
DALi: A Communication-Centric Data Abstraction Layer for
Energy-Constrained Devices in Mobile Sensor Networks

Christopher M. Sadler and Margaret Martonosi

Department of Electrical Engineering
Princeton University

{csadler, mrm}@princeton.edu

ABSTRACT
Communications in mobile and frequently-disconnected sen-
sor networks are characterized by low-bandwidth radios, un-
reliable links, and disproportionately high energy costs com-
pared to other system operations. Therefore, we must use
as efficiently as possible any periods of connectivity that we
have. For this reason, nodes in these networks need mech-
anisms that organize data to streamline search operations,
local computation, and communications.

This work proposes a Data Abstraction Layer (DALi),
which is inserted between the application layer and the file
system. DALi organizes data with networking in mind to
facilitate the development of services for Data Search, Nam-
ing, and Reduction that combine to make communications
more efficient. From the resulting two-tiered data hierarchy,
we develop a multi-layer drill-down search structure that
can locate data multiple orders of magnitude faster (and
with much lower energy) than simpler data storage struc-
tures. Additionally, DALi conserves energy and bandwidth
through a mechanism that acknowledges and removes spe-
cific data segments from a mobile sensor network. Finally,
it seamlessly integrates in a lossless compression algorithm
specifically designed for sensor networks to save additional
energy.

Categories and Subject Descriptors: C.2.1 [Network
Architecture and Design]: Wireless communication; C.3
[Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.4.3 [File Systems Manage-
ment]: File Organization; E.5 [Files]: Sorting/Searching

General Terms: Algorithms, Management, Performance

Keywords: Data Search and Storage, Energy Efficient
Communications, Mobile Ad Hoc Sensor Networks

1. INTRODUCTION
Mobile and frequently disconnected sensor networks form

an interesting subset of the sensor network design space.
The target applications vary drastically, from zebra track-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’07, June 11-14, 2007, San Juan, Puerto Rico, USA.
Copyright 2007 ACM 978-1-59593-614-1/07/0006 ...$5.00.

ing [39] to polar monitoring [4]. They have an underlying
set of common traits, however, largely based on their harsh
operating environments which can make physical node ac-
cess difficult and which place logistical limits on the size of
the deployments.

These systems are characterized by both the severe re-
source constraints of sensor nodes and by short periods of
unreliable, low quality communications over low bandwidth
radios. Beyond their sensors, they collect and store data us-
ing an ultra-low power microcontroller and energy-efficient,
non-volatile memory in an effort to operate for months at a
time on a limited energy budget.

Over time, sensor node microcontrollers have become
more capable, the amount of storage space has increased,
and the energy costs of CPU and storage have decreased.
These trends are likely to continue. However, radio trans-
missions have remained expensive and unreliable and this is
unlikely to improve significantly over time. Significant chal-
lenges exist regarding the physical energy costs of wireless
signal propagation, the difficulties of designing appropriate
antennas, and environmental factors which are exacerbated
by a constantly changing network topology. Additionally, in
a mobile network, nodes may transmit multiple replicated
copies of the data to balance latency and energy constraints
[32][34]; unnecessarily transmitting the data either to nodes
that already have it or to anyone after the sink has received
a copy wastes valuable bandwidth and energy.

As a result, a good mobile sensor system must be designed
with the data storage and communication infrastructure in
mind. Current Flash file systems designed for stationary
sensor networks offer clear advantages over raw application
management of data, but on their own these systems do not
meet our goals. For example, files can grow to the size of
the Flash, there is no efficient way to identify particular data
items in files, and there is minimal support for compression.
However, for the tasks for which they were intended, such as
using the Flash efficiently and ensuring data integrity, these
file systems perform well. For this reason, we have developed
DALi, a Data Abstraction Layer for mobile sensor networks
that lies between the application and the file system and
provides nodes with Data Search, Naming, and Reduction
services.

Data Search is the ability to quickly locate specific data on
the node, by name or by value, and summarize it when ap-
propriate. We emphasize search speed because minimizing
query response times improves bandwidth efficiency.

Data Naming is the ability to identify specific sections of
data in a granularity that can be easily transmitted through

99

the network. Using this, we can build “delete lists” which
aim to conserve energy and bandwidth by stopping data
(once delivered to the sink) from being unnecessarily trans-
mitted further. We can likewise prevent nodes from trans-
mitting data to other nodes that already have it.

Data Reduction is the ability to shrink the data through
in-network computation, data aggregation, or compression.
This mechanism conserves energy and bandwidth by reduc-
ing the volume of data in the network.

These three functions are interdependent and a truly ef-
fective system for mobile sensor networks needs to provide
services for all three.

The contributions of this work include:

• We design and develop a prototype of a Data Abstraction
Layer (DALi) that restructures data in a way that sim-
plifies communications and uniquely incorporates each of
the processes of Data Search, Naming, and Reduction.

• We introduce an efficient way to incorporate “delete
lists” into the system, which can reduce energy con-
sumption by multiple orders of magnitude by reducing
unnecessary transmissions.

• We demonstrate that our hierarchical data organization
serves as the basis for a drill-down search structure that
allows for simple, fast sensor data searches on both spa-
tial and temporal data. DALi can effectively search large
real-world datasets in the amount of time it takes to send
a handful of packets.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work. Section 3 then presents an
overview of DALi. Section 4 introduces DALi’s Data Search
service and Section 5 introduces its Data Naming and Data
Reduction services. Then, Section 6 offers a discussion and
evaluation of our work, and Section 7 concludes the paper.

2. RELATED WORK
Sensor network data management systems are typically

tailored to stationary, well-connected sensor networks and,
therefore, do not attempt to leverage Flash data storage to
make opportunistic mobile communications more efficient.
Additionally, no existing data organization offers a combina-
tion of Data Search, Naming, and Reduction services similar
to those offered by DALi.

Proactive relational query processors [11, 13, 19, 38] use
queries to activate specific sensors on a node, collect read-
ings for a given period of time, and return the results. They
may also compute data summaries and aggregate data from
multiple nodes. However, mobile delay-tolerant networks
must be reactive because of the long latency required to de-
liver queries to nodes. Additionally, the often-changing net-
work topology prevents nodes from employing aggregation
techniques that rely on data correlation in the network or
distributed schemes that rely on specific sensors to execute
specialized data reduction algorithms; nodes should primar-
ily rely on data reduction algorithms which can be executed
locally. For stationary sensor networks, both more tradi-
tional [30] and distributed [24] storage abstractions exist as
well, but frequent disconnections and the sparse distribution
of nodes prohibit us from using these methods.

Generic Flash file systems [1, 35] and Flash file systems
for sensor networks [6, 7, 10] store data in arbitrarily large
files, like PC-based file systems. These files can be far larger
than mobile nodes can transmit in one communications pe-

riod. The file systems have no mechanisms for identifying
smaller segments of the file, which is critical to preventing
unnecessary communications related to duplicate copies of
data in the network. Our work provides the additional ser-
vices necessary for proper data location and identification
to assist communications.

Our mechanism for subdividing data into smaller chunks
is similar to the BitTorrent peer-to-peer file distribution sys-
tem [5]. However, existing variants for MANETs [23] and
sensors [33] are inappropriate for our networks because each
node uses a tracker to find out which peers have the file
it wants—information that is not likely to be available—
and assume good connectivity and reliable multi-hop routes
through the network that can move large volumes of data
at once. DALi, on the other hand, gradually acquires data
over the independent, opportunistic peer-to-peer links char-
acteristic of mobile sensors.

Our data division mechanism also resembles the SPIN
routing protocol [12, 15], which, in simulation, breaks data
into 500B segments and uniquely names them in an effort to
suppress redundant transmissions. However, SPIN requires
that each application provide its own naming scheme. DALi,
on the other hand, provides a standard two-level naming
structure which is applicable across applications and allows
names to be merged so that one name can represent much
more data. It also provides search and data reduction ser-
vices that SPIN does not consider.

Other Flash-based sensor storage systems offer useful data
structures (e.g., Capsule [20]) and search capabilities (e.g.,
MicroHash [16]) and are a strong influence for our work.
However, they do not attempt to tackle the issue of sim-
plifying communications and they were never intended to
transmit more than short data summaries, directly related
to their intended use on stationary, connected networks. Ad-
ditionally, the search algorithms for systems such as Micro-
Hash are only designed to handle data collected from a single
node and will not work if the data is not stored in time or-
der. Unordered data is common in systems that store and
process data from multiple nodes like DALi does.

Ganesan et. al. use wavelet summarization both on a sin-
gle node and over groups of nodes to offer multiple granulari-
ties of data for transmission and search [9]. Their concept of
drill-down queries is similar to ours, but we generate meta-
data rather than wavelets since they are not appropriate for
answering queries on all types of data. Additionally, we can-
not expect to have enough nodes, the proper node topology,
or the data correlation necessary for wavelets to be effective
across groups of nodes.

Delay-Tolerant Networks [8] may use data mules to gather
data files from stationary sensor nodes [26]. However, com-
munications between the sensing nodes and the data mule
may be unpredictable, unreliable, and intermittent, espe-
cially if the mule’s movements are random. DALi can assist
data delivery in these scenarios by dividing files into more
communicable segments.

3. DALI ARCHITECTURE
Nodes in sparse, mobile sensor networks will often adapt

between either sending all of their data, which minimizes
latency, or responding to specific queries, which minimizes
communications. If the application wants all nodes to send
all data, nodes need intelligent ways to prevent costly un-
necessary communications and to improve the efficiency of

100

0

10000

20000

30000

40000

50000

60000

70000

80000

Atmel ST Toshiba
0

10000

20000

30000

40000

50000

60000

Atmel ST Toshiba
Flash Reads Flash Writes

A
ve

ra
g

e
N

u
m

b
er

 o
f

B
yt

es

Figure 1: Average number of bytes that a node can read from
and write to Flash (assuming page sized operations) for the same
amount of energy as transmitting one byte over the XTend radio
at 500mW.

necessary ones. If the application just wants answers to spe-
cific questions, nodes need to quickly query and summarize
a subset of the data that they have collected.

DALi provides these mechanisms on resource constrained
sensor nodes and, in the process, provides a semblance of
communications reliability in an unreliable realm. These
mechanisms should be applicable to both data collected lo-
cally and to data received from other nodes, so that a node
can preemptively answer data requests for its peers when
possible.

An important point in this design discussion is that we
are not deeply concerned about storage energy in mobile
and frequently disconnected networks. As first pointed out
in [21], the energy profile of the Flash has improved sig-
nificantly over time. Figure 1 compares the energy cost of
reading a byte from Flash and writing a byte to Flash with
the energy cost of transmitting one byte over the XTend ra-
dio [22] at 500mW, as used in the ZebraNet project [39]1.
The comparison covers three Flash modules: a 4Mbit At-
mel module [3] used in numerous prior sensor deployments
(including ZebraNet), a newer 8Mbit ST module [27] which
has many technological similarities to the Atmel Flash and
is being incorporated into some newer sensor deployments,
and a 1Gbit Toshiba module [31] which has been used in
some recent sensor research [16, 20] and is likely to be incor-
porated into sensor deployments in the near future. For the
Toshiba Flash, this translates to writing close to 3.7 million
bytes for the energy required to transmit one 64B packet.

These trends suggest that we should use the Flash to our
advantage as a way to improve the efficiency of our commu-
nications. DALi does this by reorganizing the data as it is
written by the application; however, this should be done in
a way that keeps the application interface simple.

3.1 DALi Structural Overview
DALi’s architecture is shown in Figure 2 and an abstract

view of the data organization is shown in Figure 3. The ap-
plication creates a file, which we call a virtual file, in which
it stores collected sensor data. This structure provides the
application with a familiar file interface. In turn, DALi cre-
ates multiple physical files which combine to store headers
and metadata used to identify and search the data, as well
as the data itself (which is stored in a single physical file).

1All numbers assume page sized operations, although the actual size
of the page varies between the modules. We measured the XTend and
Atmel energy numbers in prior work [25]. The ST energy numbers
are from the datasheet [27] and assume a 1Mbps connection with the
microcontroller. The Toshiba energy numbers are from [20].

Sensor Data

Module Module

Blocks Blocks

File:
Sensor Data

Application
View:

Virtual File

Data
Abstraction

File System
View:

Physical Files

…

File: Block
Headers

File: Module
Headers

File: Block
Metadata

File: Module
Metadata

Storage Module Physical View

Figure 2: DALi’s Architecture.

Module with
Compr. Data

Module N+1
(Uncompr.)

Module N
(Uncompr.)… …

No Compr.
Version Yet

Virtual File Overview

Module
Metadata

…

BLOCK 0

BLOCK 15

…

Next ModuleModule with
Compressed Data

Module Overview

Module
Header

Block Header

Block
Metadata

Sensor
Data
512B

(in sensor
data file)

Block Overview

Struct VirtualFileHeader {
FileName* name_of_virtual_file;

// Links to the 5 physical files
PointerToFile* sensor_data_file;
PointerToFile* module_headers_file;
PointerToFile* block_headers_file;
PointerToFile* module_metadata_file;
PointerToFile* block_metadata_file;
…

};

Struct ModuleHeader {
ModuleName name_of_module;
VirtualFileHeader * file_header;
ModuleHeader* next_module;
ModuleHeader* module_with_same_data;
BlockHeader* blocks[num_of_blocks];
BitMask is_block_empty;
BitMask is_block_valid;
ModuleMetadata* metadata;
Long Int module_size;
…

};

Struct BlockHeader {
Char block_number;
Int block_size;
ModuleHeader* parent_module;
BlockMetadata* block_metadata;
PointerInFile* data_in_sensor_data_file;
// Is this data compressed? If so, how?
Char compression_type;
…

};

Figure 3: Left: Abstract view of how data is stored in Virtual
Files, Modules, and Blocks. Right: Pseudo-code structure defini-
tions of Virtual Files, Modules, and Blocks. Only selected fields
are listed for each structure. Although this code depicts a num-
ber of memory consuming pointers, the actual implementation is
designed in a way that minimizes RAM usage.

DALi breaks the data collected by the application into
Modules, which are further subdivided into Blocks, a hierar-
chical design which was influenced by the structure of soft-
ware updates in the Impala Middleware System [18]. Mod-
ules are designed to be easy to identify and Blocks are de-
signed to pack data in small, trackable chunks. This struc-
ture simplifies the processes of delivering data to the sink
and acknowledging that it arrived (see Section 5.1).

Modules consist of groups of 16 Blocks, enabling us to
index any Block or groups of Blocks in a Module with a 16
bit mask. DALi uses a Block size of 512B so that the data
fits in well with our sensor compression algorithm described
in Section 5.2; it fills the Block with sensor readings until it is
as close to 512B as possible without exceeding that amount.
We define a fixed Block size rather than allowing it to vary
based on characteristics of the data such as, for example,
grouping all of the data gathered in a given week in a Block,
in order to encourage efficient communications. Most data

101

reduction mechanisms will prove ineffective on tens of bytes
of data and it is very difficult to transmit thousands of bytes
of data in extremely unreliable networks.

Modules and Blocks are each given headers, which are
central to DALi. The organization of these headers, as well
as a view of how they are connected to the virtual and phys-
ical files, is shown in the pseudo-code on the right hand side
of Figure 3. Module headers contain pointer information on
where to find the Block headers as well as the overall Module
size, the name of the corresponding virtual file, and infor-
mation on which Blocks are empty or valid. These headers
are stored in their own physical file so that they can be read
and scanned independently of the data.

Block headers contain pointers to locate the sensor data
in the physical sensor data file and the size of the Block,
among other things. These headers are also stored in their
own physical file; they are stored separately from the Module
headers to create an easily scannable data hierarchy. The
Module and Block headers hold the pointers to all of the
other data on the node. When we refer to “opening” a
Module or a Block in this work, we mean that the node is
reading the header from Flash into RAM rather than reading
the actual sensor data.

Additionally, at both the Module level and the Block
level we store metadata summaries in order to assist with
searches. Both Module metadata and Block metadata are
stored in their own physical files. In Section 4, we will fur-
ther discuss these summaries, as well as the versatile drill-
down search structure that this data organization provides.

3.2 DALi: Module Naming Convention
Each Module name must be unique so that all data can be

quickly identified in the network. We use a combination of
the 2B (16-bit) node ID of the node generating the data2, a
4B time stamp which counts seconds, and a 2B file counter
that is simply incremented as virtual files are created and
kept constant as Modules are added to the file. This setup
is important when we attempt to move acknowledgements
through the network, which we describe in Section 5.1.

A time stamp is not truly necessary. It could be replaced
with a simple counter and DALi will still work properly.
However, as we show in Section 4, time stamps allow for
faster, more refined searches so we recommend that they be
included in the implementation.

Finally, our decision of how to divide Modules into Blocks
fits in well with this naming convention, since for commu-
nications purposes, a node can identify any data in the net-
work at a Block granularity with just an 8B Module name
and a 2B bit mask.

3.3 Module Name Location and the Time
Ordered Structure

DALi requires data structures that can locate data
quickly. One of our primary considerations is that nodes
must process and store all incoming data, but that they
will likely only encounter a small subset of the overall possi-
bilities. Additionally, our resource constraints suggest that
we use simple structures to minimize code size and RAM
usage.

2For this work, we use a 2B node ID since the typical networks on
which DALi will be deployed do not have more than 216 nodes. How-
ever, this is easily changed if needed.

…

…

…

Sparse Array
16 E

ntries

N1 N2 T1 T2 T3 T4 C1 C2

Node ID
Time Stamp

File
Counter

1
3

1

2

Module Name

2 3
Rest of
Name

T1 T2 T3 T4

End Time

4 5
6

b) Module Naming Structure (Mod-Struct)

…

…

…

: Empty Slot

Sparse Array

: Occupied Slot
(Pointer not shown)

1 2 6

Linked
List

Binary Search
Tree

…
8 Entries

4

Hash
Table

5

…

…

…

Sparse Array

…

c) Time Ordered Structure (Time-Struct)

Linked
List

Linked
List

Binary Search
Tree

…

a) Structures to be Indexed (with bytes numbered)

Figure 4: a) Parts of the Module name and the end time are
used to index the simple data structures that link together to form
b) the Module Naming Structure (Mod-Struct), used for gen-
eral Module location, and c) the Time Ordered Structure (Time-
Struct), used for temporal search. The linked lists in the struc-
tures are used to resolve collisions in the structures that precede
them.

Although we want to abstract DALi from the physical
storage medium, as we design these data structures it is also
unwise to ignore the fundamental limitations of the Flash
memory modules often found on sensor nodes. For exam-
ple, Flash memory cannot overwrite data in a page unless
the entire page is erased first so it is not possible to simply
change pointers on the fly. Implementations using differ-
ent physical storage media may benefit from different data
structures than those discussed here, but the basic goals and
principles of those implementations are ultimately the same.

3.3.1 Module Naming Structure
DALi includes naming structures to support both gen-

eral name location as well as temporal search, which are de-
picted in Figure 4. The first component, the Module Nam-
ing Structure (Mod-Struct), is designed to keep search speed
fast while minimizing the number of basic data structures.
The top of the structure is a sparse array indexed by the
LSB of the node’s ID.

In DALi, a sparse array indexes a single byte of data. It
breaks the byte into two 4-bit halves each used to index
separate 16-entry tables as shown in Figure 5. The primary
table indexes the 4 least significant bits and is created when
the sparse array is created. It holds pointers to other tables
which are indexed by the rest of the byte. When a slot in the
primary table is used for the first time, the node creates the
second 16-entry table. This structure enables us to index all

102

…

: Empty SlotSparse Array
: Occupied Slot (Ptr not shown)

N2

Node ID (2 Bytes)

N24N25N26N27 N20N21N22N23

N1

+

Base Ptr
(top of

primary table)

4

Primary Table,
16 Entries: 4B
Flash Pointers

(or Null if empty)

+
32

4

Base Ptr
(top of

secondary
table)32

…

Secondary
Table, 16

Entries: Contents
of Sparse Array

Node ID bits index
individual entries in

the tables in the
sparse array

Figure 5: Example of how the LSB of one node ID is mapped to
a sparse array in DALi. The primary table holds all 16 possible
values of the 4 least significant bits of the node ID. Those entries
each contain a pointer to a secondary table (or a Null value if
no Node ID maps to that entry). The secondary table contains
whatever data was to be stored in the sparse array.

possible one-byte entries with small tables that are easy to
manage in Flash without worrying about index collisions.

If multiple node IDs in the Mod-Struct have the same
LSB, we expand the sparse array with a linked list. Given
the sparse nature of mobile and frequently disconnected net-
works, this list is likely to remain short.

That data structure points to a binary search tree indexed
by the least significant 2B of the time stamp. As this number
periodically wraps around, the systems we have explored
have reasonably well-balanced trees. Nodes in the search
tree each expand into a linked list in which entries hold the
rest of the time stamp and the file counter.

Data structures for search typically use self-balanc-
ing trees, which tightly bound search times in all cases.
However, the properties of Flash memory coupled with
the node’s memory constraints makes implementing self-
balancing trees difficult. For our implementation, it is
sufficient to use a combination of simple data structures
and non-balancing trees. These trees either feature well-
distributed indices that naturally yield a balanced tree or
are small enough that they can degenerate into a linked list
without a problem. However, more complicated structures
have been developed for applications that must manage
complex data structures in Flash [36, 37] and could be
added to DALi in the future if necessary.

3.3.2 Time Ordered Structure
The first naming structure described so far is good for

general search, but not for temporal search. As a result,
as we implemented the Data Search services we found it
necessary to add a Time Ordered Structure (Time-Struct),
shown in Figure 4c. Rather than using the Module’s start
time to organize the tree, we use the time of the Module’s
last reading to emphasize searches starting with the most
recent data.

The Time-Struct starts with a sparse array indexed by
the node ID, just like the Mod-Struct. This array points to
a hash table indexed by the three least significant bits of the
most significant byte of the Module’s end time. Given that
our time stamp counts seconds, those three bits (bits 24-26
overall) can track more than four years of data. This table
points to another sparse array, indexed by the second-most
significant byte of the end time. Finally, this array points
to a binary search tree indexed by the 2 LSBs of the time
stamp; nodes in this tree also store the rest of the file name.
However, unlike the Mod-Struct, the rest of the time stamp

Item to Locate Data Structure Read From Flash

1

2

3

4

5

6

7

Bottom Half of LSB of
Node ID Sparse Array Addr. of Second Half of

Sparse Array

MSB of Node ID
(Only if there is a

collision on the LSB)
Linked List

MSB of End Time Hash Table

2 LSBs of End Time Binary Search
Tree

S
kip S

tep 3 if no collision
on LS

B
 of N

ode ID
Top Half of LSB of

Node ID
Sparse Array

Node ID, Addr. of Linked
List (Step 3), Addr. of
Hash Table (Step 4)

Node ID, Addr. of Linked
List (Step 3), Addr. of
Hash Table (Step 4)

R
epeat as
N

eeded

Addr. of First Half of
Sparse Array

Bottom Half of 2nd

MSB of End Time Sparse Array Addr. of Second Half of
Sparse Array

Top Half of 2nd

MSB of End Time Sparse Array Addr. of First Node in
Binary Search Tree

Rest of the File Name,
Addr. of Children in Tree,
Addr of Module Header

R
epeat as
N

eeded

Figure 6: A walk-through of a search on the Time-Struct. Step
3 is only executed in the event of an index collision in Step 2.
The number of collisions is small, so it is a appropriate to resolve
them with a hash table. Additionally, the Binary Search Tree in
Step 7 will be small as well.

is indexed in the data structures above. A dataset storing
12B per minute never had more than two entries in a tree.

Figure 6 provides an example of the steps that DALi takes
to execute searches in the Time-Struct. We evaluate both
Time-Struct and the Mod-Struct further in Section 6.3.

3.3.3 Flash Memory Intricacies
Our assumptions focus on NOR flash memory and may

not translate as well to NAND Flash modules. Since NAND
memories will soon be used in sensor nodes, we briefly ad-
dress ways to deal with them. With NAND Flash, a node
cannot arbitrarily append data onto the end of a page with-
out erasing that page first. To handle this, NAND Flash file
systems often buffer one page worth of data (usually 512B)
in RAM before writing to Flash. However, since one virtual
file in DALi requires working with multiple physical files,
this RAM buffering requirement would be prohibitive. We
would handle this problem by writing the Module and Block
headers and all of the metadata to a buffer in Flash and ap-
pending them to the appropriate physical files in page-sized
groups. Additionally, erasures must be executed in multiple
page chunks; however, Flash file systems typically fix this
by allocating pages to files in groups large enough to erase.

3.4 The Underlying File System
One advantage of DALi, as shown in Figure 7, is that

it resides above the file system. As the storage medium
and low-level flash management details change, DALi can
continue to take advantage of them.

Additionally, we note that DALi is more dependent on the
speed of reads rather than the speed of writes to the virtual
file. Reads will typically occur during data transmissions,
when speed is at a premium for bandwidth and energy rea-
sons, and due to the brevity of connections in these types
of networks. However, virtual file writes can be buffered to
Flash and performed off-line.

Each time the application writes sensor data to the virtual
file, DALi has to write to multiple physical files. Likewise,
the file system underneath DALi may have to perform mul-
tiple writes to non-volatile memory for each file write due
to the nature of the storage medium. However, their perfor-
mance and energy costs are more than outweighed by search
and communications savings.

103

Application

DALi

File
System

Physical Memory
Management:

Wear Leveling

Efficient Use of
Flash

Data Integrity:

Data Recovery
on Crash/Reboot

Error Detection
and Recovery

File Management:

Manage Multiple
Open Files

Fast, Non-
Sequential Reads

Data Organization/
Data Naming

Data Search/
Data Summarization/
Metadata Collection

Data Compression/
Data Reduction

Application 1 Application 2 Application N

Write Data to
Physical Files

Read Data from
Physical Files

…

Sensor Data,
Data Requests

Responses to
Requests

Figure 7: A summary of the services provided by the DALi layer
and the services that DALi requires from the file system.

Collected Data {

int temp;

int humidity;

long int time_stamp;

}

64 Entries Per Block

1024 Entries Per Module

Block/Module Metadata {

int min_temp;

int max_temp;

long int temp_sum;

int min_humidity;

int max_humidity;

long int humidity_sum;

int num_entries;

}

18B Per Block and Per Module

Figure 8: Example of the customizable metadata for a sensor
collecting temperature and humidity readings. Metadata also in-
cludes start and end times for the data (not pictured).

4. DATA SEARCH: THE PERSISTENCE
OF MEMORY

An effective Data Search mechanism for a sensor should
be able to locate both specific data segments and sensed
events stored on the node (generated by both itself and other
nodes) and summarize them when necessary. As a result,
DALi requires two drastically different types of searches:
module name searches and data searches.

For both types of searches, our primary concern is that
they execute quickly. This improves the node’s response
time to inquiries from other nodes, which in turn maximizes
the effectiveness of brief encounters and minimizes idle radio
energy consumption in longer ones.

Section 3.3 already discussed our methods for search-by-
name. Here we discuss search-by-data-value. For example,
search-by-data-value might be used to find all the stored
temperature readings that are between 50 and 60 degrees.
Such searches are important both internally to the node
(e.g., since it may need to locate data for analysis or dele-
tion) and externally to the network (e.g., for an application
interested in only a subset of collected events).

DALi expedites data searches by storing customizable
data summaries at both levels of the two-tiered data hi-
erarchy, which creates a natural drill-down structure for
the data. This metadata is generated during idle periods
as Blocks and Modules are filled so that it is available on
demand during communication periods.

Figure 8 shows a sample metadata structure for a sensor
node collecting temperature and humidity readings. Given
this structure, if we are looking for temperatures between
50 and 60 degrees, we need not drill down into any Modules
that show a minimum above 60 or a maximum below 50 de-

Finished
No

Find First Module
in Time Range

Open Module,
Check Module

Metadata

Potential Hit?

Open Block,
Check Block

Metadata

Yes

No

Yes

Potential Hit?

More Modules?

Yes

Search Entries
in Block

More Blocks
in Module?

NoYes

Hit? Successful Hit

No

Yes

No

Open Block Data

Done
Searching?

Yes

No

Figure 9: Flow chart of Data Sifting algorithm.

grees. One can also use these summaries to estimate an aver-
age, or to detect outliers and interesting events. This meta-
data is customizable; the application developer just writes
appropriate search algorithms to exploit it.

To accommodate time-based searches, we add start and
end times to the Block metadata and end times to the Mod-
ule metadata (the start time is already part of the file name).
This preprocessing reduces the search size and in Section 6
we will show that it speeds up searches dramatically.

Data searches on sensor networks can typically be divided
into two subsets, Data Sifting and Data Summarizing, which
require slightly different search algorithms.
Data Sifting: Data Sifting, as depicted in Figure 9, in-
volves locating specific entries or events. For spatial searches
(e.g., find all datapoints within a bounding box of interest),
one can use maximum and minimum metadata values to
form bounding boxes, which the node can use to narrow the
possible locations of a data hit. If the data point is in the
module’s bounding box, the abstraction layer drills down to
the Block layer and looks at the metadata in each Block. If
the point is in a Block’s bounding box, then it searches the
positional data itself. Hits are stored in a buffer provided
by the application, and the search continues until it reaches
a specified end-point (e.g., a maximum number of hits, the
end of a time interval, etc.). This process works equally well
when attempting to find ranges of non-spatial values too.
Data Summarizing: The other subset of searches, de-
picted in Figure 10, involve summarizing data. Here, rather
than narrowing the volume of data to scan, the drill-down
structure uses the metadata as a pregenerated data sum-
mary. It starts by comparing the start and end times of the
first module in the time region specified. If the whole Mod-
ule is within the time region, the abstraction layer just reads
the Module metadata and moves onto the next Module. If
not, however, it needs to drill down to the Block metadata
and perform the same process at the Block level. If a Block
is not entirely in the specified time region, the abstraction
layer then drills down into the Block’s actual sensor data.

Our summarizing algorithm ensures that the worst case
summary involves scanning two Blocks of actual sensor data
and 30 Block metadata structures (assuming that the time
starts in the middle of the first Block of data in a Module
and ends on the last Block of data in a separate Module) in
addition to the Module metadata accesses. We will evaluate

104

Finished
Yes

Find First Module
in Time Range

Open Module,
Check Module

Metadata

All of Module
in Time Range?

Open Block,
Check Block

Metadata

No

No

All of Block
in Time Range?

More Modules in
Time Range?

Yes

Reached End
of Time Range?

No

Yes

Yes

Use summary from
Module Metadata

No

Use summary from
Block Metadata

Summarize
Appropriate Readings

from Sensor Data

More Blocks
in Module?

No

Yes

Figure 10: Flow chart of Data Summarizing algorithm.

both the Data Sifting and Data Summarizing algorithms in
Section 6.4.

5. ADDITIONAL DALI SERVICES
This section examines first how DALi can save energy

with its Data Naming mechanism by minimizing unneces-
sary transmissions, and then discusses how Data Reduction
algorithms are integrated into the abstraction layer in order
to make necessary transmissions more efficient.

5.1 Data Naming in Practice
Given the typical stream-oriented storage structure of sen-

sor networks, the resource constraints of a typical sensor
node, and the unreliable nature of communications in mo-
bile sensor networks, it is very difficult for the node to know
how much data has been successfully delivered to whom.
Protocols often use opportunistic or epidemic communica-
tion approaches, which may replicate the data to reduce
latency or just to improve the odds that the data success-
fully arrives at the sink. Once that data reaches the sink,
acknowledgements should be propagated back through the
network so that this data is not propagated further. Since
individual sensed data items are small, we wish to acknowl-
edge at a coarser quality. This is made possible by DALi’s
unique Module naming convention (see Section 3.2).

5.1.1 Case Study: Delete Lists
We can save energy by using the naming scheme just de-

scribed to create acknowledgement streams we call delete
lists. Delete lists are data structures that indicate that a
particular segment of data has reached its destination, and,
therefore, that the source and relay nodes can erase it. This
concept was originally introduced in the first ZebraNet pa-
per [14], and other works have theorized similar schemes
[17], but to our knowledge no work until now has offered a
practical or efficient implementation.

By significantly decreasing unnecessary transmissions, de-
lete lists offer the potential of monumental energy savings.
Such savings are magnified in unreliable networks, since the
approach prunes retries if data was already successfully de-
livered via another path.

The biggest potential problem with this setup is that over
time delete list entries could accumulate to the point that
they themselves become difficult to transmit. However, as

Node: 8
Start Time: 100000
End Time: 140320
File Counter: 5

Node: 8
Start Time: 140321
End Time: 180640
File Counter: 5

Node: 8
Start Time: 100000
End Time: 180640

File Counter: 5

100000 180640
TimeTime

Figure 11: The “Melting Clocks”: Coalescing delete list entries.

Node: 8
Start Time: 100000
End Time: 140320
File Counter: 5

Node: 8
Start Time: 120160
End Time: 160480
File Counter: 5

Node: 6
Start Time: 126430
End Time: 152860
File Counter: 7

Node: 8
Start Time: 100000
End Time: 160480
File Counter: 5

AA BB CC DD

Node
1

Node
2

AA BB

CC

Node
1

Node
2

DD BB

DD BB

Nodes Exchange Entries Nodes Merge A and C into D

Delete List Entries

Figure 12: Nodes 1 and 2 exchange delete list entries related to
nodes 6 and 8. The entries from node 8 (A and C) are from the
same application and overlap in time, so they can be coalesced
(to form entry D).

Figure 11 shows, DALi’s Module naming convention pro-
vides a natural way to coalesce these entries into larger
ranges as further data is successfully delivered.

Once all of the Blocks in a Module have been success-
fully delivered to the sink, the sink can generate a delete
list message that specifies a node ID, a start time, an end
time (determined from the enclosed data), and the file num-
ber. Both the sink and nodes in the network can coalesce
these entries simply by adjusting the time range. Figure 12
shows an example of this process; since the entries for node
8 are part of the same file and overlap in time, they can
be coalesced. This structure allows nodes to acknowledge
multiple Modules of data with just a 12B packet payload,
further improving the net energy savings, allowing nodes to
store delete list entries indefinitely, and enabling nodes to
flood entries through the network. This paper will evaluate
delete lists in Section 6.5.

5.1.2 Data Naming: Network Services
To simplify communications, the data abstraction layer

provides a service to the network layer that can negotiate a
communication with a peer and ensure the efficient, reliable
delivery of a Block. This process is shown in Figure 13. Such
an organization offers out of order packet retransmissions
even in severely memory constrained devices and makes it
easy to ensure that complete Blocks of data are transmitted
correctly over peer-to-peer links.

The naming mechanism of our data abstraction layer can
also support communication operations in which nodes ne-
gotiate with each other about which packets to send. For
example, the Module structure and naming conventions al-

105

Discovery
Phase

Node A Node B

Negotiation
Phase

Peer

Peer

Offer Module

Accept/Reject

Node Found

Reject

Send Packets with Block Data

Accept

…

Ack

Resend
Lost

Packets

Block
Transmit
Phase

Send more Blocks in Module, negotiate
a new Module, or disconnect

Figure 13: Sample network service for DALi that allows for
out-of-order packet retransmissions.

low nodes to “offer” data to a neighbor, who can then turn
it down if unneeded. This process is similar to the one pro-
posed in SPIN [12, 15] in which a node advertises that it has
data and other nodes in the area send requests when they
would like to receive it.

5.2 Data Reduction
A sensor storage layer should support a range of data re-

duction functions. These include in-network computation,
data aggregation, and compression. All of these aim to
reduce energy consumption by computing locally in order
to communicate less. We focus here on compression as an
archetype for this style of data reduction.

The abstraction layer should make it easy to integrate
compression into the system and, in most cases, the details
of compression should be as well-hidden from the application
as possible, since this simplifies application development.
DALi also allows better control over when compression is
performed. We prefer to compress data opportunistically
during idle periods rather than doing it during a communica-
tion session which is likely to be busy and time-constrained.

Our implementation integrates the S-LZW with Mini-
Cache compression algorithm. This is thoroughly evaluated
in prior work [25], so we do not discuss it in detail here.
However, there is one point that should be mentioned; al-
though the node still compresses data in chunks of two
Flash pages, in this paper we move to a newer, more energy
efficient Flash module that organizes data in 256B pages
(the module in the prior work used 264B pages). Our deci-
sion to use 512B Blocks in DALi is based on this new flash
module and our results from the prior work3.

5.2.1 System Integration
DALi expands upon the prior work in two key ways. First,

since Flash writes are inexpensive and Flash memory is plen-
tiful, we choose to keep both uncompressed and compressed
versions of the data in Flash as opposed to discarding the
uncompressed data once its compressed. Second, we option-
ally can decompress the data on intermediate relay nodes.

We keep the data in both its compressed form, so that its
ready for transmission when connections become available,
and its uncompressed form, so that the node can quickly an-

3Since the file system abstracts DALi from the Flash, the data size is
more important than the number of pages. We use 512B Blocks rather
than 528B Blocks in this work as more of a matter of convenience and
consistency than as a requisite for functionality.

swer queries. Once a Block is filled, its data is compressed
and stored in a new Block which is tied to a Module that is
independent of, but linked to, the Module with the uncom-
pressed data. Both sets of data are stored in the physical
file for sensor data. When compressed data is received, the
node can rebuild the uncompressed stream and initiate a
similar process.

An alternative possibility is to only keep data in its com-
pressed form and uncompress it on demand. Our implemen-
tation did not employ this option because it would increase
the worst case search times at a rate proportional to the
number of Blocks that need to be decompressed. If the ap-
plication rarely accesses the uncompressed data, however,
this would be a reasonable solution.
Support for Data Reduction Beyond Compression:
DALi’s API can support other forms of simple on-node data
reduction. The developer just needs to swap their func-
tion with the compression function. For these single-node
reductions, the application developer can provide a data
reduction “handler” function to be used instead of compres-
sion. For multi-node aggregations, which are more complex
and less common, we expect the code to be a part of the
application layer instead.

6. EVALUATION
This section evaluates the approaches discussed thus far,

with a particular focus on DALi’s Data Search algorithms.
We first discuss our evaluation methodology. Then we exam-
ine the resource requirements of this implementation, eval-
uate our structures for search-by-name, and evaluate our
Data Sifting and Data Summarizing algorithms using both
traditional sensor data and spatial data from real world
datasets. Finally, this section concludes by evaluating the
potential energy benefits of delete lists.

6.1 Methodology

6.1.1 Platform
All experiments are conducted as real-system experi-

ments on the ZebraNet v5.1 test board, which features a TI
MSP430F1611 (10kB RAM, 48kB ROM) running at 4MHz
[29] and an 8Mb ST Flash module [27]. This Flash module
is smaller than the memories we would expect to use with
DALi, but since DALi is not tied to any specific storage
medium and we have the hardware available, it is a good
starting point.

On this board the Flash communicates with the microcon-
troller at 1Mbps, but is capable of reads of up to 33Mbps.
A faster microcontroller could decrease search times, but we
use this one because it is among the more capable micro-
controllers available for sensor nodes and we have it readily
available on our hardware platform to run real evaluations.

The Flash module is broken into independent pages of
256B, and it takes 196µs to read a byte and 4.3ms to read a
page (∼16µs per byte with a 180µs overhead). These delays
are directly reflected in our search times. As with most
Flash modules, reads can be performed on data of any size.

To compare against communication times, we consider the
XTend radio on the ZebraNet board. With this radio, we
measured a baud rate of 7,394kbps (9,600kbps advertised),
which translates to sending one 64B packet every 69.24ms.

To measure the execution times, we connect an oscillo-
scope to an unused pin on the microcontroller. We drive the

106

pin immediately before calling the appropriate algorithm,
and release the pin immediately upon returning from the
algorithm. This setup is accurate to within 10µs, which is
appropriate given our 4MHz processor.

6.1.2 File System
Testing DALi requires an underlying file system. Since

most of the available file systems are either based in TinyOS
or designed for more capable processors, we built our own
simple, stand-alone file system with ideas drawn from
TinyOS-based file systems. Each file has an inode which
contains pointers to index pages. Each index page contains
a number of pointers, each of which leads to a page in
Flash. This two layer structure allows us to locate any data
in Flash in 2 independent reads of 2B each.

Sequential pages of data are linked together just like in
ELF [6] so sequential data reads are easy to execute. Since
pages are not allocated in order, if a file read crosses a page
boundary, it incurs the 180µs Flash read overhead again;
however, we guarantee that the 2B file indices never cross
page boundaries.

6.1.3 Datasets
Our experiments use two real world datasets tested both

individually and as two applications running simultaneously
on the same node, each with their own virtual file of data.
One dataset represents spatial data, or GPS positions, and
the other represents traditional sensor data from simple low-
energy sensors commonly found on sensor nodes.

For spatial data, we used a GPS trace of the Appalachian
Trail [2]. When testing this dataset independently, we used
the first 40,000 points as per-minute position readings. Each
reading required 12B, 4B each for the latitude, longitude,
and time stamp.

For traditional data, we used 18,000 entries from node 101
in the Great Duck Island (GDI) dataset [28]. For each entry,
we stored all 11 sensor readings and replaced its time stamp
with our own (accounting for one entry every five minutes as
in their deployment) for a total of size 22B. We have filtered
out duplicate entries and entries with errant sequence num-
bers. For our independent tests, we collect metadata based
on the pressure and temperature data, and briefly evaluate
the impact of collecting additional metadata.

6.2 System Resource Evaluation
Table 1 shows how our two datasets utilize the Flash

when loaded into memory independently. Almost 90% of
the memory is used to store the data in its compressed and
uncompressed forms. The compressed data adds to the size
of the Module headers, the Block headers, and the Module
Naming Structure (Mod-Struct), but not to the metadata
structures, since those are shared with the uncompressed
data, nor to the Time Ordered Structure (Time-Struct),
which only indexes the uncompressed data for search (see
Section 6.3).

Each virtual file uses 5 physical files, plus the Mod-Struct
and the Time-Struct are in their own files. Implementing
DALi in this manner offers natural divisions at the software
level. DALi could be set up to put all of these parts into
one physical file, however, if limited by the underlying file
system.

The primary RAM consumers in DALi are open Modules
and open Blocks, which require 128B and 30B respectively.

Appalachian Great Duck
Trail [2] Island [28]

Size(B) Factor Size(B) Factor

Sensor Data 480,000 53.2% 396,000 51.8%
Compr. Data 324,031 35.9% 287,444 37.6%
Mod. Headers 13,440 1.5% 10,976 1.4%
Block Headers 41,932 4.6% 34,452 4.5%
Mod. Metadata 2,040 0.2% 1,666 0.2%
Block Metadata 36,214 4.0% 29,754 3.9%
Mod-Struct 2,504 0.3% 2,086 0.3%
Time-Struct 1,968 0.2% 1,896 0.2%

Totals
Data 804,031 89.1% 683,444 89.4%
Overhead 98,098 10.9% 80830 10.6%

Table 1: Flash usage for our two experimental datasets.

0

0.002

0.004

0.006

0.008

0.01

0.012

0 10 20 30 40 50 60 70 80 90 100 110 120

Module Number

A
cc

es
s

T
im

e
(s

)

Figure 14: Time to find each of the Module headers in the Mod-
Struct, shown with a logarithmic trendline. Module numbers 1
and 2 represent the compressed and uncompressed versions of the
first Module of data.

However, our tests required no more than four open Mod-
ules and four open Blocks, and these numbers can likely be
reduced further with occasional Flash buffering and refined
coding in the Data Search algorithms.

The Mod-Struct and the Time-Struct are kept entirely
in Flash, so they only require a file pointer in RAM. The
S-LZW compression algorithm used in our implementation
requires large buffers of 2kB and 512B, so when DALi needs
buffer space (e.g., to scan a Block of data in RAM) it bor-
rows those buffers from the compression algorithm [25].

6.3 Evaluating the Module Naming and Time
Ordered Structures

To evaluate the Module Naming Structure (Section 3.3),
we loaded the Appalachian dataset into a node’s Flash. This
dataset created 120 Modules, half for compressed data and
half for uncompressed data. Then, we measured the time to
find each of them in the Mod-Struct. The results are shown
in Figure 14.

As can be expected with a binary search tree, access times
increase logarithmically, but these times show that the tree
is naturally balanced with this dataset. However, the access
times vary fairly dramatically between the fastest access,
which is less than 4ms, and the slowest access, which is
around 11ms. This averages to 7.6ms, or just a little more
than 10% of the time required to transmit a packet, across
all 120 Modules.

107

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 10 20 30 40 50 60

Module Number

A
cc

es
s

T
im

e
(s

)

Figure 15: Time to find each of the Module headers in the
Time-Struct. Only Module headers for uncompressed data are
stored in this structure, and Module number 1 is the first Module
of data.

Figure 15 shows the access times for the Time Ordered
Structure (Time-Struct). Because this structure was in-
tended to be used with the Data Search algorithms, we only
add the Module headers for uncompressed data to the struc-
ture. The access times are faster on average and more consis-
tent than those of the Mod-Struct, despite the fact that the
Time-Struct has to access more underlying data structures
to find the result. This is because the structure bounds the
number of Flash accesses, unlike in the Mod-Struct with
its constantly expanding tree. Two constant access times
are apparent because the binary search tree at the end of
the structure held up to two entries when loaded with this
dataset. (The slight variations off of these times are caused
by occasional reads across Flash page boundaries, which in-
cur additional Flash read overhead).

The Time-Struct uses one more hash table and sparse
array than the Mod-Struct, so its size grows faster. Even
though the Time-Struct only held half the number of the
entries as the Mod-Struct, it was 79% and 91% of the size for
the Appalachian and GDI datasets respectively. However,
its total size was still less than 0.3% of the amount of space
required for the data itself for both datasets, so we do not
consider it a problem.

For the search evaluations below, we use the Mod-Struct
unless otherwise noted because it does not change our qual-
itative results for the datasets that we are using; however,
given the results presented in the subsection, considerably
larger datasets with many hundreds to thousands of Modules
would benefit from a structure similar to the Time-Struct.

6.4 Data Search Evaluation
Next, we will evaluate the Data Sifting and Data Sum-

marizing capabilities of DALi. Table 2 shows a few baseline
measurements. Find, open, and read a Block of data rep-
resents the baseline search time. If the data we seek is in
the first Module and Block, this is the time required to find
the Module in Flash, open it, check its metadata, open the
underlying Block, check its metadata, and read the sensor
data into RAM. Once the data is in RAM, the node can
scan it quickly.

If the data we seek is in a different Block in the open
Module, there is a 2ms penalty to open the next Block and
read its metadata. If the data is in a different Module (not
just a different Block), there is at least an 8.6ms penalty to

Event Execution Time

Find, open, and read a Block
of data from scratch

19.25ms

Scan Block data in RAM 250µs
Open a Block and read a
12-18B metadata structure

∼2ms

Open the next Module 8.6ms+

Table 2: Baseline access times with our datasets loaded into
DALi.

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

Module Number

S
ea

rc
h

 T
im

e
(s

)

Linear Search DALi Search

Figure 16: Comparison of a linear data search in Flash and a
search using DALi. These searches look for the first data point
in a Module, and Module number 1 is the first Module of data.

open the next Module. This varies based on the Mod-Struct
access time, however.

6.4.1 Data Sifting
To evaluate the Data Sifting mechanism, we use the Ap-

palachian dataset and search for specific positions. The
search algorithm can locate any position in a bounding box,
but searching for a specific position gives us more control
for testing purposes. The bounding boxes in the metadata
help the node identify which Modules and Blocks may have
the data. These algorithms also work for sifting other non-
spatial data, since the metadata can hold any general max-
ima or minima.

DALi vs. linear search: Figure 16 compares the search
times for finding the first entry in a Module with DALi ver-
sus searching for the equivalent position through a linear
search of the Flash. For the linear search, we scan through
all of the data as if it were stored in a large single-application
circular buffer. While linear search requires 1.5s to scan just
the first sixth of the data, DALi searches the same data in
around 0.1s, already an order of magnitude improvement.

Searching over a time window: Although this algo-
rithm is a significant improvement over linear search, scan-
ning all 480,000B of data with this method still requires
740ms. To avoid such delays, we can use the Time-Struct to
find the first Module in a given time period and begin our
scan from that point. Figure 17 compares this method for
finding the last data point in our dataset versus our original
algorithm as we narrow the time range. The original algo-
rithm has no fast way to find the starting point so it has
to navigate over all of the Module headers. It does benefit
a little from the narrower search ranges, though, since it is
able to use the start times in the current and next Module
names to eliminate Modules from the search without having
to read the metadata from Flash.

108

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 67 133 200 267 333 400 467 533 600 667

Search Time Interval (Hours)

S
ea

rc
h

 T
im

e
(s

)

Mod-Struct Time-Struct

Figure 17: Comparison of a time restricted search in DALi with
and without the Time-Struct on the Appalachian dataset, which
assumes one reading per minute. Each search requests the last
value in the time window.

With the Time-Struct, however, the node can locate the
correct starting point, which saves a great deal of time. For
the last point in the graph, the relevant time range covers
all of the data so the search times converge.

Searching the most recent data first: After the Time-
Struct finds the appropriate starting point, DALi locates
and scans through subsequent Module headers using the
Mod-Struct (which requires 7.6ms per Module on average
with this dataset). However, in many situations the user
will be more interested in recent data than older data. Fur-
thermore, in our implementation, the Module headers do
not move once they are written to Flash. Therefore, as new
Modules are created, DALi can place a pointer from the
new header directly to the header for the previous Module.
This allows the node to scan the newest Module first and
walk backwards through preceding Modules without using
the Mod-Struct. Although this simple improvement may
not be appropriate when searching other node’s data since
Modules may be missing or arrive out of order, a node can
ensure that it works when searching its own data; the Mod-
ule headers are such a low percentage of the overall overhead
(about 1.5%) that even if the underlying data is deleted, the
headers can persist (missing data would just be skipped).

Figure 18 compares the two search structures based on
the size of the time interval searched. The original algo-
rithm starts at the oldest data and narrows the search until
we hit the newest data. The reverse search algorithm does
just the opposite. Although the searches are moving in op-
posite directions, this is a relevant comparison because the
volume of data to be searched is the same. With this newer
structure, search times grow at a far slower rate as the time
interval increases, and even when the node has to search
through all of the memory, it takes only about the same
amount of time as is required to send four packets over the
XTend radio.

6.4.2 Data Summarizing
With traditional queries, the node uses metadata both

to provide bounding boxes for the data, like with spatial
data, and to summarize data in advance to speed up sum-
mary queries. For the GDI dataset, the node extracted the
maximum, minimum, sum, and average for the pressure and
temperature readings from the pressure sensor.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 67 133 200 267 333 400 467 533 600 667

Relative Time Interval (Hours)

S
ea

rc
h

 T
im

e
(s

)

Forward Search Reverse Search

Figure 18: Comparison of two time restricted searches on the
Appalachian dataset, which assumes one reading per minute. The
reverse search starts at the end of the time window and moves
backwards using direct pointers to Module headers, while the
forward search starts at the beginning of the time window and
moves forward by finding the address of the next Module in the
Mod-Struct.

Summarizing with DALi: Figure 19 shows the time
required to summarize all of the temperature readings across
a varying number of Blocks. It is described by:

tsum ≈ tsearch+(NModM +NBlkM)×tmeta+NB×tscan (1)

where tsearch is the time required to find the first Module
in the time range to summarize, NModM and NBlkM are
the number of Module and Block metadata structures that
must be read, tmeta is the time required to open the Modules
and Blocks and read their metadata from Flash, NB is the
number of Blocks of data that need to be read and scanned,
and tscan is the time to read and scan them (although this
particular experiment summarizes on Block boundaries so
NB is 0). The time required to finally compute the summary
is far less than the Flash access time, so it is not included.

Figure 19 displays both the strengths and the weaknesses
of our drill-down structure. To summarize the data in one
Block, DALi needs to access the Module metadata to check
the start and end times of the Module, open the first Block
(i.e. read its header), and read its metadata. To summarize
two Blocks, the node needs to open both Blocks and check
each of their metadata. This trend continues through 15
Blocks. However, at 16 Blocks, there is a sudden drop in
access time. This is because all of the data is already sum-
marized in the Module metadata; there is no reason to drill
down further. Therefore, the node actually summarizes the
data faster than it did for just one Block. For 17 Blocks of
data, the node accesses the metadata for the first Module
and then moves to the second Module and its first Block.

Pregenerating additional metadata: Thus far, we
have searched on granularities convenient to DALi, in which
data is structured for communications rather than for hu-
man interests. Here we consider summarizing on one-day
granularities, which are of interest to users and which do
not map precisely to DALi Modules. The step-wise line in
Figure 20 shows the amount of time required to summarize
the GDI data in day granularities starting from the first
reading. It takes a staircase form because of the Mod-
ule/Block format. One day requires the node to read and
merge the summaries for 12 full Blocks and half of a 13th
block. Two days of data requires it to summarize 1 full
Module and 10 additional Blocks, which takes about the

109

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Blocks Averaged

E
xe

cu
ti

o
n

 T
im

e
(s

)

Figure 19: Time to summarize the data in a given number of
Blocks.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 6 11 16 21 26

Days worth of Data Summarized

E
xe

cu
ti

o
n

 T
im

e
(s

)

Standard Summary Day Metadata Structures

Figure 20: Time to summarize the data on day-long granulari-
ties with the basic search and with tailored metadata.

same amount of time. Between the fourth and fifth points,
though, there is a jump because four days requires the node
to summarize just 3 Modules and 3 Blocks, while five days
requires it to summarize 3 Modules and 15 Blocks.

DALi’s structure is flexible and makes few assumptions as
to what data will be present; however, if a node knows that
it has all of a node’s data over a particular time period (as
it does for its own data), it can create a new physical file
and generate and store metadata on that data at a granu-
larity meaningful to the end user. When the node receives a
query for a data summary on this granularity, the node can
simply read the answers from the file. For this purpose, we
generated a file of metadata on day granularities and reran
the test. This results in much faster execution, as shown in
the lower line in Figure 20.
How does Metadata Size Impact Search Times? For
the GDI data, we only collected metadata for a subset of the
readings. However, a different application may want addi-
tional metadata. To evaluate the impact of larger metadata
structures, we added maxima and minima for the other nine
sensor readings recorded in the GDI deployment, increas-
ing the metadata from 18B to 52B. This increases search
times only slightly (less than 0.5ms per metadata structure
scanned) because it takes longer to read it from Flash, so we
do not consider it to be an issue with this implementation.
However, in a different implementation in which the meta-
data needs to be transmitted to allow other nodes to search
the data, there would be an energy penalty associated with
larger metadata structures.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Position Number

S
ea

rc
h

 T
im

e
(s

)

Total Position Temperature

Figure 21: Time to find the last known temperature at a given
location.

6.4.3 Spatially-Aware Queries
A more complicated, but practical subspace of the search

domain is spatially-aware queries. A sensor node would
likely control the GPS and the general sensors through sep-
arate applications. Under DALi, each application has its
own virtual file. For our experiments, we loaded the first
10,000 readings for both the Appalachian and GDI datasets
onto the node (using one application for each dataset), and
the Appalachian dataset was adjusted to assume that one
reading was recorded every five minutes like in the GDI de-
ployment. Although the GDI deployment was not mobile,
the temperature readings work well for these experiments.

Searching for temperature based on position: The
first experiment asks a node for the most recent temperature
and time stamp in a given geographic region. It performs
a location-based search and then retrieves the temperature
based on a time stamp. We performed the search for 11
points spaced out through the 10,000 loaded into memory.
The results are shown in Figure 21 and are broken down by
application. In the first step, the node retrieves the time
stamp for the appropriate GPS position. The sawtooth
shape in the access times for the GPS positions is caused
by the Block metadata organization as shown in Figure 19.
The second step returns the temperature based on the time
stamp, which only requires finding and reading the correct
Block, so the search time is almost constant. In all cases,
finding the temperature took less time than the 138.5ms re-
quired to send two packets over the radio.

Searching for positions with a given temperature:
The second experiment requests all of the locations and
times when the temperature was in a given range. This
search is more complex than the previous one, because there
are multiple answers. Figure 22 shows the times required to
find each of the first 42 answers (which fills one Block of
data) for a sample temperature range.

Most of the time delays are negligible, and this is because
hits often come in closely grouped batches and the Block
data has already been read into RAM for those points. The
first peak is the overhead of finding the first hit, and sub-
sequent peaks represent the time required to move between
batches of hits. This time is correlated to the amount of
Block and Module metadata that the node must skim to
find the next hit. The positional times are typically shorter
because more positional data fits into a Block than GDI
data, so there are fewer Block accesses.

110

0

0.01

0.02

0.03

0.04

0.05

0.06

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Search Hit Number

S
ea

rc
h

 T
im

e
(s

)

Total Temperature Position

Figure 22: Time to find each subsequent hit when searching for
all positions and times in which the temperature was in a given
range.

Through this search, a node could opt to send the hits as
is or to coalesce individual groups of entries into one entry
with a start time, an end time, and a bounding box; the
later of these options saves space if more than two entries
can be merged and if the end user is content with receiving
a bounding box rather than more specific positional data.
Benefit of using separate applications to collect spa-
tial and traditional data instead of just one: In these
experiments, DALi knew the number of readings per Block
and the frequency of readings. In time-based searches, once
the system found the first Module in the search through the
Time-Struct, this information allowed it to correctly calcu-
late which Block to search first. However, if this data struc-
ture were not present, these values would vary from Block to
Block (as would likely be the case if data from multiple ap-
plications was stored in a single virtual file). This increases
search times because DALi needs to sequentially read the
metadata for each Block in the Module until it finds the
correct starting point. Additionally, it must determine the
size of each reading individually before processing it, but
this operation is RAM based so the resulting delay is much
less significant.

6.5 Delete Lists Evaluation
This subsection presents a brief evaluation of the delete

lists presented in Section 5.1, which can reduce energy con-
sumption by multiple orders of magnitude. Assuming that
we send exactly one 12B delete list entry per packet, Fig-
ure 23 shows the potential energy savings from the XTend
radio as the number of 512B Blocks covered by the entry in-
creases from 1 to 16 and as the successful packet reception
rate drops from 100% to 25%.

This graph is based on the power model of the XTend
radio presented in prior work [25], which is derived from
transmit and receive energy numbers measured on our sen-
sor platform. Even accounting for radio’s high activation
overhead, we save close to 10X energy by sending a delete
list packet over a single Block of data and a maximum of
a factor of 170X versus sending a full Module in an unreli-
able network using the network services described in Section
5.1.2. The potential savings increase as we represent more
and more Modules in a single coalesced delete list entry.

These results only vary based on the volume of data col-
lected. Looking at the Appalachian dataset, for example, we
can qualitatively compare delete lists in DALi with a the-

25
50

75
100

4
8

12
16

0

30

60

90

120

Percentage of Packets
Received Successfully

Number of
Blocks Removed

E
ne

rg
y

S
av

ed
 (

J)

Figure 23: Energy saved by sending a delete list packet rather
than sending the sensor data over the XTend Radio.

oretical example of what they would look like if data were
arbitrarily stored in Flash. Given 12B readings which each
include a 4B time stamp, DALi can store 42 per Block and
672 per Module. Without DALi, each reading would have to
be acknowledged individually, probably by the time stamp,
so we assume 4B per delete list entry. Therefore, to offer
a delete list that represents 672 readings, it would require
2688B before considering packet overheads. This places a
tremendous strain on unreliable networks. DALi, on the
other hand, requires just 12B to represent the same volume
of information.

Without DALi, once a node starts receiving information
from other nodes it cannot easily identify consecutive delete
list entries; therefore, it cannot coalesce these entries and
the corresponding readings must be found and marked for
deletion individually in Flash. DALi, however, can use its
search functionalities to locate the data and mark it for dele-
tion in Block sized chunks which is far simpler and faster.

7. CONCLUSION
This paper explores DALi, a communication-centric Data

Abstraction Layer that reorganizes data from the viewpoint
of sparse mobile and frequently disconnected sensor nodes in
order to provide the system with services for three important
system services: Data Search, Naming, and Reduction.

DALi’s natural drill-down mechanism can quickly and ef-
ficiently locate specific data, summarize chunks of data, and
perform more complicated but practical searches over data
collected by multiple applications. Simple data structures
and algorithmic improvements dramatically decrease search
times, which conserves bandwidth during communications
periods. This helps to maximize the effectiveness of brief
encounters and minimize radio on-time during longer ones.

Through our Data Naming scheme, nodes can easily iden-
tify data in memory and use manageable delete lists entries
to remove data from the network that has already been de-
livered to the sink. These mechanisms prevent unnecessary
communications and, in the process, conserve bandwidth
and reduce energy consumption, potentially by multiple or-
ders of magnitude.

DALi’s overall structure is designed to make communi-
cations simpler and more efficient. This structure allows
the node to generate the naming and metadata structures
on which all of our services are based. With sensor net-
works increasingly moving towards sparse, mobile networks
of opportunistically-communicating nodes, DALi offers the

111

needed infrastructure to support efficient data queries and
storage for these important but challenging systems.

Acknowledgements

We thank Kevin Wayne and James Donald for their ad-
vice on implementing data structures on Flash memories;
Pei Zhang for helping to set up the sensor hardware and
measurements; and our shepherd for this paper, William
Griswold (UCSD). This work was supported in part by NSF
ITR program (CCR 0205214).

8. REFERENCES
[1] Aleph One. Yet Another Flash File System.

http://www.aleph1.co.uk/yaffs.

[2] Appalachian Trail Conservancy. Appalachian Trail GIS and
GPS Data. http://www.appalachiantrail.org/, Mar. 2002.

[3] ATMEL. AT45DB041B, 4M bit, 2.7-Volt Only Serial-Interface
Flash with Two 264-Byte SRAM Buffers data sheet.
http://www.atmel.com/, June 2003.

[4] D. Carlson. Sensor Networks in Polar Regions: Urgent Needs,
Difficult Challenges. Keynote Presentation, ACM Conf. on
Embedded Networked Sensor Systems (SenSys), Nov. 2006.

[5] B. Cohen. Incentives Build Robustness in BitTorrent.
http://www.bittorrent.org/bittorrentecon.pdf, May 2003.

[6] H. Dai, M. Neufeld, and R. Han. ELF: an efficient
log-structured flash file system for micro sensor nodes. In Proc.
of the ACM Conf. on Embedded Networked Sensor Systems
(SenSys), Nov. 2004.

[7] C. Decker, M. Beigl, and A. Krohn. A File System for System
Programming in Ubiquitous Computing. In Intl. Conf. on the
Architecture of Computing Systems, Mar. 2005.

[8] K. Fall. A Delay Tolerant Network Architecture for Challenged
Internets. In Proc. of the Special Interest Group on Data
Communications Conf. (SIGCOMM), 2003.

[9] D. Ganesan, B. Greenstein, D. Estrin, et al. Multi-resolution
Storage and Search in Sensor Networks. ACM Transactions on
Storage, 1(3):277–315, Aug. 2005.

[10] D. Gay. Design of Matchbox, the Simple Filing System for
Motes. http://www.tinyos.net, Aug. 2003.

[11] J. Gehrke and S. Madden. Query Processing in Sensor
Networks. Pervasive Computing, Jan. 2004.

[12] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive
Protocols for Information Dissemination in Wireless Sensor
Networks. Wireless Networks, 8:169–185, 2002.

[13] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
Diffusion: A Scalable and Robust Communication Paradigm
for Sensor Networks. In Intl. Conf. on Mobile Computing and
Networking (MOBICOM), Aug. 2000.

[14] P. Juang, H. Oki, Y. Wang, et al. Energy-Efficient Computing
for Wildlife Tracking: Design Tradeoffs and Early Experiences
with ZebraNet. In Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, Oct. 2002.

[15] J. Kulik, W. Heinzelman, and H. Balakrishnan.
Negotiation-Based Protocols for Disseminating Information in
Wireless Sensor Networks. Wireless Networks, 8:169–185,
2002.

[16] S. Lin, D. Zeinalipour-Yazti, V. Kalogeraki, et al. Efficient
Indexing Data Structures for Flash-Based Sensor Devices. In
ACM Transactions on Storage, 2006.

[17] A. Lindgren, A. Doria, and O. Schelen. Probabilistic Routing
in Intermittently Connected Networks. In Intl. Wksp. on
Service Assurance with Partial and Intermittent Resources,
Sept. 2004.

[18] T. Liu and M. Martonosi. Impala: A Middleware System for
Managing Autonomic, Parallel Sensor Systems. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), June 2003.

[19] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The
Design of an Acquisitional Query Processor for Sensor
Networks. In SIGMOD, 2003.

[20] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Capsule:
An Energy-Optimized Object Storage System for
Memory-Constrained Sensor Devices. In Proc. of the ACM
Conf. on Embedded Networked Sensor Systems (SenSys),
Nov. 2006.

[21] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy.
Ultra-Low Power Data Storage for Sensor Networks. In Proc.
of the ACM Conf. on Information Processing in Sensor
Networks (IPSN-SPOTS), Apr. 2006.

[22] Maxstream, Inc. XTend OEM RF Module: Product Manual
v1.2.4. http://www.maxstream.net/, Oct. 2005.

[23] S. Rajagopalan and C.-C. Shen. A Cross-Layer, Decentralized
BitTorrent for Mobile Ad hoc Networks. In Proc. of
MOBIQUITOUS’06, July 2006.

[24] S. Ratnasamy, B. Karp, S. Shenker, et al. Data-Centric
Storage in Sensornets with GHT, a Geographic Hash Table. In
Mobile Networks and Applications (MONET), Journal of
Special Issues on Mobility of Systems, Users, Data, and
Computing: Special Issue on Algorithmic Solutions for
Wireless, Mobile, Ad Hoc and Sensor Networks, 2003.

[25] C. M. Sadler and M. Martonosi. Data Compression Algorithms
for Energy-Constrained Devices in Delay Tolerant Networks. In
Proc. of the ACM Conf. on Embedded Networked Sensor
Systems (SenSys), Nov. 2006.

[26] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs:
Modeling a Three-tier Architecture for Sparse Sensor
Networks. In Proc. of IEEE Workshop on Sensor Network
Protocols and Applications, May 2003.

[27] ST. M45PE40: 8 Mbit, Low Voltage, Page-Erasable Serial
Flash Memory With Byte-Alterability and a 33 MHz SPI Bus
Interface. http://www.st.com/, Feb. 2006.

[28] R. Szewczyk, A. Mainwaring, J. Polastre, et al. An Analysis of
a Large Scale Habitat Monitoring Application. In Proc. of the
ACM Conf. on Embedded Networked Sensor Systems
(SenSys), Nov. 2004.

[29] Texas Instruments. MSP430x161x Mixed Signal
Microcontroller Datasheet. http://www.ti.com/, Mar. 2005.

[30] S. Tilak, B. Pisupati, K. Chiu, et al. A File System
Abstraction for Sense and Respond Systems. In Workshop on
End-to-End, Sense-and-Respond Systems, Applications, and
Services, 2005.

[31] Toshiba America Electronic Components, Inc. (TAEC).
Datasheet: TC58DVG02A1FT00.
http://www.toshiba.com/taec, Jan. 2003.

[32] A. Vahdat and D. Becker. Epidemic routing for partially
connected ad hoc networks. In Technical Report CS-200006,
Duke University, Apr. 2000.

[33] P. S. Vellore, P. Gillard, and R. Venkatesen. MBEAN:
multicasting in BitTorrent enabled ad hoc networks. In Proc.
of the 2005 Intl. Conf. on Wireless Networks,
Communications and Mobile Computing, 2005.

[34] Y. Wang, S. Jain, M. Martonosi, and K. Fall. Erasure-Based
Routing for Opportunistic Networks. In Proc. of the Special
Interest Group on Data Communications Conf.
(SIGCOMM), Aug. 2005.

[35] D. Woodhouse. Journalling Flash File System.
http://sources.redhat.com/jffs2/jffs2.pdf.

[36] C.-H. Wu, L.-P. Chang, and T.-W. Kuo. An Efficient B-Tree
Layer for Flash-Memory Storage Systems. In Intl. Conf. on
Real-Time and Embedded Computing Systems and
Applications, 2003.

[37] C.-H. Wu, L.-P. Chang, and T.-W. Kuo. An Efficient R-Tree
Implementation over Flash-Memory Storage Systems. In Intl.
Symp. on Advances in Geographic Information Systems, Nov.
2003.

[38] Y. Yao and J. Gehrke. The Cougar Approach to In-Network
Query Processing in Sensor Networks. SIGMOD Record, 31(3),
Sept. 2002.

[39] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi.
Hardware Design Experiences in ZebraNet. In Proc. of the
ACM Conf. on Embedded Networked Sensor Systems
(SenSys), Nov. 2004.

112

