOTA will evaluate
response data from the simulation code.

Additional information on these methods is provided in Chapter 8.

3.3 Sampling Methods and Design of Experiments

Sampling methods and design of experiments are often used to explore the parameter space of an
engineering design problem. Two software packages are available in DAKOTA for performing
these studies, LHS and DDACE, both of which were developed at Sandia Labs.

LHS (Latin Hypercube Sampling): This package provides both Monte Carlo (random)
sampling and latin hypercube sampling methods, which can be used with probabilistic variables
in DAKOTA that have the following distributions: Gaussian (normal), lognormal, uniform,
loguniform, Weibull, and user-supplied histograms. In addition, the user can supply a correlation
matrix for the variables to account for correlations among the variables [43]. The LHS package
currently serves two purposes: (1) it can be used for uncertainty quantification by sampling over
uncertain variables characterized by probability distributions (see Section 3.4), or (2) it can be
used in a DACE mode in which any design and state variables are treated as having uniform
distributions (see theall_variables flag in the Reference Manual [17]). The LHS package
is distributed with DAKOTA.

DAKOTA Users Manual - DAKOTA Capabilities 53

DDACE (Distributed Design and Analysis of Computer Experiments): The DACE package
includes both stochastic sampling methods and classical design of experiments methods [60].
The stochastic methods are Monte Carlo (random) sampling, latin hypercube sampling, and
orthogonal array sampling. The DDACE package currently supports variables that have either
normal or uniform distributions. However, only the uniform distribution is available in the
DAKOTA interface to DDACE. The classical design of experiments methods in DDACE are
central composite design (CCD) and Box-Behnken (BB) sampling. A grid-based sampling
method also is available.Note: DDACE is currently in review for release under a GNU LGPL
license. DDACE should be available to the public in early 2002. Once it is released to the public,
it will be included with DAKOTA.

Additional information on these methods is provided in Chapter 9.

3.4 Uncertainty Quantification

Uncertainty quantification methods (also referred to as nondeterministic analysis methods)
involve the computation of probabilistic information about response functions based on sets of
simulations taken from the specified probability distributions for uncertain parameters. The UQ
methods in DAKOTA include various sampling-based approaches (e.g., Monte Carlo and Latin
hypercube sampling) discussed previously in Section 3.3, along with analytic reliability methods
and stochastic finite element methods.

Analytic Reliability Methods: This suite of methods includes the Advanced Mean Value
Method (AMV), the iterated Advanced Mean Value Method (AMV+), and the First Order
Reliability Method (FORM). Efforts are currently underway to implement the Second Order
Reliability Method (SORM). Currently the AMV and AMV+ methods are dependent on the
NPSOL optimization software package. This dependence will be remedied in a future version of
DAKOTA.

Stochastic Finite Element Methods: The objective of these techniques is to characterize the
response of systems whose governing equations involve stochastic coefficients. The development
of these techniques mirrors that of deterministic finite element analysis utilizing the notions of
projection, orthogonality, and weak convergence [27], [28].

Additional information on these methods is provided in Chapter 10.

3.5 Optimization Software Packages

Several optimization software packages have been integrated with DAKOTA. These include
freely-available software packages developed by research groups external to Sandia Labs,
Sandia-developed software that has been released to the public under GNU licenses, and
commercially-developed software. These optimization software packages provide the DAKOTA
user with access to tested, proven methods for use in engineering design applications, as well as
access to some of the newest developments in optimization algorithm research.

DAKOTA Users Manual - DAKOTA Capabilities 54

CONMIN (CONstrained MINimization): Methods for gradient-based constrained and
unconstrained optimization [61]. The constrained optimization algorithm is the method of
feasible directions (MFD) and the unconstrained optimization algorithm is the Fletcher-Reeves
conjugate gradient (CG) method. This software is freely available to the public from NASA, and
the CONMIN source code is included with DAKOTA.

SGOPT (Stochastic Global OPTimization): Methods for nongradient-based bound-constrained
optimization including pattern search methods and genetic (evolutionary) algorithms [40]. This
software is available to the public under a GNU Lesser General Public License and the source
code for SGOPT is included with DAKOTA (web page: www.cs.sandia.gov/SGOPT).

PICO (Parallel Integer Combinatorial Optimization): PICO’s branch-and-bound algorithm is
available in DAKOTA for use on nonlinear optimization problems involving discrete variables or
a combination of continuous and discrete variables [16]. PICO is available to the public under a
GNU Lesser General Public License and the source code is included with DAKOTA (web page:
www.cs.sandia.gov/PICO). Note: PICO’s methods for linear programming are not available
under DAKOTA.

APPS (Asynchronous Parallel Pattern Search): Advanced pattern search (nongradient-based)
methods that are capable of fully asynchronous operation on parallel computers [42]. The APPS
algorithms are available to the public under a GNU Lesser General Public License (web page:
csmr.ca.sandia.gov/projects/apps.html) and are included in the SGOPT distribution (see above)
for use in DAKOTA.

OPT++: Methods for gradient-based and nongradient-based optimization of unconstrained,
bound-constrained, and nonlinearly constrained optimization problems [47]. OPT++ includes
nonlinear interior point methods, CG methods, Newton methods, quasi-Newton methods, and
Gauss-Newton methods, along with parallel direct search methods. OPT++ is an active research
tool and new optimization capabilities are continually being added to its suite of capabilities.
This software has recently been approved for public release under a GNU Lesser General Public
License and the source code for OPT++ is included with DAKOTA (web page:
csmr.ca.sandia.gov/projects/opt++/opt++.html).

NPSOL: Methods for gradient-based constrained and unconstrained optimization problems
using a sequential quadratic programming (SQP) algorithm [29]. NPSOL is a commercial
software product of Stanford University (web site: www.sbsi-sol-optimize.com). Sandia National
Laboratories, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory all
have site licenses for NPSOL.Other users may obtain their own copy of NPSOL and compile it
with the DAKOTA source code by following the steps given in the file /Dakota/INSTALL.

DOT (Design Optimization Tools): Methods for gradient-based optimization for constrained
and unconstrained optimization problems [63]. The algorithms available for constrained
optimization are modified-MFD, SQP, and sequential linear programming (SLP). The algorithms
available for unconstrained optimization are the Fletcher-Reeves CG method and the Broyden-
Fletcher-Goldfarb-Shanno quasi-Newton technique. DOT is a commercial software product of
Vanderplaats Research and Development, Inc. (web page: www.vrand.com). Sandia National

DAKOTA Users Manual - DAKOTA Capabilities 55

Laboratories and Los Alamos National Laboratory have limited seats for DOT.Other users may
obtain their own copy of DOT and compile it with the DAKOTA source code by following the
steps given in the file /Dakota/INSTALL.

Additional information on these methods is provided in Chapter 11.

3.6 Additional Optimization and Parameter Estimation Capabilities

The optimization software packages described above provide algorithms to handle a wide variety
of optimization problems. This includes algorithms for constrained and unconstrained
optimization, as well as algorithms for gradient-based and nongradient-based optimization.
Listed below are additional optimization capabilities that are available in DAKOTA.

Nonlinear Least Squares for Parameter Estimation: Nonlinear parameter estimation methods
are optimization algorithms which exploit the special structure of a least squares objective
function (see Section 1.4.2). These problems commonly arise in parameter estimation and test/
analysis reconciliation. In practice, least squares solvers will tend to be significantly more
efficient than general-purpose optimization algorithms when the residual terms in the least
squares formulation tend towards zero at the solution. Least squares solvers may experience
difficulty when the residuals at the solution are significant. The Gauss-Newton algorithm
implemented in DAKOTA utilizes the full-Newton optimizer from the OPT++ software package
in order to provide a nonlinear least squares capability.

Multiobjective Optimization: In multiobjective optimization, a composite objective function is
constructed from a set of individual objective functions. The user can specify the scalar weight
factors that are applied to the individual objective functions in computing the composite
objective function. This approach works with any of the optimization methods listed in Section
3.5. Also, both constrained and unconstrained multiobjective optimization problems can be
formulated and solved with DAKOTA. Note that multiobjective optimization is similar to the
Pareto optimization strategy described in Section 3.7, where the former computes a single
optimum and the latter computes a set of optima in order to generate a Pareto trade-off surface.

Simultaneous Analysis and Design (SAND): In SAND, one performs optimization at the same
time that the simulation code is progressing toward a solution. In this approach, the solution of
the simulation code (often a system of ordinary or partial differential equations) is posed as a set
of equality constraints in the optimization problem. This formulation necessitates a close
coupling between DAKOTA and the simulation code so that the internal linear algebra terms in
the simulation code are available to DAKOTA. This approach has the potential to reduce the cost
of optimization to slightly more than the cost of one run of the simulation code. The drawback is
that this approach requires substantial software modifications to the simulation code; something
that is not always possible even when the source code is available. A SAND capability is under
development that will couple DAKOTA with several of Sandia’s physics simulation codes.

Additional information on these methods is provided in Chapter 12.

DAKOTA Users Manual - DAKOTA Capabilities 56

3.7 Optimization Strategies

Due to the flexibility of DAKOTA’s object-oriented design, it is relatively easy to create
algorithms that combine several of DAKOTA’s capabilities. These algorithms are referred to as
strategies:

Multilevel Hybrid Optimization: This strategy allows the user to specify a sequence of
optimization methods, with the results of one method feeding into the start of the next method.
An example which is useful in many engineering design problems involves the use of a
nongradient-based global optimization method (e.g., genetic algorithm) to identify a promising
region of the parameter space, which feeds its results into a gradient-based method (quasi-
Newton, SQP, etc.) to perform an efficient local search for the optimum point.

Multistart Local Optimization: This strategy uses many local optimization runs (often
gradient-based), each of which is started from a different initial point in the parameter space.
This is an attractive strategy in situations where multiple local optima are known to exist or may
potentially exist in the parameter space. This approach combines the efficiency of local
optimization methods with the parameter space coverage of a global stratification technique.

Pareto Optimization: The Pareto optimization strategy allows the user to specify different sets
of weights for the individual objective functions in a multiobjective optimization problem.
DAKOTA executes each of these weighting sets as a separate optimization problem, serially or in
parallel, and then outputs the set of optimal designs which define the Pareto set. Pareto set
information can be useful in making trade-off decisions in engineering design problems.

Mixed Integer Nonlinear Programming (MINLP): This strategy uses the branch and bound
capabilities of the PICO package to perform optimization on problems that have both discrete
and continuous design variables. PICO provides a branch and bound engine targeted at mixed
integer linear programs (MILP), which when combined with DAKOTA’s nonlinear optimization
methods, results in a MINLP capability. In addition, the multiple NLPs solved within MINLP
provide an opportunity for parallel execution of optimization jobs.

Optimization Under Uncertainty (OUU): Many real-world engineering design problems
contain stochastic features and must be treated using OUU methods such as robust design and
reliability-based design. For OUU, the uncertainty quantification methods of DAKOTA are
combined with optimization algorithms. This allows the user to formulate problems where one or
more of the objective and constraints are stochastic. Due to the computational expense of both
optimization and UQ, the combination of these methods in OUU can be computationally
intractable for real-world design problems. Various methods to reduce the computational expense
of OUU are under development in DAKOTA.

Surrogate-Based Optimization (SBO): This strategy combines the sampling methods,
approximation methods, and optimization capabilities of DAKOTA. The SBO strategy is
particularly effective on real-world engineering design problems that contain nonsmooth features
(e.g., slope discontinuities, multiple local minima) where gradient-based optimization methods
often have trouble. In SBO, the optimization algorithm operates on a surrogate model instead of

DAKOTA Users Manual - DAKOTA Capabilities 57

directly operating on the computationally expensive simulation code and computational model.
The surrogate model can be formed from data samples and surface fitting methods (see Section
3.8), or it can be a simplified (e.g., coarsened finite element mesh, less detailed) version of the
original computational model. For either type of surrogate model, the SBO algorithm
periodically checks the accuracy of the surrogate model against the original computational
model. The SBO strategy in DAKOTA can be implemented using heuristic rules (less expensive)
or a strategy that is guaranteed to converge (more expensive). The development of SBO strategies
is an area of active research in the DAKOTA project.

These strategies are covered in more detail in Chapter 13.

3.8 Surface Fitting Methods

Surface fitting methods, often referred to asresponse surface methods, can be used to explore the
variations in response quantities over regions of the parameter space. In addition, the surfaces
can serve as surrogate models for optimization studies (see the surrogate-based optimization
strategy below). The surface fitting methods in DAKOTA include software developed by Sandia
researchers and by various researchers in the academic community. These surface fitting methods
work in conjunction with the sampling methods and design of experiments methods described in
Section 3.3.

First-order Taylor Series Expansion: This is a local first-order model centered at a point in the
parameter space.

Quadratic Polynomials: Second-order polynomial surfaces computed using least squares
regression methods. Note: there is currently no use of forward- or backward-stepping regression
methods to eliminate unnecessary terms from the polynomial model.

Kriging Interpolation: An implementation of spatial interpolation using kriging methods and

Gaussian correlation functions [34]. The algorithm used in the kriging process generates a C2-
continuous surface that exactly interpolates the data values.

Artificial Neural Networks: An implementation of the stochastic layered perceptron neural
network developed by Prof. D. C. Zimmerman of the University of Houston [66]. This neural
network method is intended to have a lower training (fitting) cost than typical neural networks.

Multivariate Adaptive Regression Splines (MARS): Software developed by Prof. J. H.

Friedman of Stanford University [25]. The MARS method creates a C2-continuous patchwork of
splines in the parameter space.

Additional information on these methods is provided in Chapter 14.

DAKOTA Users Manual - DAKOTA Capabilities 58

3.9 Parallel Computing

The methods and strategies in DAKOTA are designed to exploit parallel computing resources
such as those found in a desktop multiprocessor workstation, a network of workstations, or a
massively parallel computing platform. This parallel computing capability is a critical
technology for rendering real-world engineering design problems computationally tractable.
DAKOTA employs the concept ofmultilevel parallelism, which takes simultaneous advantage of
opportunities for parallel execution from multiple sources:

Parallel Simulation Codes: DAKOTA works equally well with both serial and parallel
simulation codes.

Concurrent Execution of Analyses within a Function Evaluation: Some engineering design
applications call for the use of multiple simulation code executions (different disciplinary codes,
the same code for different environments, etc.) in order to evaluate a single response data set for
a single set of parameters. If these simulation code executions are independent (or if coupling is
enforced at a higher level), DAKOTA can perform them in parallel.

Concurrent Execution of Function Evaluations within an Iterator: With very few exceptions,
the iterative algorithms described in Section 3.2 through Section 3.6 all provide opportunities for
the concurrent evaluation of response data sets for different parameter sets. Whenever there
exists a set of design point evaluations that are independent, DAKOTA can perform them in
parallel.

Concurrent Execution of Iterators within a Strategy: Some of the strategies in DAKOTA
generate a sequence of iterator subproblems. For example, the PICO branch and bound strategy
generates a sequence of optimization subproblems, and the optimization under uncertainty
strategy generates a sequence of uncertainty quantification subproblems. Whenever these
subproblems are independent, DAKOTA can perform them in parallel.

It is important to recognize that these four parallelism levels are nested, in that a strategy can
schedule and manage concurrent iterators, each of which may manage concurrent function
evaluations, each of which may manage concurrent analyses, each of which may execute on
multiple processors. Additional information on parallel computing with DAKOTA is provided in
Chapter 15.

3.10 Summary

DAKOTA is both a production tool for engineering design activities and a research tool for the
development of new algorithms in optimization, uncertainty quantification, and related areas.
Because of the extensible, object-oriented design of DAKOTA, it is relatively easy to add new
iterative algorithms, strategies, simulation interfacing approaches, surface fitting methods, etc. In
addition, DAKOTA can serve as a rapid prototyping tool for algorithm development. That is, by
having a broad range of building blocks available (i.e., parallel computing, surrogate models,
simulation interfaces, fundamental algorithms, etc.), new capabilities can be assembled rapidly

DAKOTA Users Manual - DAKOTA Capabilities 59

which leverage the previous software investments. For additional discussion on framework
extensibility, refer to the DAKOTA Developers Manual [18].

The capabilities of DAKOTA have been used to solve engineering design and optimization
problems at Sandia Labs, at other Department of Energy labs, and by our industrial and academic
collaborators. Often, this real-world experience has provided motivation for research into new
areas of optimization. The DAKOTA development team welcomes feedback on the capabilities
of this software toolkit, as well as suggestions for new areas of research.

DAKOTA Users Manual - Variables 60

4.0 Variables

4.1 Overview

The variables section in a DAKOTA input file specifies the parameter set to be iterated by a
particular method. In the case of an optimization study, these variables are adjusted in order to
locate an optimal design; in the case of parameter studies/sensitivity analysis/design of
experiments, these parameters are perturbed to explore the parameter space; and in the case of
uncertainty analysis, the variables are associated with probabilistic characterizations which are
used to quantify the uncertainty in response functions. To accommodate these and other types of
studies, DAKOTA supports design, uncertain, and state variable types for continuous and discrete
variable domains.

This chapter will present a brief overview of the types of variables and their uses, as well as
cover some user issues relating to integer/discrete conversions, file formats, and the active set
vector. For a detailed description of variables section syntax and example specifications, refer to
the variables commands chapter in the DAKOTA Reference Manual [17].

4.2 Design Variables

Design variables are those variables which are modified for the purposes of computing an
optimal design. These variables may be continuous (real-valued) or discrete (integer-valued).

4.2.1 Continuous Design Variables

The most common type of design variables encountered in engineering applications are of the
continuous type. These variables may assume any real value (e.g.,12.34, 1.735e+07) within
their bounds. All but a handful of the optimization algorithms in DAKOTA support continuous
design variables exclusively.

4.2.2 Discrete Design Variables

Engineering design problems may contain discrete variables such as material types, feature
counts, stock gauge selections, etc. These variables may assume only a fixed number of values
within their bounds. While the general discrete variable case would allow this fixed set of values
to include real numbers (e.g., x1 can only assume the values4.2, 6.4, and8.5), DAKOTA

assumes that the discrete variables can be specified as a sequence of integers (e.g., x1 can be1,

2, or3) and that a mapping from the integer sequence to the discrete values can be applied if
necessary within the user’s interface. A common mapping is to use the integer value from
DAKOTA as the index into a vector of discrete real values.

Discrete variables may be classified as either “noncategorical” or “categorical” discrete variables.
In the former case, the integrality condition can be relaxed during the solution process since the

DAKOTA Users Manual - Variables 61

model can still compute meaningful response functions for non-integer values. For example, a
discrete variable representing the thickness of a structure is generally a noncategorical variable
since it can assume a continuous range of values during the algorithm iterations, even if it is
desired to have a stock gauge thickness in the end. In the latter case, the integrality cannot be
relaxed since the model cannot obtain a solution for a non-integer value. For example, feature
counts are generally categorical variables, since most computational models will not support a
non-integer value for the number of instances of some feature (e.g., number of support brackets).

Gradient-based optimization methods cannot be directly applied to problems with discrete
variables. For problems with noncategorical variables, branch and bound techniques can be used
to relax the integrality conditions and apply gradient-based methods to a series of generated
subproblems. For problems with categorical variables, nongradient-based methods (e.g.,
sgopt_pga_int) are commonly used. Branch and bound techniques are discussed in Section
13.5 and nongradient-based methods are further described in Chapter 11.

In addition to engineering applications, many non-engineering applications in the fields of
scheduling, logistics, and resource allocation contain discrete design parameters. Within Sandia
National Laboratories and the Department of Energy, solution techniques for these problems
impact a broad array of programs in stockpile evaluation and management, production planning,
nonproliferation, transportation (routing, packing, logistics), infrastructure analysis and design,
energy production, environmental remediation, and tools for massively parallel computing such
as domain decomposition and meshing.

4.3 Uncertain Variables

Deterministic variables (i.e., those with a single known value) do not capture the behavior of the
input variables in all situations. In many cases, the exact value of a model parameter is not
precisely known. An example of such an input variable is the thickness of a heat treatment
coating on a structural steel I-beam used in building construction. Due to variabilities and
tolerances in the coating process, the thickness of the layer is known to follow a normal
distribution with a certain mean and standard deviation as determined from experimental data.
The inclusion of the uncertainty in the coating thickness is essential to accurately represent the
resulting uncertainty in the response of the building.

Currently, uncertain variables in DAKOTA are modeled as continuous random variables, or in the
case of histogram, with an empirical histogram representation. If a problem contains discrete
random variables, then these variables can be modeled using the histogram representation. The
following types of uncertain variables are available:

1. Normal: characterized by a mean and standard deviation. Also referred to as Gaussian.
Bounded normal is also supported with an additional specification of lower and upper
bounds.

DAKOTA Users Manual - Variables 62

2. Lognormal: characterized by a mean and either a standard deviation or an error factor. The
natural logarithm of a lognormal variable has a normal distribution. Bounded lognormal is
also supported with an additional specification of lower and upper bounds.

3. Uniform: characterized by a lower bound and an upper bound. Probability is constant
between the bounds.

4. Loguniform: characterized by a lower bound and an upper bound. The natural logarithm of a
loguniform variable has a uniform distribution.

5. Weibull: characterized by an alpha parameter and a beta parameter.

6. Histogram: characterized by a set of (x,y) pairs that map out either a probability density
function (PDF) or a cumulative distribution function (CDF).

For additional information on random variable probability distributions, refer to [39] and [65].
Refer to the DAKOTA Reference Manual [17] for more detail on the uncertain variable
specifications and to Chapter 10 for a description of methods available to quantify the
uncertainty in the response.

4.4 State Variables

State variables consist of “other” variables which are to be mapped through the simulation
interface, in that they are not to be used for design and they are not modeled as being uncertain.
State variables provide a convenient mechanism for parameterizing additional model inputs
which, in the case of a numerical simulator, might include solver convergence tolerances, time
step controls, or mesh fidelity parameters. Similar to the design variables discussed in Section
4.2, state variables can be continuous (real-valued) or discrete (integer-valued). For discrete
variables which are not a sequence of integers, a mapping can be applied between the integer and
discrete values in the user’s interface.

State variables, as with other types of variables, are viewed differently depending on the method
in use. Since these variables are neither design nor uncertain variables, algorithms for
optimization, least squares, and uncertainty quantification do not iterate on these variables; i.e.,
they are not active and are hidden from the algorithm. However, DAKOTA still maps these
variables through the user’s interface where they affect the computational model in use. This
allows optimization, least squares, and uncertainty quantification studies to be executed under
different simulation conditions (which will result, in general, in different results). Parameter
studies and design of experiments methods, on the other hand, are general-purpose iterative
techniques which do not draw a distinction between variable types. They include state variables
in the set of variables to be iterated, which allows these studies to explore the effect of state
variable values on the response data of interest.

In the future, state variables might be used in direct coordination with an optimization, least
squares, or uncertainty quantification algorithm. For example, state variables could be used to
enact model adaptivity through the use of a coarse mesh or loose solver tolerances in the initial

DAKOTA Users Manual - Variables 63

stages of an optimization with continuous model refinement as the algorithm nears the optimal
solution.

4.5 Mixed Variables

The iterative method selected for use in DAKOTA determines what subset, or view, of the
variables data is active in the iteration. The general case of having a mixture of various different
types of variables is supported within all of the DAKOTA methods even though certain methods
will only modify certain types of variables (e.g., optimizers and least squares methods only
modify design variables, uncertainty quantification methods only utilize uncertain variables).
This implies that variables which are not under the direct control of a particular iterator will be
mapped through the interface unmodified for all evaluations of the iterator. This allows for a
variety of parameterizations within the model in addition to those which are being used by a
particular iterator, which can provide the convenience of consolidating the control over various
modeling parameters in a single file (the DAKOTA input file). An important related point is that
the variable set that is active with a particular iterator is the same variable set for which
derivatives are computed (see Section 6.3).

4.6 DAKOTA Parameters File Data Format

Application interfaces which employ system calls and forks to create separate simulation
processes must communicate with the simulation through the file system. This is accomplished
through the reading and writing of parameters and results files. DAKOTA uses its own format for
this data input/output. Depending on the user’s interface specification, DAKOTA will write the
parameters file in either standard or APREPRO format. The former option uses a simple
“value tag” format, whereas the latter option uses a “{ tag = value }” format for
compatibility with the APREPRO utility [58].

4.6.1 Parameters file format (standard)

Prior to invoking a simulation, DAKOTA creates a parameters file which contains the current
parameter values and a set of function requests. The standard format for this parameters file is
shown in Figure 4.1.

DAKOTA Users Manual - Variables 64

Figure 4.1 Parameters file data format - standard option.

Descriptive header

Continuous design vars.
(ncdv values and tags)

Discrete design vars.
(nddv values and tags)

Uniform uncertain vars.

Continuous state vars.
(ncsv values and tags)

Discrete state vars.
(ndsv values and tags)

Active set vector

(nuuv values and tags)

(m values and tags)

<int> variables <int> functions
<double> <var_tag_cdv1>
<double> <var_tag_cdv2>
...
<double> <var_tag_cdvn>
<int> <var_tag_ddv1>
<int> <var_tag_ddv2>
...
<int> <var_tag_ddvn>
<double> <var_tag_nuv1>
<double> <var_tag_nuv2>
...
<double> <var_tag_nuvn>
<double> <var_tag_lnuv1>
<double> <var_tag_lnuv2>
...
<double> <var_tag_lnuvn>
<double> <var_tag_uuv1>
<double> <var_tag_uuv2>
...
<double> <var_tag_uuvn>
<double> <var_tag_luuv1>
<double> <var_tag_luuv2>
...
<double> <var_tag_luuvn>
<double> <var_tag_wuv1>
<double> <var_tag_wuv2>
...
<double> <var_tag_wuvn>
<double> <var_tag_huv1>
<double> <var_tag_huv2>
...
<double> <var_tag_huvn>
<double> <var_tag_csv1>
<double> <var_tag_csv2>
...
<double> <var_tag_csvn>
<int> <var_tag_dsv1>
<int> <var_tag_dsv2>
...
<int> <var_tag_dsvn>
<int> ASV_1
<int> ASV_2
...
<int> ASV_m

Normal uncertain vars.
(nnuv values and tags)

Lognormal uncertain vars.
(nlnuv values and tags)

Histogram uncertain vars.
(nhuv values and tags)

Weibull uncertain vars.
(nwuv values and tags)

Loguniform uncertain vars.
(nluuv values and tags)

DAKOTA Users Manual - Variables 65

where “<int>” denotes an integer value, “<double>” denotes a double precision value, and
“...” indicates omitted lines for brevity. The first line specifies the total number of variables (n)
with its identifier string “variables” followed by the number of functions (m) with its
identifier string “functions.” These integers are useful for dynamic memory allocation within
a simulator or filter program. The nextn lines specify the current values and descriptors of all of
the variables within the parameter set in the following order: continuous design, discrete design,
normal uncertain, lognormal uncertain, uniform uncertain, loguniform uncertain, weibull
uncertain, histogram uncertain, continuous state, and discrete state variables. The lengths of these
vectors add to a total ofn (that is,ncdv + nddv + nnuv + nlnuv + nuuv + nluuv +

nwuv + nhuv + ncsv + ndsv = n). If any of the variable types are not present in the

problem, then its block is omitted entirely from the parameters file. The tags are the variable
descriptors specified in the user’s DAKOTA input file, or if no descriptors have been specified,
default descriptors are used. The nextm lines specify the request vector for each of them
functions in the response data set. These integer codes indicate what data is required on the
current function evaluation and are described further in Section 4.7.

4.6.2 Parameters file format (APREPRO)

For the APREPRO format option, the same data is present and the same ordering is used as in the
standard format. The only difference is that values are associated with their tags within
“{ tag = value }” constructs as shown in Figure 4.2. This allows direct usage of these
parameters files by the APREPRO utility, which is a pre-processor that can significantly simplify
model parameterization. When a parameters file in APREPRO format is included within a
template file (using an include directive), the APREPRO utility recognizes these constructs as
variable definitions which can then be used to populate targets throughout the template file [58].

DAKOTA Users Manual - Variables 66

Figure 4.2 Parameters file data format - APREPRO option.

Descriptive header

Continuous design vars.
(ncdv values and tags)

Discrete design vars.
(nddv values and tags)

Uniform uncertain vars.

Continuous state vars.
(ncsv values and tags)

Discrete state vars.
(ndsv values and tags)

Active set vector

(nuuv values and tags)

(m values and tags)

{ DAKOTA_VARS = <int> }
{ DAKOTA_FNS = <int> }
{ <var_tag_cdv1> = <double> }
{ <var_tag_cdv2> = <double> }
...
{ <var_tag_cdvn> = <double> }
{ <var_tag_ddv1> = <int> }
{ <var_tag_ddv2> = <int> }
...
{ <var_tag_ddvn> = <int> }
{ <var_tag_nuv1> = <double> }
{ <var_tag_nuv2> = <double> }
...
{ <var_tag_nuvn> = <double> }
{ <var_tag_lnuv1> = <double> }
{ <var_tag_lnuv2> = <double> }
...
{ <var_tag_lnuvn> = <double> }
{ <var_tag_uuv1> = <double> }
{ <var_tag_uuv2> = <double> }
...
{ <var_tag_uuvn> = <double> }
{ <var_tag_luuv1> = <double> }
{ <var_tag_luuv2> = <double> }
...
{ <var_tag_luuvn> = <double> }
{ <var_tag_wuv1> = <double> }
{ <var_tag_wuv2> = <double> }
...
{ <var_tag_wuvn> = <double> }
{ <var_tag_huv1> = <double> }
{ <var_tag_huv2> = <double> }
...
{ <var_tag_huvn> = <double> }
{ <var_tag_csv1> = <double> }
{ <var_tag_csv2> = <double> }
...
{ <var_tag_csvn> = <double> }
{ <var_tag_dsv1> = <int> }
{ <var_tag_dsv2> = <int> }
...
{ <var_tag_dsvn> = <int> }
{ ASV_1 = <int> }
{ ASV_2 = <int> }
...
{ ASV_m = <int> }

Normal uncertain vars.
(nnuv values and tags)

Lognormal uncertain vars.
(nlnuv values and tags)

Histogram uncertain vars.
(nhuv values and tags)

Weibull uncertain vars.
(nwuv values and tags)

Loguniform uncertain vars.
(nluuv values and tags)

DAKOTA Users Manual - Variables 67

4.7 The Active Set Vector

The active set vector contains a set of integer codes, one per response function, which describe
the data needed on a particular execution of an interface. Integer values of 0 through 7 denote a
3-bit binary representation of all possible combinations of value, gradient, and Hessian requests
for a particular function, with the most significant bit denoting the Hessian, the middle bit
denoting the gradient, and the least significant bit denoting the value. The specific translations
are shown in Table 4.1.

The active set vector in DAKOTA gets its name from managing the active set, i.e., the set of
functions that are active on a particular function evaluation. However, it also manages the type of
data that is needed for functions that are active, and in that sense, has an extended meaning
beyond that typically used in the optimization literature.

4.7.1 Active set vector control

Active set vector control may be turned off to allow the user to simplify the supplied interface by
removing the need to check the content of the active set vector on each evaluation. The Interface
Commands chapter in the Reference Manual provides additional information on this option
(active_set_vector constant). Of course, this option trades some efficiency for
simplicity and is most appropriate for those cases in which only a relatively small penalty occurs
when returning more data than may be needed on a particular function evaluation.

Table 4.1 Active set vector integer codes.

Integer

Code

Binary

representation
Meaning

7 111 Get Hessian, gradient, and value

6 110 Get Hessian and gradient

5 101 Get Hessian and value

4 100 Get Hessian

3 011 Get gradient and value

2 010 Get gradient

1 001 Get value

0 000 No data required, function is inactive

DAKOTA Users Manual - Interfaces 68

5.0 Interfaces

5.1 Overview

The interface section in a DAKOTA input file specifies how function evaluations will be
performed. The mechanisms currently in place for performing function evaluations involve
interfacing either with an application (i.e., a computational simulation code) or with an
approximation (i.e., a surrogate-model).

In the case of a simulation code, theapplication interface is used to invoke the simulation
with either system calls, forks, or direct function invocations. In the system call and fork cases, a
separate process is created for the simulation and communication between DAKOTA and the
simulation occurs through parameter and response files. For system call and fork interfaces, then,
the interface section must also specify the details of this data transfer. In the direct function case,
a separate process is not created and communication occurs directly through the function
parameter list. Section 5.2 through Section 5.5 provide information on the application interfacing
approaches.

In the case of use of an approximation in place of an expensive simulation code, an
approximation interface can be selected to make use of surrogate modeling capabilities
available within DAKOTA. Surrogate models are discussed further in Chapter 14.

This chapter will present an overview of the application interface procedures and components, as
well as cover issues relating to file management and example data mappings. For a detailed
description of interface section syntax, refer to the interface commands chapter in the DAKOTA
Reference Manual [17].

5.2 The Direct Function Application Interface

The direct function interface capability may be used to invoke simulations which are linked into
the DAKOTA executable. This interface eliminates overhead from process creation and file I/O
and can simplify operations on massively parallel computers. These advantages are balanced
with the practicality of converting an existing simulation code into a link library with a
subroutine interface. At Sandia, the SALINAS code has been linked in this way and a direct
interface to SIERRA is under development. In the latter case, the additional effort is particularly
justified since SIERRA is a multiphysics framework which unifies an entire suite of physics
codes.

In addition to direct linking with simulation codes, the direct interface also provides access to
internal polynomial test functions that are used for algorithm performance and regression testing.
The following test functions are available: 1) textbook, 2) rosenbrock, and 3) cylinder head.
While these functions are also available as external programs in the/Dakota/test directory,

DAKOTA Users Manual - Interfaces 69

maintaining internally linked versions allows more rapid testing. See Chapter 20 for additional
information on these test problems. An example input specification for a direct interface follows:

interface, \
 application direct, \
 analysis_driver = ’rosenbrock’

Additional specification examples are provided in Section 2.4, additional information on parallel
usage of the direct function interface is provided in Section 15.3.1, and the details of adding a
simulation code to the direct interface are provided in Section 16.2.

5.3 The System Call Application Interface

The system call approach invokes a simulation code or simulation driver by using thesystem
function from the standard C library [44]. In this approach, the system call creates a new process
which communicates with DAKOTA through parameter and response files. The system call
approach allows the simulation to be initiated via its standard invocation procedure (as a “black
box”) and then coordinated with any variety of tools for pre- and post-processing. This approach
has been widely used in previous studies [23], [24]. The system call approach involves more
process creation and file I/O overhead than the direct function approach; however, this is most
often of very little significance relative to the expense of the simulations. An example of a system
call interface specification follows:

interface, \
 application system, \
 analysis_driver = ’text_book’ \
 parameters_file = ’text_book.in’ \
 results_file = ’text_book.out’ \
 file_tag \
 file_save

More detailed examples of using the system call interface are provided in Section 2.4.9 and in
Section 16.1, and information on asynchronous usage of the system call interface is provided in
Section 15.3.2.

5.4 The Fork Application Interface

The fork application interface uses thefork, exec, andwait families of functions to manage
simulation codes or simulation drivers. Thefork or vfork calls create a copy of the DAKOTA
process,execvp replaces this copy with the simulation code or driver process, and then
DAKOTA uses thewait orwaitpid functions to wait for completion of the new process.
Transfer of variables and response data between DAKOTA and the simulator code or driver
occurs through the file system in exactly the same manner as for the system call interface. An
example of a fork interface specification follows:

interface, \
 application fork, \
 input_filter = ’test_3pc_if’ \
 output_filter = ’test_3pc_of’ \

DAKOTA Users Manual - Interfaces 70

 analysis_driver = ’test_3pc_ac’ \
 parameters_file = ’tb.in’ \
 results_file = ’tb.out’ \
 file_tag

Information on asynchronous usage of the fork interface is provided in Section 15.3.3.

5.5 Fork or System Call: Which to Use?

The primary operational difference between the fork and system call application interfaces is
that, in the fork interface, thefork/exec functions return a UNIX process identifier which can
be utilized by thewait/waitpid functions to detect the completion of a simulation, whereas
the system call application interface must use a response file detection scheme for this purpose.
Thus, an important advantage of the fork interface over the system call interface is that it avoids
the potential of a file race condition. This condition can occur when the responses file has been
created but the writing of the response data set to this file has not been completed (see Section
15.3.2). While significant care has been taken to manage this file race condition in the system
call case, the fork interface still has the potential to be more robust when performing function
evaluations asynchronously.

Another advantage of the fork interface is that it has additional asynchronous capabilities when a
function evaluation involves multiple analyses. As shown in Table 15.1, the fork interface
supports asynchronous local and hybrid parallelism modes for managing concurrent analyses
within function evaluations, whereas the system call interface does not. These additional
capabilities again stem from the ability to track child processes by their UNIX process
identifiers.

The only observed disadvantage to the fork interface in comparison to the system interface is that
thefork/exec/wait functions are not part of the standard C library, whereas thesystem
function is. As a result, support for implementations of thefork/exec/wait functions can
vary from platform to platform. At one time, these commands were not available on some of
Sandia’s massively parallel computers. However, in the more mainstream UNIX environments,
availability offork/exec/wait should not be an issue.

In summary, the system call interface has been a workhorse for many years and is well tested and
proven. However, the fork interface supports additional capabilities and is recommended when
managing asynchronous simulation code executions. Having both interfaces available has proven
to be useful on a number of occasions and they will both continue to be supported for the
foreseeable future.

5.6 Interface Components

Figure 5.1 is an extension of Figure 1.1 which adds the detail of the components that make up
each of the application interfaces (system call, fork, and direct). These components include an
input_filter (“IFilter”), one or moreanalysis_drivers, and anoutput_filter

DAKOTA Users Manual - Interfaces 71

(“OFilter”). The input and output filters provide optional facilities for managing simulation pre-
and post-processing, respectively. More specifically, the input filter can be used to insert the
DAKOTA parameters into the input files required by the simulator program, and the output filter
can be used to recover the raw data from the simulation results and compute the desired response
data set. If there is a single analysis code, it is often convenient to combine these pre- and post-
processing functions into a single simulation driver script, and the separate input and output filter
facilities are rarely used in this case. If there are multiple analysis drivers, however, the input and
output filter facilities provide a convenient means for managingnonrepeated portions of the pre-
and post-processing for multiple analyses. That is, pre- and post-processing tasks that must be
performed for each analysis can be performed within the individual analysis drivers, and shared
pre- and post-processing tasks that are only performed once for the set of analyses can be
performed within the input and output filters.

5.6.1 Single analysis driver without filters

If a singleanalysis_driver is selected in the interface specification to perform the
complete parameters to responses mapping and filters are not needed (as indicated by omission
of theinput_filter andoutput_filter specifications), then only one process will
appear in the execution syntax of the application interface. An example of this syntax in the
system call case is:

(driver params.in results.out)

where “driver” is the user-specified analysis driver and “params.in” and
“results.out” are the names of the parameters and results files, respectively, passed on the
command line.

For the same mapping, the fork application interface echoes the following syntax:
blocking fork: driver params.in results.out

Figure 5.1 Components of the application interface.

DAKOTA
DAKOTA

Analysis
Code/Driver

Parameters File

IFilter

DAKOTA
Results File

OFilter

Application Interface

DAKOTA Users Manual - Interfaces 72

for which only a single blocking fork is needed to perform the evaluation.

Executing the same mapping with the direct application interface results in an echo of the
following syntax:

Direct function: invoking driver

where this analysis driver must be linked as a function within DAKOTA’s direct interface (see
Section 16.2). Note that no files are involved for communication of parameter and response data,
since this data is passed directly through the function parameter lists.

Both the system call and fork interfaces support asynchronous operations. The asynchronous
system call execution syntax involves executing the system call in the background:

(driver params.in.1 results.out.1) &

and the asynchronous fork execution syntax involves use of a nonblocking fork:
nonblocking fork: driver params.in.1 results.out.1

where file tagging (see Section 5.7.2) has been user-specified in both cases to prevent conflicts
between concurrent analysis drivers. Execution of the direct interface must currently be
performed synchronously since multithreading is not yet supported.

5.6.2 Single analysis driver with filters

When filters are used, the syntax of the system call that DAKOTA performs is:
(ifilter params.in results.out; driver params.in

results.out; ofilter params.in results.out)

in which the input filter (“ifilter”), analysis driver (“driver”), and output filter
(“ofilter”) processes are combined into a single system call through the use of semi-colons
and parentheses (see [1]). All three portions are passed the names of the parameters and results
files on the command line which allows DAKOTA to communicate with these executables using
unique file names (e.g., UNIX temporary files or root names tagged with numerical identifiers).

For the same mapping, the fork application interface echoes the following syntax:
blocking fork: ifilter params.in results.out; driver

params.in results.out; ofilter params.in results.out

where parentheses are not used in the fork interface case to bind the processes together.

Executing the same mapping with the direct application interface results in an echo of the
following syntax:

Direct function: invoking { ifilter driver ofilter }

where each of the three components must be linked as a function within DAKOTA’s direct
interface. Since asynchronous operations are not supported, execution simply involves
invocation of each of the three linked functions in succession. Again, no files are involved since
parameter and response data are passed directly through the function parameter lists.

Asynchronous executions would appear as follows for the system call interface:
(ifilter params.in.1 results.out.1; driver params.in.1

DAKOTA Users Manual - Interfaces 73

results.out.1; ofilter params.in.1 results.out.1) &

and, for the fork interface, as:
nonblocking fork: ifilter params.in.1 results.out.1; driver

params.in.1 results.out.1; ofilter params.in.1
results.out.1

where file tagging of evaluations has again been user-specified in both cases. For the system call
application interface, use of parentheses and semi-colons to bind the three processes into a single
system call simplifies asynchronous process management compared to an approach using
separate system calls. The fork application interface, on the other hand, does not rely on
parentheses and accomplishes asynchronous operations by first forking an intermediate process.
This intermediate process is then reforked for the execution of the input filter, analysis driver, and
output filter. The intermediate process can be blocking or nonblocking (nonblocking in this case),
and the second level of forks can be blocking or nonblocking (blocking in this case). The fact
that forks can be reforked multiple times using either blocking or nonblocking approaches
provides the enhanced flexibility to support a variety of parallelism models (see Chapter 15).

5.6.3 Multiple analysis drivers without filters

If a list ofanalysis_drivers is specified and filters are not needed (as indicated by
omission of theinput_filter andoutput_filter specifications), then the system call
syntax would appear as:

(driver1 params.in results.out.1; driver2 params.in
results.out.2; driver3 params.in results.out.3)

where “driver1”, “driver2”, and “driver3” are the user-specified analysis drivers and
“params.in” and “results.out” are the user-selected names of the parameters and results
files. Note that the results files for the different analysis drivers have been automatically tagged
to prevent overwriting. This automatic tagging ofanalyses (see Section 5.7.4) is a separate
operation from user-selected tagging ofevaluations (see Section 5.7.2).

For the same mapping, the fork application interface echoes the following syntax:
blocking fork: driver1 params.in results.out.1; driver2

params.in results.out.2; driver3 params.in
results.out.3

for which a series of three blocking forks is needed (no reforking of an intermediate process is
required).

Executing the same mapping with the direct application interface results in an echo of the
following syntax:

Direct function: invoking { driver1 driver2 driver3 }

where, again, each of these components must be linked within DAKOTA’s direct interface and
no files are involved for parameter and response data transfer.

Both the system call and fork interfaces support asynchronous function evaluations. The
asynchronous system call execution syntax would be reported as

DAKOTA Users Manual - Interfaces 74

(driver1 params.in.1 results.out.1.1; driver2 params.in.1
results.out.1.2; driver3 params.in.1 results.out.1.3) &

and the nonblocking fork execution syntax would be reported as
nonblocking fork: driver1 params.in.1 results.out.1.1;

driver2 params.in.1 results.out.1.2; driver3
params.in.1 results.out.1.3

where, in both cases, file tagging of evaluations has been user-specified to prevent conflicts
between concurrent analysis drivers and file tagging of the results files for multiple analyses is
automatically used. In the fork interface case, an intermediate process is forked to allow a non-
blocking function evaluation, and this intermediate process is then reforked for the execution of
each of the analysis drivers.

5.6.4 Multiple analysis drivers with filters

When filters are used with multipleanalysis_drivers, the syntax of the system call that
DAKOTA performs is:

(ifilter params.in.1 results.out.1; driver1 params.in.1
results.out.1.1; driver2 params.in.1 results.out.1.2;
driver3 params.in.1 results.out.1.3; ofilter
params.in.1 results.out.1)

in which all processes have again been combined into a single system call through the use of
semi-colons and parentheses. Note that the secondary file tagging for the results files is only used
for the analysis drivers and not for the filters. This is consistent with the filters’ defined purpose
of managing the non-repeated portions of analysis pre- and post-processing (e.g., overlay of
response results from individual analyses; see Section 5.7.4 for additional information).

For the same mapping, the fork application interface echoes the following syntax:
blocking fork: ifilter params.in.1 results.out.1; driver1

params.in.1 results.out.1.1; driver2 params.in.1
results.out.1.2; driver3 params.in.1 results.out.1.3;
ofilter params.in.1 results.out.1

for which a series of five blocking forks is used (no reforking of an intermediate process is
required).

Executing the same mapping with the direct application interface results in an echo of the
following syntax:

Direct function: invoking { ifilter driver1 driver2 driver3
ofilter }

where each of these components must be linked as a function within DAKOTA’s direct interface.
Since asynchronous operations are not supported, execution simply involves invocation of each
of the five linked functions in succession. Again, no files are involved for parameter and
response data transfer since this data is passed directly through the function parameter lists.

Asynchronous executions would appear as follows for the system call interface:
(ifilter params.in.1 results.out.1; driver1 params.in.1

DAKOTA Users Manual - Interfaces 75

results.out.1.1; driver2 params.in.1 results.out.1.2;
driver3 params.in.1 results.out.1.3; ofilter
params.in.1 results.out.1) &

and for the fork interface:
nonblocking fork: ifilter params.in.1 results.out.1; driver1

params.in.1 results.out.1.1; driver2 params.in.1
results.out.1.2; driver3 params.in.1 results.out.1.3;
ofilter params.in.1 results.out.1

where, again, user-selected file tagging of evaluations is combined with automatic file tagging of
analyses. In the fork interface case, an intermediate process is forked to allow a non-blocking
function evaluation, and this intermediate process is then reforked for the execution of the input
filter, each of the analysis drivers, and the output filter.

5.7 File Management

This section describes some of the file management features that are employed during an
execution of DAKOTA when file transfer of data is used for the communication between
DAKOTA and the simulation code (i.e., when the system call or fork interfaces are used). These
features can be used for generating unique filenames when utilizing DAKOTA’s parallel
execution capabilities and for debugging purposes when troubleshooting the interface between
DAKOTA and the simulation code.

5.7.1 File Saving

Thefile_save option in the interface specification allows the user to control whether
parameters and results files are retained or removed from the working directory. DAKOTA’s
default behavior is to remove files once their use is complete in order to not clutter the working
directory. However, by specifyingfile_save in the interface specification, these files will not
be removed. This latter behavior is often useful for debugging communication between
DAKOTA and simulator programs. An example of afile_save specification is shown in the
file tagging example below.

5.7.2 File Tagging for Evaluations

When a user providesparameters_file andresults_file specifications, the
file_tag option in the interface specification allows the user to render the names of these
parameters and results files unique by appending the function evaluation number to the root file
names. Default behavior is to not tag these files, which has the advantage of allowing the user to
ignore command line argument passing and always read to and write from the same file names.
However, it has the disadvantage that files may be overwritten from one function evaluation to
the next. By specifyingfile_tag in the interface specification, the file names become unique
through the appended evaluation number. This uniqueness makes it necessary for the user’s
interface to retrieve the names of these files from the command line. The file tagging feature is
most often used when concurrent simulations are running in a common disk space, since it can

DAKOTA Users Manual - Interfaces 76

prevent conflicts between the simulations. An example specification offile_tag and
file_save is shown below:

interface, \
 application system, \
 analysis_driver = ’text_book’ \
 parameters_file = ’text_book.in’ \
 results_file = ’text_book.out’ \
 file_tag \
 file_save

Special case: When a user specifies names for the parameters and results files andfile_save
is used withoutfile_tag, untagged files are used in the function evaluation but are then
moved to tagged files after the function evaluation is complete in order to prevent overwriting
files for which afile_save request has been given.

5.7.3 UNIX Temporary Files

If parameters_file andresults_file are not specified by the user, then the default
mechanisms for file communication are UNIX temporary files (e.g.,/usr/tmp/aaaa08861).
These files have unique names as created by thetmpnam utility from the C standard library [44].
This uniqueness makes it a requirement for the user’s interface to retrieve the names of these files
from the command line. File tagging with evaluation number is unnecessary with UNIX
temporary files (since they are already unique); thus,file_tag requests will be ignored. A
file_save request will be honored, but it should be used with care since the temporary file
directory could easily become cluttered without the user noticing.

5.7.4 File Tagging for Analysis Drivers

When multiple analysis drivers are involved in performing a function evaluation with either the
system call or fork application interface, a secondary file tagging isautomatically used in order
to distinguish the results files used for the individual analyses. This applies to both the case of
user-specified names for the parameters and results files and the default UNIX temporary file
case. Examples for the former case were shown previously in Section 5.6.3 and Section 5.6.4.
The following examples demonstrate the latter UNIX temporary file case. Even though Unix
temporary files have unique names for a particular function evaluation, a tagging is still needed
to manage the individual contributions of the different analysis drivers to the response results.
For the system call interface, the syntax would be similar to the following:

(ifilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ; driver1 /
var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.1; driver2 /var/
tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.2; driver3 /var/tmp/
aaawkaOKZ /var/tmp/baaxkaOKZ.3; ofilter /var/tmp/
aaawkaOKZ /var/tmp/baaxkaOKZ)

and, for the fork interface, similar to:
blocking fork: ifilter /var/tmp/aaawkaOKZ /var/tmp/

baaxkaOKZ; driver1 /var/tmp/aaawkaOKZ /var/tmp/
baaxkaOKZ.1; driver2 /var/tmp/aaawkaOKZ /var/tmp/
baaxkaOKZ.2; driver3 /var/tmp/aaawkaOKZ /var/tmp/

DAKOTA Users Manual - Interfaces 77

baaxkaOKZ.3; ofilter /var/tmp/aaawkaOKZ /var/tmp/
baaxkaOKZ

The tagging of the results files with an analysis identifier is needed since each of the analysis
drivers is responsible for contributing a user-defined subset of the total response results for the
evaluation. If an output filter is not supplied, then DAKOTA will combine these portions through
a simple overlaying of the individual contributions (i.e., summing the results in/var/tmp/
baaxkaOKZ.1, /var/tmp/baaxkaOKZ.2, and/var/tmp/baaxkaOKZ.3). If this
simple approach is inadequate, then an output filter should be supplied to perform the
combination. This is the reason why the results file for the output filter does not use analysis
tagging; it is responsible for the results combination (i.e., combining/var/tmp/
baaxkaOKZ.1, /var/tmp/baaxkaOKZ.2, and/var/tmp/baaxkaOKZ.3 into/var/
tmp/baaxkaOKZ). In this case, DAKOTA will read only the results file from the output filter
(i.e.,/var/tmp/baaxkaOKZ) and interpret it as the total response set for the evaluation.

Parameters files are not currently tagged with an analysis identifier. This reflects the fact that
DAKOTA does not attempt to subdivide the requests in the active set vector for different analysis
portions. Rather, the total active set vector is passed to each analysis driver and the appropriate
subdivision of workmust be defined by the user. This allows the division of labor to be very
flexible. In some cases, this division might occur across response functions, with different
analysis drivers managing the data requests for different response functions. And in other cases,
the subdivision might occur within response functions, with different analysis drivers
contributing portions to each of the response functions. The only restriction is that each of the
analysis drivers must follow the response format dictated by the total active set vector. For
response data for which an analysis driver has no contribution, 0’s must be used as placeholders.

5.7.5 File Management Examples

The user provides a UNIX C-shell script or an executable file (named with the
analysis_driver specification) that accepts two command-line arguments: a parameters file
name and a responses file name. This script or executable file must read the parameters file and
write the appropriate data to the responses file. For example, the user creates an
analysis_driver named “driver”, selects “params.in” as theparameters_file name
and “results.out” as theresults_file name. If the default settings are used, i.e., no file
saving and no file tagging, then system calls with the following syntax will be spawned by
DAKOTA:

(driver params.in results.out)

And if the user includes aninput_filter named “ifilter” and anoutput_filter named
“ofilter”, then the system calls will appear as:

(ifilter params.in results.out; driver params.in
results.out; ofilter params.in results.out)

If file_tag is requested, system calls like the following will be used:
(driver params.in.1 results.out.1)

DAKOTA Users Manual - Interfaces 78

or with filter programs:
(ifilter params.in.1 results.out.1; driver params.in.1

results.out.1; ofilter params.in.1 results.out.1)

If UNIX temporary files are used (noparameters_file orresults_file specification),
system calls like the following will be used:

(driver /usr/tmp/aaaa20305 /usr/tmp/baaa20305)

or with filter programs:
(ifilter /usr/tmp/aaaa22490 usr/tmp/baaa22490; driver /usr/

tmp/aaaa22490 usr/tmp/baaa22490; ofilter /usr/tmp/
aaaa22490 /usr/tmp/baaa22490)

In the first of these three cases, the user need not retrieve the command line arguments since the
same file names will be employed each time. With the latter two cases, the user must retrieve the
command line arguments since the file names change on each evaluation. In the case of a UNIX
C-shell script, the two command line arguments are retrieved using$argv[1] and$argv[2]
(see [1]). In the case of a C or C++ program, command line arguments are retrieved usingargc
(argument count) andargv (argument vector) [44], and for Fortran 77, theiargc function
returns the argument count and thegetarg subroutine returns command line arguments.

If the files are to be removed and the method output setting is verbose, a file remove notification
will follow the system call echo, e.g.:

Removing /usr/tmp/aaaa20305 and /usr/tmp/baaa20305

If nonunique file names are to be saved (file_save is set without eitherfile_tag being set
or UNIX temporary files being used), then a verbose output setting will result in the following
echo:

Files with nonunique names will be tagged to enable
file_save:

Moving params.in to params.in.1
Moving results.out to results.out.1

5.8 Parameter to Response Mappings

Following are several examples of interface mappings as evidenced by the parameters files and
corresponding results files. A typical input file for 2 variables (n = 2) and 3 functions (m = 3)
using the standard parameters file format (see Section 4.6.1) is as follows:

2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2
1 ASV_1
1 ASV_2
1 ASV_3

DAKOTA Users Manual - Interfaces 79

where the numerical values are associated with their tags within “value tag” constructs. The
number of design variables (n) and the string “variables” are followed by the number of
functions (m) and the string “functions”, the values of the design variables and their tags, and
the active set vector (ASV) and its tags. The descriptive tags for the variables are always present
and they are either the descriptors specified in the user’s variables specification or are default
descriptors if none were provided. The length of the active set vector is equal to the number of
functions (m). In the case of an optimization data set with an objective function and two
nonlinear constraints (three response functions total), the first ASV value is associated with the
objective function and the remaining two are associated with the constraints (in whatever
consistent constraint order has been defined by the user).

For the APREPRO format option (see Section 4.6.2), the same set of data appears as follows:
{ DAKOTA_VARS = 2 }
{ DAKOTA_FNS = 3 }
{ cdv_1 = 1.5000000000e+00 }
{ cdv_2 = 1.5000000000e+00 }
{ ASV_1 = 1 }
{ ASV_2 = 1 }
{ ASV_3 = 1 }

where the numerical values are associated with their tags within “{ tag = value }”
constructs.

The user-supplied application interface, comprised of a simulator program or driver and
(optionally) filter programs, is responsible for reading the parameters file and creating a results
file that contains the response data requested in the ASV. This response data is written in the
format described in Section 6.2. Since the ASV contains all ones in this case, the response file
corresponding to the above input file would contain values for the three functions:

1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2

Since function tags are optional, the following would be equally acceptable:
1.2500000000e-01
1.5000000000e+00
1.7500000000e+00

For the same parameters with different ASV components,
2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2
3 ASV_1
3 ASV_2
3 ASV_3

the following response data is required:
1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2
[5.0000000000e-01 5.0000000000e-01]

DAKOTA Users Manual - Interfaces 80

[3.0000000000e+00 -5.0000000000e-01]
[0.0000000000e+00 3.0000000000e+00]

Here, we need not only the function values, but also each of their gradients. Another
modification to the ASV components yields the following parameters file,

2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2
2 ASV_1
0 ASV_2
2 ASV_3

for which the following results file is needed:
[5.0000000000e-01 5.0000000000e-01]
[0.0000000000e+00 3.0000000000e+00]

Here, we need gradients for functionsf andc2, but not forc1, presumably since this constraint
is inactive.

A full Newton optimizer might well make the following request:
2 variables 1 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2
7 ASV_1

for which the following results file (containing the objective function, its gradient vector, and its
Hessian matrix) is needed:

1.2500000000e-01 f
[5.0000000000e-01 5.0000000000e-01]
[[3.0000000000e+00 0.0000000000e+00 0.0000000000e+00

3.0000000000e+00]]

Lastly, a more advanced example might have multiple types of variables present:
11 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2
2 ddv_1
2 ddv_2
2 ddv_3
3.5000000000e+00 csv_1
3.5000000000e+00 csv_2
3.5000000000e+00 csv_3
3.5000000000e+00 csv_4
4 dsv_1
4 dsv_2
3 ASV_1
3 ASV_2
3 ASV_3

In this case, the required length of the gradient vectors depends upon the type of study being
performed (see Section 6.3). In an optimization problem, gradients are only needed with respect
to the continuous design variables, in which case the following response data would be
appropriate (ngrad=2):

DAKOTA Users Manual - Interfaces 81

1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2
[5.0000000000e-01 5.0000000000e-01]
[3.0000000000e+00 -5.0000000000e-01]
[0.0000000000e+00 3.0000000000e+00]

In a parameter study, however, no distinction is drawn between different types of continuous
variables, and gradients would be needed with respect to all continuous variables (ngrad=6),

e.g.:
1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2
[5.0000000000e-01 5.0000000000e-01 6.2500000000e+01

6.2500000000e+01 6.2500000000e+01 6.2500000000e+01]
[3.0000000000e+00 -5.0000000000e-01 0.0000000000e+00

0.0000000000e+00 0.0000000000e+00 0.0000000000e+00]
[0.0000000000e+00 3.0000000000e+00 0.0000000000e+00

0.0000000000e+00 0.0000000000e+00 0.0000000000e+00]

DAKOTA Users Manual - Response Data 82

6.0 Response Data

6.1 Overview

Theresponses specification in a DAKOTA input file specifies the types of data that can be
returned from an interface during DAKOTA’s execution. The specification includes the number
and type of response functions (objective functions, nonlinear constraints, least squares terms,
etc.) as well as availability of first and second derivatives (gradient vectors and Hessian matrices)
for these response functions.

This chapter will present a brief overview of the response data sets and their uses, as well as
cover some user issues relating to file formats and derivative vector and matrix sizing. For a
detailed description of responses section syntax and example specifications, refer to the
responses commands chapter in the DAKOTA Reference Manual [17].

6.1.1 Response function types

The types of response functions specified in theresponses specification depend on the
iterative technique specified in themethod specification:

• num_objective_functions, num_nonlinear_inequality_constraints,
num_nonlinear_equality_constraints: this is an optimization data set for use
with optimization methods from DOT, NPSOL, CONMIN, OPT++, and SGOPT.

• num_least_squares_terms: this is a least squares data set for use with Gauss-Newton
methods from OPT++.

• num_response_functions: this is a generic data set for use with uncertainty
quantification methods.

Certain general-purpose iterative techniques, such as parameter studies and design of
experiments methods, can be used with any of these data sets.

6.1.2 Gradient availability

Gradient availability for these response functions may be described by:

• no_gradients: gradient data is not needed.

• numerical_gradients: gradient data is needed and will be computed by finite
differences.

• analytic_gradients: gradient data is needed and is available directly from the
simulation code (finite differencing is not required).

• mixed_gradients: some gradient information is available directly from the simulation
whereas the rest will have to be finite differenced.

DAKOTA Users Manual - Response Data 83

The gradient specification also links back to the iterative method being employed. Gradient data
is commonly needed when the iterative study involves gradient-based optimization, uncertainty
quantification with analytic reliability methods, or local sensitivity analysis.

6.1.3 Hessian availability

Hessian availability for the response functions has a subset of the gradient availability
specifications:

• no_hessians: Hessian data is not needed.

• analytic_hessians: Hessian data is needed and is available directly from the simulation
code.

Numerical and mixed Hessians calculations are not currently supported. The Hessian
specification also links back to the iterative method in use, and use of analytic Hessian data
would commonly appear for gradient-based optimization using full Newton methods or, perhaps,
for local sensitivity analysis.

6.2 DAKOTA Results File Data Format

Application interfaces which employ system calls and forks to create separate simulation
processes must communicate with the simulation through the file system. This is accomplished
through the reading and writing of parameters and results files. DAKOTA uses its own format for
this data input/output. For the results file, only one format is supported (as compared to the two
parameters file formats described in Section 4.6).

After completion of a simulation, DAKOTA expects to read a file containing response data for
the current set of parameters and corresponding to the current set of function requests in the
active set vector. This response data must be in the following format:

Figure 6.1 Results file data format.

The first block of data is the function values that have been requested, followed by a block of
requested gradient data, followed by a block of requested Hessian data. Function data have no

Requested function

Requested gradient

Requested Hessian

<double> <fn_tag1>
<double> <fn_tag2>
...
<double> <fn_tagm>
[<double> <double> ... <double>]
[<double> <double> ... <double>]
...
[<double> <double> ... <double>]
[[<double> <double> ... <double>]]
[[<double> <double> ... <double>]]
...
[[<double> <double> ... <double>]]

values (optional tags)

vectors (no tags)

matrices (no tags)

DAKOTA Users Manual - Response Data 84

bracket delimiters and one character tag per function can beoptionally supplied. These tags are
not used by DAKOTA and are only included as an optional field for consistency with the
parameters file format and for backwards compatibility. The tags are rendered optional through
DAKOTA’s use of regular expression pattern matching to detect whether an upcoming field is
numerical data or a tag. If character tags are used, then they must be separated from data by
either white space or new line characters and there must not be any white space embedded within
a character tag (e.g., use “variable1” or “variable_1,” but not “variable 1”).

Function gradient vectors are delimited with single brackets [...ngrad-vector of doubles...]. Tags

are not used and must not be present. White space separating the brackets from the data is
optional.

Function Hessian matrices are delimited with double brackets [[... matrix of

doubles...]]. Data is listed by rows and can be run together or broken onto multiple lines for
readability. Tags are not used and must not be present. White space separating the brackets from
the data is optional, although white space must not appear between the double brackets.

If the amount of data in the file does not match the function request vector, DAKOTA will abort
with a response recovery format error message.

The format of the numeric fields may be floating point or scientific notation. In the latter case,
acceptable exponent characters are “E” or “e.” A common problem when dealing with Fortran
programs is that a C++ read of a numeric field using “D” or “d” as the exponent (i.e., a double
precision value from Fortran) may fail or be truncated. In this case, the “D” exponent characters
must be replaced either through modifications to the Fortran source or compiler flags or through
a separate post-processing step (e.g., using the UNIXsed utility).

6.3 Active Variables for Derivatives

An important question for proper management of both gradient and Hessian data is: if several
different types of variables are used,for which variables are response function derivatives

needed? That is, how isngrad determined? The answer is that it depends on the iterative method

in use. Methods determine what subset, or view, of the variables data is active in the iteration.
The set of variables that is active in the iteration is the same set of variables for which derivatives
are computed (see also Section 4.5).

Derivatives are never needed with respect to any discrete variables (since these derivatives do not
exist) and the types of continuous variables for which derivatives are needed depend on the type
of study being performed. For optimization and least squares problems, response function
derivatives are only needed with respect to thecontinuous design variables (ngrad=ncdv) since

this is the information used by the optimizer in computing a search direction. Similarly, for
nondeterministic analysis methods which use gradient and/or Hessian information, function
derivatives are only needed with respect to theuncertain variables (ngrad=nuv). And lastly,

parameter study methods which are cataloguing gradient and/or Hessian information do not draw

ngrad ngrad×

DAKOTA Users Manual - Response Data 85

a distinction among continuous variables; therefore, function derivatives must be supplied with
respect toall continuous variables that are specified (ngrad=ncdv+nuv+ncsv). This is generally

not as complicated as it sounds, since it is common for optimization and least squares problems
to only specify design variables and for nondeterministic analysis problems to only specify
uncertain variables. DAKOTA allows for the specification of additional types of variables in
these cases and DAKOTA will map these additional variables through the interface, but since
they will not be used in the internal computations of the iterator, the derivatives of the function
set with respect to the additional variables are not needed.

DAKOTA Users Manual - Output from DAKOTA 86

7.0 Output from DAKOTA

7.1 Overview of Output Formats

Given an emphasis on complex numerical simulation codes that run on massively parallel
supercomputers, DAKOTA’s output has been designed to provide a succinct, text-based reporting
of the progress of the iterations and function evaluations performed by an algorithm. In addition,
DAKOTA provides a tabular output format that is useful for data visualization with external tools
and a basic graphical output capability that is useful as a monitoring tool. Future work will
include the development of a graphical user interface with more extensive capabilities.

7.2 Standard Output

DAKOTA outputs basic information to “standard out” (i.e., the screen) for each function
evaluation, consisting of an evaluation number, parameter values, execution syntax, the active set
vector, and the response data set. To describe the standard output of DAKOTA, optimization of
the “container” problem (see Chapter 20 for problem formulation) is used as an example. The
input file for this example is shown in Figure 7.1. In this example, there is one equality
constraint, and DAKOTA’s finite difference algorithm is used to provide central difference
numerical gradients to the NPSOL optimizer.

Figure 7.1 DAKOTA input file for the “container” example problem.

A partial listing of the output for the container optimization example follows:

Running MPI executable in serial mode.
Writing new restart file dakota.rst

strategy, \
 single_method \
 graphics \
 tabular_graphics_data

method, \
 npsol_sqp

variables, \
 continuous_design = 2 \
 cdv_descriptor ’H’ ’D’ \
 cdv_initial_point 4.5 4.5 \
 cdv_lower_bounds 0.0 0.0

interface, \
 application system \
 analysis_driver = ’container’

responses, \
 num_objective_functions = 1 \
 num_nonlinear_equality_constraints = 1 \
 numerical_gradients \
 method_source dakota \
 interval_type central \
 fd_step_size = 0.001 \
 no_hessians

DAKOTA Users Manual - Output from DAKOTA 87

Constructing Single Method Strategy...
methodName = npsol_sqp
gradientType = numerical
hessianType = none
Numerical gradients using 0.1% central differences
to be calculated by the dakota finite difference routine.
Optimality Tolerance = 0.0001
NOTE: NPSOL’s convergence tolerance is not a relative tolerance.
 See pp. 21-22 of NPSOL manual for description.
Derivative Level = 3

>>>>> Running Single Method Strategy.

>>>>> Running npsol_sqp iterator.

 NPSOL --- Version 4.06-2 Nov 1992
 ==

Begin Dakota finite difference routine

>>>>> Initial map for non-finite-differenced portion of response:

Begin Function Evaluation 1

Parameters for function evaluation 1:
 4.5000000000e+00 H
 4.5000000000e+00 D

(container /var/tmp/aaa0TaaeA /var/tmp/baa1TaaeA)

Active response data for function evaluation 1:
Active set vector = { 1 1 }
 1.0713145108e+02 obj_fn
 8.0444076396e+00 nln_eq_con1

>>>>> Dakota finite difference evaluation for x[1] + h:

Begin Function Evaluation 2

Parameters for function evaluation 2:
 4.5045000000e+00 H
 4.5000000000e+00 D

(container /var/tmp/caa2TaaeA /var/tmp/daa3TaaeA)

Active response data for function evaluation 2:
Active set vector = { 1 1 }
 1.0719761302e+02 obj_fn
 8.1159770472e+00 nln_eq_con1

>>>>> Dakota finite difference evaluation for x[1] - h:

Begin Function Evaluation 3

Parameters for function evaluation 3:
 4.4955000000e+00 H
 4.5000000000e+00 D

(container /var/tmp/eaa4TaaeA /var/tmp/faa5TaaeA)

Active response data for function evaluation 3:

DAKOTA Users Manual - Output from DAKOTA 88

Active set vector = { 1 1 }
 1.0706528914e+02 obj_fn
 7.9728382320e+00 nln_eq_con1

>>>>> Dakota finite difference evaluation for x[2] + h:

Begin Function Evaluation 4

Parameters for function evaluation 4:
 4.5000000000e+00 H
 4.5045000000e+00 D

(container /var/tmp/gaa6TaaeA /var/tmp/haa7TaaeA)

Active response data for function evaluation 4:
Active set vector = { 1 1 }
 1.0727959301e+02 obj_fn
 8.1876180243e+00 nln_eq_con1

>>>>> Dakota finite difference evaluation for x[2] - h:

Begin Function Evaluation 5

Parameters for function evaluation 5:
 4.5000000000e+00 H
 4.4955000000e+00 D

(container /var/tmp/iaa8TaaeA /var/tmp/jaa9TaaeA)

Active response data for function evaluation 5:
Active set vector = { 1 1 }
 1.0698339109e+02 obj_fn
 7.9013403937e+00 nln_eq_con1

>>>>> Total response returned to iterator:

Active set vector = { 3 3 }
 1.0713145108e+02 obj_fn
 8.0444076396e+00 nln_eq_con1
 [1.4702653619e+01 3.2911324639e+01] obj_fn gradient
 [1.5904312809e+01 3.1808625618e+01] nln_eq_con1 gradient

 Maj Mnr Step Fun Merit function Violtn Norm gZ nZ Penalty Conv
 0 1 0.0E+00 1 9.90366719E+01 8.0E+00 1.6E+00 1 0.0E+00 F FF

<<omission>>

>>>>> Dakota finite difference evaluation for x[2] - h:

Begin Function Evaluation 40

Parameters for function evaluation 40:
 4.9873894231e+00 H
 4.0230575428e+00 D

(container /var/tmp/adacVaaeA /var/tmp/bdadVaaeA)

Active response data for function evaluation 40:
Active set vector = { 1 1 }
 9.8301287596e+01 obj_fn
 -1.2698647534e-01 nln_eq_con1

DAKOTA Users Manual - Output from DAKOTA 89

>>>>> Total response returned to iterator:

Active set vector = { 3 3 }
 9.8432498115e+01 obj_fn
 -1.2072405298e-09 nln_eq_con1
 [1.3157517799e+01 3.2590159401e+01] obj_fn gradient
 [1.2737124438e+01 3.1548877386e+01] nln_eq_con1 gradient

 7 1 1.0E+00 8 9.84324981E+01 1.2E-09 7.9E-11 1 1.4E+00 T TT

 Exit NPSOL - Optimal solution found.

 Final nonlinear objective value = 98.43250

NPSOL exits with INFORM code = 0 (see p. 8 of NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
 for complete NPSOL iteration history.

<<<<< Iterator npsol_sqp completed.
<<<<< Function evaluation summary: 40 total (40 new, 0 duplicate)
<<<<< Best parameters =
 4.9873894231e+00 H
 4.0270846274e+00 D
<<<<< Best objective function =
 9.8432498115e+01
<<<<< Best constraint values =
 -1.2072405298e-09
<<<<< Best data captured at function evaluation 36
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
 Total CPU = 1.71 [parent = 0.3, child = 1.41]
 Total wall clock = 8.952

The first block of lines provide a report on the DAKOTA configuration and settings. The lines
that follow, down to the line “Exit NPSOL - Optimal solution found”, contain
information about the function evaluations that have been requested by NPSOL and performed
by DAKOTA. Evaluations 6 through 39 have been omitted from the listing for brevity.

Following the line “Begin Function Evaluation 1”, the initial values of the design
variables and the initial objective and constraint function evaluations are listed. The values of the
design variables are labeled with the tagsH andD, respectively, and the values of the objective
function and volume constraint are labeled with the tagsobj_fn andnln_eq_con1,
respectively. Note that the initial design parameters are infeasible since the equality constraint is
violated (≠ 0). However, the numerical optimizer has the capability to find a design that is both
feasible and optimal for this example. Between the design variables and response values, the
content of the system call to the simulator is displayed as “(container /var/tmp/
aaa0TaaeA /var/tmp/baa1TaaeA)”, with container being the name of the simulator
and/var/tmp/aaa0TaaeA and/var/tmp/baa1TaaeA being the names of the
parameters and results files, respectively.

Just preceding the output of the objective and constraint function values is the line “Active
set vector ={1 1}”. The active set vector indicates the types of data that are required
from the simulator for the objective and constraint functions, and values of “1” indicate that the

DAKOTA Users Manual - Output from DAKOTA 90

simulator must return values for these functions (gradient and Hessian data are not required). For
more information on the active set vector, see Section 4.7.

Since finite difference gradients have been specified, DAKOTA computes their values by making
additional function evaluation requests to the simulator at perturbed parameter values. Examples
of the gradient-related function evaluations have been included in the sample output, beginning
with the line that reads “>>>>> Dakota finite difference evaluation for
x[1] + h:”. The resulting finite difference gradients are listed after function evaluation 5
beginning with the line “>>>>> Total response returned to iterator:”. Here,
another active set vector is displayed in the DAKOTA output file. The line “Active set
vector = { 3 3 }” indicates that the total response resulting from the finite differencing
contains function values and gradients.

The final lines of the DAKOTA output, beginning with the line “<<<<< Iterator
npsol_sqp completed”, summarize the results of the optimization study. The best values
of the optimization parameters, objective function, and volume constraint are presented along
with the function evaluation number where they occurred, total function evaluation counts, and a
timing summary. In the end, the objective function has been minimized and the equality
constraint has been satisfied (driven to zero within the constraint tolerance).

The DAKOTA results are intermixed with iteration information from the NPSOL library. The
lines with the heading “Maj Mnr Step Fun Merit function Violtn
Norm gZ nZ Penalty Conv” come from Fortran write statements within NPSOL. The
output is mixed since both DAKOTA and NPSOL are writing to the same standard output stream.
The relative locations of these output contributions can vary depending on the specifics of output
buffering and flushing on a particular platform and depending on whether or not the standard
output is being redirected to a file. In some cases, output from the optimization library may
appear on each iteration (as in this example), and in other cases, it may appear at the end of the
DAKOTA output. Finally, a more detailed summary of the NPSOL iterations is contained in
either filefort.9 or fileftn09, as specified in the DAKOTA output.

7.3 Tabular Output Data

DAKOTA has the capability to print the iteration history in tabular form to a file. The keyword
tabular_graphics_data needs to be included in thestrategy specification (see Figure
7.1). The primary intent of this capability is to facilitate the transfer of DAKOTA’s iteration
history data to an external mathematical analysis and/or graphics plotting package. Any
evaluations from DAKOTA’s internal finite differencing are suppressed, which leads to better
data visualizations. This suppression of lower level data is consistent with the data that is sent to
the graphics windows, as described in Section 7.4. If this data suppression is undesirable, Section
18.2.3 describes an approach where every function evaluation, even the ones from finite
differencing, can be saved to a file in tabular format.

The default file name for the tabular output data is “dakota_tabular.dat” and the output
from the “container” optimization problem is shown in Figure 7.2. This file contains the

DAKOTA Users Manual - Output from DAKOTA 91

complete history of data requests from NPSOL (8 requests map into a total of 40 function
evaluations when including the central finite differencing). The first column is the data request
number, the second and third columns are the design parameter values (labeled in the example as
“H” and “D”), the fourth column is the objective function (labeled “obj_fn”), and the fifth
column is the nonlinear equality constraint (labeled “nln_eq_con1”).

Figure 7.2 DAKOTA’s tabular output file showing the iteration history of the

“container” optimization problem.

7.4 Graphics Output

Graphics capabilities are available for monitoring the progress of an iterative study. The graphics
option is invoked by adding thegraphics flag in the strategy specification of the DAKOTA
input file (see Figure 7.1). The graphics display the values of each response function (e.g.,
objective and constraint functions) and each parameter for the function evaluations in the study.
As for the tabular output described in Section 7.3, internal finite difference evaluations are
suppressed in order to omit this clutter from the graphics. Figure 7.3 shows the optimization
iteration history for the container example.

If DAKOTA is executed on a remote machine, the DISPLAY variable in the user’s UNIX
environment [31] may need to be set to the local machine in order to display the graphics
window. The scroll bars which are located on each graph below the x-axis and next to the y-axis
may be operated by dragging on the bars or pressing the arrows, both of which result in
expansion/contraction of the axis scale. Clicking on the options button (“Opt”) allows the user to
plot the values of the vertical axis using a logarithmic scale so long as all of these values are
greater than zero.

% eval_id H D obj_fn nln_eq_con1
 1 4.5 4.5 107.1314511 8.04440764
 2 5.801246882 3.596476363 94.33737399 -4.591036449
 3 5.197920021 3.923577478 97.77972141 -0.6780884643
 4 4.932877133 4.044776217 98.28930567 -0.1410680155
 5 4.989328734 4.026133158 98.4270019 -0.005324669423
 6 4.987494493 4.027041977 98.43249058 -7.305673456e-06
 7 4.987391669 4.02708372 98.4324981 -1.981307918e-08
 8 4.987389423 4.027084627 98.43249811 -1.20724053e-09

DAKOTA Users Manual - Output from DAKOTA 92

Figure 7.3 DAKOTA output for “container” problem showing history of an

objective function, an equality constraint, and two variables.

In addition to these two-dimensional iteration history plots, three-dimensional surface plots can
be generated when using response surface methods in combination with thegraphics
keyword. This feature is currently available only if there are two parameters in the problem. One
common use of response surface methods is in thesurrogate_based_opt strategy (see
Section 13.7), for which a sample specification follows:

strategy, \
 surrogate_based_opt \
 graphics \
 opt_method=’NLP’ \
 trust_region \
 initial_size = 0.10 \
 contraction_factor = 0.50 \
 expansion_factor = 1.50

When DAKOTA is executed, a 3-D surface plot is automatically spawned (Figure 7.4 shows an
example from optimization of the Rosenbrock problem). The creation of the 3-D surface plot
pauses the advance of the optimization algorithm. To continue progress, click the right mouse
button or hit return while the mouse cursor is in the 3D graphics window.

DAKOTA Users Manual - Output from DAKOTA 93

Figure 7.4 An example of the 3-D surface plotting that is available for

surrogate-based optimization with two design parameters.

7.5 Error Messages Output

A variety of error messages are printed by DAKOTA in the event that an error is detected in the
input specification. Some of the more common input errors, and the associated error messages,
are described below.

One common mistake is the omission of the continuation symbol “\” when continuing the
specifications in a keyword block across multiple lines. When a continuation symbol is omitted,
the keyword block is truncated at the point of the omission (by the newline that is not escaped).
If this truncation causes loss of a required input, then an error message similar to the following
will result:

Error: Expected required identifier for keyword

DAKOTA Users Manual - Output from DAKOTA 94

 ‘responses’.

If the truncation results in omission of inputs that are optional, then the parser will still detect a
syntax error in the trailing specification that has been disconnected from its keyword block. This
error will result in a message similar to the following:

Parser detected syntax error at line 10. Unrecognized
statement.

 Did you forget to escape a newline?

Incorrectly spelled specifications will result in error messages of the form:
Parser detected syntax error at line 35. Unrecognized

statement.

The input parser catches syntax errors, but not logic errors. The fact that certain input
combinations are erroneous must be detected after parsing, at object construction time. For
example, if ano_gradients specification for a response data set is combined with selection
of a gradient-based optimization method, then this error must be detected during set-up of the
optimizer (see last two lines of the text listing):

Running MPI executable in serial mode.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
methodName = dot_mmfd
gradientType = none
hessianType = none
DOT Method = 1
DOT optimization type = minimize
DOT print control = 7
Error: gradientType = none is invalid with DOT.
Please select numerical, analytic, or mixed gradients.

Another common mistake involves a mismatch between the amount of data expected on a
function evaluation and the data returned by the user’s simulation code or driver. The available
response data is specified in the responses keyword block, and the subset of this data needed for
a particular evaluation is managed by the active set vector. For example, if DAKOTA expects
function values and gradients to be returned (as indicated by an active set vector containing 3’s),
but the user’s simulation code only returns function values, then the following error message is
generated:

At EOF: insufficient data for functionGradient 1

Unfortunately, descriptive error messages are not available for all possible failure modes of
DAKOTA. If you encounter core dumps, segmentation faults, or other failures, please report the
problem to dakota@sandia.gov.

DAKOTA Users Manual - Parameter Study Capabilities 95

8.0 Parameter Study Capabilities

8.1 Overview

Parameter study methods in the DAKOTA toolkit involve the computation of response data sets
at a selection of points in the parameter space. These response data sets are not linked to any
specific interpretation, so they may consist of any allowable specification from the responses
keyword block, i.e., objective and constraint functions, least squares terms, or generic response
functions. This allows the use of parameter studies in direct coordination with optimization, least
squares, and uncertainty quantification studies without significant modification to the input file.
In addition, response data sets are not restricted to function values only; gradients and Hessians
of the response functions can also be catalogued by the parameter study. This allows for several
different approaches to “sensitivity analysis”: (1) the variation of function values over parameter
ranges provides a global assessment as to the sensitivity of the functions to the parameters, (2)
derivative information can be computed numerically, provided analytically by the simulator, or
both (mixed gradients) in directly determining local sensitivity information at a point in
parameter space, and (3) the global and local assessments can be combined to investigate the
variation of derivative quantities through the parameter space by computing sensitivity
information at multiple points.

In addition to sensitivity analysis applications, parameter studies can be used for investigating
nonsmoothness in simulation response variations (so that models can be refined or finite
difference step sizes can be selected for computing numerical gradients), interrogating problem
areas in the parameter space, or performing simulation code verification (verifying simulation
robustness) through parameter ranges of interest. A parameter study can also be used in
coordination with optimization methods as either a pre-processor (to identify a good starting
point) or a post-processor (for post-optimality analysis).

Parameter study methods will iterate any combination of continuous design, uncertain, and
continuous state variables into any set of responses (any function, gradient, and Hessian
definition). Parameter studies draw no distinction between the different types of variables and the
different types of response functions. They simply pass all of the variables defined in the
variables specification into the interface, from which they expect to retrieve all of the responses
defined in the responses specification. As described in Section 6.3, when gradient and/or Hessian
information is being catalogued in the parameter study, it is assumed that derivative components
will be computed with respect to all of thecontinuous variables (continuous design, uncertain,
and continuous state variables) specified.

8.1.1 Initial Values

The vector and centered parameter studies use the initial values of the variables from the
variables keyword block as the starting point and the central point of the parameter studies,
respectively. In the case of design variables, theinitial_point is used. In the case of state

DAKOTA Users Manual - Parameter Study Capabilities 96

variables, theinitial_state is used. In the case of uncertain variables, initial values for
variables with normal, lognormal, uniform, loguniform, weibull, and histogram probability
distributions are the mean, mean, mid-point between bounds, mid-point between bounds, beta
parameter, and 0.0, respectively. These starting values for design, uncertain, and state variables
are referenced repeatedly in the following sections using the identifier “Initial Values.”

8.2 Vector Parameter Study

The vector parameter study computes response data sets at selected intervals along a one-
dimensional vector in parameter space. This capability encompasses both single-coordinate
parameter studies (to study the effect of a single variable on a response set) as well as multiple
coordinate vector studies (to investigate the response variations along some n-dimensional
vector). In addition to these uses, this capability is used recursively within the implementations
of the centered and multidimensional parameter studies.

DAKOTA’s vector parameter study includes three possible specification formulations which are
used in conjunction with the Initial Values (see Section 8.1.1) to define the vector and steps of
the parameter study:

final_point (vector of reals) and step_length (real)
final_point (vector of reals) and num_steps (integer)
step_vector (vector of reals) and num_steps (integer)

In each of these three cases, the Initial Values are used as the parameter study starting point and
the specification selected from the three above defines the orientation and length of the vector as
well as the increments to be evaluated along the vector. Several examples starting from Initial
Values of 1.0, 1.0, 1.0 are included below:

final_point = 1.0, 2.0, 1.0 andstep_length = .4:
Parameters for function evaluation 1:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 2:
 1.0000000000e+00 d1
 1.4000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 3:
 1.0000000000e+00 d1
 1.8000000000e+00 d2
 1.0000000000e+00 d3

final_point = 2.0, 2.0, 2.0 andstep_length = .4:
Parameters for function evaluation 1:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 2:
 1.2309401077e+00 d1
 1.2309401077e+00 d2

DAKOTA Users Manual - Parameter Study Capabilities 97

 1.2309401077e+00 d3
Parameters for function evaluation 3:
 1.4618802154e+00 d1
 1.4618802154e+00 d2
 1.4618802154e+00 d3
Parameters for function evaluation 4:
 1.6928203230e+00 d1
 1.6928203230e+00 d2
 1.6928203230e+00 d3
Parameters for function evaluation 5:
 1.9237604307e+00 d1
 1.9237604307e+00 d2
 1.9237604307e+00 d3

final_point = 2.0, 2.0, 2.0 andnum_steps = 4:
Parameters for function evaluation 1:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 2:
 1.2500000000e+00 d1
 1.2500000000e+00 d2
 1.2500000000e+00 d3
Parameters for function evaluation 3:
 1.5000000000e+00 d1
 1.5000000000e+00 d2
 1.5000000000e+00 d3
Parameters for function evaluation 4:
 1.7500000000e+00 d1
 1.7500000000e+00 d2
 1.7500000000e+00 d3
Parameters for function evaluation 5:
 2.0000000000e+00 d1
 2.0000000000e+00 d2
 2.0000000000e+00 d3

step_vector = .1, .1, .1 andnum_steps = 4:
Parameters for function evaluation 1:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 2:
 1.1000000000e+00 d1
 1.1000000000e+00 d2
 1.1000000000e+00 d3
Parameters for function evaluation 3:
 1.2000000000e+00 d1
 1.2000000000e+00 d2
 1.2000000000e+00 d3
Parameters for function evaluation 4:
 1.3000000000e+00 d1
 1.3000000000e+00 d2
 1.3000000000e+00 d3
Parameters for function evaluation 5:

DAKOTA Users Manual - Parameter Study Capabilities 98

 1.4000000000e+00 d1
 1.4000000000e+00 d2
 1.4000000000e+00 d3

8.3 List Parameter Study

The list parameter study computes response data sets at selected points in parameter space. These
points are explicitly specified by the user and are not confined to lie on any line or surface. Thus,
this parameter study provides a general facility that supports the case where the desired set of
points to evaluate does not fit the prescribed structure of the vector, centered, or
multidimensional parameter studies.

The user input consists of alist_of_points specification which lists the requested
parameter sets in succession. The list parameter study simply performs a simulation for the first
parameter set (the firstn entries in the list), followed by a simulation for the next parameter set
(the nextn entries), and so on, until the list of points has been exhausted. Since the Initial Values
will not be used, they need not be specified.

An example specification which would result in the same parameter sets as in the first example in
Section 8.2 would be:

list_of_points = 1.0, 1.0, 1.0, 1.0, 1.4, 1.0, 1.0, 1.8, 1.0

8.4 Centered Parameter Study

The centered parameter study executes multiple vector parameter studies, one per parameter,
centered about the specified Initial Values. This is useful for investigation of function contours in
the vicinity of a specific point. For example, after computing an optimum design, this capability
could be used for post-optimality analysis in verifying that the computed solution is actually at a
minimum or constraint boundary and in investigating the shape of this minimum or constraint
boundary.

This method requirespercent_delta (real) anddeltas_per_variable (integer)
specifications, where the former specifies the size of the increments in percent and the latter
specifies the number of increments per variable in each of the plus and minus directions.

For example, with Initial Values of 1.0, 1.0, apercent_delta of 10.0, and a
deltas_per_variable of 2, five function evaluations (two minus deltas, the center point,
and two plus deltas) would be performed per variable:

Parameters for function evaluation 1:
 8.0000000000e-01 d1
 1.0000000000e+00 d2
Parameters for function evaluation 2:
 9.0000000000e-01 d1
 1.0000000000e+00 d2
Parameters for function evaluation 3:
 1.0000000000e+00 d1
 1.0000000000e+00 d2

DAKOTA Users Manual - Parameter Study Capabilities 99

Parameters for function evaluation 4:
 1.1000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 5:
 1.2000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 6:
 1.0000000000e+00 d1
 8.0000000000e-01 d2
Parameters for function evaluation 7:
 1.0000000000e+00 d1
 9.0000000000e-01 d2
Parameters for function evaluation 8:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 9:
 1.0000000000e+00 d1
 1.1000000000e+00 d2
Parameters for function evaluation 10:
 1.0000000000e+00 d1
 1.2000000000e+00 d2

This set of points in parameter space is depicted in Figure 8.1.

Figure 8.1 Example centered parameter study.

If the Initial Values for the centered parameter study are very small or equal to zero, the study
will substitute a default step size. This is necessary due to the relative nature of the
percent_delta specification.

8.5 Multidimensional Parameter Study

The multidimensional parameter study computes response data sets for an n-dimensional
hypergrid of points. Each continuous variable is partitioned into equally spaced intervals between

d1

d2

1

0
1

DAKOTA Users Manual - Parameter Study Capabilities 100

its upper and lower bounds, and each combination of the values defined by these partitions is
evaluated. The number of function evaluations performed in the study is:

(1)

The partitions information is specified using thepartitions specification, which provides an

integer list of the number of partitions for each continuous variable (i.e.,).

Since the Initial Values will not be used, they need not be specified.

In a two variable example problem with d1∈ [0,2] and d2∈ [0,3] (as defined by the upper and
lower bounds specified in the variables specification) and withpartitions = 2,3, the
interval [0,2] is divided into two equal-sized partitions and the interval [0,3] is divided into three
equal-sized partitions. This two-dimensional grid, shown in Figure 8.2,

Figure 8.2 Example multidimensional parameter study

 would result in the following twelve function evaluations:
Parameters for function evaluation 1:
 0.0000000000e+00 d1
 0.0000000000e+00 d2
Parameters for function evaluation 2:
 1.0000000000e+00 d1
 0.0000000000e+00 d2
Parameters for function evaluation 3:
 2.0000000000e+00 d1
 0.0000000000e+00 d2
Parameters for function evaluation 4:

partitionsi 1+()
i 1=

n

∏

partitionsi

d1

d2

1

2

3

0 1 2

3 partitions

2 partitions

DAKOTA Users Manual - Parameter Study Capabilities 101

 0.0000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 5:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 6:
 2.0000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 7:
 0.0000000000e+00 d1
 2.0000000000e+00 d2
Parameters for function evaluation 8:
 1.0000000000e+00 d1
 2.0000000000e+00 d2
Parameters for function evaluation 9:
 2.0000000000e+00 d1
 2.0000000000e+00 d2
Parameters for function evaluation 10:
 0.0000000000e+00 d1
 3.0000000000e+00 d2
Parameters for function evaluation 11:
 1.0000000000e+00 d1
 3.0000000000e+00 d2
Parameters for function evaluation 12:
 2.0000000000e+00 d1
 3.0000000000e+00 d2

DAKOTA Users Manual - Sampling Methods and Design of Experiments 102

9.0 Sampling Methods and Design of Experiments

9.1 Overview

DAKOTA contains two software packages that can be used for sampling and design of
experiments: LHS (Latin hypercube sampling) and DDACE (distributed design and analysis for
computer experiments). LHS is a general-purpose sampling package developed at Sandia that has
been used by the DOE national labs for several decades. A recently updated Fortran 90 version is
available through DAKOTA [65]. DDACE is a more recent package for computer experiments
that is under development by staff at Sandia Labs [60]. Currently, it is slated for public release in
the first half of 2002. Thus, it is not currently included in the public distributions of DAKOTA.

Like parameter studies (see Chapter 8), these techniques are useful for characterizing the
behavior of the response functions of interest through the parameter ranges of interest. In
addition to direct interrogation and visualization of the sampling results, a number of techniques
have been developed for assessing the parameters which are most influential in the observed
variability in the response functions. One example of this is the well-known technique of scatter
plots, in which the set of samples is projected down and plotted against one parameter
dimension, for each parameter in turn. Scatter plots with a uniformly distributed cloud of points
indicate parameters with little influence on the results, whereas scatter plots with a defined shape
to the cloud indicate parameters which are more significant. Related techniques include analysis
of variance (ANOVA) [51] and primary effects analysis, in which the parameters which have the
greatest influence on the results are identified from sampling results.

9.2 LHS

The Latin hypercube sampling method was developed by McKay, et al. [46] as an alternative to
random sampling. Under certain monotonicity conditions associated with the function to be
sampled, Latin hypercube sampling provides a more accurate estimate of the mean value than
does random sampling. That is, given an equal number of samples, the LHS estimate of the mean
will have less variance than the mean value obtained through random sampling.

Figure 9.1 demonstrates Latin hypercube sampling on a two-variable parameter space. Here, the
range of both parameters, x1 and x2, is [0,1]. Also, for this example both x1 and x2 have uniform

statistical distributions. For Latin hypercube sampling, the range of each parameter is divided
into p “bins” of equal probability. For parameters with uniform distributions, this corresponds to

partitions of equal size. Forn design parameters, this partitioning yields a total ofpn bins in the
parameter space. Next,p samples are randomly selected in the parameter space, with the
following restrictions: (a) each sample is randomly placed inside a bin, and (b) for all one-
dimensional projections of thep samples and bins, there will be one and only one sample in each
bin. In a two-dimensional example such as that shown in Figure 9.1, these LHS rules guarantee
that only one bin can be selected in each row and column. Forp=4, there are four partitions in

DAKOTA Users Manual - Sampling Methods and Design of Experiments 103

both x1 and x2. This gives a total of 16 bins, of which four will be chosen according to the

criteria described above. Note that there is more than one possible arrangement of bins that meet
the LHS criteria. The dots in Figure 9.1 represent the four sample sites in this example, where
each sample is randomly located in its bin. There is no restriction on the number of bins in the
range of each parameter, however, all parameters must have the same number of bins.

The actual algorithm for generating Latin hypercube samples is more complex than indicated by
the description given above. For example, the Latin hypercube sampling method implemented in
the LHS code [65] takes into account a user-specified correlation structure when selecting the
sample sites. For more details on the implementation of the LHS algorithm, see Reference [65].

The LHS package can be used in design of experiments mode by including the
all_variables flag in the method specification section of the DAKOTA input file. Then,
instead of iterating on only the uncertain variables (as described in Chapter 10), the LHS package
will sample on all of the continuous variables, where continuous design and continuous state
variables are treated as having uniform probability distributions within their upper and lower
bounds and any uncertain variables are sampled within their specified probability distributions.

9.3 DDACE Background

The DACE package includes both stochastic sampling methods and classical design of
experiments methods [60]. The stochastic methods are Monte Carlo (random) sampling, Latin

Figure 9.1 An example of Latin hypercube sampling with four bins

in design parameters x1 and x2. The dots are the sample

sites.

x1

x2

0 1
0

1

DAKOTA Users Manual - Sampling Methods and Design of Experiments 104

hypercube sampling, and orthogonal array sampling [53]. DDACE currently supports variables
that have either Gaussian or uniform distributions. The classical design of experiments methods
in DDACE are central composite design (CCD) and Box-Behnken (BB) sampling. A grid-based
sampling method also is available.

The sampling methods in DDACE can be used alone or in conjunction with other methods. For
example, DDACE sampling can be used with both the surrogate-based optimization strategy and
the optimization under uncertainty strategy. See Figure 13.6 for an example of how the DDACE
settings are used in DAKOTA.

Note: DDACE is currently in review for release under a GNU LGPL license. DDACE should be
available to the public in the first half of 2002. Once it is released to the public, it will be
included with DAKOTA.

More information on DDACE is available on the web at: http://csmr.ca.sandia.gov/projects/ddace

DAKOTA Users Manual - Nondeterministic Analysis and Uncertainty Quantification 105

10.0 Nondeterministic Analysis and Uncertainty Quantification

10.1 Overview

DAKOTA contains the DAKOTA/UQ software package for performing nondeterministic
analysis. The DAKOTA/UQ package is tightly-woven into the core DAKOTA software. The
methods in DAKOTA/UQ have been developed by a group of researchers at Sandia Labs, in
conjunction with collaborators in academia [27] [28]. In addition, future extensions to the
DDACE package will make it applicable to general UQ problems, which will augment the
DAKOTA/UQ capabilities.

Uncertainty quantification methods (also referred to as nondeterministic analysis methods) in the
DAKOTA/UQ system involve the computation of probabilistic information about response
functions based on sets of simulations taken from the specified probability distributions for
uncertain parameters. Thus them functions in the DAKOTA response data set are interpreted asm
general response functions by the DAKOTA/UQ methods (with no distinction between the
functions as for objective and constraint functions in the case of optimization).

Within the variables specification, uncertain variable descriptions are employed to define the
parameter probability distributions (see Section 4.3). The distribution types include: normal
(Gaussian), lognormal, uniform, loguniform, weibull, and user-defined histogram. All uncertain
variables are treated as continuous variables in DAKOTA. Thus, when gradient and/or Hessian
information is used in an uncertainty assessment, it is assumed that derivative components will
be computed with respect to theuncertain variables.

10.2 Sampling Methods

Sampling techniques are selected using thenond_sampling method selection. This method
generates sets of samples according to the probability distributions of the uncertain variables and
maps them into corresponding sets of response functions, where the number of samples is
specified by thesamples integer specification. Means and standard deviations of the response
functions are computed, and probability of occurrence is assessed by comparing the response
results against a set of user-supplied thresholds from theresponse_thresholds
specification.

Currently, traditional Monte Carlo (MC) and Latin hypercube sampling (LHS) are supported by
DAKOTA and are chosen by specifyingsample_type asrandom or lhs. In Monte Carlo
sampling, the samples are selected randomly according to the user-specified probability
distributions. Latin hypercube sampling is a stratified sampling technique for which the range of

each uncertain variable is divided into segments of equal probability, where is the

number of samples requested. The relative lengths of the segments are determined by the nature
of the specified probability distribution (e.g., uniform has segments of equal width, normal has

N s N s

DAKOTA Users Manual - Nondeterministic Analysis and Uncertainty Quantification 106

small segments near the mean and larger segments in the tails). For each of the uncertain
variables, a sample is selected randomly from each of these equal probability segments. These

values for each of the individual parameters are then combined in a shuffling operation to

create a set of parameter vectors with a specified correlation structure. A feature of the

resulting sample set is that every row and column in the hypercube of partitions has exactly one
sample. Since the total number of samples is exactly equal to the number of partitions used for
each uncertain variable, an arbitrary number of desired samples is easily accommodated (as
compared to less flexible approaches in which the total number of samples is a product or
exponential function of the number of intervals for each variable, i.e., many classical design of
experiments methods).

Advantages of sampling-based methods include their relatively simple implementation and their
independence from the scientific disciplines involved in the analysis. The main drawback of
these techniques is the large number of function evaluations needed to generate converged
statistics, which can render such an analysis computationally very expensive, if not intractable,
for real-world engineering applications. LHS techniques, in general, require fewer samples than
traditional Monte Carlo for the same accuracy in statistics, but they still can be prohibitively
expensive. For further information on the method and its relationship to other sampling
techniques, one is referred to the works by McKay, et al. [46], Iman and Shortencarier [43], and
Helton and Davis [41].

10.2.1 Uncertainty Quantification Example using Sampling Methods

The following response functions from the Textbook example problem (see Chapter 20):

(1)

(2)

(3)

will be used to demonstrate the application of sampling methods for uncertainty quantification

where it is assumed that and are uniform uncertain variables on the interval . The

DAKOTA input file for this problem is shown in Figure 10.1. The number of samples to perform
is controlled with thesamples specification, the type of sampling algorithm to use is controlled
with thesample_type specification, the threshold values used for computing statistics on the
response functions is specified with theresponse_thresholds input, and theseed
specification controls the sequence of the pseudo-random numbers generated by the sampling
algorithms. The input samples generated are shown in Figure 10.2 for the case where

 and for bothrandom (o) andlhs (+) sample types.

N s

N s

f x1 1–()4 x2 1–()4+=

c1 x1
2 1

2
---x2–=

c2 x2
2 1

2
---x1–=

x1 x2 0 1,[]

samples 5= samples 10=

DAKOTA Users Manual - Nondeterministic Analysis and Uncertainty Quantification 107

Latin hypercube sampling ensures full coverage of the range of the input variables, which is
often a problem with Monte Carlo sampling when the number of samples is small. For example,

in the case of , random sampling misses the regions and

. For the case where andsample_type = lhs, a graphical

history of the values of the response functions and uncertain variables is shown in Figure 10.3
and the computed statistics for the response functions are shown in Figure 10.4.

method, \
 nond_sampling, \
 samples = 5 seed = 1 \
 response_thresholds = 0.5 0.5 0.5 \
sample_type random \
 sample_type lhs

variables, \
Two uncertain uniform random variables on the interval [0,1] \
 uniform_uncertain = 2 \
 uuv_dist_lower_bounds = 0 0 \
 uuv_dist_upper_bounds = 1 1 \
 uuv_descriptor = ’x1’ ’x2’

interface, \
 application system asynch evaluation_concurrency = 5 \
 analysis_driver= ’text_book’

responses, \
 num_response_functions = 3 \
 no_gradients \
 no_hessians

Figure 10.1 DAKOTA input file for UQ example using LHS sampling.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x2

samples 10=

Figure 10.2 Distribution of input sample points for random (o) and lhs (+)

sampling for samples=5 and 10.

samples 5=

x2

x1

samples 5= 0.3 x1 0.6< <

0.5 x2 0.9< < samples 5=

DAKOTA Users Manual - Nondeterministic Analysis and Uncertainty Quantification 108

10.3 Analytical Reliability Methods

Analytical reliability methods provide an alternative approach to uncertainty quantification which
can be less computationally demanding than sampling techniques. Currently, only the mean-
value method (MV) supports multiple response functions. Future plans include extending this
support to include all analytical reliability methods; this will allow for the application of these
methods to system reliability calculations. The methods all answer the fundamental question:

“Given a set of uncertain input variables, , and a scalar response function, , what is the

probability that the response function is below a certain level, ?” Formally this can be written

Figure 10.3 Response Function and Input Variables for UQ sampling example.

Statistics for each response function (based on 5 observations):

response_fn1: Mean = 4.755e-01 Std. Dev. = 4.969e-01
response_fn2: Mean = 1.020e-01 Std. Dev. = 3.406e-01
response_fn3: Mean = 7.789e-02 Std. Dev. = 2.637e-01

Probabilities for each response function (based on 5 observations):
response_fn1: 60.000% below and 40.000% above the threshold value of 5.00000e-01
response_fn2: 80.000% below and 20.000% above the threshold value of 5.00000e-01
response_fn3: 100.000% below and 0.000% above the threshold value of 5.00000e-01

Figure 10.4 DAKOTA response function statistics from UQ sampling example.

X g

z

DAKOTA Users Manual - Nondeterministic Analysis and Uncertainty Quantification 109

as where is the cumulative distribution function (CDF) of the

uncertain response over a set of response levels.

This probability calculation involves a multi-dimensional integral over a irregularly shaped

domain of interest, , where as displayed in Figure 10.5 for the case of two variables.

These methods all involve the transformation of the user-specified uncertain variables, , with
probability density function, , which can be non-normal and correlated, to a space of

independent Gaussian random variables, , possessing a mean value of zero and unit variance

(i.e., standard normal variables). The region of interest, , is also mapped to the transformed

space to yield, , where as shown in Figure 10.6. The Nataf transformation [12],

which is identical to the Rosenblatt transformation [54] in the case of independent random
variables, is used in DAKOTA to accomplish this mapping. This transformation is performed to
make the probability calculation more tractable. In the transformed space, probability contours
are circular in nature as shown in Figure 10.6 unlike in the original uncertain variable space,
Figure 10.5. Also, the multi-dimensional integrals can be approximated by simple functions of a

single parameter, , called the reliability index. is the minimum Euclidean distance from the
origin in the transformed space to the response surface. This point is also known as the most
probable point (MPP) of failure. Note, however, the methodology is equally applicable for
generic functions, not simply those corresponding to failure criteria; this nomenclature is due to
the origin of these methods within the disciplines of structural safety and reliability.

The determination of the MPP can be posed as a constrained optimization problem, where the
objective function to be minimized is the distance from the origin to a surface in the unit-normal
space. This surface defines an equality constraint for the minimization problem and the exact
form of the constraint depends on the particular reliability method in use.Currently, DAKOTA
uses the SQP method from the NPSOL library to solve the optimization problem for the MPP.

P g X() z<[] Fg z()= Fg z()

g X()

D g X() z<
X

p x1 x2,()

u

D

Du g U() z<

β β

x2

x1

Figure 10.5 Graphical depiction of calculation of cumulative distribution

function in the original uncertain variable space.

g x() z=

P g X() z<[] p x1 x2,() xd∫∫ P x D∈()[]= =

x D∈

DAKOTA Users Manual - Nondeterministic Analysis and Uncertainty Quantification 110

Optimization method selections will be extended in future releases of DAKOTA. The mean-value
method (MV), advanced mean-value methods (AMV/AMV+) [55], and first order reliability
method (FORM) are implemented in DAKOTA. The MV and AMV/AMV+ methods are based
in the original random variable space and approximate the response function with a linear
approximation, while FORM/SORM utilize first and second order approximations of the
response function in the transformed-space. A more thorough discussion of the methods can be
found in the recent text by Haldar and Mahadevan [39].

Analytical reliability methods can often reduce the number of required function evaluations, in
comparison to sampling-based approaches. However, since the methods employ a series of
approximations, the accuracy of the statistics must be verified on a problem-to-problem basis
using a method with known error and convergence behavior, e.g., one of the sampling
techniques. Currently, the outputs for the MV technique consist of estimates of the mean and
standard deviation of the response functions along with importance factors for each of the
uncertain variables in the case of independent random variables. The other methodologies output
approximate values of the cumulative distribution function at the user-defined response levels.

10.3.1 Uncertainty Quantification Example using MV and FORM

This example quantifies the uncertainty in the response function

(4)

by computing approximate response statistics using Mean Value (MV) and by determining the
response cumulative distribution function

(5)

using the first-order reliability method (FORM).

P X D∈() P U DU∈() f β()≈=

Figure 10.6 Graphical depiction of integration for the calculation of cumulative

distribution function in the transformed uncertain variable space.

g x1 x2,() z=

g x1 x2,()
x1

x2
------=

P g x1 x2,()[] z<()

DAKOTA Users Manual - Nondeterministic Analysis and Uncertainty Quantification 111

and are independent, identically distributed lognormal random variables with mean of

and standard deviation of . The DAKOTA input file corresponding to this analysis is shown in
Figure 10.7.

The MV results are shown in Figure 10.8 and consist of approximate mean and standard
deviation of the response along with the importance factors for each uncertain variable. The
importance factors are a measure of the sensitivity of the response function(s) to the uncertain
input variables. The importance factors can be viewed as an extension of linear sensitivity
analysis combining deterministic gradient information with input uncertainty information,i.e.
input variable standard deviations. The accuracy of the importance factors is contingent of the
validity of the linear approximation used to approximate the true response functions.

X1 X2 1

0.5

interface, \
 application system asynch #evaluation_concurrency = 5 \
 analysis_driver= ’uq_example’ \
 file_tag

variables, \
 lognormal_uncertain = 2 \
 lnuv_means = 1.0 1.0 \
 lnuv_std_deviations = 0.5 0.5 \
 lnuv_descriptor = ’x1’ ’x2’ \
 uncertain_correlation_matrix = 1.0 0.0 \
 0.0 1.0

responses, \
 num_response_functions = 1 \
 numerical_gradients \
 method_source dakota \
 interval_type central \
 fd_step_size = 1.e-4 \
 no_hessians

strategy, \
 single_method #graphics

method, \
nond_analytic_reliability mv \
 nond_analytic_reliability form \
 response_levels = 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 \
 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 \
 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

Figure 10.7 DAKOTA input file for UQ example using analytic

reliability methods MV (commented out) and FORM.

MV Statistics for response_fn1:
 Approximate Mean Response = 1.0000000000e+00
 Approximate Standard Deviation of Response = 7.0710678119e-01
 Importance Factor for variable x1 = 5.0000000000e-01
 Importance Factor for variable x2 = 5.0000000000e-01
Importance Factors are an extension of LINEAR sensitivity analysis.

Figure 10.8 Output from Analytical Reliability UQ example using MV.

DAKOTA Users Manual - Nondeterministic Analysis and Uncertainty Quantification 112

The CDF values computed by DAKOTA using FORM for the same example are shown in Figure
10.9. This information can be fed into a post-processor to obtain Figure 10.10, where the
approximate solution computed by FORM is shown along with the exact solution for this
problem and the error associated with the approximation.

CDF at Response Level = 2.0000000000e-01 is 7.9944726334e-03
CDF at Response Level = 4.0000000000e-01 is 8.5094674451e-02
CDF at Response Level = 6.0000000000e-01 is 2.2223852566e-01
CDF at Response Level = 8.0000000000e-01 is 3.6918086929e-01
CDF at Response Level = 1.0000000000e+00 is 5.0000000043e-01
CDF at Response Level = 1.2000000000e+00 is 6.0754008613e-01
CDF at Response Level = 1.4000000000e+00 is 6.9274350225e-01
CDF at Response Level = 1.6000000000e+00 is 7.5914300570e-01
CDF at Response Level = 1.8000000000e+00 is 8.1053296264e-01
CDF at Response Level = 2.0000000000e+00 is 8.5026495187e-01
CDF at Response Level = 2.2000000000e+00 is 8.8104799645e-01
CDF at Response Level = 2.4000000000e+00 is 9.0497589467e-01
CDF at Response Level = 2.6000000000e+00 is 9.2368521831e-01
CDF at Response Level = 2.8000000000e+00 is 9.3837057377e-01
CDF at Response Level = 3.0000000000e+00 is 9.4996451074e-01
CDF at Response Level = 3.2000000000e+00 is 9.5916875854e-01
CDF at Response Level = 3.4000000000e+00 is 9.6651456207e-01
CDF at Response Level = 3.6000000000e+00 is 9.7240834767e-01
CDF at Response Level = 3.8000000000e+00 is 9.7716135570e-01
CDF at Response Level = 4.0000000000e+00 is 9.8101341555e-01
CDF at Response Level = 4.2000000000e+00 is 9.8415020082e-01
CDF at Response Level = 4.4000000000e+00 is 9.8671623864e-01
CDF at Response Level = 4.6000000000e+00 is 9.8882464372e-01
CDF at Response Level = 4.8000000000e+00 is 9.9056429499e-01
CDF at Response Level = 5.0000000000e+00 is 9.9200552891e-01
CDF at Response Level = 5.2000000000e+00 is 9.9320410647e-01
CDF at Response Level = 5.4000000000e+00 is 9.9420471591e-01
CDF at Response Level = 5.6000000000e+00 is 9.9504289439e-01
CDF at Response Level = 5.8000000000e+00 is 9.9574752706e-01
CDF at Response Level = 6.0000000000e+00 is 9.9634175545e-01

Figure 10.9 Output from Analytical Reliability UQ example using FORM.

P
g
x

1
x

2
,

(
)

[
]

z
<

(
)

z z

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6
−8

−6

−4

−2

0

2

4

6

8
x 10

−3

E
r
r
o
r

Figure 10.10 Comparison of the cumulative distribution function (CDF)

computed by FORM (+ marks) and the exact CDF for

.g x1 x2,()
x1

x2
-----=

DAKOTA Users Manual - Nondeterministic Analysis and Uncertainty Quantification 113

10.4 Polynomial Chaos Methods

The objective of these techniques is to characterize the response of systems whose governing
equations involve stochastic coefficients. The development of these techniques mirrors that of
deterministic finite element analysis through the utilization of the concepts of projection,
orthogonality, and weak convergence. The polynomial chaos expansion is based on a
multidimensional Hermite approximation in standard normal random variables.

The coefficients for the terms in the polynomial chaos expansion are determined either from a
coupled set of equations solved externally from the analysis package or from a set of statistical
estimators known to converge to the Fourier coefficients, albeit at a rate that is unknown a priori.
In DAKOTA, the latter approach is implemented where both direct Monte Carlo sampling and
Latin hypercube sampling are available to serve as the estimators of the Fourier coefficients. A
distinguishing feature of the methodology is that the solution series expansions are expressed as
random processes, and not merely as statistics as is the case for many nondeterministic
methodologies. This makes the technique particularly attractive for use in multi-physics
applications which link different analysis packages. A more detailed explanation of the
procedure can be found in Ghanem,et al. ([27], [28]).

10.4.1 Uncertainty Quantification Example using Polynomial Chaos

A typical DAKOTA input file for performing an uncertainty quantification using polynomial
chaos expansions is shown in Figure 10.11. The analysis involves the use of alayered model,
as defined in thenond_polynomial_chaos specification, which specifies a Hermite
polynomial approximation, as defined in thePCE interface specification, which is built using 100
LHS samples of the truth modeluq_example, as defined in theDACE method section.

After the Hermite polynomial surrogate model has been constructed, the
nond_polynomial_chaos method performs a UQ analysis using 1000 LHS samples on the
surrogate to compute estimates of the mean and standard deviation of the response function and
the probability of exceeding theresponse_thresholds value(s). As shown in Figure 10.12,
the method outputs these quantities in addition to the approximate coefficients in the polynomial
chaos expansion for the response function. It should be noted that only standard normal random
variables are supported innond_polynomial_chaos at this time.

DAKOTA Users Manual - Nondeterministic Analysis and Uncertainty Quantification 114

strategy, \
 single_method #graphics \
 method_pointer = ’UQ’

method, \
 id_method = ’UQ’ \
 model_type layered \
 interface_pointer = ’PCE’ \
 nond_polynomial_chaos \
 expansion_order = 2 \
 samples = 1000 \
 sample_type lhs \
 response_thresholds = 0.5

variables, \
 normal_uncertain = 2 \
 nuv_means = 0 0 \
 nuv_std_deviations = 1 1 \
 nuv_descriptor = ’n1’ ’n2’

interface, \
 id_interface = ’PCE’ \
 approximation global, \
 dace_method_pointer = ’DACE’ \
 hermite

responses, \
 num_response_functions = 1 \
 no_gradients \
 no_hessians

###
interface truth model and dace method
###
method, \
 id_method = ’DACE’ \
 model_type single \
 interface_pointer = ’I1’ \
 nond_sampling \
 samples = 100 \
 sample_type random \
 seed = 1158

interface, \
 application system, \
 id_interface = ’I1’ \
 asynchronous evaluation_concurrency = 5 \
 analysis_driver = ’uq_example’

Figure 10.11 DAKOTA input file for performing UQ using

polynomial chaos expansions.

Statistics for each response function (based on 1000 observations):

response_fn1: Mean = -8.152e-01 Std. Dev. = 2.547e+00
Probabilities for each response function (based on 1000 observations):

response_fn1: 76.600% below and 23.400% above the threshold value of
5.00000e-01

Polynomial Chaos coefficients vector output
response_fn1
1 -8.0531838678e-01
2 -2.0133894080e+00
3 -1.1013489373e-01
4 -6.0394212171e-01
5 9.1222017358e-01
6 5.5142551141e-01

Figure 10.12 Output from UQ analysis using polynomial chaos expansions.

DAKOTA Users Manual - Nondeterministic Analysis and Uncertainty Quantification 115

10.5 Future Nondeterministic Methods

Uncertainty analysis methods under investigation for future inclusion into the DAKOTA
framework include extensions to the analytical reliability techniques and sampling capabilities
supported. The SORM technique will be added to those currently supported, and advanced
“smart sampling” techniques such as bootstrap sampling (BS), importance sampling (IS), quasi-
Monte Carlo simulation (qMC), and Markov chain Monte Carlo simulation (McMC) are being
investigated. Efforts have been initiated to allow for the possibility of non-traditional
representations of uncertainty. These include interval analysis, Dempster-Shafer theory of
evidence, possibility theory, and combinations of these. Finally, the tractability and efficacy of
the more intrusive variant of stochastic finite element/polynomial chaos expansion methods,
previously mentioned, is being assessed for possible implementation in DAKOTA.

DAKOTA Users Manual - Optimization Software Packages 116

11.0 Optimization Software Packages

11.1 Overview

DAKOTA’s optimization capabilities include a variety of gradient-based and nongradient-based
optimization methods. Numerous packages are available, some of which are commercial
packages, some of which are developed internally to Sandia, and some of which are free software
packages from the open source community. The downloaded version of DAKOTA excludes the
commercially developed packages but includes CONMIN, OPT++, SGOPT, and PICO.
Interfaces to DOT and NPSOL are provided with DAKOTA, but to use either of these
commercial optimizers, the user must obtain a software license and the source code for these
packages separately. The commercial software can then be compiled into DAKOTA by following
DAKOTA’s installation procedures (see notes in/Dakota/INSTALL).

DAKOTA’s input commands permit the user to specify two-sided inequality constraints of the

form , as well as equality constraints of the form

. Some optimizers (e.g., NPSOL, OPT++) can handle these constraint

forms directly, whereas other optimizers (e.g., DOT, CONMIN) require DAKOTA to perform an

internal conversion of all constraints to inequality constraints of the form . In the latter

case, the two-sided inequality constraints are treated as and

. Similarly, the equality constraints are treated as

and .

When gradient and Hessian information are used in the optimization, it is assumed that derivative
components will be computed only with respect to thecontinuous design variables. The
omission of discrete variables from gradient vectors and Hessian matrices is common among all
DAKOTA optimization methods; however, inclusion of only the continuous design variables
differs from parameter study methods (which assume derivatives with respect to all continuous
variables) and from nondeterministic analysis methods (which assume derivatives with respect to
the uncertain variables).

11.2 Constrained Minimization (CONMIN) Library

The CONMIN library [61] contains two methods for gradient-based nonlinear optimization. For
constrained optimization, the Method of Feasible Directions (DAKOTA’sconmin_mfd method
selection) is available, while for unconstrained optimization, the Fletcher-Reeves conjugate
gradient method (DAKOTA’sconmin_frcg method selection) is available. Both of these
methods are most efficient at local optimization where there is a unique local minimum. The

gL()
i

gi x() gU()
i

≤ ≤

hj x() ht etarg()
j

=

gi x() 0≤

gi x() gUB()
i

– 0≤

gLB()
i

gi x()– 0≤ hj x() ht etarg()
j

– 0≤

ht etarg()
j

hj x()– 0≤

DAKOTA Users Manual - Optimization Software Packages 117

methods in CONMIN can be applied to global optimization problems, but there is no guarantee
that they will find the globally optimal design point.

One observed drawback to CONMIN’s Method of Feasible Directions is that it does a poor job
handling equality constraints. This is the case even if the equality constraint is formulated as two
inequality constraints. This problem is what motivates the modifications to MFD that are present
in DOT’s MMFD algorithm. For problems with equality constraints, it is better to use the OPT++
nonlinear interior point methods, NPSOL, or one of DOT’s constrained optimization methods
(see below).

An example specification for CONMIN’s Method of Feasible Directions algorithm is:
method, \
 conmin_mfd \
 convergence_tolerance = 1.0e-4 \
 max_iterations = 100 \
 output quiet

Refer to the DAKOTA Reference Manual [17] for more information on the settings that can be
used with CONMIN methods.

11.3 Design Optimization Tools (DOT) Library

The DOT library [63] contains nonlinear programming optimizers, specifically the Broyden-
Fletcher-Goldfarb-Shanno (DAKOTA’sdot_bfgs method selection) and Fletcher-Reeves
conjugate gradient (DAKOTA’sdot_frcg method selection) methods for unconstrained
optimization, and the modified method of feasible directions (DAKOTA’sdot_mmfd method
selection), sequential linear programming (DAKOTA’sdot_slp method selection), and
sequential quadratic programming (DAKOTA’sdot_sqp method selection) methods for
constrained optimization.

All DOT methods are local gradient-based optimizers which are best suited for efficient
navigation to a local minimum in the vicinity of the initial point. Global optima in nonconvex
design spaces may be missed. Other gradient based optimizers for constrained optimization
include the NPSOL, CONMIN, and OPT++ libraries.

Through theoptimization_type specification, DOT can be used to solve either
minimization or maximization problems. For all other libraries (i.e., CONMIN, NPSOL, OPT++,
SGOPT), it is up to the user to reformulate a maximization problem as a minimization problem
by negating the objective function (i.e., maximizef(x) is equivalent to minimize-f(x)). An
example specification for DOT’s BFGS quasi-Newton algorithm is:

method, \
 dot_bfgs \
 optimization_type maximize \
 convergence_tolerance = 1.0e-4 \
 max_iterations = 100 \
 output quiet

DAKOTA Users Manual - Optimization Software Packages 118

See the DAKOTA Reference Manual [17] for additional detail on the DOT commands. More
information on DOT can be obtained by contacting Vanderplaats Research and Development at
http://www.vrand.com.

11.4 NPSOL Library

The NPSOL library [29] contains a sequential quadratic programming (SQP) implementation
(DAKOTA’s npsol_sqp method selection). SQP is a nonlinear programming approach for
constrained minimization which solves a series of quadratic programming (QP) subproblems. It
uses an augmented Lagrangian merit function and a BFGS approximation to the Hessian of this
function. It is an infeasible method in that constraints will be satisfied at the final solution, but
not necessarily during the solution process.

NPSOL’s gradient-based approach is best suited for efficient navigation to a local minimum in
the vicinity of the initial point. Global optima in nonconvex design spaces may be missed. Other
gradient based optimizers for constrained optimization include the DOT, CONMIN, and OPT++
libraries.

An example of an NPSOL specification is:
method, \
 npsol_sqp \
 convergence_tolerance = 1.0e-4 \
 max_iterations = 100 \
 output quiet

See the DAKOTA Reference Manual [17] for additional detail on the NPSOL commands. More
information on NPSOL can be obtained by contacting Stanford Business Software at http://
www.sbsi-sol-optimize.com.

The NPSOL library generates diagnostics in addition to those appearing in the DAKOTA output
stream. These diagnostics are written to the default FORTRAN device 9 file (e.g.,ftn09 or
fort.9, depending on the architecture) in the working directory.

11.5 OPT++ Library

The OPT++ library [47] contains primarily nonlinear programming optimizers for unconstrained,
bound constrained, and nonlinearly constrained minimization: Polak-Ribiere conjugate gradient
(DAKOTA’s optpp_cg method selection), quasi-Newton, barrier function quasi-Newton,
bound constrained quasi-Newton, and nonlinear interior-point quasi-Newton (DAKOTA’s
optpp_q_newton, optpp_baq_newton, optpp_bcq_newton, andoptpp_q_nips
method selections), Gauss-Newton and bound constrained Gauss-Newton (DAKOTA’s
optpp_g_newton andoptpp_bcg_newton method selections - part of DAKOTA’s
nonlinear least squares branch), full Newton, barrier function full Newton, bound constrained full
Newton, and nonlinear interior-point full Newton (DAKOTA’soptpp_newton,
optpp_ba_newton, optpp_bc_newton, andoptpp_nips method selections), finite

DAKOTA Users Manual - Optimization Software Packages 119

difference Newton and nonlinear interior-point finite difference Newton (DAKOTA’s
optpp_fd_newton andoptpp_fd_nips method selections), and bound constrained
ellipsoid (DAKOTA’soptpp_bc_ellipsoid method selection). The library also contains the
parallel direct search nongradient-based method [13] (specified as DAKOTA’soptpp_pds
method selection).

OPT++’s gradient-based optimizers are best suited for efficient navigation to a local minimum in
the vicinity of the initial point. Global optima in nonconvex design spaces may be missed.
OPT++’s PDS method does not use gradients and has some limited global identification abilities;
it is best suited for problems for which gradient information is unavailable or is of questionable
accuracy due to numerical noise. Some OPT++ methods are strictly unconstrained (optpp_cg,
optpp_fd_newton, optpp_g_newton, optpp_newton, andoptpp_q_newton),
some support bound constraints (optpp_baq_newton, optpp_ba_newton,
optpp_bc_ellipsoid, optpp_bc_newton, optpp_bcg_newton, and
optpp_bcq_newton), and some support general linear and nonlinear constraints
(optpp_nips, optpp_q_nips, andoptpp_fd_nips), so it is important to select a
method that is sufficiently general for a particular problem. Other gradient-based optimizers
include the DOT, CONMIN, and NPSOL libraries. For OPT++’s least squares methods, refer to
Section 12.2.

An example specification for the OPT++ bound-constrained Gauss-Newton algorithm is:
method, \
 optpp_bcg_newton \
 search_method value_based_line_search \
 max_step = 0.1 \
 gradient_tolerance = 1.0E-05

See the DAKOTA Reference Manual [17] for additional detail on the OPT++ commands.

The OPT++ library generates diagnostics in addition to those appearing in the DAKOTA output
stream. These diagnostics are written to the fileOPT_DEFAULT.out in the working directory.

11.6 SGOPT Library

The SGOPT (Stochastic Global OPTimization) library [40] contains a variety of nongradient-
based optimization algorithms, with an emphasis on stochastic global methods. SGOPT currently
includes the following global optimization methods: real-valued and integer-valued genetic
algorithms (sgopt_pga_real, sgopt_pga_int), evolutionary pattern search
(sgopt_epsa), and stratified Monte Carlo (sgopt_strat_mc). Additionally, SGOPT
includes several nongradient-based local search algorithms, such as Solis-Wets
(sgopt_solis_wets) and pattern search (sgopt_pattern_search).

For expensive optimization problems, SGOPT’s global optimizers are best suited for identifying
promising regions in the global design space. In multimodal design spaces, the combination of
global identification (from SGOPT) with efficient local convergence (from DOT, NPSOL,
CONMIN, or OPT++) can be highly effective. None of the SGOPT methods are gradient-based,

DAKOTA Users Manual - Optimization Software Packages 120

which makes them appropriate for discrete and mixed variable problems as well as problems for
which gradient information is unavailable or is of questionable accuracy due to numerical noise.
No SGOPT methods currently support general linear and nonlinear constraints directly, although
penalty function formulations for nonlinear constraints have been employed with success [54].

An example specification for a simplex-based pattern search algorithm from SGOPT is:
method, \
 sgopt_pattern_search \
 max_function_evaluations = 2000 \
 solution_accuracy = 1.0e-4 \
 initial_delta = 0.05 \
 threshold_delta = 1.0e-8 \
 pattern_basis simplex \
 exploratory_moves best_all \
 contraction_factor = 0.75

The DAKOTA Reference Manual [17] contains additional information on the SGOPT options
and settings.

Efforts are underway to integrate the capabilities of the Asynchronous Parallel Pattern Search
(APPS) algorithm [42] into SGOPT, and future releases of this manual will describe the
DAKOTA interface to APPS. More information on APPS is available at the following web site:
http://csmr.ca.sandia.gov.

11.7 Parallel Integer Combinatorial Optimization (PICO)

DAKOTA employs the branch and bound capabilities of the PICO library for solving discrete
and mixed continuous/discrete constrained nonlinear optimization problems. This capability is
implemented in DAKOTA as a strategy and is discussed further in Section 13.5.

DAKOTA Users Manual - Additional Optimization and Parameter Estimation Capabilities 121

12.0 Additional Optimization and Parameter Estimation
Capabilities

12.1 Overview

DAKOTA provides several capabilities which extend the services provided by the optimization
software packages described in Chapter 11. First, DAKOTA provides nonlinear least squares
capabilities for parameter estimation problems through use of the Gauss-Newton approximation
in coordination with a full Newton optimization algorithm. Second, any of the optimization
algorithms can be used for multiobjective optimization problems through the use of weighted
sum techniques. Finally, large-scale optimization algorithms (e.g., rSQP++) can be used for
simultaneous analysis and design through the use of DAKOTA’s direct application interface to
internal simulation residual vectors and Jacobian matrices.

12.2 Nonlinear Least Squares for Parameter Estimation

Nonlinear least squares methods are optimization algorithms which exploit the special structure
of a sum of the squares objective function [30]. These problems commonly arise in parameter
estimation, system identification, and test/analysis reconciliation. In order to exploit the problem
structure, more granularity is needed in the response data than that required for a typical
optimization problem. That is, rather than using the sum-of-squares objective function and its
gradient, least squares iterators require each term used in the sum-of-squares formulation along
with its gradient. This means that them functions in the DAKOTA response data set consist of
the individual terms from the sum-of-the-squares objective function, rather than objective and
constraint functions (as they are in optimization). These individual terms are often called
residuals in cases where they denote errors of observed quantities from desired quantities.

The enhanced granularity needed for nonlinear least-squares algorithms allows for simplified
computation of an approximate Hessian matrix. These methods approximate the true Hessian
matrix by neglecting terms in which the residual function values appear, under the assumption
that the residuals tend towards zero at the solution. As a result, residual function value and
gradient information is sufficient to define the value, gradient, and approximate Hessian of the
sum-of-squares objective function. See Section 1.4.2 for additional details on this approximation.

In practice, least squares solvers will tend to be significantly more efficient than general-purpose
optimization algorithms when the residuals tend towards zero at the solution. Least squares
solvers may experience difficulty when the residuals at the solution are significant.

In order to specify a least-squares problem, the responses section of the DAKOTA input should
be configured usingnum_least_squares_terms to define the number of functions.
Gradients of these terms are required and should be specified using either
numerical_gradients, analytic_gradients, ormixed_gradients. Since

DAKOTA Users Manual - Additional Optimization and Parameter Estimation Capabilities 122

second derivatives of the least squares terms are not needed in the Gauss-Newton approximation,
theno_hessians specification should be used.

12.2.1 Solution Techniques

Nonlinear least squares problems can be solved by combining DAKOTA’s implementation of the
Gauss-Newton approximation with full Newton optimization algorithms from the OPT++
package [47]. These approaches can be selected using theoptpp_g_newton and
optpp_bcg_newton method specifications, where the methods differ in their support for
bound constraints. When bound constraints are needed to keep the parameters within physically
meaningful ranges,optpp_bcg_newton should be selected. Refer to the DAKOTA Reference
Manual [17] for more detail on the input commands for the Gauss-Newton algorithms.

The Gauss-Newton algorithms are gradient-based and are best suited for efficient navigation to a
local least squares solution in the vicinity of the initial point. Global optima in multimodal
design spaces may be missed. Neitheroptpp_g_newton noroptpp_bcg_newton support
general linear or nonlinear constraints. If these types of constraints are present (fairly rare in
typical parameter estimation problems), general-purpose optimization methods such as those
available in the CONMIN, DOT, and NPSOL libraries should be used. In this case, the problem
must be reformulated as an optimization problem with specification of objective functions and
constraints, rather than specification of least squares terms. While neither CONMIN, DOT, nor
NPSOL exploit the special structure of a sum-of-squares objective function (and therefore will
not have as rapid a convergence rate near the solution), all are effective general-purpose
algorithms for solving constrained minimization problems.

12.2.2 Examples

Both the Rosenbrock and ‘‘textbook’’ example problems can be formulated as nonlinear least
squares problems. Refer to Chapter 20 for more information on these formulations. Figure 12.1
shows an excerpt from the textbook example which demonstrates use of the Gauss-Newton
approximation in computing the objective function value, gradient, and Hessian from values and
gradients of the least squares terms.

Figure 12.1 Example of the Gauss-Newton approximation.

Active response data for function evaluation 1:
Active set vector = { 3 3 }
 6.0000000000e-01 least_sq_term1
 2.0000000000e-01 least_sq_term2
 [-1.6000000000e+01 1.0000000000e+01] least_sq_term1 gradient
 [-1.0000000000e+00 0.0000000000e+00] least_sq_term2 gradient

 nlf2_evaluator_gn results: objective fn. =
 4.0000000000e-01
 nlf2_evaluator_gn results: objective fn. gradient =
 [-1.9600000000e+01 1.2000000000e+01]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[5.1400000000e+02 -3.2000000000e+02
 -3.2000000000e+02 2.0000000000e+02]]

DAKOTA Users Manual - Additional Optimization and Parameter Estimation Capabilities 123

12.3 Multiobjective Optimization

The selection of a multiobjective optimization problem is made through the specification of
multiple objective functions in the responses keyword block (i.e., the
num_objective_functions specification is greater than1). The weighting factors on
these objective functions can be optionally specified using themulti_objective_weights
keyword (the default is equal weightings). The composite objective function for this optimization

problem, , is formed using these weights as follows: , where the terms

are the individual objective function values, the terms are the weights, and is the number

of objective functions. The weighting factors stipulate the relative importance of the design
concerns represented by the individual objective functions; the higher the weighting factor, the
more dominant a particular objective function will be in the optimization process.

Figure 12.2 DAKOTA input file for the multiobjective optimization example.

Figure 12.2 shows a DAKOTA input file for a multiobjective optimization problem based on the
“textbook” test problem. This input file is nameddakota_multiobj1.in in the/Dakota/
test directory. In the standard textbook formulation, there is one objective function and two

F F wkfk
k 1=

R

∑= fk

wk R

DAKOTA Input file: Multiobjective optimization
on the Textbook test problem.
#
The formulation is: minimize F
s.t. xlb <= x <= xub
#
where F = w1*f1 + w2*f2 + w3*f3
f1 = original textbook objective fcn
f2 = original textbook constraint #1
f3 = original textbook constraint #2

strategy, \
single_method \
 graphics \
 tabular_graphics_data

method, \
npsol \
 convergence_tolerance = 1.e-8

variables, \
continuous_design = 2 \
 cdv_initial_point 0.9 1.1 \
 cdv_upper_bounds 5.8 2.9 \
 cdv_lower_bounds 0.5 -2.9 \
 cdv_descriptor ’x1’ ’x2’

interface, \
application system, \
 analysis_driver= ’text_book’

responses, \
num_objective_functions = 3 \
multi_objective_weights = .7 .2 .1 \
analytic_gradients \
no_hessians

DAKOTA Users Manual - Additional Optimization and Parameter Estimation Capabilities 124

constraints. In the multiobjective textbook formulation, all three of these functions are treated as
objective functions (num_objective_functions = 3), with weights given by the
multi_objective_weights keyword. Note that it is not required that the weights sum to a
value of one. The multiobjective optimization capability also allows any number of inequality
constraints, although none are included in this example.

Figure 12.3 shows an excerpt of the results for this multiobjective optimization problem. The
data for function evaluation 9 show that the simulator is returning the values and gradients of the
three objective functions and that this data is being combined by DAKOTA into the value and
gradient of the composite objective function, as identified by the header “Multiobjective
transformation:”. This combination of value and gradient data from the individual
objective functions employs the user-specified weightings of.7, .2, and.1. Convergence to the
optimum of the multiobjective problem is indicated in this case by the gradient of the composite
objective function going to zero.

Figure 12.3 DAKOTA results for the multiobjective optimization example.

By performing multiple optimizations for different sets of weights, a family of optimal solutions
can be generated which define the trade-offs that result when managing competing design
concerns. This set of solutions is referred to as the Pareto set. Section 13.4 describes a solution
strategy used for directly generating the Pareto set in order to investigate the trade-offs in
multiobjective optimization problems.

Begin Function Evaluation 9

Parameters for function evaluation 9:
 5.9388064484e-01 x1
 7.4158741199e-01 x2

(text_book /var/tmp/qaagjayaZ /var/tmp/raahjayaZ)

Active response data for function evaluation 9:
Active set vector = { 3 3 3 }
 3.1662048104e-02 obj_fn1
 -1.8099485679e-02 obj_fn2
 2.5301156720e-01 obj_fn3
 [-2.6792982174e-01 -6.9024137409e-02] obj_fn1 gradient
 [1.1877612897e+00 -5.0000000000e-01] obj_fn2 gradient
 [-5.0000000000e-01 1.4831748240e+00] obj_fn3 gradient

Multiobjective transformation:
 4.3844693257e-02 obj_fn
 [1.3827220000e-06 5.8621370000e-07] obj_fn gradient

 7 1 1.0E+00 9 4.38446933E-02 1.5E-06 2 T TT

 Exit NPSOL - Optimal solution found.

 Final nonlinear objective value = 0.4384469E-01

DAKOTA Users Manual - Additional Optimization and Parameter Estimation Capabilities 125

12.4 Simultaneous Analysis and Design (SAND) Optimization

DAKOTA was originally developed as a “black box” optimization tool that employs non-
intrusive interfaces with simulation codes. While this approach is useful for many engineering
design applications, it can become prohibitively expensive when there is a large design space

(i.e.,O(102-103) design parameters) and when the computational simulation is highly nonlinear.
Current research and development is underway to add a simultaneous analysis and design
(SAND) capability to DAKOTA. This “all at once approach” is considerably more intrusive to a
simulation code than any current interfacing capability in DAKOTA. But in some large-scale
applications, the SAND method may be the only viable alternative for optimization.

The basic idea behind SAND is to converge a nonlinear simulation code at the same time that the
optimality conditions are being converged. This amounts to applying the nonlinear simulation
residual equations as equality constraints in the optimization problem and then using an
infeasible optimization method (e.g., sequential quadratic programming) which only satisfies
these equality constraints in the limit (i.e., at the final optimal solution). This can result in a
significant computational savings over black-box optimization approaches which require a
nonlinear simulation to be fully-converged on every function evaluation.

To implement a SAND technique, modifications to the simulation package are necessary so that
the optimization software may have access to the internal residual vector and state Jacobian
matrix used by the simulation solver. The SAND techniques can then leverage the internal linear
algebra of the simulation package as appropriate in performing the search direction calculations.
A SAND-type optimization does make certain assumptions about the simulation package, such
as there is access to the state Jacobian matrix (although matrix free methods can be interfaced as
well), exact values are used in the state Jacobian, an implicit numerical solution scheme is used,
there are no discontinuities in the system, and steady state solutions are to be obtained (although
SAND transient solution capabilities are under development). Many single physics, PDE-based
simulation codes fall in this category. SAND approaches can be applied to more complex
simulation codes, such as multi-physics packages, but substantial modifications are often needed
to make SAND feasible in these cases.

Details on SAND-type optimization approaches may be found in [4],[6]. Additional details on
the SAND implementation in DAKOTA will appear in future releases of this Users Manual.

DAKOTA Users Manual - Advanced Optimization Strategies 126

13.0 Advanced Optimization Strategies

13.1 Overview

DAKOTA’s strategy capabilities were developed in order to provide a control layer for managing
multiple iterators and models. It was driven by the observed need for “meta-optimization” and
other high level systems analysis procedures in real-world engineering design problems. This
capability allows the use of existing iterative algorithm and computational model software
components as building blocks to accomplish more sophisticated studies, such as hybrid
optimization, surrogate-based optimization, mixed integer nonlinear programming, or
optimization under uncertainty.

13.2 Multilevel Hybrid Optimization

In the multilevel hybrid optimization strategy (keyword:multi_level), a sequence of
optimization methods are applied to find an optimal design point. The goal of this strategy is to
exploit the strengths of different optimization algorithms through different stages of the
optimization process. Global/local hybrids (e.g., genetic algorithms combined with nonlinear
programming) are a common example in which the desire for a global optimum is balanced with
the need for efficient navigation to a local optimum. An important related feature is that the
sequence of optimization algorithms can employ models of varying fidelity. In the global/local
case, for example, it would often be advantageous to use a low-fidelity model in the global search
phase, followed by use of a more refined model in the local search phase.

The specification for multilevel optimization involves a list of method identifier strings, and each
of the corresponding method specifications has the responsibility for identifying the variables,
interface, and responses specifications that each method will use (see the DAKOTA Reference
Manual [17] and the example discussed below). Currently, only theuncoupled multilevel
approach is available. Thecoupled anduncoupled adaptive approaches are under
development but are not operational in this version of DAKOTA.

In the uncoupled multilevel optimization approach, a sequence of optimization methods is
invoked in the order specified in the DAKOTA input file. The best solution from each method is
used as the starting point for the following method. Method switching is governed by the
separate convergence controls of each method; that is,each method is allowed to run to its own
internal definition of completion without interference. Individual method completion may be
determined by convergence criteria (e.g.,convergence_tolerance) or iteration limits (e.g.,
max_iterations).

Figure 13.1 shows a DAKOTA input file that specifies a multilevel optimization strategy to solve
the “textbook” optimization test problem. This input file is nameddakota_multilevel.in
in the/Dakota/test directory. The three optimization methods are identified using the
method_list specification in the strategy section of the input file. The identifier strings listed

DAKOTA Users Manual - Advanced Optimization Strategies 127

in the specification are ‘GA’ for genetic algorithm, ‘PS’ for pattern search, and ‘NLP’ for
nonlinear programming. Following the strategy keyword block are three method keyword blocks.
Note that each method has a tag following theid_method keyword that corresponds to one of
the method names listed in the strategy keyword block. By following the keyword tags for the
interface_pointer, variables_pointer, andresponses_pointer, it is easy to
see the specification linkages for this problem. The GA optimizer runs first and uses the variables

DAKOTA Input file: Multilevel optimization on the
unconstrained Textbook test problem using 3 optimization
methods in sequence:
genetic algorithm (in SGOPT)
coordinate pattern search (in SGOPT)
nonlinear programming (in OPT++)
This provides an initial global search using a nongradient
method, followed by a local search using a nongradient
method, with a final local search using a gradient method.

strategy, \
graphics \
multi_level uncoupled \
 method_list = ’GA’ ’PS’ ’NLP’

method, \
id_method = ’GA’ \
model_type single \
 variables_pointer = ’V1’ \
 interface_pointer = ’I1’ \
 responses_pointer = ’R1’ \
sgopt_pga_real \
 population_size = 10 \
 verbose output

method, \
id_method = ’PS’ \
model_type single \
 variables_pointer = ’V1’ \
 interface_pointer = ’I1’ \
 responses_pointer = ’R1’ \
sgopt_pattern_search stochastic \
 verbose output \
 initial_delta = 0.1 \
 threshold_delta = 1.e-4 \
 solution_accuracy = 1.e-10 \
 exploratory_moves best_first

method, \
id_method = ’NLP’ \
model_type single \
 variables_pointer = ’V1’ \
 interface_pointer = ’I1’ \
 responses_pointer = ’R2’ \
optpp_bc_newton \
 gradient_tolerance = 1.e-12 \
 convergence_tolerance = 1.e-15

interface, \
id_interface = ’I1’ \
application direct, \
 analysis_driver= ’text_book’

variables, \
id_variables = ’V1’ \
continuous_design = 2 \
 cdv_initial_point 0.6 0.7 \
 cdv_upper_bounds 5.8 2.9 \
 cdv_lower_bounds 0.5 -2.9 \
 cdv_descriptor ’x1’ ’x2’

responses, \
id_responses = ’R1’ \
num_objective_functions = 1 \
no_gradients \
no_hessians

responses, \
id_responses = ’R2’ \
num_objective_functions = 1 \
analytic_gradients \
analytic_hessians

Figure 13.1 DAKOTA input file for the multilevel optimization strategy.

DAKOTA Users Manual - Advanced Optimization Strategies 128

keyword block ‘V1’, the interface keyword block ‘I1’, and the responses keyword block ‘R1’.
Once the GA is complete, the PS optimizer begins operation, and uses the best GA result as its
starting point. The PS method again uses ‘V1’, ‘I1’, and ‘R1’. Since both GA and PS are
nongradient-based optimization methods, there is no need for gradient or Hessian information in
the response keyword block. The NLP optimizer runs last, using the best result from the PS
method as its starting point. It also uses the ‘V1’ and ‘I1’ keyword blocks, but it uses the
responses keyword block ‘R2’ since the full Newton optimizer used in this example
(optpp_bc_newton) needs analytic gradient and Hessian data to perform its search.

13.3 Multistart Local Optimization

A simple global optimization technique is to use many local optimization runs, each of which is
started from a different initial point in the parameter space. This is known as multistart local
optimization. This is an attractive strategy in situations where multiple local optima are known or
expected to exist in the parameter space. This approach combines the efficiency of local
optimization methods with a user-specified global stratification. Since solutions for different
starting points are independent, parallel computing may be used to concurrently run the local
optimizations.

An example input file for multistart local optimization on the “quasi_sine” test function (see
quasi_sine_fcn.C in /Dakota/test) is shown in Figure 13.2. Thestrategy keyword block in the
input file contains the keywordmulti_start, along with the set of starting points that will be
used for the optimization runs. The other keyword blocks in the input file are similar to what
would be used in a single optimization run. The multistart optimization strategy is a recent
addition to DAKOTA and the output from DAKOTA simply lists the results of the optimization
studies, one after the other. Future release will provide additional analysis of the generated
results.

The quasi_sine test function has multiple local minima, but there is an overall trend in the
function that tends toward the global minimum at (x1, x2) = (0.177, 0.177). See [33] for more
information on this test function. From the starting points listed in the input file, the five local
optima located are (x1, x2) = (-0.854, -0.854), (-1.0, 0.177), (0.177, -1.0), (0.177, 0.177) and
(0.0357,0.0357) with objective functions of 0.558, 0.291, 0.291, 0.0602, and 0.0873,
respectively. Thus, only one of the local optimizations finds the global optimum.

DAKOTA Users Manual - Advanced Optimization Strategies 129

13.4 Pareto Optimization

The Pareto optimization strategy (keyword:pareto_set) is related to the multiobjective
optimization capabilities discussed in Section 12.3. However, in the DAKOTA input file for a
Pareto optimization problem, the user can specify multiple sets of weights (keyword:
multi_objective_weight_sets) in thestrategy keyword block. Figure 13.3 shows
the input commands from the filedakota_pareto.in in the/Dakota/test directory.

DAKOTA performs one multiobjective optimization problem for each set of multiobjective
weights. The collection of computed optimal solutions form a Pareto set, which can be useful in
making trade-off decisions in engineering design. Since solutions for different multiobjective
weights are independent, parallel computing may be used to concurrently execute the
multiobjective optimization problems.

The Pareto optimization strategy is a recent addition to DAKOTA and the output from DAKOTA
simply lists the results of the optimization studies, one after the other. Future releases will
provide additional analysis of the generated results (tabular output of the Pareto points, graphical
depictions of the Pareto curve, etc.). Currently, data on the Pareto optima may be found by
searching for the final iteration results listed after each of the individual optimization studies.

DAKOTA INPUT FILE - dakota_multistart.in

Demonstrates the use of the multi_start strategy for a
multimodal test problem. The global optimum is at the
point (x1,x2) = (0.177,0.177) which has a function value
of 0.060.

strategy, \
multi_start \
 method_pointer = ’NLP’ \
 starting_points = -.8 -.8 \
 -.8 .8 \
 .8 -.8 \
 .8 .8 \
 0. 0.

method, \
id_method = ’NLP’ \
dot_bfgs

variables, \
continuous_design = 2 \
 cdv_lower_bounds -1.0 -1.0 \
 cdv_upper_bounds 1.0 1.0 \
 cdv_descriptor ’x1’ ’x2’

interface, \
application system, \
 analysis_driver = ’quasi_sine_fcn’

responses, \
num_objective_functions = 1 \
analytic_gradients \
no_hessians

Figure 13.2 DAKOTA input file for the multistart local optimization strategy.

DAKOTA Users Manual - Advanced Optimization Strategies 130

For the multiobjective weighting sets listed in the input file, the optima are (x1, x2) = (1.0, 1.0),
(0.5, 2.9), (5.8, 0.0), and (0.5, 0.5) with objective function values of (f1, f2, f3) = (0.0, 0.5, 0.5),
(13.1, -1.2, 8.16), (532., 33.6, -2.9), and (0.125, 0.0, 0.0), respectively. The first three solutions
reflect exclusive optimization of each of the individual objective functions in turn, whereas the
final solution reflects a balanced weighting and the lowest sum of the three objectives. Plotting
these (f1, f2, f3) triplets on a 3-dimensional plot results in a Pareto surface, which is useful for
visualizing the trade-offs in the competing objectives.

13.5 Mixed Integer Nonlinear Programming (MINLP)

Many nonlinear optimization problems involve a combination of discrete and continuous
variables. These are known as mixed integer nonlinear programming (MINLP) problems. A
typical MINLP optimization problem is formulated as follows:

(13.1)

DAKOTA INPUT FILE - dakota_pareto.in

Demonstrates the use of the Pareto set optimization strategy.
The different Pareto optima define a 3-D trade-off surface.

strategy, \
pareto_set \
 opt_method_pointer = ’NLP’ \
 multi_objective_weight_sets = 1. 0. 0. \
 0. 1. 0. \
 0. 0. 1. \
 .333 .333 .333

method, \
id_method = ’NLP’ \
dot_bfgs

variables, \
continuous_design = 2 \
 cdv_initial_point 0.9 1.1 \
 cdv_upper_bounds 5.8 2.9 \
 cdv_lower_bounds 0.5 -2.9 \
 cdv_descriptor ’x1’ ’x2’

interface, \
application system, \

asynchronous, \
 analysis_driver = ’text_book’

responses, \
num_objective_functions = 3 \
analytic_gradients \
no_hessians

Figure 13.3 DAKOTA input file for the Pareto optimization strategy.

minimize: f x d,()
subject to:gL g x d,() gU≤ ≤

h x d,() ht=

xL x xU≤ ≤

d 2 1 0 1 2, , ,–,–{ }∈

DAKOTA Users Manual - Advanced Optimization Strategies 131

whered is a vector whose elements are integer values. In situations where the discrete variables
can be temporarily relaxed (i.e., noncategorical discrete variables, see Section 4.2.2), the branch-
and-bound algorithm can be applied.Categorical variables (e.g., true/false variables, or binary
state variables) that are inherently discrete cannot be used with the branch and bound strategy.
During the branch and bound process, the discrete variables are treated as continuous variables
and the integrality conditions on these variables are incrementally enforced through a sequence
of optimization subproblems. By the end of this process, an optimal solution that is feasible with
respect to the integrality conditions is computed.

DAKOTA’s branch and bound strategy (keyword:branch_and_bound) can solve
optimization problems having either discrete or mixed continuous/discrete variables. This
strategy uses the parallel branch-and-bound algorithm from the PICO software package [15],[16]
to generate a series of optimization subproblems (“branches”). These subproblems are solved as
continuous variable problems using any of DAKOTA’s nonlinear optimization algorithms (e.g.,
DOT, NPSOL). When a solution to a branch is feasible with respect to the integrality constraints,
it provides an upper bound on the optimal solution, which can be used to prune branches with
higher objective functions which are not yet feasible. Since solutions for different branches are
independent, parallel computing may be used to concurrently execute the optimization
subproblems.

PICO, by itself, targets the solution of mixed integer linear programming (MILP) problems, and
through coupling with DAKOTA’s nonlinear optimizers, is extended to solution of MINLP
problems. In the case of MILP problems, the upper bound obtained with a feasible solution is an
exact bound and the branch and bound process is provably convergent to the global minimum.
For nonlinear problems which may exhibit nonconvexity or multimodality, the process is
heuristic in general, since there may be good solutions that are missed during the solution of a
particular branch. However, the process still computes a series of locally optimal solutions, and is
therefore a natural extension of the results from local optimization techniques for continuous
domains. Only with rigorous global optimization of each branch can a global minimum be
guaranteed when performing branch and bound on nonlinear problems of unknown structure.

In cases where there are only a few discrete variables and when the discrete values are drawn
from a small set, then it may be reasonable to perform a separate optimization problem for all of
the possible combinations of the discrete variables. However, this brute force approach becomes
computationally intractable if these conditions are not met. The branch-and-bound algorithm will
generally require solution of fewer subproblems than the brute force method, although it will still
be significantly more expensive than solving a purely continuous design problem.

13.5.1 Example MINLP Problem

As an example, consider the following MINLP problem [19]:

DAKOTA Users Manual - Advanced Optimization Strategies 132

(13.2)

This problem is a variant of the textbook test problem described in Chapter 20. In addition to the
introduction of two integer variables, a modified value of 1.4 is used inside the quartic sum to
render the continuous solution a non-integral solution. Figure 13.4 shows a DAKOTA input file
for solving this problem. This input file is namedpdakota_bandb.in in the/Dakota/
test directory. Note the specification for the discrete variables, where lower and upper bounds
are given. The discrete variables can take on any integer value within these bounds.

Figure 13.4 DAKOTA input file for the branch-and-bound strategy for solving

MINLP optimization problems.

minimize: f x() xi 1.4–()4

i 1=

6

∑=

g1 x1
2 x2

2
------– 0≤=

g2 x2
2 x1

2
------– 0≤=

10– x1 x2 x3 x4, , , 10≤ ≤

x5 x6, 0 1 2 3 4, , , ,{ }∈

strategy, \
 branch_and_bound \
 opt_method = ’NLP’ \
 iterator_servers = 2

method, \
 npsol_sqp \
 id_method = ’NLP’ \
 convergence_tol = 1.e-8

variables, \
 continuous_design = 4 \
 cdv_initial_point 0.5 1.5 0.5 1.5 \
 cdv_lower_bounds -10.0 -10.0 -10.0 -10.0 \
 cdv_upper_bounds 10.0 10.0 10.0 10.0 \
 discrete_design = 2 \
 ddv_initial_point 2 2 \
 ddv_lower_bounds 0 0 \
 ddv_upper_bounds 4 4

interface, \
 application direct, \
 analysis_driver = ’text_book’

responses, \
 num_objective_functions = 1 \
 num_nonlinear_inequality_constraints = 2 \
 numerical_gradients \
 interval_type central \
 method_source dakota \
 fd_step_size = 1.0E-5 \
 no_hessians

DAKOTA Users Manual - Advanced Optimization Strategies 133

Figure 13.5 shows the sequence of branches generated for this problem. The first optimization

subproblem relaxes the integrality constraint on parameters x5 and x6, so that and

. The values for x5 and x6 at the solution to this first subproblem are x5=x6=1.4. Since

x5 and x6 must be integers, the next step in the solution process “branches” on parameter x5 to

create two new optimization subproblems; one with and the other with .

Note that, at this first branching, the bounds on x6 are still . Next, the two new

optimization subproblems are solved. Since they are independent, they can be performed in
parallel. The branch-and-bound process continues, operating on both x5 and x6, until a

optimization subproblem is solved where x5 and x6 are integer-valued. At the solution to this

problem, the optimal values for x5 and x6 are x5=x6=1.

Figure 13.5 Branching history for example MINLP optimization problem.

In this example problem, the branch-and-bound algorithm executes as few as five and no more
than seven optimization subproblems to reach the solution. For comparison, the brute force
approach would require 25 optimization problems to be solved (i.e., five possible values for each
of x5 and x6).

In the example given above, the discrete variables are integer-valued. In some cases, the discrete

variables may be real-valued, such as . The branch-and-bound
algorithm is restricted to work with integer values. Therefore, it is up to the user to perform a
transformation between the discrete integer values from DAKOTA and the discrete real values
that are passed to the simulation code (see Section 4.2.2). When integrality is not being relaxed, a
common mapping is to use the integer value from DAKOTA as the index into a vector of discrete
real values. However, when integrality is relaxed, additional logic for interpolating between the
discrete real values is needed.

0 x5 4≤ ≤

0 x6 4≤ ≤

0 x5 1≤ ≤ 2 x5 4≤ ≤

0 x6 4≤ ≤

Bounds: 0≤ x5 ≤ 1

Soln.:x5=1, x6=1.4
f = 0.6769

0 ≤ x6 ≤ 4
Bounds: 2≤ x5 ≤ 4

Soln.:x5=2, x6=1.4
f = 0.7809

0 ≤ x6 ≤ 4

Bounds: 0≤ x5 ≤ 1

Soln.:x5=x6=1
f = 0.7025

0 ≤ x6 ≤ 1
Bounds: 0≤ x5 ≤ 1

Soln.:x5=1, x6=2
f = 0.8065

2 ≤ x6 ≤ 4
Bounds: 2≤ x5 ≤ 4

Soln.:x5=x6=2
f = 0.9105

2 ≤ x6 ≤ 4
Bounds: 2≤ x5 ≤ 4

Soln.:x5=2, x6=1
f = 0.8065

0 ≤ x6 ≤ 1

Bounds: 0≤ x5 ≤ 4

Soln.:x5=x6=1.4
f = 0.6513

0 ≤ x6 ≤ 4

Can prune
if NLP4

No iterator concurrency
on first NLP (idle servers)

NLP1

NLP2 NLP3

NLP4 NLP5 NLP6 NLP7
complete

Optimal solution

x 0.0 0.5 1.0 1.5 2.0, , , ,{ }∈

DAKOTA Users Manual - Advanced Optimization Strategies 134

13.6 Optimization Under Uncertainty (OUU)

The nondeterministic optimization strategy (a.k.a. optimization under uncertainty) incorporates
an uncertainty quantification method within the optimization process. This is often needed in
engineering design problems when one must include the effect on the response functions due to
uncertainties in input parameter values. A typical engineering example of OUU would minimize
the probability of failure of a structure for a set of applied loads, where there is uncertainty in the
loads and/or material properties of the structural components.

In the OUU strategy in DAKOTA (keyword:opt_under_uncertainty), a nondeterministic
method is used to evaluate the effect of uncertain variable distributions on response functions of
interest. Statistics on these response functions are then included in the objective and constraint
functions of an optimization process. The nondeterministic iteration may be nested within the
optimization iteration, nested with approximations (i.e., surface fits), or, in future releases,
segregated in an iterative approach.

In the case of a nested approach, the optimization loop is the outer loop which seeks to optimize
a nondeterministic quantity (e.g., minimize probability of failure). The uncertainty quantification
(UQ) inner loop evaluates this nondeterministic quantity (e.g., computes the probability of
failure) on each optimization function evaluation.

For a segregated approach, the optimization and UQ loops are not nested, rather, they are
executed in repeated succession until convergence. The coupling of the uncertainty quantification
to the design process occurs through the adjustment of the optimization objective and constraints
in order to modify the statistical performance of the optimal design computed (e.g., to adjust the
probability of failure of a minimum weight design by changing the stress allowables). The
segregated approach has the advantage of removing the compounded expense of nested loops;
however, the logic for modifying the design objectives can be heuristic and application-
dependent.

Figure 13.6 shows a DAKOTA input file for a nested OUU example problem that is based on the
textbook test problem. This input file is nameddakota_ouu1.in in the/Dakota/test
directory. In this example, the objective function contains two probability of failure estimates,
and an inequality constraint contains another probability of failure estimate. For this example,
failure is defined to occur when one of the textbook response functions exceeds its threshold
value. The strategy keyword block at the top of the input file identifies this as an OUU problem.
The strategy keyword block is followed by the optimization keyword blocks. These specify the
optimization method, the continuous design variables, and the response quantities that will be
used by the optimizer. The mapping matrices used for incorporating UQ statistics into the
optimization response data are described in the DAKOTA Reference Manual [17]. The
uncertainty quantification keyword blocks specify the UQ method, the uncertain variable
probability distributions, the interface to the simulation code, and the UQ response attributes. As
with other complex DAKOTA input files, the identification tags given in each keyword block can
be used to follow the relationships among the different keyword blocks.

DAKOTA Users Manual - Advanced Optimization Strategies 135

Latin hypercube sampling is used as the UQ method in this example problem. Thus, each
evaluation of the response functions by the optimizer entails 50 Latin hypercube samples. In
total, this example utilizes over 3000 function evaluations and does not quite achieve feasibility.
The reason is that the response function statistics resulting from 50 LHS samples are not
sufficiently converged to allow smooth navigation by a gradient-based optimizer. This
observation, as well as the computational expense, motivates the use of surrogate-based
approaches to OUU. Thedakota_ouu_approx1.in, dakota_ouu_approx2.in, and
dakota_ouu_approx3.in input files (not shown) in the/Dakota/test directory
demonstrate the use of surrogate models at the optimization level, at the UQ level, and both
levels, respectively. These approaches reduce the computational expense and are more successful
at obtaining a feasible solution. Current research is focusing on adding the necessary verification
steps and trust region logic to achieve provable convergence.

DAKOTA Users Manual - Advanced Optimization Strategies 136

DAKOTA Input File: Optimization under uncertainty
using a modified version of the Textbook test problem.

strategy, \
graphics \
opt_under_uncertainty \
 opt_method = ’OPTIM’

###########################
begin opt specification
###########################
method, \

id_method = ’OPTIM’ \
model_type nested \
 variables_pointer = ’OPTIM_V’ \
 sub_method_pointer = ’UQ’ \
 responses_pointer = ’OPTIM_R’ \
 primary_mapping_matrix = 1. 1. 0. \
 secondary_mapping_matrix = 0. 0. 1. \

 npsol_sqp \
 convergence_tolerance = 1.e-8

variables, \
id_variables = ’OPTIM_V’ \
continuous_design = 2 \
 cdv_initial_point 1.8 1.0 \
 cdv_upper_bounds 2.164 4.0 \
 cdv_lower_bounds 1.5 0.0 \
 cdv_descriptor ’d1’ ’d2’

responses, \
minimize p_fail_r1 + p_fail_r2 \
s.t. p_fail_r3 <= 0.1 \
NOTE: This specifies the TOTAL RESPONSE for the optimization, \
which is a combination of nested & interface responses. \

id_responses = ’OPTIM_R’ \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 1 \
nonlinear_inequality_upper_bounds = .1 \
numerical_gradients \
 method_source dakota \
 interval_type central \
 fd_step_size = 1.e-1 \
no_hessians

##########################
begin UQ specification
##########################
method, \

id_method = ’UQ’ \
model_type single \
variables_pointer = ’UQ_V’ \
interface_pointer = ’UQ_I’ \
responses_pointer = ’UQ_R’ \
nond_sampling, \
 samples = 50 sample_type lhs seed = 1 \
 response_thresholds = 3.6e+11 1.2e+05 3.5e+05 \

variables, \
id_variables = ’UQ_V’ \

continuous_design is not required (OUU will augment \
automatically), but it is good form \

continuous_design = 2 \
normal_uncertain = 2 \
 nuv_means = 248.89, 593.33 \
 nuv_std_deviations = 12.4, 29.7 \
 nuv_descriptor = ’nuv1’ ’nuv2’ \
uniform_uncertain = 2 \
 uuv_dist_lower_bounds = 199.3, 474.63 \
 uuv_dist_upper_bounds = 298.5, 712. \
 uuv_descriptor = ’uuv1’ ’uuv2’ \
weibull_uncertain = 2 \
 wuv_alphas = 12., 30. \
 wuv_betas = 250., 590. \
 wuv_descriptor = ’wuv1’ ’wuv2’

interface, \
id_interface = ’UQ_I’ \
application system asynch evaluation_concurrency = 5 \
 analysis_driver= ’text_book_ouu’

responses, \
id_responses = ’UQ_R’ \
num_response_functions = 3 \
no_gradients \
no_hessians

Figure 13.6 DAKOTA input file for the optimization under uncertainty example.

DAKOTA Users Manual - Advanced Optimization Strategies 137

13.7 Surrogate-Based Optimization (SBO)

In the surrogate-based optimization strategy (keyword:surrogate_based_opt) the
optimization algorithm operates on a surrogate model instead of directly operating on the
computationally expensive computational model. The surrogate model can be formed from data
samples and surface fit functions, or it can be a simplified (e.g., coarsened finite element mesh)
version of the original computational model. For either type of surrogate model, the SBO
algorithm periodically checks the accuracy of the surrogate model against the original
computational model. The SBO strategy in DAKOTA can be implemented using heuristic rules
(less expensive) or provably-convergent rules (more expensive). The SBO strategy is particularly
effective on real-world engineering design problems that contain nonsmooth features (e.g., slope
discontinuities, numerical noise) where gradient-based optimization methods often have trouble,
and where the computational expense of the simulation precludes the use of nongradient-based
methods.

13.7.1 SBO with Surface Fit Models

In SBO with surface fit functions, a sequence of optimization subproblems are evaluated, each of
which is confined to a subset of the parameter space known as a “trust region.” Inside each trust
region, DAKOTA’s data sampling methods are used to evaluate the response quantities at a small

number (order 101 to 102) of design points. Next, multidimensional surface fitting is performed
to create a surrogate function for each of the response quantities. Finally, optimization is
performed using the surrogate functions in lieu of the actual response quantities, and the
optimizer’s search is limited to the region inside the trust region bounds. A validation procedure
is then applied to compare the response quantities at the predicted optimum design point versus
the true response quantities at that point. Based on the results of this validation, the optimum
design point is either accepted or rejected and the size of the trust region is either expanded,
contracted, or left unchanged. The sequence of optimization subproblems continues until the
SBO strategy convergence criteria are satisfied. More information on the data sampling methods
is available in Chapter 9, and the surface fitting methods are described in Chapter 14.

Figure 13.7 shows a DAKOTA input file that implements surrogate-based optimization on
Rosenbrock’s function. This input file is nameddakota_rsm_rosen.in in the/Dakota/
test directory. The strategy keyword block contains the SBO strategy keyword
surrogate_based_opt, plus the commands for specifying the trust region size and scaling
factors. The optimization portion of SBO is specified in the following keyword blocks for
method, variables, interface, andresponses. In SBO, the interface keyword block
specifies the type of surface fit method on which the optimizer will operate. The data sampling
portion of SBO is specified in an additional set of keyword blocks formethod, variables,
interface, andresponses. This example problem uses the Latin hypercube sampling
method in the LHS software to select 10 design points in each trust region. (Note: DDACE also
provides a capability for Latin hypercube sampling. If you have access to DDACE, swap the
comment flags for thenond_sampling anddace lhs sections in the input file.) A single
surrogate model is constructed for the objective function using a quadratic polynomial. The

DAKOTA Users Manual - Advanced Optimization Strategies 138

initial trust region is centered at the design point (x1,x2) = (0,0), and extends to +/- 0.1 on the x1-
and x2-axes.

If this input file is executed in DAKOTA, it will converge to the optimal design point at (x1,x2) =
(1,1) in about 500-700 function evaluations. While this solution is correct, it is obtained at a
much higher cost than a traditional gradient-based optimizer (e.g., see the results obtained from
dakota_rosenbrock.in). The SBO strategy is not intended for use with smooth continuous
optimization problems; gradient-based optimization is much more efficient for such applications.
Rather, SBO is best-suited for the types of problems that occur in engineering design where the
response quantities may be discontinuous, nonsmooth, or may have multiple local optima [32].
In these types of engineering design problems, traditional gradient-based optimizers often are
ineffective. (For an example problem with multiple local optima, look in/Dakota/test for
the filedakota_rsm_sine_fcn.in [33]).

A recently added capability for DAKOTA’s SBO strategy is the incorporation of correction
factors that improve the local accuracy of the surrogate models. The correction factors force the
surrogate models to match the true function values, and possibly gradients, at the center point of
each trust region. The three types of correction factors that can be applied areoffset,
scaled, andbeta. No correction factors are applied if neither one of these correction types is
specified in the DAKOTA input file. The three correction types are described below.

Visualize two curves, and , where is the surrogate model for the true

function . At the center point of each trust region,xc, the correction factor approach

creates a third function, that will be used by the optimizer. Note that in SBO without any

correction factors, the optimizer operates on .

For the offset correction method, the corrected function has the form ,

where . For the scaled correction method, this function has the form

. The beta correction method, which is based on the work of Chang, et

al., [9] and Alexandrov, et al, [1], has the form and uses a scaling

function, , that is computed using a first-order Taylor Series expansion

.

It should be noted that in the beta correction method, the function matches both the

function value and gradients of at x=xc. This property is necessary in proving that the

beta-corrected SBO algorithm is provably convergent to a local minimum of . However,

the beta correction method is significantly more expensive than the offset and scaled correction

methods, since the beta correction method requires computing both and

ft x() fs x() fs x()

ft x()

f̂ x()
fs x()

f̂ x() fs x() α xc()+=

α xc() ft xc() fs xc()⁄=

f̂ x() α xc()f
s
x()=

f̂ x() β x()fs x()=

β x()

β x() α xc() α xc()∇ T
x xc–()+=

f̂ x()
ft x()

ft x()

ft∇ xc() fs∇ xc()

DAKOTA Users Manual - Advanced Optimization Strategies 139

which are components of . When the SBO strategy is used with either the offset or

scaled correction methods, convergence is not guaranteed to a local minimum of . That is,

the SBO strategy becomes a heuristic optimization algorithm. From a mathematical point of view
this is undesirable, but as a practical matter the heuristic variants of SBO are often effective in
finding local minima.

Usage guidelines: As of March 2002, the DAKOTA team is continuing to test the surface fit SBO
strategy using the various correction factor methods. Thus, no clear-cut guidelines are available.
However, the user should consider the following observations: (1) Both theoffset and

scaled correction methods are “free” since they use values of that are normally

computed by the SBO strategy. (2) The use of the beta correction method does not necessarily
improve the rate of convergence of the SBO algorithm. (3) When using the beta correction
method, the FD_GRAD response keywords must be used (see bottom of Figure 13.7) rather than
the NO_GRAD response keywords. This provides the gradient data needed to compute the beta
correction function. (4) For many computationally expensive engineering optimization problems,
gradients often are too expensive to obtain or are discontinuous (or may not exist at all). In such
cases the heuristic SBO algorithm has been an effective approach at identifying optimal designs
[32].

13.7.2 SBO with Multifidelity Models

SBO can also be applied with multifidelity, or hierarchical, models, i.e., where one has available
both a high fidelity computational model and a low fidelity computational model. This situation
can occur when the low fidelity model neglects some physical phenomena (e.g., viscosity, heat
transfer, etc.) that are included in the high fidelity model, or when the low fidelity model has a
lower resolution computational mesh than the high fidelity model. In many cases, the low fidelity
model can serve as a surrogate for the high fidelity model during the optimization process. Thus,
the low fidelity model can be used in SBO in a manner similar to SBO with surface fit models
described in Section 13.7.1. The same three types of correction factors (offset, scaled, and beta)
can be applied to SBO with multifidelity models.

A simple test problem nameddakota_sbo_hierarchical.in is available in/Dakota/
test to demonstrate this SBO approach. This test problem uses the Rosenbrock function as the
high fidelity model and a function named “lf_rosenbrock” as the low fidelity model. Here,
“lf_rosenbrock” is a variant of the Rosenbrock function with the minimum point at (x1, x2) =

(0.80, 0.44). Recall that the minimum of the original Rosenbrock function is (x1, x2) = (1,1).

Preliminary testing of this variant of SBO has shown mixed results which are highly dependent
on the starting point specified in the DAKOTA input file. In many cases, the SBO algorithm
makes good initial progress at reducing the objective function, but stalls out (i.e., triggers the
SBO algorithm’s soft convergence limits) prior to reaching (x1, x2) = (1,1). Clearly, additional

testing of multifidelity SBO is needed, both on simple problems and on engineering design
problems.

α∇ xc()

ft x()

ft xc()

DAKOTA Users Manual - Advanced Optimization Strategies 140

DAKOTA INPUT FILE - dakota_rsm_rosen.in

Surrogate-based optimization to minimize Rosenbrock’s function.

strategy, \
surrogate_based_opt \
 graphics tabular_graphics_data \
 max_iterations = 1000, \
 opt_method=’NLP’ \
 trust_region \
 initial_size = 0.10 \
 contraction_factor = 0.50 \
 expansion_factor = 1.50

######## begin opt specification ###############
method, \

id_method = ’NLP’ \
model_type layered \
 interface_pointer = ’RSM’ \
 responses_pointer = ’GRAD’ \
conmin_frcg, \
 max_iterations = 50, \
 convergence_tolerance = 1e-8

variables, \
continuous_design = 2 \
 cdv_initial_point 0.0 0.0 \
 cdv_lower_bounds -2.0 -2.0 \
 cdv_upper_bounds 2.0 2.0 \
 cdv_descriptor ’x1’ ’x2’

interface, \
 id_interface = ’RSM’ \
 approximation global, \
 dace_method_pointer = ’DACE’ \
reuse_samples region \
use_gradients \
 correction scaled \
neural_network \
 polynomial # (***quadratic only***) \
kriging \
correlations = 1.0 1.0

responses, \
id_responses = ’GRAD’ \
num_objective_functions = 1 \
numerical_gradients \
 method_source vendor \
 interval_type forward \
 fd_step_size = .000001 \
no_hessians

######### Sampling method specifications #########
method, \
 id_method = ’DACE’ \
 model_type single \
 interface_pointer=’ACTUAL’ \
 responses_pointer=’NO_GRAD’ \
responses_pointer=’FD_GRAD’ \
dace lhs #seed = 5 \
samples = 10 symbols = 10 \
 nond_sampling \
 samples = 10 sample_type lhs \
 all_variables

interface, \
application direct, \
id_interface = ’ACTUAL’ \
 analysis_driver = ’rosenbrock’

responses, \
id_responses = ’FD_GRAD’ \
num_objective_functions = 1 \
numerical_gradients \
 method_source dakota \
 interval_type central \
 fd_step_size = 0.0001 \
no_hessians

responses, \
id_responses = ’NO_GRAD’ \
num_objective_functions = 1 \
no_gradients \
no_hessians

Figure 13.7 DAKOTA input file for the surrogate-based optimization example.

DAKOTA Users Manual - Surface Fitting Methods 141

14.0 Surface Fitting Methods

14.1 Overview

DAKOTA contains several types of surface fitting methods that can be used with optimization
and uncertainty quantification methods and strategies such as SBO and OUU. These are:
quadratic polynomial models, first-order Taylor series expansion, kriging spatial interpolation,
artificial neural networks, and multivariate adaptive regression splines. All of these surface fitting
methods can be applied to problems having an arbitrary number of design parameters. However,
surface fitting methods usually are practical only for problems where there are a small number of
parameters (e.g., a maximum of somewhere in the range of 30-50 design parameters). The
mathematical models created by surface fitting methods have a variety of names in the
engineering community. These include surrogate models, meta-models, approximation models,
and response surfaces. For this manual, the terms surface fit model and surrogate model are used.

14.2 Procedures for Surface Fitting

The surface fitting process consists of three steps: (1) selection of a set of design points, (2)
evaluation of the true response quantities (e.g., from a user-supplied simulation) at these design
points, and (3) using the response data to solve for the unknown coefficients (e.g., polynomial
coefficients, neural network weights, kriging correlation factors) in the surface fit model. In cases
where there is more than one response quantity (e.g., an objective function plus one or more
constraints), then a separate surface is built for each response quantity. Currently, the surface fit

models are built using only 0th-order information (function values only), although extensions to
using higher-order information (gradients and Hessians) are possible. Each surface fitting method
employs a different numerical method for computing its internal coefficients. For example, the
quadratic polynomial surface uses a least-squares approach that employs a singular value
decomposition to compute the polynomial coefficients, whereas the kriging surface uses
Maximum Likelihood Estimation to compute its correlation coefficients. More information on
the numerical methods used in the surface fitting codes is provided in the DAKOTA Developers
Manual [18].

The set of design points that is used in generating the surface fit model is generated using either
the DDACE software package [60] or the LHS software package [43]. These packages provide a
variety of sampling methods including Monte Carlo (random) sampling, Latin hypercube
sampling, orthogonal array sampling, central composite design sampling, and Box-Behnken
sampling. More information on these software packages is provided in Chapter 9.

14.3 Quadratic Polynomial Models

The quadratic polynomial surface fitting model has the form

DAKOTA Users Manual - Surface Fitting Methods 142

(14)

where is the response of the model, thexi,xj terms are the components of the n-

dimensional design parameter values, thec0, ci, cij terms are the polynomial coefficients, and

n is the number of design parameters. In this model, the number of unknown polynomial
coefficients,nc, is given by the formula(n+1)(n+2)/2. Thus, there must be at leastnc data

samples in order to form a fully determined linear system using Equation (14). This definition of
nc for quadratic polynomials is used as a metric for other surface fitting techniques as well. In

DAKOTA, a least-squares approach involving a singular value decomposition numerical method
is applied to solve the linear system. This procedure solves for the values of the polynomial
coefficients.

The utility of the quadratic polynomial stems from two sources: (1) over a small portion of the
parameter space, a quadratic model is often an accurate approximation to the true data trends,
and (2) the least-squares procedure provides a surface fit that smooths out noise in the data. For
this reason, the surrogate-based optimization strategy often is successful when using quadratic
polynomials. The quadratic polynomial surface fit may not be the best choice for modeling data
trends over the entire parameter space, unless the trend is close to quadratic. Quadratic
polynomials can be inaccurate if used to model data trends that are cubic or higher-order. See
[51] for more information on quadratic models.

14.4 First-order Taylor Series Models

The first-order Taylor Series model is purely a local approximation method. That is, it provides
local trends in the vicinity of a single point in parameter space. The form of the Taylor Series
model is

(15)

wherex0 is the current point in n-dimensional parameter space,f(x0) is the computed response

value at the current point, and is the computed response gradient at the current point.

In general, the Taylor Series model is accurate only in the region of parameter space that is close
to x0. While the accuracy is limited, the Taylor Series model has the correct gradient at the point

x0. This feature is useful in provably-convergent surrogate-based optimization. The other surface

fitting methods do not use gradient information directly in their models, and these methods rely
on an external gradient-matching procedure in order to satisfy the convergence proof
requirements of SBO.

f̂ x() c0≈ cixi cijxixj
j 1=

n

∑
i 1=

n

∑+
i 1=

n

∑+

f̂ x()

f̂ x() f x0()≈ fx∇
x x0=

()T x x0–()+

fx∇
x x0=

DAKOTA Users Manual - Surface Fitting Methods 143

14.5 Kriging Spatial Interpolation Models

The kriging method uses techniques developed in the geostatistics and spatial statistics

communities ([11], [45]) to produce smooth,C2-continuous surface fit models of the response
values from a set of data points. The form of the kriging model is

(16)

wherex is the current point in n-dimensional parameter space; is the estimate of the mean
response value,r is the correlation vector of terms betweenx and the data points,R is the
correlation matrix for all of the data points,f is the vector of response values, ande is a vector
with all values set to one. The terms in the correlation vector and matrix are computed using a
Gaussian correlation function and are dependent on an n-dimensional vector of correlation

parameters, . In DAKOTA, a Maximum Likelihood Estimation procedure is

performed to compute the correlation parameters for the kriging model. More detail on the
kriging approach used in this study may be found in [34].

The kriging interpolation model is a nonparametric surface fitting approach. That is, the kriging
surface does not assume that there is an underlying trend in the response data. This is in contrast
to the quadratic polynomial model and the linear Taylor Series model. Since the kriging model is
nonparametric, it can be used to model surfaces with slope discontinuities along with multiple
local minima and maxima. Kriging interpolation is useful for both SBO and OUU, as well as for
studying the global response value trends in the parameter space. This surface fitting method can
be constructed using a minimum ofn+1 design points, but it is recommended to use at leastnc
design points (defined in Section 14.3) when possible.

The kriging model is guaranteed to pass through all of the response data values that are used to
construct the model. Generally, this is a desirable feature. However, if there is considerable
numerical noise in the response data, then a surface fitting method that provides some data
smoothing (e.g., quadratic polynomial, MARS) may be a better choice for SBO and OUU

applications. Another feature of the kriging model is that the predicted response values, ,

decay to the mean value, , whenx is far from any of the data points from which the kriging
model was constructed (i.e., when the model is used for extrapolation). This is neither a positive
nor a negative aspect of kriging, but rather a different behavior than is exhibited by the other
surface fitting methods. One drawback to the kriging model is that data points in close proximity
lead to ill-conditioning in the numerical procedure and the kriging software will terminate if such
a situation occurs. For this reason, the user is advised to avoid sample reuse (reuse_samples
= region andreuse_samples = all specifications) when performing surrogate-based
optimization.

f̂ x() β r
T
R

1–
f βe–()+≈

β

Θ θ1 … θn, ,{ }=

f̂ x()
β

DAKOTA Users Manual - Surface Fitting Methods 144

14.6 Artificial Neural Network (ANN) Models

The ANN surface fitting method in DAKOTA employs a stochastic layered perceptron (SLP)
artificial neural network based on the direct training approach of Zimmerman [66]. The SLP
ANN method is designed to have a lower training cost than traditional ANNs. This is a useful
feature for SBO and OUU where new ANNs are constructed many times during the optimization
process (i.e., one ANN for each response function, and new ANNs for each optimization
iteration). The form of the SLP ANN model is

(17)

wherex is the current point in n-dimensional parameter space, and the terms are

the matrices and vectors that correspond to the neuron weights and offset values in the ANN
model. These terms are computed during the ANN training process, and are analogous to the
polynomial coefficients in a quadratic surface fit. A singular value decomposition method is used
in the numerical methods that are employed to solve for the weights and offsets.

The SLP ANN is a non parametric surface fitting method. Thus, along with kriging and MARS,
it can be used to model data trends that have slope discontinuities as well as multiple maxima
and minima. However, unlike kriging, the ANN surface is not guaranteed to exactly match the
response values of the data points from which it was constructed. This ANN can be used with
SBO and OUU strategies. As with kriging, this ANN can be constructed from fewer thannc data

points, however, it is a good rule of thumb to use at leastnc data points when possible.

14.7 Multivariate Adaptive Regression Spline (MARS) Models

This surface fitting method uses multivariate adaptive regression splines from the MARS3.5
package [25] developed at Stanford University. Currently, access to the MARS software is
provided through the DDACE package [60].As of November 2001, the DDACE package is
awaiting approval for public release under a GNU LGPL license. For this reason, MARS and
DDACE are not currently available to users outside of Sandia National Laboratories.

The form of the MARS model is based on the following expression:

(18)

where theam are the coefficients of the truncated power basis functionsBm, andM is the number

of basis functions. The MARS software partitions the parameter space into subregions, and then
applies forward and backward regression methods to create a local surface model in each
subregion. The result is that each subregion contains its own basis functions and coefficients, and

the subregions are joined together to produce a smooth,C2-continuous surface model.

f̂ x() xA0 θ0+()A1 θ1+()tanh()tanh≈

A0 A1 θ0 θ1, , ,

f̂ x() amBm x()
m 1=

M

∑=

DAKOTA Users Manual - Surface Fitting Methods 145

MARS is a nonparametric surface fitting method and can represent complex multimodal data
trends. The regression component of MARS generates a surface model that is not guaranteed to
pass through all of the response data values. Thus, like the quadratic polynomial model, it
provides some smoothing of the data. The MARS reference material does not indicate the
minimum number of data points that are needed to create a MARS surface model. However, in
practice it has been found that at leastnc, and sometimes as many as2nc to4nc, data points are

needed to keep the MARS software from terminating. Provided that sufficient data samples can
be obtained, MARS surface models can be useful in SBO and OUU applications, as well as in
the prediction of global trends throughout the parameter space.

DAKOTA Users Manual - Parallel Computing 146

15.0 Parallel Computing

15.1 Overview

Parallel computers within the Department of Energy national laboratories have exceeded ten tril-

lion floating point operations per second (10 TeraFLOPS) and are expected to achieve 100 Tera-

FLOPS by 2004. This performance is achieved through the use of massively parallel (MP)

processing (O[103 -104] processors). In order to harness the power of these machines for perform-

ing design, parallel optimization approaches are needed which are scalable on thousands of pro-

cessors. To understand the possibilities, it is instructive to first categorize the opportunities for

exploiting parallelism into four main areas [20], consisting of coarse-grained and fine-grained

parallelism opportunities within algorithms and their function evaluations:

1. Algorithmic coarse-grained parallelism: This parallelism involves the concurrent execution
of independent function evaluations, where a “function evaluation” is defined as a data
request from an algorithm (which may involve value, gradient, and Hessian data from
multiple objective and constraint functions). This concept can also be extended to the
concurrent execution of multiple “iterators” within a “strategy.” Examples of algorithms
containing coarse-grained parallelism include:

• Gradient-based algorithms: finite difference gradient evaluations, speculative optimization,
parallel line search.

• Nongradient-based algorithms: genetic algorithms (GAs), pattern search (PS), Monte Carlo
sampling.

• Approximate methods: design of computer experiments for building response surface
approximations.

• Concurrent-iterator strategies: optimization under uncertainty, branch and bound, multi-
start local search, Pareto set optimization, island-model GAs.

2. Algorithmic fine-grained parallelism: This involves computing the basic computational steps
of an optimization algorithm (i.e., the internal linear algebra) in parallel. This is primarily of
interest in large-scale optimization problems and simultaneous analysis and design (SAND).

3. Function evaluation coarse-grained parallelism: This involves concurrent computation of
separable parts of a single function evaluation. This parallelism can be exploited when the
evaluation of the response data set requires multiple independent simulations (e.g. multiple
loading cases or operational environments) or multiple dependent analyses where the
coupling is applied at the optimizer level (e.g., the individual discipline feasible formulation
[12]).

4. Function evaluation fine-grained parallelism: This involves parallelization of the solution

steps within a single analysis code. The DOE laboratories have developed parallel analysis

codes in the areas of nonlinear mechanics, structural dynamics, heat transfer, computational

fluid dynamics, shock physics, and many others.

DAKOTA Users Manual - Parallel Computing 147

By definition, coarse-grained parallelism requires very little inter-processor communication and
is therefore “embarrassingly parallel,” meaning that there is little loss in parallel efficiency due to
communication as the number of processors increases. However, it is often the case that there are
not enough separable computations on each algorithm cycle to utilize the thousands of
processors available on MP machines. For example, a thermal safety application [23]
demonstrated this limitation with a pattern search optimization in which the maximum speedup
exploitingonly coarse-grained algorithmic parallelism was shown to be severely limited by the
size of the design problem (coordinate pattern search has at most 2n independent evaluations per
cycle forn design variables).

Fine-grained parallelism, on the other hand, involves much more communication among
processors and care must be taken to avoid the case of inefficient machine utilization in which
the communication demands among processors outstrip the amount of actual computational work
to be performed. For example, a chemically-reacting flow application[20] illustrated this
limitation for a simulation of fixed size in which it was shown that, while simulation run time did
monotonically decrease with increasing number of processors, the relative parallel efficiencyÊ
of the computation for fixed model size decreased rapidly (fromÊ = 0.87 at 64 processors toÊ =
0.39 at 512 processors). This was due to the fact that the total amount of computation was
approximately fixed, whereas the communication demands were increasing rapidly with
increasing numbers of processors. Therefore, there is an effective limit on the number of
processors that can be employed for fine-grained parallel simulation of a particular model size,
and only for extreme model sizes (“heroic-scale”) can thousands of processors be efficiently
utilized in studies exploiting fine-grained parallelism alone.

These limitations point us to the exploitation of multiple levels of parallelism, in particular the
combination of coarse-grained and fine-grained approaches. DAKOTA Version 3.0 supports a
total of three tiers of scheduling and four levels of parallelism which, in combination, can
minimize efficiency losses and achieve near linear scaling on MP computers. The four levels are:

• concurrent iterators within a strategy (scheduling performed by DAKOTA)

• concurrent function evaluations within each iterator (scheduling performed by DAKOTA)

• concurrent analyses within each function evaluation (scheduling performed by DAKOTA)

• multiprocessor analyses (work distributed by the parallel analysis code)

for which the first two are classified as algorithmic coarse-grained parallelism, the third is
function evaluation coarse-grained parallelism, and the fourth is function evaluation fine-grained
parallelism. Algorithmic fine-grained parallelism is not currently supported, although the
development of large-scale parallel SAND techniques is a current research direction[5].

A particular application may support one or more of these parallelism types, and DAKOTA
provides for convenient selection and combination of each of the supported levels. If multiple
types of parallelism can be exploited, then the question may arise as to how the amount of
parallelism at each level should be selected so as to maximize the overall parallel efficiency of
the study. For performance analysis of multilevel parallelism formulations and detailed
discussion of these issues, refer to[21]. In general, it is recommended that the user employ

DAKOTA Users Manual - Parallel Computing 148

DAKOTA’s automatic parallelism configuration facilities, as these utilize the recommendations
from the aforementioned paper.

While development of techniques for high end MP computers is a primary research driver, it is
important to note that DAKOTA’s parallel facilities support a broad range of hardware and are
equally applicable to parallel processing on networks of workstations (NOWs) or desktop
multiprocessors. Given the reduced scale in these cases, it is more common to exploit only one of
the levels of parallelism; however, this can still be quite effective in reducing the time to obtain a
solution.

In the following sections, the parallel algorithms available in this DAKOTA release are listed
followed by descriptions of the software components which enable parallelism, approaches for
utilizing these components, and input specification and execution details for running parallel
DAKOTA studies.

15.2 Parallel Algorithms

In DAKOTA Version 3.0, the following iterators and strategies support algorithmic coarse-
grained parallelism.

15.2.1 Parallel iterators

• Gradient-based optimizers: CONMIN, NPSOL, DOT, and OPT++ can all exploit parallelism
through the use of DAKOTA’s native finite differencing routine (selected with
method_source dakota in the responses specification), which will perform concurrent
evaluations for each of the parameter offsets. Forn variables, forward differences result in an
n+1 concurrency and central differences result in a2n+1 concurrency. In addition, these
optimizers can use speculative gradient techniques [8] to obtain better parallel load balancing.
By speculating that the gradient information associated with a given line search point will be
used later and computing the gradient information in parallel at the same time as the function
values, the concurrency during the gradient evaluation and line search phases can be balanced.

• Nongradient-based optimizers: APPS, all SGOPT methods except Solis-Wets.

• Parameter studies: all parameter study methods (vector, list, centered, and
multidim).

• Design of experiments: alldace methods (grid, random, oas, lhs, oa_lhs,
box_behnken_design, orcentral_composite_design).

• Uncertainty quantification: all nondeterministic methods (nond_sampling,
nond_analytic_reliability, andnond_polynomial_chaos).

15.2.2 Parallel strategies

Certain strategies support concurrency in multiple iterator executions. Currently, the strategies
which can exploit this level of parallelism are:

DAKOTA Users Manual - Parallel Computing 149

• Branch and bound

• Pareto set optimization

• Multi-start iteration

In the branch and bound case, the available iterator concurrency grows as the tree develops more
branches, so some of the iterator servers may be idle in the initial phases. Pareto-set and multi-
start, however, have a fixed set of jobs to perform and should exhibit good load balancing. In a
future release, optimization under uncertainty will be added to the strategies which support
concurrent iterator parallelism.

15.3 Local Simulation Invocation Components

This section describes software components which manage simulation invocations local to a
processor. These invocations may be either synchronous (i.e., blocking) or asynchronous (i.e.,
nonblocking). Synchronous evaluations proceed one at a time with the evaluation running to
completion before control is returned to DAKOTA. Asynchronous evaluations are initiated such
that control is returned to DAKOTA immediately, prior to evaluation completion, thereby
allowing the initiation of additional evaluations which will execute concurrently.

The synchronous local invocation capabilities are used to provide serial execution on a single
processor and also to provide function evaluations local to a processor within DAKOTA’s
message-passing schedulers. The asynchronous local invocation capabilities can be used by
themselves to provide a simple parallelism which relies on external means to assign jobs to
processors, or they can be combined with DAKOTA’s message-passing schedulers to provide a
hybrid parallelism. Refer to Section 15.5 for additional details.

In most cases, blocking schedulers are used for the management of sets of asynchronous local
evaluations, in which all jobs in the queue are completed before exiting the scheduler and
returning the set of results to the algorithm. Nonblocking asynchronous local schedulers are also
available for the case of fully asynchronous algorithms which do not contain synchronization
points (e.g., the APPS algorithm). In this case, jobs may come and go from the queue without the
enforcement of a hard synchronization point.

DAKOTA Version 3.0 supports three approaches to local simulation invocation based on the
direct function, system call, and fork application interfaces. For each of these cases, an input
filter, one or more analysis drivers, and an output filter make up the interface, as described in
Section 5.6.

15.3.1 Direct function synchronization

The direct function capability may be used synchronously. Synchronous operation of the direct
function application interface involves a standard procedure call to the input filter, if present,
followed by calls to one or more simulations, followed by a call to the output filter, if present.

DAKOTA Users Manual - Parallel Computing 150

Each of these components must be linked as functions within DAKOTA. Control does not return
to the calling code until the evaluation is completed and the response object has been populated.

Asynchronous operation will be supported in the future and will involve the use of
multithreading (e.g., POSIX threads) to accomplish multiple simultaneous simulations. When
spawning a thread (e.g., usingpthread_create), control returns to the calling code after the
simulation is initiated. In this way, multiple threads can be created simultaneously. An array of
responses corresponding to the multiple threads of execution would then be recovered in a
synchronize operation (e.g., usingpthread_join).

15.3.2 System call synchronization

The system call capability may be used synchronously or asynchronously. In both cases, the
system utility from the standard C library is used. Synchronous operation of the system call
application interface involves spawning the system call (containing the filters and analysis
drivers bound together with parentheses and semi-colons) in the foreground. Control does not
return to the calling code until the simulation is completed and the response file has been written.
In this case, the possibility of a race condition (see below) does not exist and any errors during
response recovery will cause an immediate abort of the DAKOTA process.

Asynchronous operation involves spawning the system call in the background, continuing with
other tasks (e.g., spawning other system calls), periodically checking for process completion, and
finally retrieving the results. An array of responses corresponding to the multiple system calls is
recovered in a synchronize operation.

In this synchronize operation, completion of a function evaluation is detected by testing for the
existence of the evaluation’s results file using thestat utility [44]. Care must be taken when
using asynchronous system calls since they are prone to the race condition in which the results
file passes the existence test but the recording of the function evaluation results in the file is
incomplete. In this case, the read operation performed by DAKOTA will result in an error due to
an incomplete data set. In order to address this problem, DAKOTA contains exception handling
which allows for a fixed number of response read failures per asynchronous system call
evaluation. The number of allowed failures must have a limit, so that an actual response format
error (unrelated to the race condition) will eventually abort the system. Therefore, to reduce the
possibility of exceeding the limit on allowable read failures,the user’s interface should minimize
the amount of time an incomplete results file exists in the directory where its status is being
tested. This can be accomplished through two approaches: (1) delay the creation of the results
file until the simulation computations are complete and all of the response data is ready to be
written to the results file, or (2) perform the simulation computations in a subdirectory, and as a
last step, move the completed results file into the main working directory where its existence is
being queried.

If concurrent simulations are executing in a shared disk space, then care must be taken to
maintain independence of the simulations. In particular, the parameters and results files used to
communicate with DAKOTA, as well as any other files used by this simulation, must be

DAKOTA Users Manual - Parallel Computing 151

protected from other files of the same name used by the other concurrent simulations. With
respect to the parameters and results files, these files may be made unique through the use of the
file_tag option (e.g.,params.in.1, results.out.1, etc.) or the default UNIX
temporary file option (e.g.,/var/tmp/aaa0b2Mfv, etc.). However, if additional simulation
files must be protected (e.g.,model.i, model.o, model.g, model.e, etc.), then an
effective approach is to create a tagged working subdirectory for each simulation instance.
Section 16.1 provides an example system call interface that demonstrates both the use of tagged
working directories and the relocation of completed results files to avoid the race condition.

15.3.3 Fork synchronization

The fork capability is quite similar to the system call; however, it has the advantage that
asynchronous fork invocations can avoid the results file race condition that may occur with
asynchronous system calls. The fork interface invokes the filters and analysis drivers using the
fork andexec family of functions, and completion of these processes is detected using the
wait family of functions. Sincewait is based on a process id handle rather than a file
existence test, an incomplete results file is not an issue.

Depending on the platform, the fork application interface executes either avfork or afork
call. These calls generate a new child process with its own UNIX process identification number,
which functions as a copy of the parent process (dakota). Theexecvp function is then called by
the child process, causing it to be replaced by the simulation code or driver. For synchronous
operation, the parent dakota process then awaits completion of the forked child process through a
blocking call towaitpid. On most platforms, thefork/exec procedure is efficient since it
operates in a copy-on-write mode, and no copy of the parent is actually created. Instead, the
parents address space is borrowed until theexec function is called.

Thefork/exec behavior for asynchronous operation is similar to that for synchronous
operation, the only difference being that dakota invokes multiple simulations through thefork/
exec process prior to recovering response results for these jobs using thewait function. The
combined use offork/exec andwait functions in asynchronous mode allows the scheduling
of a specified number of concurrent function evaluations and/or concurrent analyses.

15.4 Message Passing Components

DAKOTA uses a “single program-multiple data” (SPMD) parallel programming model. It uses
message-passing routines from the Message Passing Interface (MPI) standard [37], [59] to
communicate data between processors. The SPMD designation simply denotes that the same
DAKOTA executable is loaded on all processors. This differs from the MPMD model (“multiple
program-multiple data”) which would have the DAKOTA executable on one or more processors
communicating directly with simulator executables on other processors. The MPMD model has
some advantages, but heterogeneous executable loads are not supported by all parallel
environments (e.g.,yod on Sandia’s MP machines). Moreover, the MPMD model requires

DAKOTA Users Manual - Parallel Computing 152

simulation code intrusion on the same order as conversion to a subroutine, so the subroutine
conversion in a direct-linked SPMD model is preferred.

15.4.1 Partitioning of levels

DAKOTA uses MPI communicators to identify groups of processors. The global
MPI_COMM_WORLD communicator provides the total set of processors allocated to the
DAKOTA run. MPI_COMM_WORLD can be partitioned into new intra-communicators which each
define a set of processors to be used for a multiprocessor server. Each of these servers may be
further partitioned to nest one level of parallelism within the next. At the lowest parallelism level,
these intra-communicators can be passed into a simulation for use as the simulation’s
computational context, provided that the simulation has been designed, or can be modified, to be
modular on a communicator. New intra-communicators are created with theMPI_Comm_split
routine, and in order to send messages between these intra-communicators, new inter-
communicators are created with calls toMPI_Intercomm_create. To minimize overhead,
DAKOTA creates new intra- and inter-communicators only when the parent communicator
provides insufficient context for the scheduling at a particular level. In addition, communicator
partitions can be reallocated multiple times. This enables dynamic repartitioning for a strategy
that manages multiple iterators and models (e.g., four 256 processor servers could be used for
iteration on a lower fidelity model, followed by two 512 processor servers for subsequent
iteration on a higher fidelity model). In DAKOTA, communicator partitioning schemes are
allocated and deallocated for each iterator/model pair within a strategy.

Each tier within DAKOTA’s nested
parallelism hierarchy can use either of two
processor partitioning models: a “dedicated
master” partitioning in which a single
processor is dedicated to scheduling
operations and the remaining processors are
split into server partitions, or a “peer
partition” approach in which the loss of a
processor to scheduling is avoided. These
models are depicted in Figure 15.1. The peer
partition is desirable since it utilizes all
processors for computation; however, it
requires either the use of sophisticated
mechanisms for distributed scheduling or a
problem for which static scheduling of
concurrent work performs well (see

Scheduling within levels below). To recursively partition the subcommunicators of Figure 15.1,
COMM1/2/3 in the dedicated master or peer partition case would be further subdivided using the
appropriate partitioning model for the next lower level of parallelism.

COMM1 COMM3

COMM0 Master

Slave Slave

Figure 15.1 Communicator

partitioning models.

Split

COMM2
Slave

initial COMM

Split

COMM1

COMM3

Peer

Peer
COMM2
Peer

(a) Dedicated Master

(b) Peer Partition

(e.g.,MPI_COMM_WORLD)

initial COMM
(e.g.,MPI_COMM_WORLD)

DAKOTA Users Manual - Parallel Computing 153

15.4.2 Scheduling within levels

The following scheduling approaches are available within each level:

• Self-scheduling: in the dedicated master model, the master processor manages a single
processing queue and maintains a prescribed number of jobs (usually one) active on each
slave. Once a slave server has completed a job and returned its results, the master assigns the
next job to this slave. Thus, the slaves themselves determine the schedule through their job
completion speed. This provides a simple dynamic scheduler in that heterogeneous processor
speeds and/or job durations are naturally handled, provided there are sufficient instances
scheduled through the servers to balance the variation.

• Static scheduling: if scheduling is statically determined at start-up, then no master processor is
needed to direct traffic and a peer partitioning approach is applicable. If the static schedule is
a good one (ideal conditions), then this approach will have superior performance. However,
heterogeneity, when not knowna priori, can very quickly degrade performance since there is
no mechanism to adapt.

In addition, the following scheduling approach is provided by PICO for the scheduling of
concurrent optimizations within the branch and bound strategy:

• Distributed scheduling: in this approach, a peer partition is used and each peer maintains a
separate queue of pending jobs. When one peer’s queue is smaller than the other queues, it
requests work from its peers (prior to idleness). In this way, it can adapt to heterogeneous
conditions, provided there are sufficient instances to balance the variation. Each partition
performs communication between computations, and no processors are dedicated to
scheduling. Furthermore, it distributes scheduling load beyond a single processor, which can
be important for large numbers of concurrent jobs (whose scheduling might overload a single
master) or for fault tolerance (avoiding a single point of failure). However, it involves
relatively complicated logic and additional communication for queue status and job migration,
and its performance is not always superior since a partition can become work-starved if its
peers are locked in computation (Note: this logic can be somewhat simplified if a separate
thread can be created for communication and migration of jobs).

DAKOTA Users Manual - Parallel Computing 154

DAKOTA is designed to allow the
freedom to configure each parallelism
level with either the dedicated master
partition/self-scheduling combination or
the peer partition/static scheduling
combination. In addition, certain external
libraries may provide additional options
(e.g., PICO supports distributed
scheduling in peer partitions). As an
example, Figure 15.2 shows a case in
which a branch and bound strategy
employs peer partition/distributed
scheduling at level 1, each optimizer
partition employs concurrent function

evaluations in a dedicated master partition/self-scheduling model at level 2, and each function
evaluation partition employs concurrent multiprocessor analyses in a peer partition/static
scheduling model at level 3. In this case,MPI_COMM_WORLD is subdivided intooptCOMM1/2/
3/.../τ1, eachoptCOMM is further subdivided intoevalCOMM0 (master) andevalCOMM1/2/3/

.../τ2 (slaves), and each slaveevalCOMM is further subdivided intoanalCOMM1/2/3/.../τ3.

Currently, each message passing scheduler is blocking, in that all jobs in the queue are completed
before exiting the scheduler and returning the set of results to the algorithm. Nonblocking
message-passing schedulers are under development for the case of fully asynchronous algorithms
which do not contain synchronization points (e.g., the APPS algorithm).

15.5 Putting the Components Together

The asynchronous local approaches described in Section 15.3 can be considered to rely on
external scheduling mechanisms, since it is generally the operating system or some external
queue/load sharing software that allocates jobs to processors. Conversely, the message-passing
approaches described in Section 15.4 rely oninternal scheduling mechanisms to distribute work
among processors. These components provide building blocks which can be combined in a
variety of ways to manage parallelism at multiple levels. At one extreme, DAKOTA can execute
on a single processor and rely completely on external means to map all jobs to processors (i.e.,
using asynchronous local approaches). At the other extreme, DAKOTA can execute on many
processors and manage all levels of parallelism, including the parallel simulations, using
completely internal approaches (i.e., using message passing at all levels as in Figure 15.2). While
all-internal or all-external approaches are common cases, many additional approaches exist
between the two extremes in which some parallelism is managed internally and some is managed
externally.

Figure 15.2 Recursive partitioning for

nested parallelism.

evalCOMM’s:

0

Level 1 Level 2

MPI_COMM_WORLD

Level 3

optCOMM’s:

1 2 3

τ1...

optCOMM3

1 2 3

τ2

evalCOMM3

analCOMM’s:

1 2 3

τ3...

...

DAKOTA Users Manual - Parallel Computing 155

These combined approaches are referred to as
hybrid parallelism, since the internal
distribution of work based on message-passing
is being combined with external allocation
using asynchronous local approaches. Figure
15.3 depicts the asynchronous local, message-
passing, and hybrid approaches for a dedicated-
master partition. Approaches (b) and (c) both
use MPI message-passing to distribute work
from the master to the slaves, and approaches
(a) and (c) both manage asynchronous jobs
local to a processor. The hybrid approach (c)
can be seen to be a combination of (a) and (b)
since jobs are being internally distributed to
slave servers through message-passing and
each slave server is managing multiple
concurrent jobs using an asynchronous local
approach. From a different perspective, one
could consider (a) and (b) to be special cases
within the range of configurations supported by
(c). The hybrid approach is useful for
supercomputers that maintain a service/

compute node distinction and for supercomputers or networks of workstations that involve
clusters of symmetric multiprocessors (SMPs). In the service/compute node case, concurrent
multiprocessor simulations are launched into the compute nodes from the service node partition.
While an asynchronous local approach from a single service node would be sufficient, spreading
the application load by running DAKOTA in parallel across multiple service nodes results in
better performance [21]. If the number of concurrent jobs to be managed in the compute partition
exceeds the number of available service nodes, then hybrid parallelism is the preferred approach.
In the case of a cluster of SMPs, message-passing can be used to communicate between SMPs,
and asynchronous local approaches can be used within an SMP. Hybrid parallelism can again
result in improved performance, since the total number of DAKOTA MPI processes is reduced in
comparison to a pure message-passing approach.

Hybrid parallelism approaches can take several forms when used in the multilevel parallel
context. A conceptual boundary can be considered to exist for which all parallelism above the
boundary is managed internally using message-passing and all parallelism below the boundary is
managed externally using asynchronous local approaches. Hybrid parallelism approaches can
then be categorized based on whether this boundary between internal and external management
occurs within a parallelism level (intra-level) or between two parallelism levels (inter-level). In
the intra-level case, the jobs for the parallelism level containing the boundary are scheduled using
a hybrid scheduler, in which a capacity multiplier is used for the number of jobs to assign to each
server. Each server is then responsible for concurrently executing its capacity of jobs using an

Figure 15.3 External, internal, and

hybrid job management.

single-proc.
DAKOTA

job1 & job2 & job3 & job4 &

master

job1 job3 job4

slave slaveslaveslave

job2

master

jobs &

slave slaveslaveslave

jobs & jobs & jobs &

(a) asynchronous local

(b) message-passing

(c) hybrid

DAKOTA Users Manual - Parallel Computing 156

asynchronous local approach. In the inter-level case, one level of parallelism manages its
parallelism internally using a message-passing approach and the next lower level of parallelism
manages its parallelism externally using an asynchronous local approach. That is, the jobs for the
higher level of parallelism are scheduled using a standard message-passing scheduler, in which a
single job is assigned to each server. However, each of these jobs has multiple components, as
managed by the next lower level of parallelism, and each server is responsible for executing these
sub-components concurrently using an asynchronous local approach. For example, a
multiprocessor DAKOTA run might involve an iterator scheduling a set of concurrent function
evaluations across a cluster of SMPs. A hybrid parallelism approach will be applied in which
message-passing parallelism is used between SMPs and asynchronous local parallelism is used
within each SMP. In the hybrid intra-level case, multiple function evaluations would be
scheduled to each SMP, as dictated by the capacity of the SMPs, and each SMP would manage
its own set of concurrent function evaluations using an asynchronous local approach. Any lower
levels of parallelism would be serialized. In the hybrid inter-level case, the function evaluations
would be scheduled one per SMP, and the analysis components within each of these evaluations
would be executed concurrently using asynchronous local approaches within the SMP. Thus, the
distinction can be viewed as whether the concurrent jobs on each server in Figure 15.3c reflect
the same level of parallelism as that being scheduled by the master (intra-level) or one level of
parallelism below that being scheduled by the master (inter-level).

Table 15.1 shows a matrix of the supported job management approaches for each of the
parallelism levels and each of the application interfaces. The concurrent iterator and
multiprocessor analysis parallelism levels can only be managed with message-passing
approaches. In the former case, this is due to the fact that a separate process or thread for an
iterator is not currently supported. The latter case reflects a finer point on the definition of
external parallelism management. While a multiprocessor analysis can most certainly be
launched (usingmpirun/yod) from one of DAKOTA’s analysis drivers, resulting in a parallel
analysis external to DAKOTA, this parallelism is not visible to DAKOTA and therefore does not
qualify as parallelism that DAKOTA manages (and therefore is not included in Table 15.1). The
concurrent evaluation and analysis levels can be managed either with message-passing,
asynchronous local, or hybrid techniques, with the exceptions that the direct interface does not
support asynchronous operations (asynchronous local or hybrid) at either of these levels and the
system call interface does not support asynchronous operations (asynchronous local or hybrid) at
the concurrent analysis level. The direct interface restrictions are present since multithreading in
not yet supported and the system call interface restrictions result from the inability to manage
concurrent analyses within a nonblocking function evaluation system call.

DAKOTA Users Manual - Parallel Computing 157

15.6 Running a Parallel DAKOTA Job

15.6.1 Single-processor execution

The command for running DAKOTA on a single-processor and exploiting asynchronous local
parallelism is the same as for running DAKOTA on a single-processor for a serial study, e.g.:

dakota -i dakota.in > dakota.out

See Section 2.1.5 for additional information on single-processor command syntax.

15.6.2 Multiprocessor execution

Running a DAKOTA job on multiple processors requires the use of an executable loading
facility such asmpirun oryod. On a network of workstations, thempirun script is used to
initiate a parallel DAKOTA job, e.g.:

mpirun -np 12 dakota -i dakota.in > dakota.out
mpirun -machinefile machines -np 12 dakota -i dakota.in >

dakota.out

where both examples specify the use of 12 processors, the former selecting them from a default
system resources file and the latter specifying particular machines in a machine file (see [36] for
details).

On a massively parallel computer such as ASCI Red, similar facilities are available from the
Cougar operating system via theyod executable loading facility:

yod -sz 512 dakota -i dakota.in > dakota.out

In both thempirun andyod cases, MPI command line arguments are used by MPI (extracted in
the call toMPI_Init) and DAKOTA command line arguments are used by DAKOTA
(extracted by DAKOTA’s command line handler). Refer to Section 15.6.3 for issues that can arise
with command line arguments.

Table 15.1 Support of job management approaches within parallelism

levels and application interfaces

Parallelism Level
Asynchronous

Local
Message Passing Hybrid

strategy/iterators X

iterator/function evaluations X

(system, fork)
X

(system, fork, direct)
X

(system, fork)

function evaluation/analyses X

(fork only)
X

(system, fork, direct)
X

(fork only)

fine-grained parallel analysis X

DAKOTA Users Manual - Parallel Computing 158

Finally, when running on supercomputers that employ a service/compute node distinction, the
single-processordakota command syntax or the multiprocessormpirun command syntax
might be contained within an executable script file which is submitted to a batch queue. For
example, on Cplant, the command

qsub -l size=512 dakota_script

could be submitted to the PBS queue for execution. This command allocates 512 compute nodes
for the study, and executes thedakota_script file on a service node. If this script contains a
single-processordakota command, then DAKOTA will execute on a single service node from
which it can launch parallel simulations into the compute nodes using analysis drivers that
containyod commands (anyyod executions occurring at any level underneath the
dakota_script are mapped to the 512 compute node allocation). If the script submitted to
qsub contains a multiprocessormpirun command, then DAKOTA will execute across multiple
service nodes so that it can spread the application load in either a message-passing or hybrid
parallelism approach. Again, analysis drivers containingyod commands would be responsible
for utilizing the 512 compute nodes. And if the script submitted toqsub contains ayod of the
dakota executable, then DAKOTA will execute directly on the compute nodes and manage all
of the parallelism internally (note that ayod of this type without aqsub would be mapped to
the interactive partition, rather than to the batch partition).

15.6.3 Caveats

Thempirun script extracts its command line arguments first, and the script distributed with
MPICH has been observed to have problems with certain file path specifications (e.g., “../
some_filename”). These path problems are most easily resolved by using local linkage (all
referenced files or soft links to these files appear in the same directory).

15.7 Specifying Parallelism

Given an allotment of processors, DAKOTA contains logic based on the theoretical work in [21]
to automatically determine an efficient parallel configuration, consisting of partitioning and
scheduling selections for each of the parallelism levels. This logic accounts for problem size, the
concurrency supported by particular iterative algorithms, and any user inputs or overrides. The
following points are important components of the automatic configuration logic which can be
helpful in estimating the total number of processors to allocate and in selecting configuration
overrides:

• If the capacity of the servers in a peer configuration is sufficient to schedule all jobs in one
pass, then a peer partition and static schedule will be selected. If this capacity is not sufficient,
then a dedicated-master partition and dynamic schedule will be used. These selections can be
overridden with self/static scheduling request specifications for the concurrent iterator,
evaluation, and analysis parallelism levels. For example, if it is known that processor speeds
and job durations have little variability, then overriding the automatic configuration with a
static schedule request could eliminate the unnecessary loss of a processor to scheduling.

DAKOTA Users Manual - Parallel Computing 159

• With the exception of the concurrent-iterator parallelism level (iterator executions tend to have
high variability in duration), concurrency is pushed up. That is, available processors will be
assigned to concurrency at the higher parallelism levels first. If more processors are available
than needed for concurrency at a level, then the server size is increased to support concurrency
in the next lower level of parallelism. This process is continued until all available processors
have been assigned. These assignments can be overridden with a servers specification for the
concurrent iterator, evaluation, and analysis parallelism levels and with a processors per
analysis specification for the multiprocessor analysis parallelism level. For example, if it is
desired to parallelize concurrent analyses within each function evaluation, then an
evaluation_servers = 1 override would serialize the concurrent function evaluations
level and assure processor availability for concurrent analyses.

In the following sections, the user inputs and overrides are described, followed by specification
examples for single and multi-processor DAKOTA executions.

15.7.1 The interface specification

Specifying parallelism within an interface can involve the use of theasynchronous,
evaluation_concurrency, andanalysis_concurrency keywords to specify
concurrency local to a processor (i.e., asynchronous local parallelism). Furthermore,
evaluation_servers, evaluation_self_scheduling, and
evaluation_static_scheduling keywords can be used to override the automatic
parallelism configuration for concurrent function evaluations;analysis_servers,
analysis_self_scheduling, andanalysis_static_scheduling keywords can
be used to override the automatic parallelism configuration for concurrent analyses; and the
processors_per_analysis keyword can be used to override the automatic parallelism
configuration for the size of multiprocessor analyses. Each of these keywords appears as part of
the interface commands specification in the DAKOTA Reference Manual [17].

Theasynchronous specification has dual uses:

• When running DAKOTA on a single-processor, theasynchronous keyword specifies the
use of asynchronous invocations local to the processor (these jobs then rely on external means
to be allocated to other processors). The default behavior is to simultaneously launch all
function evaluations available from the iterator as well as all available analyses within each
function evaluation. In some cases, the default behavior can overload a machine or violate a
usage policy, resulting in the need to limit the number of concurrent jobs using the
evaluation_concurrency andanalysis_concurrency specifications.

• When executing DAKOTA across multiple processors and managing jobs with a message-
passing scheduler, theasynchronous keyword specifies the use of asynchronous
invocations local to each server processor, resulting in a hybrid parallelism approach (see
Section 15.5). In this case, the default behavior is one job per server, which must be
overridden with anevaluation_concurrency specification and/or an
analysis_concurrency specification. When a hybrid parallelism approach is specified,

DAKOTA Users Manual - Parallel Computing 160

the capacity of the servers (used in the automatic configuration logic) is defined as the number
of servers times the number of asynchronous jobs per server.

15.7.2 The strategy specification

To specify concurrency in iterator executions, theiterator_servers,
iterator_self_scheduling, anditerator_static_scheduling keywords are
used to override the automatic parallelism configuration. See the strategy commands
specification in the DAKOTA Reference Manual [17] for additional information.

15.7.3 Single-processor DAKOTA specification

Specifying a single-processor DAKOTA job that exploits parallelism through asynchronous local
approaches (see Figure 15.3a) requires inclusion of theasynchronous keyword in the
interface specification. Once the input file is defined, single-processor DAKOTA jobs are
executed using the command syntax described in Section 15.6.1.

Example 1

For example, the following specification runs an NPSOL optimization which will perform
asynchronous finite differencing:

method, \
 npsol_sqp

variables, \
 continuous_design = 5 \
 cdv_initial_point 0.2 0.05 0.08 0.2 0.2 \
 cdv_lower_bounds 0.15 0.02 0.05 0.1 0.1 \
 cdv_upper_bounds 2.0 2.0 2.0 2.0 2.0

interface, \
 application system, \
 asynchronous \
 analysis_drivers = ’text_book’

responses, \
 num_objective_functions = 1 \
 num_nonlinear_inequality_constraints = 2 \
 numerical_gradients \
 interval_type central \
 method_source dakota \
 fd_step_size = 1.0E-4 \
 no_hessians

Note thatmethod_source dakota selects DAKOTA’s internal finite differencing routine so
that the concurrency in finite difference offsets can be exploited. In this case, central differencing
has been selected and 11 function evaluations (one at the current point plus two offsets in each of
five variables) can be performed simultaneously for each NPSOL response request. These 11
evaluations will be launched with system calls in the background and presumably assigned to
additional processors through the operating system of a multiprocessor compute server or other
comparable method. The concurrency specification may be included if it is necessary to limit the
maximum number of simultaneous evaluations. For example, if a maximum of six compute
processors were available, the command

 evaluation_concurrency = 6 \

DAKOTA Users Manual - Parallel Computing 161

should be added to theasynchronous specification in the preceding example.

Example 2

If, in addition, multiple analyses can be executed concurrently within a function evaluation (e.g.,
from multiple load cases or disciplinary analyses that must be evaluated to compute the response
data set), then an input specification similar to the following could be used:

method, \
 npsol_sqp

variables, \
 continuous_design = 5 \
 cdv_initial_point 0.2 0.05 0.08 0.2 0.2 \
 cdv_lower_bounds 0.15 0.02 0.05 0.1 0.1 \
 cdv_upper_bounds 2.0 2.0 2.0 2.0 2.0

interface, \
 application fork \
 asynchronous \
 evaluation_concurrency = 6 \
 analysis_concurrency = 3 \
 analysis_drivers = ‘text_book1’ ‘text_book2’ \
 ‘text_book3’

responses, \
 num_objective_functions = 1 \
 num_nonlinear_inequality_constraints = 2 \
 numerical_gradients \
 method_source dakota \
 interval_type central \
 fd_step_size = 1.e-4 \
 no_hessians

In this case, the default concurrency with just anasynchronous specification would be all 11
function evaluations and all 3 analyses, and theanalysis_concurrency specification can
be used to limit the analysis concurrency. The input file above limits the function evaluation
concurrency, but not the analysis concurrency (a specification of 3 is the default in this case and
could be omitted). Changing the input toevaluation_concurrency = 1 would serialize
the function evaluations, and changing the input toanalysis_concurrency = 1 would
serialize the analyses.

15.7.4 Multiprocessor DAKOTA specification

In multiprocessor executions, server evaluations are synchronous by default (see Figure 15.3b)
and theasynchronous keyword is only used if a hybrid parallelism approach (see Figure
15.3c) is desired. Multiprocessor DAKOTA jobs are executed using the command syntax
described in Section 15.6.2.

Example 3

To run Example 1 using a message-passing approach, theasynchronous keyword would be
removed (since the servers will execute their evaluations synchronously), resulting in the
following interface specification:

interface, \
 application system, \
 analysis_drivers = ’text_book’

DAKOTA Users Manual - Parallel Computing 162

Running DAKOTA on 4 processors (syntax:mpirun -np 4 dakota -i dakota.in)
would result in the following parallel configuration report from the DAKOTA output:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 4 peer/static
concurrent evaluations 3 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

The dedicated master partition and self-scheduling algorithm are automatically selected for the
concurrent evaluations parallelism level since the number of function evaluations (11) is greater
than the maximum capacity of the servers (4). Since one of the processors is dedicated to being
the master, only 3 processors are available for computation and the 11 evaluations can be
completed in 4 passes through the servers. If it is known that there is little variability in
evaluation duration, then this logic could be overridden to use a static schedule through use of
theevaluation_static_scheduling specification:

interface, \
 application system, \
 evaluation_static_scheduling \
 analysis_drivers = ’text_book’

Running DAKOTA again on 4 processors (syntax:mpirun -np 4 dakota -i
dakota.in) would now result in this parallel configuration report:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 4 peer/static
concurrent evaluations 4 1 peer/static
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

Now the 11 jobs can be completed in 3 passes through 4 peer servers, since the processor
previously dedicated to scheduling has been converted to a compute server. This will likely be
more efficient if the evaluation durations are sufficiently similar.

As a related example, consider the case where each of the workstations used in the parallel
execution has multiple processors. In this case, a hybrid parallelism approach which combines
message-passing parallelism with asynchronous local parallelism (see Figure 15.3c) would be a
good choice. To specify hybrid parallelism, one uses the sameasynchronous specification as
was used for the single-processor examples, e.g.:

interface, \
 application system \
 asynchronous evaluation_concurrency = 3 \
 analysis_drivers = ‘text_book’

With 3 function evaluations concurrent on each server, the capacity of a 4 processor DAKOTA
execution (syntax:mpirun -np 4 dakota -i dakota.in) has increased to 12

DAKOTA Users Manual - Parallel Computing 163

evaluations. Since all 11 jobs can now be scheduled in a single pass, a static schedule is
automatically selected (without any override request):

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 4 peer/static
concurrent evaluations 4 1 peer/static
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

Example 4

To run Example 2 using a message-passing approach, theasynchronous specification is
again removed:

interface, \
 application fork \
 analysis_drivers = ‘text_book1’ ‘text_book2’ \
 ‘text_book3’

Running this example on 6 processors (syntax:mpirun -np 6 dakota -i dakota.in)
would result in the following parallel configuration report:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 6 peer/static
concurrent evaluations 5 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

in which all of the processors have been assigned to the function evaluation concurrency (due to
the “push up” automatic configuration logic). To assign some of the available processors to the
concurrent analysis level, the following input could be used:

interface, \
 application fork \
 analysis_drivers = ‘text_book1’ ‘text_book2’ \
 ‘text_book3’ \
 evaluation_static_scheduling \
 evaluation_servers = 2

which results in the following 2-level parallel configuration:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 6 peer/static
concurrent evaluations 2 3 peer/static
concurrent analyses 3 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 2

DAKOTA Users Manual - Parallel Computing 164

The six processors available have been split into two evaluation servers of three processors each,
where the three processors in each evaluation server manage the three analyses, one per
processor.

Next, consider the following 3-level parallel case, in whichtext_book1, text_book2, and
text_book3 from the previous examples now execute on two processors each. In this case, the
processors_per_analysis keyword is added and thefork interface is changed to a
direct interface since the fine-grained parallelism of the three simulations is managed
internally:

interface, \
 application direct \
 analysis_drivers = ‘text_book1’ ‘text_book2’ \
 ‘text_book3’ \
 evaluation_static_scheduling \
 evaluation_servers = 2 \
 processors_per_analysis = 2

This results in the following parallel configuration for a 12 processor DAKOTA run
(syntax:mpirun -np 12 dakota -i dakota.in):

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 1 12 peer/static
concurrent evaluations 2 6 peer/static
concurrent analyses 3 2 peer/static
multiprocessor analysis 2 N/A N/A

Total parallelism levels = 3

An important point to recognize is that, since each of the parallel configuration inputs has been
tied to the interface specification up to this point, these parallel configurations can be reallocated
for each interface in a multi-iterator/multi-model strategy. For example, a DAKOTA execution
on 40 processors might involve the following two interface specifications:

interface, \
 application direct, \
 id_interface = ’COARSE’ \
 analysis_driver = ’sim1’ \
 processors_per_analysis = 5

interface, \
 application direct, \
 id_interface = ’FINE’ \
 analysis_driver = ’sim2’ \
 processors_per_analysis = 10

for which the coarse model would employ 8 servers of 5 processors each and the fine model
would employ 4 servers of 10 processors each.

Finally, consider the following 4-level parallel case that employs the Pareto set optimization
strategy. In this case,iterator_servers anditerator_static_scheduling
requests are included in the strategy specification:

strategy, \
 pareto_set \
 iterator_servers = 2 \
 iterator_static_scheduling \
 opt_method_pointer = ’NLP’ \

DAKOTA Users Manual - Parallel Computing 165

 multi_objective_weight_sets = 1. 0. 0. \
 0. 1. 0. \
 0. 0. 1. \
 .333 .333 .333

Adding this strategy specification to the input file from the previous 12 processor example
results in the following parallel configuration for a 24 processor DAKOTA run
(syntax:mpirun -np 24 dakota -i dakota.in):

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
----- ----------- ---------------- ------------------
concurrent iterators 2 12 peer/static
concurrent evaluations 2 6 peer/static
concurrent analyses 3 2 peer/static
multiprocessor analysis 2 N/A N/A

Total parallelism levels = 4

Since the concurrency at each of the nested levels has a multiplicative effect on the number of
processors that can be utilized, it is easy to see how large numbers of processors can be put to
effective use in reducing the time to reach a solution.

DAKOTA Users Manual - Advanced Simulation Code Interfaces 166

16.0 Advanced Simulation Code Interfaces

16.1 Building an Interface to a Engineering Simulation Code

To interface an engineering simulation package to DAKOTA using one of the black-box
interfaces (system call or fork), pre- and post-processing functionality typically needs to be
supplied (or developed) in order to transfer the parameters from DAKOTA to the simulator input
file and to extract the response values of interest from the simulator’s output file for return to
DAKOTA (see Figure 1.1). This is often managed through the use of a UNIX C-shell [1], Bourne
shell [7], or Perl [64] driver script. While these are common choices, it is important to recognize
that any executable file can be used. If the user prefers, the desired pre- and post-processing
functionality may also be provided by an executable compiled from any programming language.

Under the/Dakota/GettingStarted/RosenSimulator directory, a simple example
uses the Rosenbrock test function as a mock simulator. Several scripts have been included to
provide ways to accomplish the pre and post-processing needs. Each simulator package has
different pre- and post-processing requirements, and as such, this example serves only to
demonstrate the issues associated with interfacing a simulator. Modifications will almost surely
be required for any particular application.

16.1.1 Review of RosenSimulator Files

The RosenSimulator directory contains four important files:dakota_rosenbrock.in (the
DAKOTA input file),simulator_script (the simulation driver script),transfer_perl
(a pre-processing utility), andtemplatedir/ros.template (a template simulation input
file). Thedakota_rosenbrock.in file specifies the study that DAKOTA will perform and,
in the interface section, describes the components to be used in performing function evaluations.
In particular, it identifiessimulator_script as itsanalysis_driver, as shown in
Figure 16.1.

Thesimulator_script listed in Figure 16.2 is a short C-shell driver script that DAKOTA
executes to perform each function evaluation. The names of the parameters and results files are
passed to the script on its command line so that they can be referenced internal to the script by
the variables$argv[1] and$argv[2], respectively. Thesimulator_script is divided
into five parts: set up, pre-processing, analysis, post-processing, and clean up.

The set up portion strips the function evaluation number from$argv[1]and assigns it to the
shell variable$num, which is then used to create a tagged working directory for a particular
evaluation. For example, on the first evaluation, “1” is stripped from “params.in.1” in order
to create “workdir.1”. The primary reason for creating separate working directories is so that
the files associated with one simulation do not conflict with those for another simulation. This is
particularly important when executing concurrent simulations in parallel (to actually run
DAKOTA in parallel, uncomment theasynchronous line indakota_rosenbrock.in).

DAKOTA Users Manual - Advanced Simulation Code Interfaces 167

Once executing within the confines of the working directory, tags on the files are no longer
necessary, and for this reason, the tagged parameters file is moved to a more convenient name of
“dakota_vars”.

method, \
 npsol_sqp

variables, \
 continuous_design = 2 \
 cdv_initial_point -1.2 1.0 \
 cdv_lower_bounds -2.0 -2.0 \
 cdv_upper_bounds 2.0 2.0 \
 cdv_descriptor ’x1’ ’x2’

interface, \
 application system, \
asynchronous \
 analysis_driver = ’simulator_script’ \
 parameters_file = ’params.in’ \
 results_file = ’results.out’ \
 file_tag \
 file_save \
 aprepro

responses, \
 num_objective_functions = 1 \
 numerical_gradients \
 fd_step_size = .000001 \
 no_hessians

Figure 16.1 The dakota_rosenbrock.in input file.

#!/bin/csh -f
Sample simulator to Dakota system call script
See User Manual for instructions
#
$argv[1] is params.in.(fn_eval_num) FROM Dakota
$argv[2] is results.out.(fn_eval_num) returned to Dakota

Set up working directory

set num = ‘echo $argv[1] | cut -c 11-‘
cp -r templatedir workdir.$num
mv $argv[1] workdir.$num/dakota_vars
cd workdir.$num

PRE-PROCESSING

../transfer_perl

ANALYSIS

../rosenbrock_bb

OUTPUT FILTER

grep ’Function value’ ros.out | cut -c 18- >! $argv[2]
mv $argv[2] ../.

Clean up

cd ..
\rm -rf workdir.$num

Figure 16.2 The simulator_script sample driver script.

DAKOTA Users Manual - Advanced Simulation Code Interfaces 168

In the pre-processing portion, thesimulator_script utilizestransfer_perl, which is a
parsing utility used to extract the current variable values from a parameters file (dakota_vars)
and then insert them into the simulator template input file (ros.template) to create a new
input file (ros.in) for the simulator. Internal to Sandia, the APREPRO utility is often used for
this purpose. However, thetransfer_perl script provides some of the same basic capability
for external sites where APREPRO is not available. Thetransfer_perl script is listed in
Figure 16.3. It uses DAKOTA’saprepro parameters file format (see Section 4.6.2), so this
option must be selected in the interface section of the DAKOTA input file. Theros.template
file listed in Figure 16.4 is a template simulation input file which contains targets for the
incoming variable values, identified by the strings “{x1}” and “{x2}”. These identifiers match
the variable descriptors specified indakota_rosenbrock.in. The template input file is
contrived as Rosenbrock has nothing to do with finite element analysis; it only mimics a finite
element code in order to demonstrate the simulator template process. Thetransfer_perl
script will search the simulator template input file for fields marked with the curly brackets and
then create a new file (ros.in) by replacing these targets with the corresponding numerical
values for the variables. The Perl variables$file, $ext1, and$ext2 should be set to match
the simulator input file name (“ros”), template file extension (“template”), and the generated
input file extension (“in”).

The third part of the script executes therosenbrock_bb simulator. The input and output file
names,ros.in andros.out, respectively, are hard-coded into the FORTRAN77 program
rosenbrock_bb.f. When therosenbrock_bb simulator is executed, the values forx1
andx2 are read in fromros.in, the Rosenbrock function is evaluated, and the function value is
written out toros.out.

The fourth part performs the post-processing and returns the response results to DAKOTA. Using
the UNIX “grep” utility, the particular response values of interest are extracted from the raw
simulator output and saved to$argv[2], which in the case of the first evaluation is
“results.out.1”. This results file is moved up one level, out of the working directory, so
that DAKOTA may retrieve it. Note that moving the completed results file up a level at the end of
the evaluation avoids any problems with read race conditions (see Section 15.3.2).

Finally, in the clean up phase, the working directory is removed to reduce the amount of disk
storage required to execute the study. If data from each simulation needs to be saved, this step
can be commented out by inserting a “#” character before “\rm -rf”.

As an example, consider function evaluation 60. Thedakota_vars file for this evaluation
consists of:

{ DAKOTA_VARS = 2 }
{ DAKOTA_FNS = 1 }
{ x1 = 1.6363920509e-01 }
{ x2 = 2.1860034186e-02 }
{ ASV_1 = 1 }

This file indicates that there are two variables and one response function (an objective function)
and provides new values for variables x1 and x2 and an active set vector (ASV) with a single

DAKOTA Users Manual - Advanced Simulation Code Interfaces 169

value of 1. The ASV indicates the need to return the value of the objective function for these
parameters (see Section 4.7).

#!/usr/bin/perl
#
#
A pre-processor to replace APREPRO for manipulating
input files with Dakota
#
BvBW 10/19/01
#***
Usage:
reads dakota_vars and extracts the variables
substitutes values for variables
#
in simulation input file need to place {variable1} in
the appropriate locatoin, variable1 needs to match
cdv_variable in DAKOTA input file.
#
$file - simulation input file name
$ext1 - intermediate extension for the $file
contains {variable1} flags
$ext2 - final extension for simulation input file
##

$file = "ros";
$ext1 = "template";
$ext2 = "in";
open (DAKOTA_VARS, "dakota_vars") || die "cannot open file $!" ;
$i=0;
while (defined ($name = <DAKOTA_VARS>)){

 @temp = split (/=/, $name);
 chop $_;
 $_ = $temp[0] ;
 s/\s+`//g;
 s/\s+//g;
 $var1[$i] = $_;
 $_ = $temp[1];
 chop $_;
 s/\s+\}//g;
 $var1[$i+1] = $_;
 $j = $i+1;
 $i=$i+2;

}

close (DAKOTA_SPEC);

open (SIMULATION_INPUT_IN, "$file.$ext1") || die "cannot open file $!" ;
open (SIMULATION_INPUT_OUT, ">$file.$ext2") || die "cannot open file $!" ;

$test_var=100.9;
while (defined ($line = <SIMULATION_INPUT_IN>)){

 $_ = $line;
 for ($i=2; $i < 2*($var1[1] + 2) ;$i++){

 if(/`$var1[$i]\}/){
s/`$var1[$i]\}/$var1[$i+1]/g;

 }
 $i=$i+1;

 }
 print "$_ \n";
 print SIMULATION_INPUT_OUT "$_";

}

Figure 16.3 Listing of the transfer_perl script.

DAKOTA Users Manual - Advanced Simulation Code Interfaces 170

Thetransfer_perl script reads the variable values from thedakota_vars file, namely
1.6363920509e-01 and2.1860034186e-02 for x1 and x2 respectively, and substitutes
them in the{x1} and{x2} fields of theros.template file. The final three lines of the
resulting input file (ros.in) then appear as follows:

variable 1 1.6363920509e-01
variable 2 2.1860034186e-02
end

where all other lines are identical to the template file. Therosenbrock_bb simulator accepts
ros.in as its input file and generates the following output to the fileros.out:

Beginning execution of model: Rosenbrock black box
Set up complete.
Reading nodes.
Reading elements.
Reading materials.
Checking connectivity...OK

Input value for x1 = 0.1636392050900000E+00
Input value for x2 = 0.21860034186000000E+01

Computing solution...Done

Function value = .70191781093875782460E+00

It is the user’s responsibility to extract the appropriate data from the raw simulator output and
return the desired data set to the results file. This step is relatively trivial in this case, and we use
thegrep andcut utilities to extract the value from the last line of theros.out output file and

Title of Model: Rosenbrock black box

* Description: This is an input file to the Rosenbrock black box
* Fortran simulator. This simulator is structured so
* as to resemble the input/output from an engineering
* simulation code, even though Rosenbrock’s function
* is a simple analytic function. The node, element,
* and material blocks are dummy inputs.
*
* Input: x1 and x2
* Output: objective function value

node 1 location 0.0 0.0
node 2 location 0.0 1.0
node 3 location 1.0 0.0
node 4 location 1.0 1.0
node 5 location 2.0 0.0
node 6 location 2.0 1.0
node 7 location 3.0 0.0
node 8 location 3.0 1.0
element 1 nodes 1 3 4 2
element 2 nodes 3 5 6 4
element 3 nodes 5 7 8 6
element 4 nodes 7 9 10 8
material 1 elements 1 2
material 2 elements 3 4
variable 1 {x1}
variable 2 {x2}
end

Figure 16.4 Listing of the ros.template file

DAKOTA Users Manual - Advanced Simulation Code Interfaces 171

save it to$argv[2], which is theresults.out.60 file for this evaluation. This single value
provides the objective function value requested by the ASV.

Figure 16.5 shows the final solution from DAKOTA using therosenbrock_bb simulator.

Figure 16.5 DAKOTA output for RosenSimulator problem.

16.1.2 Adapting These Scripts to Another Simulation

To adapt this approach for use with another simulator, several steps need to be performed:

1. Create a template simulator input file by identifying the fields in an existing input file that
correspond to the variables of interest and then replacing them with {} identifiers (e.g.
{var1}, {var2}, etc.) which match the DAKOTA variable descriptors. Copy this template
input file to a templatedir that will be used to create working directories for the simulation.

2. Modify the Perl variables$file, $ext1, and$ext2 in thetransfer_perl script to
reflect the simulator root file name (previously “ros”), template file extension (previously
“template”), and the generated input file extension (previously “in”).

3. Modify the analysis section ofsimulator_script to replace therosenbrock_bb
function call with the new simulator name and command line syntax, including the input and
output file names.

4. Change the post-processing section insimulator_script to reflect the revised
extraction process. At a minimum, this would involve changing thegrep command to reflect
the name of the output file, the string to search for, and the characters to cut out of the
captured output line. For more involved post-processing tasks, invocation of additional tools
may have to be added to the script.

5. Modify thedakota_rosenbrock.in input file to reflect, at a minimum, the initial
values, bounds, and tags in the variables specification and the number of objectives and
constraints in the responses specification.

 Exit NPSOL - Optimal solution found.

 Final nonlinear objective value = 0.1146426E-06

NPSOL exits with INFORM code = 0 (see p. 8 of NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
 for complete NPSOL iteration history.

<<<<< Iterator npsol_sqp completed.
<<<<< Function evaluation summary: 132 total (132 new, 0 duplicate)
<<<<< Best parameters =
 { x1 = 9.9966142331e-01 }
 { x2 = 9.9932267175e-01 }
<<<<< Best objective function =
 1.1464255628e-07
<<<<< Best data captured at function evaluation 130
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 17.86 [parent = 1.37, child = 16.49]

 Total wall clock = 79.873

DAKOTA Users Manual - Advanced Simulation Code Interfaces 172

These nonintrusive interfacing approaches can be used to rapidly interface with simulation codes.
While generally custom for each new application, typical interface development time is on the
order of an hour or two. Thus, this approach is scalable when dealing with many different
application codes. Weaknesses of this approach include the potential for loss of data precision (if
care is not taken to preserve precision in pre- and post-processing file I/O), a lack of robustness
in post-processing (if the data capture is too simplistic), and scripting overhead (only noticeable
if the simulation time is on the order of a second or less).

If the application scope at a particular site is more focused and only a small number of
simulation codes are of interest, then more sophisticated interfaces may be warranted. For
example, the economy of scale afforded by a common simulation framework would merit the
development of a high quality DAKOTA interface. In these cases, more sophisticated interfacing
approaches could involve a more thoroughly developed black box interface with robust support
of a variety of inputs and outputs, or it might involve intrusive interfaces such as the direct
application interface discussed in Section 16.2 and the SAND interface to be available in future
releases.

16.1.3 Additional Examples

A variety of additional examples of black-box interfaces to simulation codes are maintained in
the/Dakota/Applications directory in the source code distribution.

16.2 Adding Simulations to the Direct Application Interface

If a high performing interface to a simulation is desired or the computer architecture cannot
accommodate separate optimization and simulation processes (e.g., due to batch submission
requirements on large parallel computers), the simulation code can be directly linked into
DAKOTA as a subroutine. This is an advanced capability of DAKOTA, and it requires a user to
have access to (and knowledge of) the DAKOTA source code, as well as the source code of the
simulation code.

In order to use the direct function capability with a new simulation (or new internal test
function), the following steps have to be performed:

1. The functions to be invoked (analysis programs, input and output filters) must have their
main programs changed into callable functions with the following prototype:

int function_name(const DakotaVariables& vars,
const DakotaIntArray& asv, DakotaResponse& response)

2. The if-else blocks in thederived_map_if(), derived_map_ac(), andderived_map_of()

member functions of theDirectFnApplicInterface class must be extended to include the
new function names with the proper prototypes.

3. The DAKOTA system must be recompiled and linked with the new function object files or
libraries.

DAKOTA Users Manual - Advanced Simulation Code Interfaces 173

Various header files will have to be included in order to compile successfully, both within the
DirectFnApplicInterface class (in order for the class to recognize the new functions) and within
the new functions themselves (in order to recognize theDakotaVariables,
DakotaIntArray, andDakotaResponse types). Refer to the DAKOTA Developers
Manual [18] for additional information on theDirectFnApplicInterface class and the DAKOTA
data types.

Future work on the direct function capability may include removal of DAKOTA dependencies
within the user-supplied functions by replacing the DAKOTA objects in the prototype with more
fundamental data structures (vectors of ints and doubles). In addition, use of the “builder pattern”
[26] could be added in order to simplify management of multiple user-supplied functions.

DAKOTA Users Manual - DAKOTA Usage Guidelines 174

17.0 DAKOTA Usage Guidelines

17.1 Problem Exploration

The first objective in an analysis is to characterize the problem so that appropriate algorithms can
be chosen. In the case of optimization, typical questions that should be addressed include: Are
the design variables continuous, discrete, or mixed? Is the problem constrained or unconstrained?
How expensive are the response functions to evaluate? Will the response functions behave
smoothly as the design variables change or will there be nonsmoothness and/or discontinuities?
Are the response functions likely to be multimodal, such that global optimization may be
warranted? Is analytic gradient data available, and if not, can I calculate gradients accurately and
cheaply? Additional questions that are pertinent for characterization of uncertainty quantification
problems include: Can I accurately model the probabilistic distributions of my uncertain
variables? Are the response functions relatively linear? Am I interested in a full random process
characterization of the response functions, or just statistical results?

If there is not sufficient information from the problem description to answer these questions, then
additional problem characterization activities may be warranted. One particularly useful
characterization activity that DAKOTA enables is parameter space exploration through the use of
parameter studies and design of experiments methods. The parameter space can be
systematically sampled to create sufficient information to evaluate the trends in the response
functions and to determine if these trends are noisy or smooth, unimodal or multimodal,
relatively linear or highly nonlinear, etc. In addition, the parameter studies may reveal that one or
more of the parameters do not significantly affect the results and can be removed from the
problem formulation. This can yield a potentially large savings in computational expense for the
subsequent studies. Refer to Chapter 8 and Chapter 9 for additional information on parameter
studies and design of experiments methods.

17.2 Optimization Method Selection

In selecting an optimization method, important considerations include the type of variables in the
problem (continuous, discrete, mixed), whether a global search is needed or a local search is
sufficient, and the required constraint support (unconstrained, bound constrained, nonlinearly
constrained). Less obvious, but equally important, considerations include the efficiency of
convergence to an optimum (i.e., convergence rate) and the robustness of the method in the
presence of challenging design space features (e.g., nonsmoothness).

Gradient-based optimization methods are highly efficient, with the best convergence rates of all
of the optimization methods. If analytic gradient and Hessian information can be provided by an
application code, a full Newton method will provide quadratic convergence rates near the
solution. More commonly, only gradient information is available and a quasi-Newton method is
chosen in which the Hessian information is approximated from an accumulation of gradient data.

DAKOTA Users Manual - DAKOTA Usage Guidelines 175

In this case, superlinear convergence rates can be obtained. These characteristics make gradient-
based optimization methods the methods of choice when the problem is smooth and well-
behaved. However, when the problem exhibits nonsmooth, discontinuous, or multimodal
behavior, these methods can also be the least robust since inaccurate gradients will lead to bad
search directions, failed line searches, and early termination.

Thus, for gradient-based optimization, a critical factor is the gradient accuracy. Analytic
gradients are ideal, but are rarely available. For many engineering applications, a finite difference
method will be used by the optimization algorithm to estimate gradient values. DAKOTA allows
the user to select the step size for these calculations, as well as a choice between forward-
difference and central-difference algorithms. The finite difference step size should be selected as
small as possible, to allow for local accuracy and convergence, but not so small that the steps are
“in the noise.” This requires an assessment of the local smoothness of the response functions
using, for example, a parameter study method. Central-differencing, in general, will produce
more reliable gradients than forward differencing, but at twice the expense.

Nongradient-based methods exhibit much slower convergence rates for finding an optimum, and
as a result, tend to be much more computationally demanding than gradient-based methods.
Nongradient local optimization methods, such as pattern search algorithms, often require from
several hundred to a thousand or more function evaluations, depending on the number of
variables, and nongradient global optimization methods such as genetic algorithms may require
from thousands to tens-of-thousands of function evaluations. Clearly, for nongradient
optimization studies, the computational cost of the function evaluation must be relatively small in
order to obtain an optimal solution in a reasonable amount of time. In addition, nonlinear
constraint support in nongradient methods is an open area of research and is not yet available in
DAKOTA. However, nongradient methods can be more robust and more inherently parallel than
gradient-based approaches. They can be applied in situations were gradient calculations are too
expensive or unreliable. In addition, some nongradient-based methods can be used for global
optimization which gradient-based techniques, by themselves, cannot. For these reasons,
nongradient-based methods deserve consideration when the problem may be nonsmooth or
poorly behaved.

An approach which attempts to bring the efficiency of gradient-based optimization methods to
nonsmooth or poorly behaved problems is the surrogate-based optimization (SBO) strategy. This
technique can smooth noisy or discontinuous response results through use of a data fit surrogate
model (e.g., a quadratic polynomial) and then optimize on the smooth surrogate using efficient
gradient-based techniques. Section 13.7 provides further information on this approach. In
addition, the multilevel hybrid and multistart optimization strategies can address a similar goal of
bringing the efficiency of gradient-based optimization methods to global optimization problems.
In the former case, a global optimization method can be used for a few cycles to locate promising
regions and then local gradient-based optimization is used to efficiently converge on one or more
optima. In the latter case, a stratification technique is used to disperse a series of local gradient-
based optimization runs through parameter space. Section 13.2 and Section 13.3 provide more
information on these approaches.

DAKOTA Users Manual - DAKOTA Usage Guidelines 176

Table 17.1 provides a convenient reference for choosing an optimization method or strategy to
match the characteristics of the user’s problem. With respect to constraint support, it should be
understood that the methods with more advanced constraint support are also applicable to the
lower constraint support levels; they are listed only at their highest level of constraint support for
brevity.

Table 17.1 Guidelines for optimization method selection.

Variable

Type

Function

Surface

Solution

Type
Constraints Applicable Methods

continuous smooth local unconstrained optpp_cg, optpp_fd_newton,
optpp_newton, optpp_q_newton

bound constrained dot_bfgs, dot_frcg, conmin_frcg,
optpp_baq_newton,
optpp_ba_newton,
optpp_bc_ellipsoid,
optpp_bc_newton,
optpp_bcq_newton,

nonlinearly
constrained

npsol_sqp,
dot_mmfd, dot_slp, dot_sqp,
conmin_mfd
optpp_nips, optpp_q_nips,
optpp_fd_nips

local least
squares

unconstrained optpp_g_newton

local least
squares

bound constrained optpp_bcg_newton

local large-
scale

nonlinearly
constrained

(coming soon: rSQP++ for
SAND)

global nonlinearly
constrained

multi_level opt strategy
multi_start opt strategy

nonsmooth local bound constrained sgopt_pattern_search,
sgopt_solis_wets

local, global nonlinearly
constrained

surrogate_based_opt strategy

global bound constrained sgopt_pga_real,
sgopt_strat_mc

nonlinearly
constrained

(coming soon: sgopt_pga_real)

discrete n/a global bound constrained sgopt_pga_int

mixed smooth local nonlinearly
constrained

branch_and_bound opt strategy

nonsmooth global bound constrained (coming soon: sgopt_pga_mixed)

DAKOTA Users Manual - DAKOTA Usage Guidelines 177

17.3 UQ Method Selection

The need for computationally efficient methods is further amplified in the case of the
quantification of uncertainty in computational simulations. Sampling-based methods are the most
robust uncertainty techniques available, are applicable to almost all simulations, and possess
rigorous error bounds; consequently, they should be used whenever the function is relatively
inexpensive to compute. However, in the case of terascale computational simulations, the number
of function evaluations required by traditional techniques such as Monte Carlo and Latin
hypercube sampling (LHS) quickly becomes prohibitive. One way to alleviate this problem is to
employ more advanced sampling strategies, such as Quasi-Monte Carlo (QMC) sampling,
importance sampling (IS), or Markov Chain Monte Carlo (MCMC) sampling, and these
techniques are currently under investigation.

Alternatively, one can apply the traditional sampling techniques to a surrogate function
approximating the expensive computational simulation. However, if this approach is selected, the
user should be aware that it is very difficult to assess the accuracy of the results obtained. Unlike
in the case of SBO (see Section 13.7), there is no simple pointwise calculation to verify the
accuracy of the approximate results. This is due to the functional nature of uncertainty
quantification,i.e. the accuracy of the surrogate over the entire parameter space needs to be
considered not just around a candidate optimum as in the case of SBO. This issue especially
manifests itself when trying to estimate low probability events such as catastrophic failure of a
system.

Another class of methods, the analytical reliability methods (MV, AMV, AMV+, FORM/
SORM), are more computationally efficient in general than the sampling methods and are
effective when applied to reasonably well-behaved response functions, such as linear, mildly
nonlinear, and monotonic functions. The user should be aware that these methods do not possess
rigorous error estimates as they also involve response surface approximations. Also, they are
usually applied only in the scalar response case. Finally, since they rely on gradient calculations,
issues with nonsmoothness and poorly behaved response functions are relevant concerns.
However, in the case of a small number of uncertain variables, the methods can often be used to
provide qualitative sensitivity information concerning which uncertain variables are important
with relatively few function evaluations.

The final class of UQ methods available in DAKOTA are stochastic finite elements techniques
using polynomial chaos expansions, which are general purpose techniques provided that the
response functions possess finite second order moments. Further, these methods approximate the
full random process/field rather than just approximating statistics such as mean and standard
deviation. This class of methods parallels traditional variational methods in mechanics; in that
vein, efforts are underway to compute rigorous error bounds of the approximations produced by
the methods. Another strength of the these methods is their potential use in a multiphysics
environment as a means to propagate the uncertainty through a series of simulations while
retaining as much information as possible at each stage of the analysis. On the other hand, these
methods currently rely on the use of traditional sampling techniques in the construction of the

DAKOTA Users Manual - DAKOTA Usage Guidelines 178

approximations; consequently, they are computational very expensive in the case of terascale
applications.

The recommendations for UQ methods are summarized in Table 17.2.

17.4 Parameter Study/DACE/Sampling Method Selection

Parameter studies, design/analysis of computer experiments (DACE), and sampling methods
share the purpose of exploring the parameter space. If directed studies with a defined structure
are desired, then parameter study methods (see Chapter 8) are recommended. For example, a
quick assessment of the smoothness of a response function is best addressed with a vector
parameter study. Also, performing local sensitivity analysis is best addressed with these methods.
If, however, a global space-filling set of samples is desired, then the DACE and sampling
methods are recommended (see Chapter 9). These techniques are useful for scatter plot and
primary effects analysis as well as surrogate model construction. The distinction between DACE
and sampling is drawn based on the distributions of the parameters. Design of experiments
methods typically assume uniform distributions, whereas the sampling approaches in DAKOTA
support a broad range of probability distributions. To usenond_sampling in a design of
experiments mode (as opposed to an uncertainty quantification mode), theall_variables
flag should be included in the method specification of the DAKOTA input file.

These method selection recommendations are summarized in Table 17.3.

Table 17.2 Guidelines for UQ method selection.

Method

Classification

Desired Problem

Characterisitics
Applicable Methods

Sampling response functions are
relatively inexpensive

nond_sampling (Monte Carlo or LHS)

Analytic reliability scalar response function
that is reasonably well
behaved

nond_analytic_reliability (MV, AMV,
AMV+, FORM, SORM)

Stochastic finite
elements

representation of full
random variable/process/
field is desired

nond_polynomial_chaos

DAKOTA Users Manual - DAKOTA Usage Guidelines 179

Table 17.3 Guidelines for parameter study and design of experiments

method selection.

Method

Classification
Applications Applicable Methods

parameter study sensitivity analysis,
directed parameter space
investigations

centered_parameter_study,
list_parameter_study,
multidim_parameter_study,
vector_parameter_study

design of computer
experiments

primary effects analysis,
space filling designs
(parameters are
uniformly distributed)

dace (grid, random, oas, lhs, oa_lhs,
box_behnken_design,
central_composite_design)

sampling space filling designs
(parameters have general
probability distributions)

nond_sampling (Monte Carlo or LHS)
with all_variables flag

DAKOTA Users Manual - Restart Capabilities and Utilities 180

18.0 Restart Capabilities and Utilities

18.1 Restart Management

DAKOTA was developed for solving problems that require multiple calls to computationally
expensive simulation codes. In some cases you may want to conduct the same optimization, but
to a finer final convergence tolerance. This would be costly if the entire optimization analysis had
to be repeated. Interruptions imposed by computer usage policies, power outages, and system
failures could also result in costly delays. However, DAKOTA automatically records the variable
and response data from all function evaluations so that new executions of DAKOTA can pick up
where previous executions left off.

The DAKOTA restart file (e.g.,dakota.rst) is written in a binary format. Starting with
DAKOTA Version 3.0, this binary format is now portable across platforms through use of the
XDR standard.

To write a restart file using a particular name, the-write_restart command line input is
used:

dakota -i dakota.in -write_restart my_restart_file

If no -write_restart specification is used, then DAKOTA will write a restart file using the
default namedakota.rst.

To restart DAKOTA from a restart file, the-read_restart command line input is used:
dakota -i dakota.in -read_restart my_restart_file

If no -read_restart specification is used, then DAKOTA will not read restart information
from any file (i.e., the default is no restart processing).

If the-write_restart and-read_restart specifications identify the same file
(including the case where-write_restart is not specified and-read_restart identifies
dakota.rst), then new evaluations will be appended to the existing restart file. If the-
write_restart and-read_restart specifications identify different files, then the
evaluations read from the file identified by-read_restart are first written to the-
write_restart file. Any new evaluations are then appended to the-write_restart file.
In this way, restart operations can be chained together indefinitely with the assurance that all of
the relevant evaluations are present in the latest restart file.

To read in only a portion of a restart file, the-stop_restart control is used. Note that the
integer value specified refers to the number of entries to be read from the database, which may
differ from the evaluation number in the previous run if any duplicates were detected (since
duplicates are not replicated in the restart file). In the case of a-stop_restart specification,
it is usually desirable to specify a new restart file using-write_restart so as to remove the
records of erroneous or corrupted function evaluations. For example, to read in the first 50
evaluations fromdakota.rst:

DAKOTA Users Manual - Restart Capabilities and Utilities 181

dakota -i dakota.in -read_restart dakota.rst
-stop_restart 50 -write_restart dakota_new.rst

Thedakota_new.rst file will contain the 50 processed evaluations fromdakota.rst as

well as any new evaluations. All evaluations following the 50th in dakota.rst have been
removed from the latest restart record.

DAKOTA’s restart algorithm relies on its duplicate detection capabilities. Processing a restart file
populates the list of function evaluations that have been performed. Then, when the study is re-
initiated, many of the function evaluations requested by the iterator are intercepted by the
duplicate detection code. This approach has the primary advantage of restoring the complete
state of the iteration (including the ability to correctly detect subsequent duplicates) for all
iterators and multi-iterator strategies without the need for iterator-specific restart code. However,
the possibility exists for numerical round-off error to cause a divergence between the evaluations
performed in the previous and restarted studies. This has been extremely rare to date.

18.2 The DAKOTA Restart Utility

The DAKOTA restart utility program provides a variety of facilities for managing restart files
from DAKOTA executions. The executable program name isdakota_restart_util and it
has the following options, as shown by the usage message returned when executing the utility
without any options:

Several of these functions involve format conversions. In particular, the binary format used for
restart files can be converted to ASCII text and printed to the screen, converted to and from a
neutral file format, converted to a PDB format for use at Lawrence Livermore National
Laboratory, or converted to a tabular format for importing into 3rd-party graphics programs. In
addition, a restart file with corrupted data can be repaired and multiple restart files can be
combined to create a master database.

18.2.1 Print

Theprint option is quite useful for interrogating the contents of a particular restart file, since
the binary format is not convenient for direct inspection. The restart data is printed in full
precision, so that exact matching of points is possible for restarted runs or corrupted data
removals. For example, the following command

dakota_restart_util print dakota.rst

results in output similar to the following (from thecyl_head example problem):

Usage: "dakota_restart_util print <restart_file>"
 "dakota_restart_util to_neutral <restart_file> <neutral_file>"
 "dakota_restart_util from_neutral <neutral_file> <restart_file>"
 "dakota_restart_util to_pdb <restart_file> <pdb_file>"
 "dakota_restart_util to_tabular <restart_file> <text_file>"
 "dakota_restart_util remove <double> <old_restart_file> <new_restart_file>"
 "dakota_restart_util cat <restart_file_1> ... <restart_file_n> <new_restart_fi

DAKOTA Users Manual - Restart Capabilities and Utilities 182

Function evaluation 1 from restart file:

 1.8000000000000000e+00 intake_dia
 1.0000000000000000e+00 flatness
Active set vector = { 1 1 1 1 }
 -2.4355973813000000e+00 f1
 -4.7428486676999998e-01 f2
 -4.5000000000000001e-01 f3
 1.3971143170000000e-01 f4

Function evaluation 2 from restart file:

 1.8001800000000001e+00 intake_dia
 1.0000000000000000e+00 flatness
Active set vector = { 1 1 1 1 }
 -2.4356759411000000e+00 f1
 -4.7425991059000000e-01 f2
 -4.5000000000000001e-01 f3
 1.3971143170000000e-01 f4
... <<omission>> ...

All function evaluations will be printed to the screen, so piping this output into more, e.g.
dakota_restart_util print dakota.rst | more

or redirecting the output to a file, e.g.
dakota_restart_util print dakota.rst > dakota.txt

may be needed to manage the output.

18.2.2 To/From Neutral File Format

A DAKOTA restart file can be converted to a neutral file format using a command like the
following:

dakota_restart_util to_neutral dakota.rst dakota.neu

which results in a report similar to:
Writing neutral file dakota.neu
Restart file processing completed: 65 evaluations retrieved.

Similarly, a neutral file can be returned to binary format using a command like the following:
dakota_restart_util from_neutral dakota.neu dakota.rst

which results in a report similar to:
Reading neutral file dakota.neu
Writing new restart file dakota.rst
Neutral file processing completed: 65 evaluations retrieved.

The contents of the generated neutral file are similar to the following (from thecyl_head
example problem):

Fundamental 2 1.8000000000000000e+00 intake_dia 1.0000000000000000e+00 flatness
0 0 0 0 0 0
NULL 2 4 1 0 1 1 1 1 -2.4355973813000000e+00 -4.7428486676999998e-01 -
4.5000000000000001e-01 1.3971143170000000e-01 1
Fundamental 2 1.8001800000000001e+00 intake_dia 1.0000000000000000e+00 flatness
0 0 0 0 0 0
NULL 2 4 1 0 1 1 1 1 -2.4356759411000000e+00 -4.7425991059000000e-01 -
4.5000000000000001e-01 1.3971143170000000e-01 2
Fundamental 2 1.7998200000000000e+00 intake_dia 1.0000000000000000e+00 flatness
0 0 0 0 0 0
NULL 2 4 1 0 1 1 1 1 -2.4355188216000001e+00 -4.7430978909999999e-01 -

DAKOTA Users Manual - Restart Capabilities and Utilities 183

4.5000000000000001e-01 1.3971143170000000e-01 3
... <<omission>> ...

This format is not intended for direct viewing (print should be used for this purpose). Rather,
the neutral file capability has been used in the past for managing portability of restart data across
platforms. Recent use of the XDR standard for portable binary formats has eliminated this need,
and neutral file conversions may be phased out in future releases.

18.2.3 To Tabular Format

Conversion of a binary restart file to a tabular format enables convenient import of this data into
3rd-party post-processing tools such as Matlab, TECplot, Excel, etc. This facility is nearly
identical to thetabular_graphics_data option in the DAKOTA input file specification
(described in Section 7.3), but with two important differences:

1. No function evaluations are suppressed as they are withtabular_graphics_data (i.e.,
any internal finite difference evaluations are included).

2. The conversion can be performed posthumously, i.e., for DAKOTA runs executed previously.

An example command for converting a restart file to tabular format is:
dakota_restart_util to_tabular dakota.rst dakota.m

which results in a report similar to:
Writing tabular text file dakota.m
Restart file processing completed: 10 evaluations retrieved

and history of 5 attributes recorded.

The contents of the generated tabular file are similar to the following (taken from thetextbook
example problem):
% eval_id x1 x2 f1 f2 f3
 1 0.9 1.1 0.0002 0.26 0.76
 2 0.6433962264 0.6962264151 0.0246865569 0.06584549663 0.1630331079
 3 0.5310576935 0.5388046558 0.09360081618 0.01261994596 0.02478161032
 4 0.612538853 0.6529854907 0.03703861037 0.04871110112 0.1201206246
 5 0.5209215947 0.5259311717 0.1031862798 0.008393722022 0.01614279999
 6 0.5661606434 0.5886684401 0.06405197568 0.02620365411 0.06345021064
 7 0.5083873357 0.510239856 0.1159458957 0.00333775509 0.006151042806

8 0.5001577143 0.5001800249 0.1248312163 6.772666378e-05 0.000101200204
9 0.5000000547 0.5000000597 0.1249999428 2.4865003e-08 3.238000351e-08

 10 0.5 0.5 0.125 0 0

18.2.4 Concatenation of Multiple Restart Files

In some instances, it is useful to combine restart files into a single master function evaluation
database. For example, when constructing a data fit surrogate model, data from previous studies
can be pulled in and reused to create a combined data set for the surrogate fit. An example
command for concatenating multiple restart files is:

dakota_restart_util cat dakota.rst.1 dakota.rst.2
dakota.rst.3 dakota.rst.all

which results in a report similar to:
Writing new restart file dakota.rst.all
dakota.rst.1 processing completed: 10 evaluations retrieved.

DAKOTA Users Manual - Restart Capabilities and Utilities 184

dakota.rst.2 processing completed: 110 evaluations
retrieved.

dakota.rst.3 processing completed: 65 evaluations retrieved.

Thedakota.rst.all database now contains 185 evaluations and can be read in for use in a
subsequent DAKOTA study using the-read_restart option to thedakota executable (see
Section 18.1).

18.2.5 Removal of Corrupted Data

On occasion, a simulation or computer system failure may cause a corruption of the DAKOTA
restart file. For example, a simulation crash may result in failure of a post-processor to retrieve
meaningful data. If 0’s (or other erroneous data) are returned from the user’s
analysis_driver, then this bad data will get recorded in the restart file. If there is a clear
demarcation of where corruption initiated (typical in a process with feedback, such as gradient-
based optimization), then use of the-stop_restart option for thedakota executable is
recommended for eliminating the bad data and continuing with the study. If, however, there are
interspersed corruptions throughout the restart database (typical in a process without feedback,
such as sampling), then theremove option ofdakota_restart_util can be useful. An
example of the command syntax for this option follows:

dakota_restart_util remove 2.e-04 dakota.rst.all
dakota.rst.repaired

which results in a report similar to:
Writing new restart file dakota.rst.repaired
Restart repair completed: 185 evaluations retrieved, 2

removed, 183 saved.

Any evaluations in thedakota.rst.all restart file having an active response function value
that matches2.e-04 within machine precision are discarded when creating the new
dakota.rst.repaired restart file.

DAKOTA Users Manual - Simulation Code Failure Capturing 185

19.0Simulation Code Failure Capturing

DAKOTA provides the capability to manage failures in simulation codes within its system call,
fork, and direct application interfaces (see Chapter 5 for application interface descriptions).
Failure capturing consists of three operations: failure detection, failure communication, and
failure recovery.

19.1 Failure detection

Since the symptoms of a simulation failure are highly code and application dependent, it is the
user’s responsibility to detect failures within theiranalysis_driver oroutput_filter.
One popular example of simulation monitoring is to rely on a simulation’s internal detection of
errors. In this case, the UNIXgrep utility can be used within a user’s script to detect strings in
output files which indicate analysis failure. For example, the following C shell script excerpt

grep ERROR analysis.out > /dev/null
if ($status == 0)
 echo “FAIL” > results.out
endif

will pass theif test and communicate simulation failure to DAKOTA if thegrep command
finds the stringERROR anywhere in theanalysis.out file. The/dev/null device file is
called the “bit bucket” and thegrep command output is discarded by redirecting it to this
destination. The$status shell variable contains the exit status of the last command executed
[1], which is the exit status ofgrep in this case (0 if successful in finding the error string,
nonzero otherwise). For Bourne shells [7], the$? shell variable serves the same purpose as
$status for C shells. In a related approach, if the return code from a simulation can be used
directly for failure detection purposes, then$status or$? could be queried immediately
following the simulation execution using anif test like that shown above.

If the simulation code is not returning error codes or providing direct error diagnostic
information, then failure detection may require monitoring of simulation results for sanity (e.g.,
is the mesh distorting excessively?) or potentially monitoring for continued process existence to
detect a simulation segmentation fault or core dump. While this can get complicated, the
flexibility of DAKOTA’s interfaces allows for a wide variety of monitoring approaches.

19.2 Failure communication

Once a failure is detected, it must be communicated so that DAKOTA can attempt to recover
from the failure. The form of this communication depends on the type of application interface in
use.

In the system call and fork application interfaces, a detected simulation failure is communicated
to DAKOTA through the results file. Instead of returning the standard results file data, the string
“fail” should appear at the beginning of the results file. Any data appearing after the fail string

DAKOTA Users Manual - Simulation Code Failure Capturing 186

will not be read. Also, DAKOTA’s detection of this string is case insensitive, so “FAIL”,
“Fail”, etc., are equally valid.

In the direct application interface case, a detected simulation failure is communicated to
DAKOTA through the return code provided by the user’sanalysis_driver. The prototype
for simulations linked within the direct interface is

int analysis_driver(const DakotaVariables& vars,
const DakotaIntArray& asv, DakotaResponse& response)

Theint returned is the failure code: 0 (false) if no failure occurs and 1 (true) if a failure occurs.
Refer to Section 16.2 for additional information.

19.3 Failure recovery

Once the analysis failure has been communicated, DAKOTA will attempt to recover from the
failure using one of the following four mechanisms, as governed by specifications from the
interface keyword block in the user’s input file (see the DAKOTA Reference Manual [17] for
additional information on this specification).

19.3.1 Abort

If theabort option is specified, then DAKOTA will terminate upon detecting a failure. Note
that if the problem causing the failure can be corrected, DAKOTA’s restart capability (see
Chapter 18) can be used to continue the study.

19.3.2 Retry

If theretry option is specified, then DAKOTA will re-invoke the failed simulation up to the
specified number of retries. If the simulation continues to fail on each of these retries, DAKOTA
will terminate. The retry option is appropriate for those cases in which simulation failures may
be resulting from transient computing environment issues, such as shared disk space, software
license access, or networking problems.

19.3.3 Recover

If therecover option is specified, then DAKOTA will not attempt the failed simulation again.
Rather, it will return a “dummy” set of function values as the results of the function evaluation.
The dummy function values to be returned are specified by the user. Any gradient or Hessian
data requested in the active set vector will be zero. This option is appropriate for those cases in
which a failed simulation may indicate a region of the design space to be avoided and the dummy
values can be used to return a large objective function or a constraint violation which will
discourage an optimizer from further investigating the region.

DAKOTA Users Manual - Simulation Code Failure Capturing 187

19.3.4 Continuation

If thecontinuation option is specified, then DAKOTA will attempt to step towards the
failing “target” simulation from a nearby “source” simulation through the use of a continuation
algorithm. This option is appropriate for those cases in which a failed simulation may be caused
by an inadequate initial guess. If the “distance” between the source and target can be divided into
smaller steps in which information from one step provides an adequate initial guess for the next
step, then the continuation method can step towards the target in increments sufficiently small to
allow for convergence of the simulations.

When the failure occurs, the interval between the last successful evaluation (the source point) and
the current target point is halved and the evaluation is retried. This halving is repeated until a
successful evaluation occurs. The algorithm then marches towards the target point using the last
interval as a step size. If a failure occurs while marching forward, the interval will be halved
again. Each invocation of the continuation algorithm is allowed a total of ten failures (ten
halvings result in up to 1024 evaluations from source to target) prior to aborting the DAKOTA
process.

While DAKOTA manages the interval halving and function evaluation invocations, the user is
responsible for managing the initial guess for the simulation program. For example, in a GOMA
input file [57], the user specifies the files to be used for reading initial guess data and writing
solution data. When using the last successful evaluation in the continuation algorithm, the
translation of initial guess data can be accomplished by simply copying the solution data file
leftover from the last evaluation to the initial guess file for the current evaluation (and in fact this
is useful for all evaluations, not just continuation). However, techniques are under development
for use of theclosest, previously successful, function evaluation (rather than thelast successful
evaluation) as the source point in the continuation algorithm. This will be especially important
for nonlocal methods (e.g., genetic algorithms) in which the last successful evaluation may not
necessarily be in the vicinity of the current evaluation. This approach will require the user to save
and manipulate previous solutions (likely tagged with evaluation number) so that the results from
a particular simulation (specified by DAKOTA after internal identification of the closest point)
can be used as the current simulation’s initial guess.

DAKOTA Users Manual - Additional Examples 188

20.0 Additional Examples

20.1 Textbook Problem Formulation

The optimization problem formulation is stated as

minimize (1)

subject to (2)

wheren is the number of design variables. The objective function is designed to accommodate
an arbitrary number of design variables in order to allow flexible testing of a variety of data sets.

This example problem may also be used to exercise least squares solution methods by modifying
the problem formulation to:

minimize (3)

This modification is performed by simply changing the responses specification for the three
functions fromnum_objective_functions = 1 and
num_nonlinear_inequality_constraints = 2 to
num_least_squares_terms = 3. Note that the two problem formulations are not
equivalent and will have different solutions. In particular, the optimization solution seeks to find
the minimum objective function which satisfies the constraint inequalities, whereas the least
squares formulation seeks to minimize the sum of the squares of the three residual functions.

Another way to exercise the least squares methods which would be equivalent to the optimization

formulation would be to select the residual functions to be(xi-1)
2. However, this formulation

requires significant modification totext_book.C and will not be presented here. Equation (3),
on the other hand, does not require any modification totext_book.C. Refer to Section 20.2
for an example of minimizing the same objective function using both optimization and least
squares approaches.

f xi 1–()4

i 1=

n

∑=

g1 x1
2 x2

2
------–= 0≤

g2 x2
2 x1

2
------–= 0≤

0.5 x≤ 1 5.8≤

2.9– x≤ 2 2.9≤

f()2 g1()2 g2()2+ +

DAKOTA Users Manual - Additional Examples 189

20.1.1 Methods

CONMIN, DOT, NPSOL, and OPT++ methods may be used to solve this optimization problem
with or without constraints. OPT++ Gauss-Newton methods may be used to solve the least
squares problem.

Thedakota_textbook.in file provided in theDakota/test directory selects a
dot_mmfd optimizer to perform constrained minimization using thetext_book simulator.
This simulator returns analytic gradients as requested by the optimizer.

A multilevel hybrid can also be demonstrated on thetext_book problem. The
dakota_multilevel.in file provided in theDakota/test directory starts with a
sgopt_pga_real solution which feeds its best point into asgopt_pattern_search
optimization which feeds its best point intooptpp_newton. While this approach is overkill for
such a simple problem, it is useful for demonstrating the coordination between multiple methods
in the multilevel strategy.

In addition,dakota_textbook_3pc.in demonstrates the use of a 3-piece interface to
perform the parameter to response mapping anddakota_textbook_lhs.in demonstrates
the use of latin hypercube Monte Carlo sampling for assessing probability of failure as measured
by specified response thresholds.

20.1.2 Optimization Results

The solution for the unconstrained optimization problem for two design variables is:
x1 = 1.0
x2 = 1.0

with
f* = 0.0

The solution for the optimization problem constrained byg1 is:

x1 = 0.763
x2 = 1.16

with
f* = 0.00388
g1* = 0.0 (active)

The solution for the optimization problem constrained byg1 andg2 is:

x1 = 0.500
x2 = 0.500

with
f* = 0.125
g1* = 0.0 (active)
g2* = 0.0 (active)

DAKOTA Users Manual - Additional Examples 190

Note that as constraints are added, the design freedom is restricted and a penalty in the objective
function is observed. Of course, no penalty would be observed if the additional constraints were
not active at the solution.

20.1.3 Least Squares Results

The solution for the least squares problem is:
x1 = 0.566
x2 = 0.566

with the residual functions equal to
f* = 0.0713
g1* = 0.0371
g2* = 0.0371

and a minimal sum of the squares of 0.00783.

This study requires selection ofnum_least_squares_terms = 3 in the responses
specification and selection of eitheroptpp_g_newton oroptpp_bcg_newton in the
method specification.

20.2 Rosenbrock Problem Formulation

The Rosenbrock function [30] is a well known benchmark problem for optimization algorithms.
Its formulation can be stated as

minimize (4)

This example problem may also be used to exercise least squares solution methods by recasting
the problem formulation into:

minimize (5)

where

(6)

and

(7)

are residual terms. In this case (unlike the least squares modification in Section 20.1), the two
problem formulations are equivalent and have identical solutions.

f 100 x2 x1
2

–()
2

1 x– 1()2
+=

f f1()2 f2()2+=

f1 10 x2 x1
2

–()=

f2 1 x1–=

DAKOTA Users Manual - Additional Examples 191

20.2.1 Methods

In the/Dakota/test directory, therosenbrock executable (compiled from
rosenbrock.C) returns an objective function as computed from Equation (4) for use with
optimization methods. Therosenbrock_ls executable (compiled from
rosenbrock_ls.C) returns two least squares terms as computed from Equation (6) and
Equation (7) for use with least squares iterators. Both executables return analytic gradients of the
function set (gradient of the objective function inrosenbrock, gradients of the least squares
residuals inrosenbrock_ls) with respect to the design variables. The
dakota_rosenbrock.in input file is used to solve both problems by toggling settings in the
interface, responses, and method specifications. To run the optimization solution, select
’rosenbrock’ as theanalysis_driver in the interface specification, select
num_objective_functions to be 1 in the responses specification, and select an optimizer
in the method specification (e.g.,dot_bfgs, optpp_bcq_newton), e.g.:

interface, \
application system, \
 analysis_driver = ’rosenbrock’

variables, \
continuous_design = 2 \
 cdv_initial_point 0.8 0.7 \
 cdv_lower_bounds -2.0 -2.0 \
 cdv_upper_bounds 2.0 2.0 \
 cdv_descriptor ’x1’ ’x2’

responses, \
num_objective_functions = 1 \
analytic_gradients \
no_hessians

method, \
optpp_bcq_newton, \
 convergence_tolerance = 1e-10

To run the least squares solution, select’rosenbrock_ls’ as theanalysis_driver in
the interface specification, selectnum_least_squares_terms to be 2 in the responses
specification, and select a Gauss-Newton iterator in the method specification (i.e.,
optpp_g_newton oroptpp_bcg_newton), e.g.:

interface, \
application system, \
 analysis_driver = ’rosenbrock_ls’

variables, \
continuous_design = 2 \
 cdv_initial_point 0.8 0.7 \
 cdv_lower_bounds -2.0 -2.0 \
 cdv_upper_bounds 2.0 2.0 \
 cdv_descriptor ’x1’ ’x2’

responses, \
num_least_squares_terms = 2 \
analytic_gradients \
no_hessians

method, \
optpp_bcg_newton, \
 convergence_tolerance = 1e-10

DAKOTA Users Manual - Additional Examples 192

20.2.2 Results

The optimal solution, solved either as a least squares problem or an optimization problem, is:
x1 = 1.0
x2 = 1.0

with
f* = 0.0

In comparing the two approaches, one would expect the Gauss-Newton approach to be more
efficient since it exploits the special-structure of a least squares objective function. From a good
initial guess, this expected behavior is observed. Starting fromcdv_initial_point =
0.8, 0.7, theoptpp_bcg_newton method converges in only 3 function and gradient
evaluations while theoptpp_bcq_newton method requires 14 function and gradient
evaluations to achieve similar accuracy. Starting from a poorer initial guess (e.g.,
cdv_initial_point = -1.2, 1.0 as specified inDakota/test/
dakota_rosenbrock.in), the trend is less obvious since both methods spend several
evaluations finding the vicinity of the minimum (total function and gradient evaluations = 24 for
optpp_bcq_newton and 29 foroptpp_bcg_newton). However, once the vicinity is
located, convergence is much more rapid with the Gauss-Newton approach (11 orders of
magnitude reduction in the objective function in 1 function and gradient evaluation) than with the
quasi-Newton approach (12 orders of magnitude reduction in the objective function in 10
function and gradient evaluations).

Shown below is the DAKOTA output for theoptpp_bcg_newton method starting from
cdv_initial_point = 0.8, 0.7:

Running MPI executable in serial mode.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
methodName = optpp_bcg_newton
gradientType = analytic
hessianType = none

>>>>> Running Single Method Strategy.

>>>>> Running optpp_bcg_newton iterator.

Begin Function Evaluation 1

Parameters for function evaluation 1:
 8.0000000000e-01 x1
 7.0000000000e-01 x2

(rosenbrock_ls /var/tmp/aaab3a4zx /var/tmp/baac3a4zx)

Active response data for function evaluation 1:
Active set vector = { 3 3 }
 6.0000000000e-01 least_sq_term1
 2.0000000000e-01 least_sq_term2
 [-1.6000000000e+01 1.0000000000e+01] least_sq_term1 gradient
 [-1.0000000000e+00 0.0000000000e+00] least_sq_term2 gradient

 nlf2_evaluator_gn results: objective fn. =
 4.0000000000e-01
 nlf2_evaluator_gn results: objective fn. gradient =
 [-1.9600000000e+01 1.2000000000e+01]

DAKOTA Users Manual - Additional Examples 193

 nlf2_evaluator_gn results: objective fn. Hessian =
[[5.1400000000e+02 -3.2000000000e+02
 -3.2000000000e+02 2.0000000000e+02]]

Begin Function Evaluation 2

Parameters for function evaluation 2:
 9.9999528206e-01 x1
 9.5999243139e-01 x2

(rosenbrock_ls /var/tmp/caad3a4zx /var/tmp/daae3a4zx)

Active response data for function evaluation 2:
Active set vector = { 3 3 }
 -3.9998132752e-01 least_sq_term1
 4.7179400000e-06 least_sq_term2
 [-1.9999905641e+01 1.0000000000e+01] least_sq_term1 gradient
 [-1.0000000000e+00 0.0000000000e+00] least_sq_term2 gradient

 nlf2_evaluator_gn results: objective fn. =
 1.5998506239e-01
 nlf2_evaluator_gn results: objective fn. gradient =
 [1.5999168181e+01 -7.9996265504e+00]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[8.0199245130e+02 -3.9999811282e+02
 -3.9999811282e+02 2.0000000000e+02]]

Begin Function Evaluation 3

Parameters for function evaluation 3:
 9.9999904378e-01 x1
 9.9999808275e-01 x2

(rosenbrock_ls /var/tmp/eaaf3a4zx /var/tmp/faag3a4zx)

Active response data for function evaluation 3:
Active set vector = { 3 3 }
 -4.8109144446e-08 least_sq_term1
 9.5621999996e-07 least_sq_term2
 [-1.9999980876e+01 1.0000000000e+01] least_sq_term1 gradient
 [-1.0000000000e+00 0.0000000000e+00] least_sq_term2 gradient

 nlf2_evaluator_gn results: objective fn. =
 9.1667117810e-13
 nlf2_evaluator_gn results: objective fn. gradient =
 [1.1923937841e-08 -9.6218288892e-07]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[8.0199847008e+02 -3.9999961752e+02
 -3.9999961752e+02 2.0000000000e+02]]

<<<<< Iterator optpp_bcg_newton completed.
<<<<< Function evaluation summary: 3 total (3 new, 0 duplicate)
<<<<< Best parameters =
 9.9999904378e-01 x1
 9.9999808275e-01 x2
<<<<< Best objective function =
 9.1667117810e-13
<<<<< Best data not found in list
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
 Total CPU = 0.16 [parent = 0.07, child = 0.09]
 Total wall clock = 0.8

DAKOTA Users Manual - Additional Examples 194

20.3 Cylinder Head Problem Formulation

The cylinder head example problem arose as a simple demonstration problem for the
Technologies Enabling Agile Manufacturing (TEAM) project. Its formulation is stated as

minimize (8)

subject to (9)

This formulation seeks to simultaneously maximize normalized engine horsepower and engine
warranty over variables of valve intake diameter (dintake) in inches and overall head flatness

(flatness) in thousandths of an inch subject to inequality constraints that the maximum stress
cannot exceed half of yield, that warranty must be at least 100000 miles, and that manufacturing
cycle time must be less than 60 seconds. Since the constraints involve different scales, they
should be nondimensionalized. In addition, they can be converted to the standard 1-sided

 form as follows:

(10)

The objective function and constraints are related analytically to the design variables according
to the following simple expressions:

(11)

f 1 horsepower
250

--------------------------------------- warranty
100000

-------------------------------+ 
 –=

σmax 0.5σyield≤

warranty 100000≥
timecycle 60≤

1.5 d≤ intake 2.164≤

0.0 flatness≤ 4.0≤

g x() 0≤

g1

2σmax

σyield
------------------ 1–= 0≤

g2 1 warranty
100000

-------------------------------–= 0≤

g3

timecycle
60

------------------------------ 1–= 0≤

warranty 100000 15000 4 flatness–()+=

timecycle 45 4.5 4 flatness–()1.5
+=

horsepower 250 200
dintake
1.8333

--------------------- 1– 
 +=

σmax 750 1

twall()2.5
--------------------------+=

twall offsetintake offsetexhaust–
dintake dexhaust+()

2
--–=

DAKOTA Users Manual - Additional Examples 195

where the constants in Equation (10) and Equation (11) assume the following values:σyield =

3000, offsetintake = 3.25, offsetexhaust = 1.34, anddexhaust = 1.556.

20.3.1 Methods

In theDakota/test directory, thedakota_cyl_head.in input file is used to execute the
cylinder head example. This file is shown below:

interface, \
application system, \
 asynchronous \
 analysis_driver= ‘cyl_head’

variables, \
continuous_design = 2 \
 cdv_initial_point 1.8 1.0\
 cdv_upper_bounds 2.164 4.0\
 cdv_lower_bounds 1.5 0.0\
 cdv_descriptor ‘intake_dia’ ‘flatness’

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 3 \
numerical_gradients \
 method_source dakota \
 interval_type central \
 fd_step_size = 1.e-4 \
no_hessians

method, \
 npsol_sqp \

 convergence_tolerance = 1.e-8 \
 output verbose

The interface keyword specifies use of thecyl_head executable (compiled from/Dakota/
test/cyl_head.C) as the simulator. The variables and responses keywords specify the data
sets to be used in the iteration by providing the initial point, descriptors, and upper and lower
bounds for two continuous design variables and by specifying the presence of one objective
function, three inequality constraints, and analytic gradients in the problem. The method
keyword specifies the use of thenpsol_sqp method to solve this constrained optimization
problem. No strategy keyword is specified, so the defaultsingle_method strategy is used.

20.3.2 Optimization Results

The solution for the constrained optimization problem is:
intake_dia = 2.122
flatness = 1.769

with
f* = -2.461
g1* = 0.0 (active)
g2* = -0.3347 (inactive)
g2* = 0.0 (active)

which corresponds to the following optimal response quantities:
warranty = 133472

DAKOTA Users Manual - Additional Examples 196

cycle_time = 60
horse_power = 281.579
max_stress = 1500

The final report from the DAKOTA output is as follows:
<<<<< Iterator npsol_sqp completed.
<<<<< Function evaluation summary: 65 total (65 new, 0 duplicate)
<<<<< Best parameters =
 2.1224188321e+00 intake_dia
 1.7685568330e+00 flatness
<<<<< Best objective function =
 -2.4610312954e+00
<<<<< Best constraint values =
 -5.3569115810e-10
 -3.3471647505e-01
 9.9882324633e-12
<<<<< Best data captured at function evaluation 61
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
 Total CPU = 2.83 [parent = 0.52, child = 2.31]
 Total wall clock = 14.482

20.4 Container Example

For this example, suppose that a high-volume manufacturer of light weight steel containers wants
to minimize the amount of raw sheet material that must be used to manufacture a 1.1 quart
cylindrical-shaped can, including waste material. Material for the container walls and end caps is
stamped from stock sheet material of constant thickness. The seal between the end caps and
container wall is manufactured by a press forming operation on the end caps. The end caps can
then be attached to the container wall forming a seal through a crimping operation.

Figure 20.1 Container wall-to-end-cap seal

For preliminary design purposes, the extra material that would normally go into the container end
cap seals is approximated by increasing the cut dimensions of the end cap diameters by 12% and
the height of the container wall by 5%, and waste associated with stamping the end caps in a
specialized pattern from sheet stock is estimated as 15% of the cap area. The equation for the
area of the container materials including waste is

wall

end cap

DAKOTA Users Manual - Additional Examples 197

or

(12)

whereD andH are the diameter and height of the finished product in units of inches, respectively.
The volume of the finished product is given by

(13)

The equation for area is the objective function for this problem; it is to be minimized. The
equation for volume is an equality constraint; it must be satisfied at the conclusion of the
optimization problem. Any combination ofD andH that satisfies the volume constraint is a
feasible solution (although not necessarily the optimal solution) to the area minimization
problem, and any combination that does not satisfy the volume constraint is an infeasible
solution. The area that is a minimum subject to the volume constraint is the optimal area, and the
corresponding values for the parametersD andH are the optimal parameter values.

It is important that the equations supplied to a numerical optimization code be limited to
generating only physically realizable values, since an optimizer will not have the capability to
differentiate between meaningful and nonphysical parameter values. It is often up to the engineer
to supply these limits, usually in the form of parameter bound constraints. For example, by
observing the equations for the area objective function and the volume constraint, it can be seen
that by allowing the diameter,D, to become negative, it is algebraically possible to generate
relatively small values for the area that also satisfy the volume constraint. Negative values forD
are of course physically meaningless. Therefore, to ensure that the numerically-solved

optimization problem remains meaningful, a bound constraint of must be included in the
optimization problem statement. A positive value forH is implied since the volume constraint

could never be satisfied ifH were negative. However, a bound constraint of can be added
to the optimization problem if desired. The optimization problem can then be stated in a
standardized form as

(14)

A 2

end cap

waste

material

factor 
 
 
 
 
 

×

end cap

seal

material

factor 
 
 
 
 
 

×
nominal

end cap

area 
 
 
 
  container

wall seal

material

factor 
 
 
 
 
 

+×
nominal

container

wall area 
 
 
 
 

×=

A 2 1.15() 1.12()πD
2

4
------ 1.05()πDH+=

V πD
2
H

4
---------- 1.1qt() 57.75in

3
qt⁄()= =

D 0≥

H 0≥

 min 2 1.15() 1.12()πD
2

4
------ 1.05()2πDH+

subject to: πD
2
H

4
---------- 1.1qt() 57.75in

3
qt⁄()=

D 0 H 0≥,≥

DAKOTA Users Manual - Additional Examples 198

A graphical view of the container optimization problem appears in Figure 20.2. The 3-D surface
defines the area,A, as a function of diameter and height. The curved line that extends across the
surface defines the areas that satisfy the volume equality constraint,V. Graphically, the container
optimization problem can be viewed as one of finding the point along the constraint line with the
smallest 3-D surface height in Figure 20.2. This point corresponds to the optimal values for
diameter and height of the final product.

Figure 20.2 A graphical representation of the container optimization problem.

The input file for this test problem is nameddakota_container.in in the directory /
Dakota/test. The solution to this example problem is (H, D) = (4.99, 4.03), with an

minimum area of 98.43 in2.

The final report from the DAKOTA output is as follows:
<<<<< Iterator npsol_sqp completed.
<<<<< Function evaluation summary: 40 total (40 new, 0 duplicate)
<<<<< Best parameters =
 4.9873894231e+00 H
 4.0270846274e+00 D

2

4

6

8

0

5

10

15

D, in.

min.

H, in.

V=1.1qt.

DAKOTA Users Manual - Additional Examples 199

<<<<< Best objective function =
 9.8432498115e+01
<<<<< Best constraint values =
 -1.2072307876e-09
<<<<< Best data captured at function evaluation 36
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
 Total CPU = 0.05 [parent = 0.05, child =6.93889e-18]
 Total wall clock = 0.311

DAKOTA Users Manual - References 200

 References

[1]Alexandrov, M., Dennis, J. E., Jr., Lewis, R. M., and Torczon, V., “A Trust-region Framework
for Managing the Use of Approximation Models in Optimization,”Structural Optimization,
Vol. 15, 1998, pp. 16-23.

[2]Anderson, G., and Anderson, P.,The UNIX C Shell Field Guide, Prentice-Hall, Englewood
Cliffs, NJ, 1986.

[3]Arora, J. S.,Introduction to Optimum Design, McGraw-Hill, New York, NY, 1989.

[4]Bartlett, R., Object-Oriented Approaches to Large-Scale NonLinear Programming For Process
Systems Engineering, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, 2001.

[5]Bartlett, R.A. and Biegler, L.T., “rSQP++: An Object-Oriented Framework for Successive
Quadratic Programming,” abstract forFirst Sandia Workshop on Large-scale PDE-constrained
Optimization, Santa Fe, NM, April 4, 2001, to appear inSpringer-Verlag Lecture Notes in Com-
putational Science and Engineering.

[6]Biros G.,Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization, Ph.D.
thesis, Carnegie Mellon University, Pittsburgh, PA, 2000.

[7]Blinn, B., Portable Shell Programming: An Extensive Collection of Bourne Shell Examples,
Prentice Hall PTR, New Jersey, 1996.

[8]Byrd, R. H., Schnabel, R. B., and Schultz, G. A., ‘‘Parallel Quasi-Newton Methods for
Unconstrained Optimization,’’Mathematical Programming, 42, 1988, pp. 273-306.

[9]Chang, K. J., Haftka, R. T., Giles, G. L., and Kao, P.-J., “Sensitivity-based scaling for approxi-
mating structural response,”J. Aircraft, Vol. 30, 1993, pp. 283-288.

[10]Coplien, J. O.,Advanced C++ Programming Styles and Idioms, Addison-Wesley, Reading,
MA, 1992.

[11]Cressie, N.,Statistics of Spatial Data, John Wiley and Sons, New York, NY, 1991.

[12]Dennis, J.E., and Lewis, R.M., “Problem Formulations and Other Optimization Issues in Mul-
tidisciplinary Optimization,” AIAA Paper 94-2196,AIAA Symposium on Fluid Dynamics, Col-
orado Springs, CO, June 1994.

[13]Dennis, J. E., and Torczon, V. J., ‘‘Derivative-Free Pattern Search Methods for
Multidisciplinary Design Problems,’’ AIAA Paper 94-4349 inProceedings of the 5th AIAA/
USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City,
FL, Sept. 7-9, 1994, pp. 922-932.

DAKOTA Users Manual - References 201

[14]Der Kiureghian, A. and Liu, P. L., ‘‘Structural Reliability Under Incomplete Information,’’
ASCE Journal of Engineering Mechanics, Vol. 112, EM-1, 1986, pp. 85-104.

[15]Eckstein, J., Hart, W. E., and Phillips, C. A., ‘‘Resource management in a parallel mixed
integer programming package,’’Proceedings of the 1997 Intel Supercomputer Users Group
Conference (http://www.cs.sandia.gov/ISUG97/program.html), Albuquerque, NM, June 11-13,
1997.

[16]Eckstein, J., Hart, W. E., and Phillips, C. A., ‘‘PICO: An object-oriented framework for paral-
lel branch and bound,’’ inInherently Parallel Algorithms in Feasibility and Optimization and
their Applications, (eds.) D. Butnariu, Y. Censor, and S. Reich, Elsevier Science Publishers,
Amsterdam, Netherlands, 2001.

[17]Eldred, M.S., Giunta, A.A., van Bloemen Waanders, B.G., Wojtkiewicz, S.F., Hart, W.E., and
Alleva, M.P., “DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimi-
zation, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis. Version 3.0
Reference Manual.” Sandia Technical Report SAND2001-3515W, Nov. 2001. Available online
from http://endo.sandia.gov/DAKOTA/software.html

[18]Eldred, M.S., Giunta, A.A., van Bloemen Waanders, B.G., Wojtkiewicz, S.F., Hart, W.E., and
Alleva, M.P., “DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimi-
zation, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis. Version 3.0
Developers Manual.” Sandia Technical Report SAND2001-3514W, Nov. 2001. Available
online fromhttp://endo.sandia.gov/DAKOTA/software.html

[19]Eldred, M. S., and Schimel, B. D., ‘‘Extended Parallelism Models for Optimization on
Massively Parallel Computers,’’ paper 16-POM-2 inProceedings of the 3rd World Congress of
Structural and Multidisciplinary Optimization (WCSMO-3), Amherst, NY, May 17-21, 1999.

[20]Eldred, M. S., and Hart, W. E., ‘‘Design and Implementation of Multilevel Parallel
Optimization on the Intel TeraFLOPS,’’ AIAA Paper 98-4707 inProceedings of the 7th AIAA/
USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis,
MO, Sept. 2-4, 1998, pp. 44-54.

[21]Eldred, M. S., Hart, W. E., Schimel, B. D., and van Bloemen Waanders, B. G., ‘‘Multilevel
Parallelism for Optimization on MP Computers: Theory and Experiment,’’ AIAA Paper 2000-
4818 inProceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Long Beach, CA, 2000.

[22]Eldred, M. S., ‘‘Optimization Strategies for Complex Engineering Applications,’’ Technical
Report SAND98-0340, Sandia National Laboratories, Albuquerque, NM, 1998.

[23]Eldred, M. S., Hart, W. E., Bohnhoff, W. J., Romero, V. J., Hutchinson, S. A., and Salinger, A.

DAKOTA Users Manual - References 202

G., ‘‘Utilizing Object-Oriented Design to Build Advanced Optimization Strategies with
Generic Implementation,’’ AIAA Paper 96-4164 inProceedings of the 6th AIAA/USAF/NASA/
ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, Sept. 4-6,
1996, pp. 1568-1582.

[24]Eldred, M. S., Outka, D. E., Bohnhoff, W. J., Witkowski, W. R., Romero, V. J., Ponslet, E. R.,
and Chen, K. S., ‘‘Optimization of Complex Mechanics Simulations with Object-Oriented
Software Design,’’Computer Modeling and Simulation in Engineering, Vol. 1, No. 3, August
1996. Revised and extended from Eldred, M. S., Outka, D. E., Fulcher, C. W., and Bohnhoff,
W. J., ‘‘Optimization of Complex Mechanics Simulations with Object-Oriented Software
Design,’’ paper AIAA-95-1433 inProceedings of the 36th AIAA/ASME/ ASCE/AHE/ASC
Structures, Structural Dynamics, and Materials Conference, New Orleans, LA, April 10-13,
1995, pp. 2406-2415.

[25]Friedman, J. H.,‘‘Multivariate Adaptive Regression Splines,’’Annals of Statistics, Vol. 19,
No. 1, March 1991, pp. 1-141.

[26]Gamma, E., Helm, R., Johnson, R., and Vlissides, J.,Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

[27]Ghanem, R. and Red-Horse, J.R., “Propagation of Probabilistic Uncertainty in Complex
Physical Systems using a Stochastic Finite Element Technique,”Physica D, Vol. 133, 1999, pp.
137-144.

[28]Ghanem, R. G. and Spanos, P. D.,Stochastic Finite Elements: A Spectral Approach, Springer-
Verlag, New York, NY, 1991.

[29]Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H.,User’s Guide for NPSOL (Ver-
sion 4.0): A Fortran Package for Nonlinear Programming, System Optimization Laboratory,
TR SOL-86-2, Stanford University, Stanford, CA, 1986.

[30]Gill, P. E., Murray, W., and Wright, M. H.,Practical Optimization, Academic Press, San
Diego, CA, 1981.

[31]Gilly, D., UNIX in a Nutshell, O’Reilly and Associates, Inc., Sebastopol, CA, 1992.

[32]Giunta, A. A., “Use of Data Sampling, Surrogate Models, and Numerical Optimization in
Engineering Design,” AIAA Paper 2002-0538 inProceedings of the 40th AIAA Aerospace
Science Meeting and Exhibit, Reno, NV, January 2002.

[33]Giunta, A. A., and Eldred, M. S., ‘‘Implementation of a Trust Region Model Management
Strategy in the DAKOTA Optimization Toolkit,’’ AIAA Paper 2000-4935 inProceedings of the
8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
Long Beach, CA, 2000.

[34]Giunta, A. A., and Watson, L. T., ‘‘A Comparison of Approximation Modeling Techniques:

DAKOTA Users Manual - References 203

Polynomial Versus Interpolating Models,’’ AIAA paper 98-4758 inProceedings of the 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St.
Louis, MO, 1998, pp. 392-404.

[35]Goldberg, D. E.,Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wessley Publishing Co. Inc., Reading, MA, 1989.

[36]Gropp, W., and Lusk, E.,User’s Guide for mpich, a Portable Implementation of MPI,
Argonne National Laboratory, Mathematics and Computer Science Division, Report ANL/
MCS-TM-ANL-96/6, 1996.

[37]Gropp, W., Lusk, E., and Skjellum, A.,Using MPI, Portable Parallel Programing with the
Message-Passing Interface, The MIT Press, Cambridge, MA, 1994.

[38]Haftka, R. T. and Gurdal, Z.,Elements of Structural Optimization, Kluwer, Boston, MA,
1992.

[39]Haldar, A. and Mahadevan, S.,Probability, Reliability and Statistical Methods in Engineering
Design, Wiley, New York, NY, 2000.

[40]Hart, W.E., ‘‘SGOPT, A C++ Library of (Stochastic) Global Optimization Algorithms,’’
Technical Report SAND##-XXXX, Sandia National Laboratories, Albuquerque, NM (not yet
published -- see http://www.cs.sandia.gov/projects/algorithms.htm).

[41]Helton, J. C. and Davis, F. J., ‘‘Sampling-Based Methods for Uncertainty and Sensitivity
Analysis,’’ Technical Report SAND99-2240, Sandia National Laboratories, Albuquerque, NM,
2000.

[42]Hough, P. D, Kolda, T. G., and Torczon, V. J., ‘‘Asynchronous Parallel Pattern Search for
Nonlinear Optimization,’’ Technical Report SAND2000-8213, Sandia National Laboratories,
Livermore, CA, 2000.

[43]Iman, R. L. and Shortencarier, M. J., ‘‘A Fortran 77 Program and User’s Guide for the Gener-
ation of Latin Hypercube Samples for Use with Computer Models,’’ NUREG/CR-3624,
SAND83-2365, Sandia National Laboratories, Albuquerque, NM, 1984.

[44]Kernighan, B. W., and Ritchie, D. M.,The C Programming Language, Second Edition,
Prentice Hall PTR, Englewood Cliffs, NJ, 1988.

[45]Koehler, J. R., and Owen, A. B., ‘‘Computer Experiments,’’ in Volume 13 of theHandbook of
Statistics, eds. S. Ghosh and C. R. Rao, Elsevier Science, New York, NY, pp. 261-308, 1996.

[46]McKay, M. D., Beckman, R. J., and Conover, W. J., “A Comparison of Three Methods for
Selecting Values of Input Variables in the Analysis of Output from a Computer Code,”Techno-
metrics, Vol. 21, No. 2, 1979, pp. 239-245.

DAKOTA Users Manual - References 204

[47]Meza, J. C., ‘‘OPT++: An Object-Oriented Class Library for Nonlinear Optimization,’’
Technical Report SAND94-8225, Sandia National Laboratories, Livermore, CA, 1994.

[48]Meza, J. C., and Plantenga, T. D., ‘‘Optimal Control of a CVD Reactor for Prescribed
Temperature Behavior,’’ Technical Report SAND95-8224, Sandia National Laboratories,
Livermore, CA, 1995.

[49]Moen, C. D., Spence, P. A., and Meza, J. C., ‘‘Optimal Heat Transfer Design of Chemical
Vapor Deposition Reactors,’’ Technical Report SAND95-8223, Sandia National Laboratories,
Livermore, CA, 1995.

[50]Moen, C. D., Spence, P. A., Meza, J. C., and Plantenga, T. D., “Automatic Differentiation for
Gradient-Based Optimization of Radiatively Heated Microelectronics Manufacturing
Equipment”, paper AIAA-96-4118 inProceedings of the 6th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, 1996, pp. 1167-
1175.

[51]Myers, R. H., and Montgomery, D. C.,Response Surface Methodology: Process and Product
Optimization Using Designed Experiments, John Wiley & Sons, Inc., New York, NY, 1995.

[52]Nocedal J., Wright S. J.,Numerical Optimization, Springer Series in Operations Research,
Springer, New York, NY, 1999.

[53]Koehler, J. R., Owen, A. B., ““Computer Experiments,” Vol. 13 ofHandbook of Statistics,
Elsevier-Science, New York, NY, eds. S. Ghost and C.R. Rao, 1996, pp. 239-245.

[54]Ponslet, E. R., and Eldred, M. S., ““Discrete Optimization of Isolator Locations for Vibration
Isolation Systems: an Analytical and Experimental Investigation,” AIAA Paper 96-4178 in
Proceedings of the 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, Bellevue, WA, Sept. 4-6, 1996, pp. 1703-1716. Also appears as Sandia
Technical Report SAND96-1169, May 1996.

[55]Red-Horse, J. R. and Paez, T. L., “Uncertainty Evaluation in Dynamic System Response,”
Proceedings of the 16th International Modal Analysis Conference, Santa Barbara, CA, Febru-
ary, 1998, pp. 1206-1212.

[56]Rosenblatt, M. “Remarks on a Multivariate Transformation,”Annals of Mathematical Statis-
tics, Vol. 23, No. 3, 1952, pp. 470-472.

[57]Schunk, P. R., Sackinger, P. A., Rao, R. R., Chen, K. S., Cairncross, R. A., ‘‘GOMA - A
Full-Newton Finite Element Program for Free and Moving Boundary Problems with Coupled
Fluid/Solid Momentum, Energy, Mass, and Chemical Species Transport: User’s Guide,’’
Technical Report SAND95-2937, Sandia National Laboratories, Albuquerque, NM, 1995.

DAKOTA Users Manual - References 205

[58]Sjaardema, G. D., ‘‘APREPRO: An Algebraic Preprocessor for Parameterizing Finite
Element Analyses,’’ Technical Report SAND92-2291, Sandia National Laboratories,
Albuquerque, NM, 1992.

[59]Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J.,MPI: The Complete
Reference, MIT Press, Cambridge, MA, 1996.

[60]Tong, C. H., and Meza, J. C., ‘‘DDACE: A Distributed Object-Oriented Software with
Multiple Samplings for the Design and Analysis of Computer Experiments,’’ Technical Report
SAND##-XXXX, Sandia National Laboratories, Livermore, CA (draft as yet unpublished).

[61]Vanderplaats, G. N., ‘‘CONMIN - A FORTRAN Program for Constrained Function Minimi-
zation,” NASA TM X-62282, 1973. (see also: Addendum to Technical Memorandum, 1978.)

[62]Vanderplaats, G. N.,Numerical Optimization Techniques for Engineering Design: With
Applications, McGraw-Hill, New York, NY, 1984.

[63]DOT Users Manual, Version 4.20, Vanderplaats Research and Development, Inc., Colorado
Springs, CO, 1995.

[64]Wall, L., Christiansen, T., and Schwartz, R.L.,Programming Perl, 2nd ed., O’Reilly &
Associates, Cambridge, 1996.

[65]Wyss, G.D., and Jorgensen, K. H., “A User’s Guide to LHS: Sandia’s Latin Hypercube
Sampling Software,’’ Sandia National Laboratories Technical Report SAND98-0210,
Albuquerque, NM, Feb. 1998.

[66]Zimmerman, D. C.,Genetic Algorithms for Navigating Expensive and Complex Design
Spaces, Final Report for Sandia National Laboratories contract AO-7736 CA 02, Sept. 1996.

DISTRIBUTION:

Argonne National Laboratory (2)
Mathematics and Computer Science

Division
Attn: Paul Hovland

Lois Curfman McInnes
9700 S. Cass Ave.
Argonne, IL 60439

Kenneth Comer
The Procter & Gamble Company
8256 Union Centre Boulevard
West Chester, OH 45069

Dan DeLaurentis
School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0150

John Dennis
Dept. of Computational and Applied

Mathematics
Rice University
6100 Main Street, MS 134
Houston, TX 77005-1892

Department of Energy (5)
Attn.: William H. Reed, NA-114

Bruce E. Pate, NA-114
Jamileh Soudah, NA-114
Diane E. Bird, NA-115
Kevin C. Greenaugh NA-115

1000 Independence Ave., SW
Washington, DC 20585

Urmila Diwekar
Engineering and Public Policy
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Jonathan Eckstein
Rutgers University
RUTCOR, Room 148
640 Bartholomew Road
Piscataway, NJ 08854

Robert Fermin
Avery Dennison Corporation
2900 Bradley Street
Pasadena, CA 91107-1599

Mark Gersh
Lockheed Martin Space Systems Co.
Missiles & Space Operations

Advanced Technology Center
Dept. L9-22 Bldg. 153
1111 Lockheed Martin Way
Sunnyvale, CA 94089-1212

Roger Ghanem
Dept. of Civil Engineering
Johns Hopkins University
Baltimore, MD 21218

Omar Ghattas
Dept. of Civil and Environmental

Engineering
Carnegie Mellon University
Pittsburgh, PA 15213

James Glimm
Dept. of Applied Math and Statistics
P138A
State University of New York
Stony Brook, NY 11794-3600

Guru Guruswamy
NASA Ames Research Center
MS T27B -1
Moffett Field, CA 94035-1000

Raphael Haftka
Dept. of Aerospace/Mechanical Engr.

and Engineering Science
P.O. Box 116250
University of Florida
Gainesville, FL 32611-6250

Matthias Heinkenschloss
Department of Computational and

Applied Mathematics - MS 134
Rice University
6100 S. Main Street
Houston, TX 77005 - 1892

Lawrence Livermore National
Laboratory (7)

Attn.: Evi Dube, MS L-095
Carol Hoover, MS L-125
Richard Klein, MS L-023
Roger Logan, MS L-125
Michael Murphy, MS L-282
Cynthia Nitta, MS L-096
Carol Woodward, MS L-561

7000 East Ave.
P.O. Box 808
Livermore, CA 94550

Michael Lewis
Department of Mathematics
College of William & Mary
P.O. Box 8795
Williamsburg, VA 23187-8795

Los Alamos National Laboratory (6)
Attn.: Steve Girrens, MS P946

John Hartin, MS P946
James Hyman, MS B284
S. Keller-McNulty, MS F600
Ed Rodriguez, MS P946
David Tubbs, MS B220

Mail Station 5000
P.O. Box 1663
Los Alamos, NM 87545

Sankaran Mahadevan
Dept. of Civil & Environmental

Engineering
Vanderbilt University
Box 6077, Station B
Nashville, TN 37235

Will McMahon
U.S. Army Corps of Engineers
Waterways Experiment Station
Structures Laboratory
3909 Halls Ferry Rd.
Vicksburg, MS 39180

Robert J. Meyer
Xerox Corporation
800 Phillip Road, 103-07B
Webster, NY 14580

Kathleen E. Morse
SP-TD-01-2
Corning, NY 14831

NASA Langley Research Center (4)
Attn: Natalia Alexandrov, MS 159

Larry Green, MS 159
Sharon Padula, MS 159
Jarek Sobieski, MS 139

Hampton, VA 23681-0001

Bob Pelle
The Goodyear Tire & Rubber Co
Technical Center D/431A
1376 Tech Way Drive
Akron, Ohio 44316

John Renaud
Dept. of Aerospace & Mechanical

Engineering
University of Notre Dame
Notre Dame, IN 46556

Robert Secor
3M Center, Building 518-1-01
3M Engineering Systems and

Technology
St. Paul, MN 55144

Sameer Talsania
PPG Industries, Inc.
P. O. Box 2844
Pittsburgh, PA 15230

Ben Thacker
Southwest Research Institute
6220 Culebra Road
Postal Drawer 28510
San Antonio, Tx 78228-0510

Virginia Torczon
College of William & Mary
Department of Computer Science
P.O. Box 8795
Williamsburg, VA 23187-8795

Layne Watson
Virginia Tech
Dept. of Computer Science (0106)
McBride Hall
Blackburg, VA 24061-0106

David Young (2)
The Boeing Company
P. O. Box 3707, MS 7L-21
Seattle, WA 98124-2207

1 MS 0139 M. O. Vahle, 9900
1 MS 0139 R. K. Thomas, 9904
1 MS 0310 R. W. Leland, 9220
1 MS 0316 S. A. Hutchinson, 9233
1 MS 0318 P. Yarrington, 9230
1 MS 0321 W. J. Camp, 9200
1 MS 0429 J. S. Rottler, 2100
1 MS 0481 W. C. Moffatt, 2167
1 MS 0482 S. E. Lott, 2109
1 MS 0482 K. Ortiz, 2131
1 MS 0525 S. D. Wix, 1734
1 MS 0557 T. J. Baca, 9125
1 MS 0747 G. D. Wyss, 6410
1 MS 0819 T. G. Trucano, 9211
1 MS 0819 E. A. Boucheron, 9231
1 MS 0824 J. L. Moya, 9130
1 MS 0826 J. D. Zepper, 9143
1 MS 0826 J. R. Stewart, 9143
1 MS 0827 P. R. Schunk, 9114
1 MS 0828 M. Pilch, 9133
1 MS 0834 A. C. Ratzel, 9110
5 MS 0834 D. Labreche, 9114
1 MS 0835 J. M. McGlaun, 9140

1 MS 0835 S. N. Kempka, 9141
1 MS 0835 B. Hassan, 9141
1 MS 0836 J. S. Peery, 9142
1 MS 0836 E. S. Hertel, 9116
1 MS 0836 D. Dobranich, 9116
1 MS 0836 B. D. Boughton, 9116
1 MS 0836 R. E. Hogan, Jr., 9117
1 MS 0841 T. C. Bickel, 9100
1 MS 0847 D. R. Martinez, 1902
1 MS 0847 H. S. Morgan, 9120
1 MS 0847 J. M. Redmond, 9124
1 MS 0847 R. A. May, 9126
1 MS 0847 G. M. Reese, 9142

50 MS 0847 M. S. Eldred, 9211
1 MS 0847 J. R. Red-Horse, 9211
1 MS 0893 R. M. Brannon, 9123
1 MS 1110 D. E. Womble, 9214
1 MS 1110 W. E. Hart, 9211
1 MS 1110 C. A. Phillips, 9211
1 MS 1110 L. J. Lehoucq, 8950
1 MS 1110 R. B. Lehoucq, 9214
1 MS 1111 S. J. Plimpton, 9209
1 MS 1111 J. N. Shadid, 9233
1 MS 1110 M. Heroux, 9214
1 MS 1111 B. A. Hendrickson, 9226
1 MS 1159 M. Hedemann, 15344
1 MS 1176 L. P. Swiler, 15312
1 MS 9042 M. Chiesa, 8727
1 MS 9051 H. Najm, 8351
1 MS 9217 J. C. Meza, 8950
1 MS 9217 P. D. Hough, 8950
1 MS 9217 P. J. Williams, 8950
1 MS 9217 T. G. Kolda, 8950
1 MS 9217 K. R. Long, 8950
1 MS 9217 P. T. Boggs, 8950
1 MS 9217 M.Martinez-Canales,8950
1 MS9217 V. Howle, 8950

1 MS 9018 Central Technical Files,
8945-1

2 MS 0899 Technical Library, 9616
1 MS 0612 Review and Approval

Desk, 9612
For DOE/OSTI

	DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estima...
	Version 3.0 Users Manual
	Abstract
	Table of Contents 5
	Preface 12
	Ch 1 - Introduction 14
	Ch 2 - Getting Started with DAKOTA 23
	Ch 3 - DAKOTA Capabilities 52
	Ch 4 - Variables 60
	Ch 5 - Interfaces 68
	Ch 6 - Response Data 82
	Ch 7 - Output from DAKOTA 86
	Ch 8 - Parameter Study Capabilities 95
	Ch 9 - Sampling Methods and Design of Experiments 102
	Ch 10 - Nondeterministic Analysis and Uncertainty Quantification 105
	Ch 11 - Optimization Software Packages 116
	Ch 12 - Additional Optimization and Parameter Estimation Capabilities 121
	Ch 13 - Advanced Optimization Strategies 126
	Ch 14 - Surface Fitting Methods 141
	Ch 15 - Parallel Computing 146
	Ch 16 - Advanced Simulation Code Interfaces 166
	Ch 17 - DAKOTA Usage Guidelines 174
	Ch 18 - Restart Capabilities and Utilities 180
	Ch 19 - Simulation Code Failure Capturing 185
	Ch 20 - Additional Examples 188
	Ch 21 - References 200

	1.0 Introduction
	1.1 Motivation for DAKOTA Development
	1.2 Capabilities of DAKOTA
	1.3 How Does DAKOTA Work?
	1.4 Background and Mathematical Formulations
	1.4.1 Optimization
	1.4.2 Nonlinear Least Squares for Parameter Estimation
	1.4.3 Sensitivity Analysis and Parameter Studies
	1.4.4 Design of Experiments
	1.4.5 Uncertainty Quantification

	1.5 Using this Manual

	2.0 Getting Started with DAKOTA
	2.1 Installation Guide
	2.1.1 How to Obtain DAKOTA - External to Sandia Labs
	2.1.2 How to Obtain DAKOTA - Internal to Sandia Labs
	2.1.3 Installing DAKOTA - Binary Executable Files
	2.1.4 Installing DAKOTA - Source Code Files
	2.1.5 Running DAKOTA

	2.2 Rosenbrock and Textbook Test Problems
	2.3 DAKOTA Input File Format
	2.4 Example Problems
	2.4.1 Two-Dimensional Parameter Study
	2.4.2 Vector Parameter Study
	2.4.3 Gradient-based Unconstrained Optimization
	2.4.4 Gradient-based Constrained Optimization
	2.4.5 Nonlinear Least Squares Methods for Optimization
	2.4.6 Nongradient-based Optimization via Pattern Search
	2.4.7 Nongradient-based Optimization via Genetic Algorithm
	2.4.8 Monte Carlo Sampling
	2.4.9 Optimization with a User-Supplied Simulation Code

	2.5 Where to Go from Here

	3.0 DAKOTA Capabilities
	3.1 Overview
	3.2 Parameter Study Methods
	3.3 Sampling Methods and Design of Experiments
	3.4 Uncertainty Quantification
	3.5 Optimization Software Packages
	3.6 Additional Optimization and Parameter Estimation Capabilities
	3.7 Optimization Strategies
	3.8 Surface Fitting Methods
	3.9 Parallel Computing
	3.10 Summary

	4.0 Variables
	4.1 Overview
	4.2 Design Variables
	4.2.1 Continuous Design Variables
	4.2.2 Discrete Design Variables

	4.3 Uncertain Variables
	4.4 State Variables
	4.5 Mixed Variables
	4.6 DAKOTA Parameters File Data Format
	4.6.1 Parameters file format (standard)
	4.6.2 Parameters file format (APREPRO)

	4.7 The Active Set Vector
	4.7.1 Active set vector control

	5.0 Interfaces
	5.1 Overview
	5.2 The Direct Function Application Interface
	5.3 The System Call Application Interface
	5.4 The Fork Application Interface
	5.5 Fork or System Call: Which to Use?
	5.6 Interface Components
	5.6.1 Single analysis driver without filters
	5.6.2 Single analysis driver with filters
	5.6.3 Multiple analysis drivers without filters
	5.6.4 Multiple analysis drivers with filters

	5.7 File Management
	5.7.1 File Saving
	5.7.2 File Tagging for Evaluations
	5.7.3 UNIX Temporary Files
	5.7.4 File Tagging for Analysis Drivers
	5.7.5 File Management Examples

	5.8 Parameter to Response Mappings

	6.0 Response Data
	6.1 Overview
	6.1.1 Response function types
	6.1.2 Gradient availability
	6.1.3 Hessian availability

	6.2 DAKOTA Results File Data Format
	6.3 Active Variables for Derivatives

	7.0 Output from DAKOTA
	7.1 Overview of Output Formats
	7.2 Standard Output
	7.3 Tabular Output Data
	7.4 Graphics Output
	7.5 Error Messages Output

	8.0 Parameter Study Capabilities
	8.1 Overview
	8.1.1 Initial Values

	8.2 Vector Parameter Study
	8.3 List Parameter Study
	8.4 Centered Parameter Study
	8.5 Multidimensional Parameter Study

	9.0 Sampling Methods and Design of Experiments
	9.1 Overview
	9.2 LHS
	9.3 DDACE Background

	10.0 Nondeterministic Analysis and Uncertainty Quantification
	10.1 Overview
	10.2 Sampling Methods
	10.2.1 Uncertainty Quantification Example using Sampling Methods

	10.3 Analytical Reliability Methods
	10.3.1 Uncertainty Quantification Example using MV and FORM

	10.4 Polynomial Chaos Methods
	10.4.1 Uncertainty Quantification Example using Polynomial Chaos

	10.5 Future Nondeterministic Methods

	11.0 Optimization Software Packages
	11.1 Overview
	11.2 Constrained Minimization (CONMIN) Library
	11.3 Design Optimization Tools (DOT) Library
	11.4 NPSOL Library
	11.5 OPT++ Library
	11.6 SGOPT Library
	11.7 Parallel Integer Combinatorial Optimization (PICO)

	12.0 Additional Optimization and Parameter Estimation Capabilities
	12.1 Overview
	12.2 Nonlinear Least Squares for Parameter Estimation
	12.2.1 Solution Techniques
	12.2.2 Examples

	12.3 Multiobjective Optimization
	12.4 Simultaneous Analysis and Design (SAND) Optimization

	13.0 Advanced Optimization Strategies
	13.1 Overview
	13.2 Multilevel Hybrid Optimization
	13.3 Multistart Local Optimization
	13.4 Pareto Optimization
	13.5 Mixed Integer Nonlinear Programming (MINLP)
	13.5.1 Example MINLP Problem

	13.6 Optimization Under Uncertainty (OUU)
	13.7 Surrogate-Based Optimization (SBO)
	13.7.1 SBO with Surface Fit Models
	13.7.2 SBO with Multifidelity Models

	14.0 Surface Fitting Methods
	14.1 Overview
	14.2 Procedures for Surface Fitting
	14.3 Quadratic Polynomial Models
	14.4 First-order Taylor Series Models
	14.5 Kriging Spatial Interpolation Models
	14.6 Artificial Neural Network (ANN) Models
	14.7 Multivariate Adaptive Regression Spline (MARS) Models

	15.0 Parallel Computing
	15.1 Overview
	15.2 Parallel Algorithms
	15.2.1 Parallel iterators
	15.2.2 Parallel strategies

	15.3 Local Simulation Invocation Components
	15.3.1 Direct function synchronization
	15.3.2 System call synchronization
	15.3.3 Fork synchronization

	15.4 Message Passing Components
	15.4.1 Partitioning of levels
	15.4.2 Scheduling within levels

	15.5 Putting the Components Together
	15.6 Running a Parallel DAKOTA Job
	15.6.1 Single-processor execution
	15.6.2 Multiprocessor execution
	15.6.3 Caveats

	15.7 Specifying Parallelism
	15.7.1 The interface specification
	15.7.2 The strategy specification
	15.7.3 Single-processor DAKOTA specification
	15.7.4 Multiprocessor DAKOTA specification

	16.0 Advanced Simulation Code Interfaces
	16.1 Building an Interface to a Engineering Simulation Code
	16.1.1 Review of RosenSimulator Files
	16.1.2 Adapting These Scripts to Another Simulation
	16.1.3 Additional Examples

	16.2 Adding Simulations to the Direct Application Interface

	17.0 DAKOTA Usage Guidelines
	17.1 Problem Exploration
	17.2 Optimization Method Selection
	17.3 UQ Method Selection
	17.4 Parameter Study/DACE/Sampling Method Selection

	18.0 Restart Capabilities and Utilities
	18.1 Restart Management
	18.2 The DAKOTA Restart Utility
	18.2.1 Print
	18.2.2 To/From Neutral File Format
	18.2.3 To Tabular Format
	18.2.4 Concatenation of Multiple Restart Files
	18.2.5 Removal of Corrupted Data

	19.0 Simulation Code Failure Capturing
	19.1 Failure detection
	19.2 Failure communication
	19.3 Failure recovery
	19.3.1 Abort
	19.3.2 Retry
	19.3.3 Recover
	19.3.4 Continuation

	20.0 Additional Examples
	20.1 Textbook Problem Formulation
	20.1.1 Methods
	20.1.2 Optimization Results
	20.1.3 Least Squares Results

	20.2 Rosenbrock Problem Formulation
	20.2.1 Methods
	20.2.2 Results

	20.3 Cylinder Head Problem Formulation
	20.3.1 Methods
	20.3.2 Optimization Results

	20.4 Container Example

	References

