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Abstract
We perform a Dalitz plot analysis of D+ → K−π+π+ decay with the CLEO-c data set of

572 pb−1 of e+e− collisions accumulated at the ψ(3770). This corresponds to 1.6 × 106 D+D−

pairs from which we select 140793 candidate events with a small background of 1.1%. We compare

our results with previous measurements using the isobar model. We modify the isobar model with

an improved description of some of the contributing resonances, and get better agreement with

our data. We also consider a quasi-model-independent approach and measure the magnitude and

phase of the contributing Kπ S wave in the range of invariant masses from the threshold to the

maximum in this decay. This gives an improved descriptions of our data over the isobar model.

Finally we allow for an isospin-two π+π+ S wave contribution, and find that adding this to both

the isobar model and the quasi-model-independent approach gives the best description of our data.
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I. INTRODUCTION

In comparison to other D+ decay modes, the D+ → K−π+π+ decay is unique in many
aspects. The large branching fraction, B(D+ → K−π+π+) = (9.51 ± 0.34)% [1], for this
Cabibbo favored mode makes it the usual choice for normalization of other D+-meson decay
rates. Understanding its peculiar intermediate substructure will be beneficial. The only
obvious contribution to this decay, observed in the Kπ-mass spectrum, is K∗(892)0π+,
which comprises merely 12% of the total rate [1]. A large contribution of over 60% from a
Kπ S wave intermediate state has been observed in earlier experiments, including MARK
III [2], NA14 [3], E691 [4], E687 [5], and E791 [6, 7], where the D+ → K−π+π+ decay has
been studied with the Dalitz plot technique [8]. Hence, the D+ → K−π+π+ decay is a good
laboratory to study Kπ S wave dynamics.

The previous analysis by E791 [6] achieved good agreement with their data by including
a low-mass K−π+ scalar resonance κ that significantly redistributed all fit fractions (FF)
observed by earlier experiments. This particular model, even though it is based on the
largest data set, greatly disagrees with previous analyses and has been excluded from the
average given by the Particle Data Group (PDG) [1].

There has been significant theoretical interest in this decay, sparked by the large, low-
mass Kπ S wave contribution. In Refs.[9, 10, 11] the authors reanalyze the E791 data with
their own models. E791 later reinterpreted their own data with a model-independent partial
wave analysis [7], and we apply this in our analysis with minor modifications.

The two identical pions in the final state should obey Bose symmetry. Assuming that the
three-body decay is dominated by two-body intermediate states, there would be two identical
K−π+ waves interfering with each other. This two-fold symmetry significantly reduces the
degrees of freedom in the regular Dalitz plot analysis and allows the application of a model-
independent partial wave analysis [7]. We would also expect a small contribution from
the isospin-two π+π+ S wave, which exhibits nontrivial dynamics as observed in scattering
experiments [12].

The data used in this analysis were accumulated with the CLEO-c detector [13]. Our
event sample is based on 572 pb−1 of e+e− collisions at

√
s ≈ 3774 MeV, produced by

the Cornell Electron Storage Ring (CESR). This sample corresponds to the production of
1.6 × 106 D+D− pairs in the process e+e− → ψ(3770) → D+D−. We select 140793 D+ →
K−π+π+ candidates for the Dalitz plot analysis (charge conjugation is implied throughout
this paper). Our sample is very clean with a background fraction of about 1.1% and is 9
times larger than the data set used by E791. The invariant mass resolution in this three-
track D-meson decay is very good; we estimate it is better than 5 MeV/c2 in most cases. It is
improved by a kinematic fit requiring a three-track common vertex with the D-meson mass
constraint. Our kinematic conditions are similar to those of MARK III, where D mesons
are produced with small momentum.

In Sec. II we briefly discuss CLEO-c experimental techniques, giving the event selection
for the Dalitz plot analysis, the general fit method and methods to parametrize the signal
efficiency and background distribution across the Dalitz plot. The formalism we use for the
amplitude parametrization in this analysis is described in Sec. III. In Sec. IV we compare our
results with the best previous measurements by E791 [6] and try to improve the isobar model
in order to get a better description of our data. Finally, we apply a quasi-model-independent
partial wave analysis, following Ref. [7] and measure the partial waves contributing to this
decay in Sec. V. Systematic studies and cross-checks are considered in Sec. VI. We discuss
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results and outstanding issues of this analysis in Sec. VII and summarize our results in
Sec. VIII. In the appendix we discuss the kinematic variables and angular distributions
used in this analysis.

II. DETECTOR AND EXPERIMENTAL TECHNIQUE

A. Detector

CLEO-c is a general purpose detector which includes a tracking system for measuring
momenta and specific ionization of charged particles, a ring imaging Cherenkov detector to
aid particle identification, and a CsI calorimeter for detection of electromagnetic showers.
These components are immersed in a magnetic field of 1 T, provided by a superconducting
solenoid, and surrounded by a muon detector. The CLEO-c detector is described in detail
elsewhere [13].

B. Event Reconstruction

We reconstruct the D+ → K−π+π+ decay using three tracks measured in the tracking
system. Charged tracks satisfy standard goodness of fit quality requirements [14]. Pion and
kaon candidates are required to have specific ionization dE/dx in the main drift chamber
within 4 standard deviations of the expected value at the measured momentum.

In order to select D+ → K−π+π+ decays, we use two kinematic variables,

∆E = ED − Ebeam, (1)

mBC =
√

E2
beam − P2

D, (2)

where Ebeam is the beam energy, and ED and PD are the energy and the magnitude, re-
spectively, of the momentum of the reconstructed D+ candidate. The mBC and |∆E| two-
dimensional distribution and the projections for data are shown in Fig. 1. The resolutions
in ∆E and mBC are represented as σ(∆E) = 6 MeV and σ(mBC) = 1.5 MeV/c2, respec-
tively; fits with a Gaussian function to the ∆E and mBC peaks evaluate the resolutions to
be 5.539± 0.014 MeV and 1.410± 0.013 MeV/c2, respectively. We require the events to fall
in the “signal box” that is the overlap region of the ∆E and mBC signal regions defined as
|∆E| < 2σ(∆E) and |mBC−mD| < 2σ(mBC), respectively. In the case of multiple D-meson
candidates per event we select the one with the smallest |∆E| value.

The K−π+π+ final state has two identical π+ mesons. To account for this symmetry we
analyze events on the Dalitz plot by choosing x = m2(K−π+)low and y = m2(K−π+)high as
the independent (x, y) variables. This choice folds all of the data onto the top half of the
kinematically allowed region, as is shown in Fig. 2(a). The third variable z = m2(π+π+)
is dependent on x and y through energy and momentum conservation. The invariant mass
resolutions, propagated from the track error matrices, are shown in Fig. 3, and in 95% of
cases are better than 5 MeV/c2. We use a kinematic fit to all 3-track candidates which
enforces a common vertex and D+ mass [1] constraint. We require that all events pass
the kinematic fit successfully but do not restrict their χ2. The kinematic-fit-corrected 4-
momenta of all 3 particles are used to calculate invariant masses for further Dalitz plot
analysis. Within its finite accuracy, the kinematic fit improves the K−π+π+ invariant mass
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resolution by 2 orders of magnitude. Proportional improvement is expected for all two-body
invariant mass resolutions.

After all requirements, we select 140793 events for the Dalitz plot analysis. The signal
fraction in this sample fsig is estimated to be (98.917 ± 0.013)% from the fit to the mBC

distribution, shown in Fig. 1(b). In this fit the signal and background shapes are described
by the double-Gaussian and ARGUS [15] functions, respectively, with all parameters free.
This value of fsig is consistent with one obtained from the fit to ∆E distribution, shown in
Fig. 1(c). In most fits to the Dalitz plot we use the fixed value of the signal fraction. Figure 2
shows the Dalitz plot data and two projections onto the m2(Kπ) axes [two entries per event
for m2(Kπ)low and m2(Kπ)high, respectively] and m

2(ππ). Besides the clear K∗(892) signal,
no other narrow features are obvious. The strong left-right asymmetry of the K∗(892)
population density on the Dalitz plot is evidence of the interference between P and S
waves. There are broad structures, including a peak at m2(Kπ) around 1.3 GeV2/c4, a
dip at m2(Kπ) around 2.25 GeV2/c4, a dip at m2(ππ) around 1 GeV2/c4, and a peak at
m2(ππ) around 1.6 GeV2/c4, that do not obviously correspond with known resonances or
their reflections from other axes. These structures also do not correspond to a flat phase
space distribution for nonresonant decays, since our efficiency is essentially flat across the
Dalitz plot, and the background is very low. Thus, we are compelled to consider Kπ strong
interaction dynamics to explain the Dalitz plot.

FIG. 1: Event selection, (a) The mBC and |∆E| two-dimensional distribution for data and the

projections on (b) mBC and (c) ∆E. The mBC and ∆E signal regions, defined in the text, are

shown as the bands in the figures. In (a), the “signal box” is indicated as the crossing area of

the two bands while the “sideband box,” defined in the text, is indicated as the shaded rectangle.

Each projection is made with the events in the signal region of the other kinematic variable; the

fit curve, described in the text, is also shown.
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FIG. 2: (a) Dalitz plot for data and their projections on (b) m2(Kπ) (two entries per event), and

(c) m2(ππ) variables.

FIG. 3: Invariant mass resolutions before the kinematic fit for (a) m(Kπ)high, (b) m(Kπ)low, and

(c) m(ππ).

C. Fit method

In order to describe the event density distribution on the Dalitz plot we use a probability
density function (p.d.f.), P(x, y), which depends on the event sample being fit:

P(x, y) =











Nεε(x, y) for efficiency,
NBB(x, y) for background,
fsigNS|M(x, y)|2ε(x, y) + (1− fsig)NBB(x, y) for signal with background,

(3)
where the ε(x, y) and B(x, y) are the functions representing the shape of the efficiency and
background, respectively, across the Dalitz plot. The signal p.d.f. is proportional to the
efficiency-corrected matrix element squared |M(x, y)|2, defined in Sec. III, whose fraction
fsig is introduced earlier. The background term has a relative (1 − fsig) fraction. All p.d.f.
components are normalized separately using the normalization integrals over the Dalitz plot
area 1/Nε =

∫

ε(x, y)dxdy, 1/NB =
∫

B(x, y)dxdy, and 1/NS =
∫ |M(x, y)|2ε(x, y)dxdy,

which provides the overall p.d.f. normalization,
∫ P(x, y)dxdy = 1. The p.d.f. free parame-
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ters are optimized with an maximum likelihood fit that minimizes the sum over N events:

L = −2
N
∑

n=1

logP(xn, yn). (4)

To estimate the fit quality we use Pearson’s statistics for adaptive bins, similar to our
previous analysis [16].

D. Efficiency Parametrization

To determine the efficiency we use a signal Monte Carlo (MC) [17] simulation where one of
the charged D mesons decays in the signal mode uniformly in phase space, while the other D
meson decays in all known modes with relevant branching fractions. These underlying events
are input to the CLEO-c detector simulation and processed with the regular reconstruction
package. The MC-generated events are required to pass the same selection requirements as
data selected in the signal box, as shown in Fig. 1(a). In each event we consider only the
signal mode side to prevent nonuniformity of the efficiency due to the resonance substructure
of the other side D decay currently implemented in our generic simulation. The efficiency of
the Kππ final state selection for the Dalitz plot analysis is estimated to be (51.11± 0.07)%
where the error is only statistical. This number also accounts for a correction factor, 0.984,
due to the nonuniform population of the data on the Dalitz plot,

fcorr =
εData

εMC
=

∑N
n=1 ε(xn, yn) / N

∫

ε(x, y)dxdy /
∫

dxdy
, (5)

where εData and εMC are the average efficiencies for data and uniformly generated MC sam-
ples, the function ε(x, y) is an efficiency over Dalitz plot defined later by Eqs. (6) and (7),
the sum runs over all N events in the data sample, and the integrals are taken over the area
of the Dalitz plot.

To parametrize the efficiency ε(x, y), we use a symmetric third-order polynomial function
centered on the arbitrary point (xc, yc)=(1.5, 1.5) (GeV/c2)2 on the Dalitz plot. With
x̂ ≡ x− xc and ŷ ≡ y − yc, the efficiency is the product of the polynomial function:

ε(x, y) = T (v)[1 +E1(x̂+ ŷ) +E2(x̂
2 + ŷ2) +E3(x̂

3 + ŷ3) +Exyx̂ŷ +Exyn(x̂
2ŷ + x̂ŷ2)], (6)

and sinelike threshold factors for each Dalitz plot variable v (≡ x, y or z):

T (v) =

{

sin(Eth,v|v − vmax|), for 0 < Eth,v|v − vmax| < π/2,
1, for Eth,v|v − vmax| ≥ π/2,

(7)

where all polynomial coefficients E1, E2, E3, Exy, Exyn, and Eth,v are the fit parameters.
Each variable v has two thresholds vmin and vmax. We expect low efficiency in the regions
v ≈ vmax only, where one of three particles is produced with zero momentum in the D-meson
rest frame and thus has a small momentum in the laboratory frame. Figure 4 and Table I
show results of the fit to the entire signal MC sample of D+ → K−π+π+ events selected on
the Dalitz plot. The polynomial function with threshold factors well describes the efficiency
shape. If we consider subsamples of our signal MC, such as D+ versus D−, we find that the
variation of the efficiency parameters is small compared to their statistical uncertainties. In
fits to data we use this efficiency shape with fixed parameters, and variations constrained
by the errors from our fit to the signal MC are allowed as systematic checks.
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TABLE I: Fit parameters for the efficiency from the signal MC sample.

Parameter Value

E1 –0.0153±0.0090

E2 –0.030±0.011

E3 0.162±0.020

Exy –0.053±0.019

Exyn 0.673±0.055

Eth,x ≡ Eth,y 4.25±0.23

Eth,z 2.907±0.075

Pearson χ2/ν 649/573

Probability (%) 1.5

Events on DP 477978

FIG. 4: For the efficiency shape: (a) Dalitz plot of the signal MC generated uniformly in phase

space and its projections on (b)m2(Kπ) (two entries per event) and (c)m2(ππ) variables. The solid

histogram is a projection of the function described in the text which parametrizes the efficiency.

Binned results are shown, but the efficiency shape is determined with an unbinned maximum

likelihood fit.

E. Background Parametrization

A shape for the background on the Dalitz plot is estimated using data events from a mBC

sideband region, shown by the hatched box in Fig. 1(a). This box is shifted in ∆E from the
signal region to have the same K−π+π+ invariant mass range as candidates in the signal box.
We consider only events from the low-mass mBC sideband as the high-mass sideband has a
significant contribution from signal events due to a “tail” caused by initial state radiation.
This tail is clearly seen in the mBC distribution shown in Fig. 1(b).

The background is a small contribution that has little effect on our fits. Nevertheless,
we study the background composition using generic MC simulation for all known modes
and find the following. The pileup of events at m2(Kπ)high ≈ 2.6 GeV2/c4 is caused by the

misreconstructed D decays from D0D
0
and D+D− pairs and the combinatorial background
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from the e+e− → qq (q = u, d and s) continuum; their contributions have the relative
fractions of 62%, 13% and 25%, respectively, in this area. The dominant misreconstructed
D decays are D0 → K−π+π0, a1(1260)

+K−, and D+ → K−π+π+, where one of the final
state pions is misreconstructed and replaced with a π+ meson from the other D decay. The
shape of the background is well reproduced in our simulation for events selected from either
the signal or sideband box.

To parametrize the background shape on the Dalitz plot we employ a function similar to
that used for the efficiency, shown in Eqs. (6) and (7). Figure 5 and Table II show results
of the fit with the background polynomial function to our sideband sample. In cross-checks
with subsamples we find the variation of the shape parameters is small compared to their
statistical uncertainties. We use the nominal background shape with fixed parameters in fits
to data, and allow the parameters to vary constrained by their errors as a systematic check.

TABLE II: Fit parameters for the background shape from the fit to the sideband region.

Parameter Nominal value

B1 0.63±0.22

B2 0.95±0.39

B3 0.41±0.54

Bxy –0.20±0.62

Bxyn –1.2±1.3

Bth,x ≡ Bth,y 1.31±0.13

Bth,z 11.2±6.5

Pearson χ2/ν 129 / 97

Probability (%) 1.6

Events on DP 1554

III. DECAY AMPLITUDE PARAMETRIZATION

A. Matrix element

In this analysis we follow the formalism of E791 [7] with only minor variations. In
the formulas below for the Dalitz plot variables, we also use Mandelstam notations s =
m2(K−π+

1 ), t = m2(K−π+
2 ), and u = m2(π+

1 π
+
2 ). We choose two of them s and t as

independent, and the third u is dependent, constrained by the equation s+t+u = m2
D+m

2
K+

2m2
π. Then, the matrix element has an explicit Bose-symmetric form for pion permutations

M(s, t) = A(s, t) + A(t, s) + AI=2
L=0(u(s, t)). (8)

Below we discuss the amplitudes contributing to the matrix element.
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FIG. 5: (a) Dalitz plot of data in the sideband box and projections on (b) m2(Kπ) (two entries

per event), and (c) m2(ππ) variables. The solid histogram shows the projection of the fit function

used to parametrize the background shape described in the text.

FIG. 6: Three-body decay d→ Rc→ abc in the resonance R rest frame.

B. Partial Kπ amplitudes

Each Kπ amplitude is defined using a sum over the decay orbital momentum L of two-
body partial waves

A(s, t) =
Lmax
∑

L=0

ΩL(s, t)FL
D(q(s))AL(s), (9)

with parameters as described below. In this analysis we consider the sum up to the maximal
orbital momentum Lmax = 2.

We assume the D+ → K−π+π+ decay goes via a quasi-two-body intermediate state,
d → Rc, containing the resonance R and particle c, followed by the decay of the resonance
to the final stable particles a and b, R → ab. This is shown schematically in Fig. 6. The
ΩL(s, t) term in Eq. (9) represents the angular distribution, which we use in the invariant
forms [18]

ΩL=0(m
2
ab, m

2
ac) = 1, (10)

ΩL=1(m
2
ab, m

2
ac) = m2

bc −m2
ac +

(m2
d −m2

c)(m
2
a −m2

b)

m2
ab

, (11)
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ΩL=2(m
2
ab, m

2
ac) = [ΩL=1]

2 − 1

3

(

m2
ab − 2m2

d − 2m2
c +

(m2
d −m2

c)
2

m2
ab

)

×
(

m2
ab − 2m2

a − 2m2
b +

(m2
a −m2

b)
2

m2
ab

)

, (12)

where md, ma, mb, and mc are the masses of decaying and product particles and mab, mac,
and mbc are the relevant invariant masses. In the appendix we show that these angular dis-
tributions are equivalent to those applied in the E791 analysis [7] up to constant coefficients.

The form factors FL
D(q) in Eq. (9) and FL

R(q) in Eqs. (20) and (22) are defined using the
Blatt-Weisskopf form [19]

L = 0 : F0
V (q) = 1, (13)

L = 1 : F1
V (q) =

√

√

√

√

1 + q2V
1 + q2

, (14)

L = 2 : F2
V (q) =

√

√

√

√

9 + 3q2V + q4V
9 + 3q2 + q4

, (15)

where the index V stands for the D or R decay vertex, q = rV P, P is the magnitude of
the momentum of the decay products in the decaying particle’s rest frame, and rV is the
effective radius for the D or R vertex, respectively. For both D and R decays, qV = rV PV ,
where PV is the magnitude of momentum of the decay products calculated at mab = mR,
the pole mass of R. The form factors are normalized by the condition FL

V (qV ) = 1.
The values of radial parameters are discussed in Sec. IV. Expressions for the decay

products’ momentum for both vertices can be found in the appendix. The mass dependences
of FL

D(q(s)) form factors for Kπ resonances are shown in Table III.
Another Gaussian form factor shape of the scalar resonance,

F0
V (q) = e−(q2−q2

V
)/12, (16)

is applied in the E791 [7] analysis. This shape is suggested by Tornquist [20], and has a steep
dependence on momentum. A reanalysis of the E791 data [10] found that this form factor is
not required by the data. We use only the Gaussian form factors F0

D and F0
R from Eq. (16)

for the scalar components κ and K∗

0 (1430), when comparing results with E791 model C [6].
We use the unit form factor from Eq. (13) for scalar resonances in all other models and with
the binned partial waves discussed below.

The partial waves AL(s) in Eq. (9) are the angular momentum L-dependent functions
of a single variable z, which is either s or t. In the D+ → K−π+π+ decay the S, P and
D waves (L = 0, 1, or 2, respectively) are represented by the sum of functions WR for
individual intermediate states

A0(z) = cNR +Wκ +WK∗

0
(1430) +WS,binned, (17)

A1(z) = WK∗(892) +WK∗(1410) +WK∗(1680) +WP,binned, (18)

A2(z) = WK∗

2
(1430) +WD,binned. (19)

The contribution of nonresonant decays is represented by cNR = aNRe
iφNR , a complex con-

stant with two fit parameters for magnitude aNR and phase φNR. The WL,binned are the
binned amplitudes as discussed below.

WR = cRWRFL
R(rRP) (20)
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is the shape of an individual resonance WR [see Eqs. (21)–(24)] multiplied by the form
factor in the resonance R decay vertex FL

R(rRP) and the coupling constant cR = aRe
iφR.

The resonance R production magnitudes aR and phases φR are parameters of the fit to the
Dalitz plot.

C. Resonance shapes

For intermediate Kπ resonances we use the standard Breit-Wigner function

WR(m) =
1

m2
R −m2 − imRΓ(m)

, (21)

where m2 = s and the mass-dependent width has the usual form

Γ(m) = ΓR
mR

m

(

P

PR

)2L+1

[FL
R(rRP)]

2. (22)

For K∗

0(1430) we have tested both the Breit-Wigner function [Eq. (21)] and the Flatté
parametrization

WR(m) =
1

m2
R −m2 − i

∑

ab g
2
Rabρab(m)

, (23)

where gRab is a coupling constant of resonance R to the final state ab and ρab(m) = 2P/m is
a phase space factor. We test the Flatté parametrization because the K∗

0 (1430) mass is close
to the Kη and Kη′ thresholds, which could significantly distort the resonance shape [10].

and the complex pole proposed in Ref. [11]

WR(m) =
1

sR −m2
, (24)

where sR is a pole position in the complex s = m2 plane. This function represents the
first term of the Laurent series in the expansion of the chiral perturbation theory complex
amplitude for the scalar wave. This approach is common, and a survey of pole positions
extracted from different experiments can also be found in Ref. [9]. This complex pole is
equivalent to a Breit-Wigner function with constant width.

D. Isospin-two π
+
π
+

S wave amplitude

The isospin-two π+π+ S wave amplitude in Eq. (8) is a sum of two components

AI=2
L=0(u) = cππWI=2

S +W I=2
S,binned, (25)

where cππ = aππe
iφππ is a complex coupling constant and W I=2

S,binned is discussed in Sec. III E.
The first term of this sum is parametrized by a unitary form [21]

WI=2
S (m) =

η20(m)e2iδ
2
0
(m) − 1

2i
, (26)

where m is a π+π+ invariant mass, η20(m) is an inelasticity, and δ20(m) is a phase of the π+π+

wave with total spin 0 and isospin two. The phase δ20(m) is assumed to be proportional to
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the decay momentum at threshold and sculpted by a polynomial function at higher mass
range

δ20(m) =
−a

√

m2/4−m2
π

1 + bm2 + cm4 + dm6
. (27)

with parameters a = (55.21 ± 3.18) deg/GeV, b = (0.853 ± 0.254) GeV−2, c = (−0.959 ±
0.247) GeV−4, and d = (0.314±0.070) GeV−6, obtained in Ref. [21] from a fit to the data of
the scattering experiments [12]. We use this function with fixed parameters. The inelasticity
η20(m) in the mass range of m < mmin ≈ m(ρ+ρ+) ≈1.5 GeV/c2 is expected to be near unity.
Then η20(m) decreases due to the π+π+ → ρ+ρ+ rescattering at a higher mass range. In our
fits we use a smooth approximation for this threshold behavior

η20(m) =















1, m ≤ mmin

1− ∆η
2

[

1− cos
(

π m−mmin

mmax−mmin

)]

, mmin < m < mmax

1−∆η, m ≥ mmax,

(28)

with fit parameters mmin, mmax, and ∆η.

E. Binned amplitude

The complex term WL,binned in Eqs. (17)–(19), and (25), where L=0, 1, or 2, is intended
to provide a completely model-free parametrization of the partial wave. It can be used alone
or in combination with other terms. In the latter case it represents a correction to the
complex amplitude of the isobar model. We use this term in the form of an s-dependent
complex number

WL,binned(s) = aL(s)e
iφL(s), (29)

with functions aL(s) and φL(s) defined by an interpolation between the bins for the mag-
nitude, aLk, and phase, φLk, where k(s) = 1, 2, . . . , NL is an s-dependent index of these
bins. For all Kπ waves we define NL = 26 uniform bins in s ≡ m2

Kπ in the range [0.4,3.0]
(GeV/c2)2, as shown in Table III. Similar, for I = 2 π+π+ S wave we define N I=2

L=0 = 18
uniform bins in u ≡ m2

ππ [s in Eq. (29) is replaced with u] in the range [0.1,1.9] (GeV/c2)2.
This binning scheme covers the kinematically allowed range of the Kπ [0.633,1.730] GeV/c2

and π+π+ [0.279,1.376] GeV/c2 invariant mass spectrum in the D+ → K−π+π+ decay. We
interpolate linearly between bin centers in our fitting function.

F. Fit fraction

We estimate a contribution of each component in the matrix element using a standard
definition of the fit fraction,

FFR =

∫ |AR(x, y)|2dxdy
∫ |M(x, y)|2dxdy , (30)

where AR(x, y) is an amplitude contribution from the R component to the total matrix
element M(x, y) from Eq. (8) and the integrals are taken over the area of the Dalitz plot.

13



TABLE III: Bins for the Kπ S, P , and D waves and Blatt-Weisskopf form factors for K∗(892) and

K∗(1680) from Eq. (14), K∗

2 (1430) from Eq. (15), and K∗

0 (1430) from Eq. (16), calculated in the

D-meson decay vertex.

Bin m2
Kπ (GeV/c2)2 mKπ (GeV/c2) Blatt-W. form factors FL

D(q) for Gaussian FF

# Bin range Bin range Center K∗(892) K∗(1680) K∗

2 (1430) K∗

0 (1430)

1 0.4 — 0.5 0.632 — 0.707 0.671 0.888 0.250 0.305 0.347

2 0.5 — 0.6 0.707 — 0.775 0.742 0.918 0.259 0.324 0.380

3 0.6 — 0.7 0.775 — 0.837 0.806 0.948 0.267 0.345 0.415

4 0.7 — 0.8 0.837 — 0.894 0.866 0.982 0.277 0.368 0.451

5 0.8 — 0.9 0.894 — 0.949 0.922 1.017 0.287 0.394 0.489

6 0.9 — 1.0 0.949 — 1.000 0.975 1.055 0.297 0.421 0.528

7 1.0 — 1.1 1.000 — 1.049 1.025 1.096 0.309 0.452 0.570

8 1.1 — 1.2 1.049 — 1.095 1.072 1.140 0.321 0.485 0.612

9 1.2 — 1.3 1.095 — 1.140 1.118 1.188 0.335 0.523 0.656

10 1.3 — 1.4 1.140 — 1.183 1.162 1.240 0.349 0.564 0.700

11 1.4 — 1.5 1.183 — 1.225 1.204 1.296 0.365 0.609 0.746

12 1.5 — 1.6 1.225 — 1.265 1.245 1.358 0.383 0.659 0.792

13 1.6 — 1.7 1.265 — 1.304 1.285 1.425 0.402 0.715 0.839

14 1.7 — 1.8 1.304 — 1.342 1.323 1.499 0.423 0.776 0.885

15 1.8 — 1.9 1.342 — 1.378 1.360 1.581 0.446 0.844 0.932

16 1.9 — 2.0 1.378 — 1.414 1.396 1.672 0.471 0.918 0.978

17 2.0 — 2.1 1.414 — 1.449 1.432 1.773 0.500 0.999 1.023

18 2.1 — 2.2 1.449 — 1.483 1.466 1.886 0.532 1.085 1.067

19 2.2 — 2.3 1.483 — 1.517 1.500 2.013 0.568 1.178 1.109

20 2.3 — 2.4 1.517 — 1.549 1.533 2.157 0.608 1.275 1.150

21 2.4 — 2.5 1.549 — 1.581 1.565 2.320 0.654 1.374 1.189

22 2.5 — 2.6 1.581 — 1.612 1.597 2.506 0.707 1.472 1.226

23 2.6 — 2.7 1.612 — 1.643 1.628 2.719 0.766 1.568 1.259

24 2.7 — 2.8 1.643 — 1.673 1.658 2.962 0.835 1.657 1.290

25 2.8 — 2.9 1.673 — 1.703 1.688 3.240 0.913 1.737 1.318

26 2.9 — 3.0 1.703 — 1.732 1.718 3.554 1.002 1.805 1.342

mKπ, min = mK− +mπ+ = 0.633 GeV/c2

mKπ, max = mD+ −mπ+ = 1.730 GeV/c2

G. Expected contributions

A priori, all known Kπ resonances in the mass range from the production threshold
up to 1.73 GeV/c2, such as K∗(892), K∗(1410), K∗

0(1430), K
∗

2(1430), K
∗(1680), and even

higher mass resonances, might contribute to the amplitude of the D+ → K−π+π+ decay.
Table IV shows parameters of Kπ resonances which have been considered in this analysis.
One would also foresee an I = 2 π+π+ S wave final state interaction. Simulations of some
of the expected contributions to the Dalitz plot are shown in Fig. 7. In contrast to data
[Fig. 2(a)] the K∗(892) population density in Fig. 7(b) is symmetric without interference
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with an S wave.

FIG. 7: Simulation of the expected contribution to the D+ → K−π+π+ Dalitz plot from various

intermediate states. (a) Low mass Kπ S wave (κ), (b) K∗(892)π, (c) K∗

0 (1430)π, (d) K
∗

2 (1430)π,

(e) K∗(1680)π, and (f) K(ππ)I=2 with I = 2 π+π+ S wave.

IV. FITS TO DATA USING THE ISOBAR MODEL

A. Comparison with E791 Model C

First we compare our results, obtained in the framework of the isobar model, with E791
models A, B, and C from Ref. [6]. In particular, the most complete model C contains
K̄∗(892)π+, K̄∗

0 (1430)π
+, K̄∗

2 (1430)π
+, K̄∗(1680)π+, κπ+, and nonresonant (NR) contribu-

tions. Following E791 we allow a scalar Kπ amplitude, the “κ,” as a Breit-Wigner resonance
with mass-dependent width. We set cK∗(892) = 1 in Eqs. (18) and (20), and all other magni-
tudes and phases are defined with respect to K∗(892). Gaussian form factors F0

D(rDPc) and
F0

R(rRP) from Eq. (16) are used for K∗

0 (1430) and κ. For all Kπ resonances with nonzero
spin, the radii in the Blatt-Weisskopf [19] form factors rD = 5 GeV−1 and rR = 1.5 GeV−1

are fixed to the values used by E791. On the Dalitz plot, the p.d.f. for this model looks
indistinguishable from statistics shown in Fig. 2(a). The Dalitz plot projections with p.d.f.
components are shown in Fig. 8. Fit fractions and phases, obtained in our fit, are compared
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with E791 [6] in Table V and are statistically consistent. Magnitudes are not comparable
because of a different choice for normalization. The values obtained for resonance parame-
ters are compared in Table IV. In particular, we get dominant contributions from S wave
components: the NR, K∗

0 (1430)π, and κπ fit fractions are ≈9%, 10%, and 33%, respectively.
The total sum of all fit fractions is 65.5%, indicating substantial constructive interference.
Apparently, model C gives a poor fit quality χ2/ν=531/391. A large discrepancy between
the fit and the data is seen in Fig. 8 for the m2(π+π+) projection in the range of [1.4, 1.9]
(GeV/c2)2. That motivates us to explore alternative models of the decay amplitude.

TABLE IV: The Breit-Wigner resonance parameters used or measured in the isobar model; CLEO-

c vs E791. The fixed parameters used in the E791 experiment are taken from PDG 2000 [22]

with their uncertainties shown in square brackets. The measured values are shown with two

uncertainties: statistical and systematic. The values shown in parentheses (with statistical error

only) were obtained in cross-checks when these parameters are allowed to float.

Parameter E791 [PDG 2000] CLEO-c PDG 2006 [1]

(MeV/c2) Model C (if float) Model I2 (if float)

mK∗(892) 896.1 [±0.27] 896 (894.8±0.5) 895.7±0.2±0.3 896.00±0.25

ΓK∗(892) 50.7 [±0.6] 50.3 (45.5±0.4) 45.3±0.5±0.6 50.3±0.6

mK∗(1430) 1459±7±12 1463.0±0.7±2.4 1466.6±0.7±3.4 1414±6

ΓK∗(1430) 175±12±12 163.8±2.7±3.1 174.2±1.9±3.2 290±21

mK∗

2
(1430) 1432.4 [±1.3] 1432.4 (1436±11) 1432.4 (1427±7) 1432.4±1.3

ΓK∗

2
(1430) 109 [±5] 109 (132±21) 109 (120±13) 109±5

mK∗(1680) 1717 [±27] 1717 (1782±41) 1717 (1679±59) 1717±27

ΓK∗(1680) 322 [±110] 322 (565±131) 322 (446±119) 322±110

mK∗(1410) 1414[±15] 1414 1414 1414±15

ΓK∗(1410) 232[±21] 232 232 232±21

mκ 797±19±43 809±1±13 Complex pole, K∗

0 (800) is not

Γκ 410±43±87 470±9±15 see Table VI established

B. Variations of Model C

The Gaussian form factors, given by Eq. (16) for scalar resonances, F0
R(rRP), and

F0
D(rDPc), behave similarly to the L = 4 Blatt-Weisskopf form factor. This behavior is

not preferred by either our or the E791 data; see Ref. [10] for details. With our data we
find that results are not very dependent on the assumed resonance decay vertex form factor
F0

R(rRP). However, the D-meson decay vertex form factor F0
D(rDP) changes the S wave

dependence on s significantly. In particular, this Gaussian form factor (see Table III) sup-
presses the contribution of Kπ at low mass. To agree with the data when fitting with this
factorized form factor, the magnitude of the complex function (S wave) increases at low
Kπ mass which gives an illusion of resonance behavior. For all models other than model C
below we use unit form factors from Eq. (13) for S wave contributions.

For the K∗

0 (1430) resonance we measure mK∗

0
(1430) = 1463.0 ± 0.7 ± 2.4 MeV/c2 and

ΓK∗

0
(1430) = 163.8±2.7±3.1 MeV/c2, which are consistent with E791 results, but inconsistent

16



TABLE V: Comparison of CLEO-c results with E791 using the isobar fit, model C. Shown are the

fitted magnitudes, a in arbitrary units, the phases, φ in degrees, defined relative to the K∗(892)π+

amplitude, and the FF. Also indicated are the fitted masses m and widths Γ of the spin-zero

resonances. Magnitudes a are not comparable between the two experiments because of a different

choice for normalization.

Mode Parameter E791 CLEO-c

NR a 1.03±0.30±0.16 7.4±0.1±0.6

φ (◦) –11±14±8 –18.4±0.5±8.0

FF (%) 13.0±5.8±4.4 8.9±0.3±1.4

K
∗

(892)π+ a 1 (fixed) 1 (fixed)

φ (◦) 0 (fixed) 0 (fixed)

FF (%) 12.3±1.0±0.9 11.2±0.2±2.0

K
∗

0(1430)π
+ a 1.01±0.10±0.08 3.00±0.06±0.14

φ (◦) 48±7±10 49.7±0.5±2.9

FF (%) 12.5±1.4±0.5 10.4±0.6±0.5

m (MeV/c2) 1459±7±12 1463.0±0.7±2.4

Γ (MeV/c2) 175±12±12 163.8±2.7±3.1

K
∗

2(1430)π
+ a 0.20±0.05±0.04 0.962±0.026±0.050

φ (◦) –54±8±7 –29.9±2.5±2.8

FF (%) 0.5±0.1±0.2 0.38±0.02±0.03

K
∗

(1680)π+ a 0.45±0.16±0.02 6.5±0.1±1.5

φ (◦) 28±13±15 29.0±0.7±4.6

FF (%) 2.5±0.7±0.3 1.28±0.04±0.28

κπ+ a 1.97±0.35±0.11 5.01±0.04±0.27

φ (◦) –173±8±18 –163.7±0.4±5.8

FF (%) 47.8±12.1±5.3 33.2±0.4±2.4

m (MeV/c2) 797±19±43 809±1±13

Γ (MeV/c2) 410±43±87 470±9±15

Form factor rκ(GeV−1) 1.6±1.3 1.5(fixed)

rD(GeV−1) 5.0±0.5 5 (fixed)

Other R→ Kπ rR(GeV−1) 1.5(fixed) 1.5(fixed)
∑

FF (%) 88.6 65.5

Goodness χ2/ν 46/63 531/391

with current PDG [1] values, as demonstrated in Table IV. Similar behavior is reported in
Ref. [23] from the FOCUS Collaboration. In Ref. [10] Bugg surmises that the K∗

0(1430)
resonance parameters might change due to the opening of the Kη′ channel. In order to
accommodate this effect, we test the Flatté parametrization of Eq. (23), which depends on a
floating mass mK∗

0
(1430) and three coupling constants, gKπ, gKη, and gKη′. We find that our

data are consistent with gKη = 0, and this coupling is dropped from further consideration.
The resulting values of the other parameters are shown in Table VI. We do not find any
significant difference between Breit-Wigner and Flatté parametrizations in the shape of the
K∗

0 (1430) complex amplitude or in the fit quality.
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TABLE VI: Alternative parameters obtained in the fits with the isobar model.

Mode Amplitude Parameter (MeV/c2) Model C Model I2

K
∗

0(1430)π
+ Breit-Wigner mK∗

0
(1430) 1463.0±0.7±2.4 1466.6±0.7±3.4

ΓK∗

0
(1430) 163.8±2.7±3.1 174.2±1.9±3.2

Flatté mK∗

0
(1430) 1462.5±3.9 1471.2±0.8

gKπ 532.9±8.5 546.8±4.2

gKη 0 0

gKη′ 197±106 230±32

κπ+ Breit-Wigner mκ 809±1±13 888±2

Γκ 470±9±15 550±12

Complex pole ℜmκ 769.9±6.3 706.0±1.8±22.8

ℑmκ –221.2±8.4 –319.4±2.2±20.2

In model C we also measure the κ resonance Breit-Wigner parameters mκ = 809 ± 1 ±
13 MeV/c2 and Γκ = 470 ± 9 ± 15 MeV/c2. In Ref. [11] Oller emphasizes that the Breit-
Wigner resonance with a mass-dependent width is not the best choice for the Kπ low-mass
phase parametrization. Following his prescription, we replace the Breit-Wigner function by
the complex pole from Eq. (24) with the initial pole position at sκ = (710− i310)2 MeV2/c4.
We allow the pole position to float and obtain its optimal location, as shown in Table VI.

We also test the K∗(892) parameters, as shown in Table IV. The K∗(892) mass is
consistent with the PDG [1] value, while the width is about 5 MeV/c2 smaller. In further
analysis we allow the K∗(892) mass and width to float.

Inclusion of a K∗(1410) component in the fit does not result in any significant contribu-
tion.

C. Model I2

Tuning of the isobar model forKπ waves only does not improve significantly the probabil-
ity of consistency between the data and the model, which is still small. The large discrepancy
in the m2(π+π+) spectrum persists even if we use the model-independent parametrization
for the Kπ S wave considered below. We solve this problem by including in the matrix
element [Eq. (8)] a contribution from the I = 2 π+π+ S wave, using Eq. (26), which leads to
a model called model I2. The threshold of the π+π+ → ρ+ρ+ rescattering process is located
at the upper edge of the m2(π+π+) kinematic limit in our decay. The edge of the kinematic
border does not allow us to resolve correlations between the ∆η and mmax parameters in
Eq. (28). We fix the value of ∆η = 1, while floating the mmin and mmax parameters. In
model I2, compared to model C, the unit form factors F0

D = F0
R = 1 are used for the scalar

components, the complex pole amplitude from Eq. (24) is used for the low-mass Kπ S wave,
and the K∗(892) parameters are allowed to vary in the fit; other conditions stay the same
as in model C.

Model I2 gives the best analytical description of our data. The obtained fit parameters
are presented in Table VII. The total p.d.f. and separate components are shown in the Dalitz
plot projections in Fig. 9. The large discrepancy in the m2(π+π+) spectrum is eliminated,
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improving the probability of consistency between the model and data to 13%.

D. Variations of Model I2

We did not find any significant contribution from K∗(1410) by including it in the fit.
This resonance is excluded from further consideration.

We also test the alternative descriptions for the K∗

0(1430) parameters as shown Table VI.
We do not find any significant difference between Breit-Wigner and Flatté parametrizations
in the shape of the K∗

0(1430) complex amplitude or in the fit quality. We therefore use the
Breit-Wigner function in model I2 with the mass and width of K∗

0 (1430) allowed to float.
The test of alternative descriptions for the low-mass Kπ S wave is presented in Tables VI

and VII. The pole amplitude slightly improves the fit quality (∆χ2 = −10) compared to the
Breit-Wigner resonance with mass-dependent width. This substitution leads to a significant
redistribution of the NR and κ components of the scalar wave, though their sum results in
very small variation of the complex function. In model I2 we use the pole amplitude for the
Kπ low-mass S wave.

V. QUASI-MODEL-INDEPENDENT PARTIAL WAVE ANALYSIS

A. QMIPWA for Kπ S wave

The biggest issue of any Dalitz plot analysis is its model dependence. An attempt to
mitigate the model dependence for the decay under study is described in [7]. Here we
reproduce this analysis using a slightly modified technique, which we call the quasi-model-
independent partial wave analysis (QMIPWA). We apply this technique as an extension of
our model I2.

In QMIPWA we modify the parameters of model I2 as follows. The NR and κπ compo-
nents in model I2 are replaced by the binned S wave amplitude [Eq. (29)]. The 26 binned
S wave magnitudes and phases of m2

Kπ are floating fit parameters. We keep the K∗

0 (1430)π
contribution in its Breit-Wigner form, because it has a sharp structure, that cannot be well
reproduced by a binned amplitude. The K∗

0(1430) parameters are fixed to their values from
model I2 in order to remove correlations between the Breit-Wigner function and the binned
S wave amplitude. The Kπ P wave in Eq. (18) is represented by the K∗(892) and K∗(1680)
Breit-Wigner functions, where the cK∗(1680) parameters are allowed to float in the fit. As
usual cK∗(892) = 1, and all other magnitudes and phases are defined with respect to K∗(892).
The K∗(1410) is excluded as mentioned previously. The Kπ D wave in Eq. (19) is repre-
sented by the K∗

2(1430) Breit-Wigner function with its parameters cK∗

2
(1430) allowed to float

in the fit. The I = 2 π+π+ S wave is represented by the unitary amplitude from Eq. (26)
fixing the mmin and mmax parameters to their optimal values from model I2. The aππ and
φππ parameters are allowed to float in the fit.

The results of the QMIPWA fit are shown in Table VII for resonance parameters and
Table VIII for the Kπ S wave. Figure 10 shows the Dalitz plot projections of this fit. The
measured Kπ S wave and their comparison with model I2 components are displayed in
Fig. 11. Both the magnitude and phase are different from those of model I2.

Table VIII (right-hand side) also shows the result of a similar fit for a total binned S
wave. For this fit the K∗

0 (1430) resonance is accounted for in the binned S wave, and all
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TABLE VII: Fit results for model I2, with a Breit-Wigner function or with a complex pole for the

κ, and QMIPWA. The FF are shown for a single Kπ wave and need to be doubled as indicated by

the “2×” symbol in row titles.

Mode Parameter Model I2 (B-W for κ) Model I2 QMIPWA

K
∗

(892)π+ a 1 – fixed 1 – fixed 1 – fixed

φ (◦) 0 – fixed 0 – fixed 0 – fixed

FF (%) 2× 5.15±0.24 5.27±0.08±0.15 4.94±0.23

m (MeV/c2) 895.4±0.2 895.7±0.2±0.3 895.7 – fixed

Γ (MeV/c2) 44.5±0.7 45.3±0.5±0.6 45.3 – fixed

K
∗

(1680)π+ a 4.45±0.23 3.38±0.16±0.78 2.88±0.84

φ (◦) 43.3±3.6 68.2±1.6±13 113±14

FF (%) 2× 0.238±0.024 0.144±0.013±0.12 0.098±0.059

K
∗

2(1430)π
+ a 0.866±0.030 0.915±0.025±0.04 0.794±0.073

φ (◦) –17.4±3.5 –17.4±2.3±2.0 14.8±9.0

FF (%) 2× 0.124±0.011 0.145±0.009±0.03 0.102±0.020

K
∗

0(1430)π
+ a 3.97±0.15 3.74±0.02±0.06 3.74 – fixed

φ (◦) 45.1±0.9 51.1±0.3±1.6 51.1 – fixed

FF (%) 2× 7.53±0.65 7.05±0.14±0.55 6.65±0.31

m (MeV/c2) 1461.1±1.0 1466.6±0.7±3.4 1466.6 – fixed

Γ (MeV/c2) 177.9±3.1 174.2±1.9±3.2 174.2 – fixed

κπ+ a 5.69±0.17 10.80±0.05±0.35 0

φ (◦) –149.9±1.2 148.4±0.3±1.6 0

FF (%) 2× 8.5±0.5 21.6±0.3±3.2 0

Pole ℜm0 (MeV/c2) 706.0±1.8±22.8

ℑm0 (MeV/c2) –319.4±2.2±20.2

Breit-Wigner m (MeV/c2) 888.0±1.9

Γ (MeV/c2) 550.4±11.8

NR a 17.1±0.4 23.3±0.1±1.6 0

φ (◦) 1.9±1.7 29.7±0.2±3.0 0

FF (%) 38.0±1.9 73.8±0.8±9.6 0

Binned K−π+ S wave a 0 0 See

φ (◦) 0 0 Table VIII

FF (%) 2× 0 0 41.9±1.9

I = 2 π+π+ S wave a 30.3±2.7 25.5±0.3±2.9 33.1±2.6

φ (◦) 86.3±3.3 75.4±0.6±10 66.2±3.5

FF (%) 13.4±2.3 9.8±0.2±2.0 15.5±2.8

Equation (28) ∆η 1 1 1

mmin (MeV/c2) 1265±8 1256±5±4 1256.3 – fixed

mmax (MeV/c2) 1529±31 1498±13±30 1498.2 – fixed

Form factor rD(GeV−1) 5 – fixed 5 – fixed 5 – fixed

rSwave(GeV−1) 0 – fixed 0 – fixed 0 – fixed

Other R→ Kπ rR(GeV−1) 1.5 – fixed 1.5 – fixed 1.5 – fixed
∑

FFi (%) 94.4 152.0 122.8

Goodness χ2/ν 426/385 416/385 359/347

Probability (%) 7.4% 13.2% 31.5%
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other parameters are fixed to their values from the nominal QMIPWA fit.

B. Cross-check for binned I = 2 π
+
π
+

S wave

In this approach we also check how much the I = 2 π+π+ S wave might be different
from its analytic approximation in model I2. The analytic expression, given in Eq. (26), is
replaced by the binned wave from Eq. (29). We fix all 20 fit parameters to their values in
model I2. Then, we fix to zero the magnitude of the analytic I = 2 π+π+ S wave, aππ = 0,
and add a binned I = 2 π+π+ S wave; the magnitude and phase in each of the 18 bins of
m2

π+π+ are allowed to float. Results of this fit are shown in Table IX. The measured I = 2
π+π+ S wave is compared to the model I2 analytic function in Fig. 12. The change of the
χ2 in this fit compared to model I2, ∆χ2 = 390 − 416 = −26, does not show a significant
improvement for the change ∆ν = −36 + 20 = −16 in degrees of freedom due to fixing 20
of the original parameters and introducing 36 new parameters. The data do not prefer the
binned amplitude to the analytic model for the I = 2 π+π+ S wave.

C. Cross-checks for binned Kπ P and D waves

To check how much the P and D waves might be different from their model parametriza-
tion we use the same binned technique. All of the fit parameters are fixed to their optimal
values from model I2. The P wave binned amplitude substitutes for the smooth K∗(1680)
resonance only. The sharp shape of the K∗(892) resonance is accounted for by a Breit-
Wigner function. The D wave binned amplitude substitutes for the K∗

2 (1430) contribution,
even though it is not particularly smooth. The magnitude and phase in 26 bins of m2

Kπ are
allowed to float for the P or D wave in two separate fits, respectively. The resolution for the
D wave is worse, and we use only 18 bins in the m2

Kπ range [0.9, 2.7] (GeV/c2)2. Results of
these fits are shown in Table X. The measured P and D binned waves and their comparison
with the model I2 components are displayed in Figs. 13 and 14, respectively.

The relative fraction of the P and especially the D wave is much smaller than the S wave.
This explains the poor resolution for these binned amplitudes. We find that our binned P
and D waves are consistent with their substituted components in model I2. This cross-check
adds some confidence to this quasi-model-independent technique.

VI. CROSS-CHECKS AND SYSTEMATIC UNCERTAINTIES

A. Systematic uncertainties

In order to estimate systematic uncertainties of the fit parameters, we apply numerous
variations to the fitting procedure and examine the change of the fit parameters. Because of
the numerous variations, a quadratic sum of the resulting small changes due to the variations
would lead to a systematic error that is too conservative. Instead, we treat all of the resulting
changes from the variations as a frequency distribution and calculate the mean and rms of
the distribution. The total systematic uncertainty is obtained as a quadratic sum of the
difference between the obtained mean and the default value of that parameter, and the rms.
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TABLE VIII: QMIPWA: Results for Kπ S wave. Figure 11 shows the binned Kπ S wave without

K∗

0 (1430) by the dots with error bars and the total Kπ S wave by the solid curve.

Bin m2
Kπ (GeV/c2)2 Binned Kπ S wave w/o K∗

0 (1430) Total Kπ S wave

# Bin range Magnitude (a.u.) Phase (◦) Magnitude (a.u.) Phase (◦)

1 0.4 — 0.5 20.23±0.80±0.51 –71.8±4.9±4.1 19.29±0.56 –66.0±3.2

2 0.5 — 0.6 20.90±0.68±0.54 –61.1±4.6±2.3 20.38±0.51 –54.3±2.8

3 0.6 — 0.7 20.58±0.63±0.69 –48.8±4.0±3.2 20.35±0.45 –40.9±2.2

4 0.7 — 0.8 20.62±0.64±0.51 –47.0±2.4±0.7 20.52±0.59 –39.7±0.9

5 0.8 — 0.9 20.95±0.74±1.32 –44.1±3.6±3.5 20.84±0.49 –36.0±1.4

6 0.9 — 1.0 19.97±0.63±1.14 –38.4±4.0±6.4 19.97±0.36 –28.7±2.7

7 1.0 — 1.1 19.36±0.58±0.96 –26.2±3.5±4.8 19.97±0.34 –15.7±2.6

8 1.1 — 1.2 17.81±0.53±0.96 –18.6±3.0±6.1 18.85±0.30 –6.9±2.0

9 1.2 — 1.3 17.70±0.49±0.90 –13.7±2.6±5.1 19.05±0.27 –1.2±1.6

10 1.3 — 1.4 17.72±0.47±1.05 –8.5±2.5±5.8 19.47±0.25 4.8±1.4

11 1.4 — 1.5 17.13±0.45±1.05 –3.2±2.4±4.7 19.36±0.23 11.6±1.3

12 1.5 — 1.6 17.16±0.45±1.04 0.5±2.3±5.6 19.80±0.22 17.1±1.3

13 1.6 — 1.7 17.09±0.46±1.14 5.4±2.3±4.0 20.35±0.22 24.3±1.3

14 1.7 — 1.8 16.94±0.47±1.06 7.5±2.3±4.6 20.61±0.24 30.1±1.3

15 1.8 — 1.9 16.41±0.48±1.05 9.5±2.4±3.7 20.38±0.27 38.0±1.3

16 1.9 — 2.0 15.91±0.51±0.75 12.3±2.7±3.2 19.86±0.34 49.1±1.4

17 2.0 — 2.1 15.97±0.56±1.11 16.9±2.9±3.1 19.07±0.40 63.4±1.4

18 2.1 — 2.2 15.72±0.61±1.11 15.7±2.5±2.2 14.20±0.40 76.6±1.9

19 2.2 — 2.3 16.54±0.63±1.17 17.3±2.1±2.1 9.29±0.39 75.2±2.6

20 2.3 — 2.4 16.64±0.71±1.42 20.1±2.1±3.4 7.10±0.43 57.5±3.1

21 2.4 — 2.5 15.91±0.86±1.61 19.8±2.3±2.0 6.75±0.43 33.5±3.2

22 2.5 — 2.6 17.25±1.03±1.83 21.5±2.4±2.0 9.46±0.51 26.0±2.5

23 2.6 — 2.7 17.24±1.21±2.38 24.1±2.6±2.9 10.74±0.55 26.7±2.6

24 2.7 — 2.8 17.59±1.34±2.28 29.0±2.8±1.6 12.04±0.64 31.8±2.5

25 2.8 — 2.9 16.51±1.65±2.56 32.7±3.5±3.5 11.79±0.79 36.0±3.3

26 2.9 — 3.0 14.07±3.28±3.32 35.6±6.0±3.8 9.75±2.50 38.6±6.1

We consider the six divisions of our sample: splitting events evenly between earlier and
later datasets; D+ andD− decays; tight [1σ(∆E)×1σ(mBC)]; and loose [3σ(∆E)×3σ(mBC)]
signal box cuts. Other systematic variations common to all of the models (model C, model I2,
and QMIPWA), are as follows:

• Float fsig. We find that it is always consistent with its nominal value of 0.9892.

• Drop the background term and set fsig = 1.

• Float the efficiency coefficients in a simultaneous fit to data and MC samples. In this
case variations of the efficiency parameters are constrained by the MC sample.

• Improve the precision of the calculation of the normalization integrals from Eq. (3) by
an order of magnitude.
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TABLE IX: QMIPWA: Results for π+π+ S wave, which are also shown by dots with error bars

in Fig. 12. Variation of the χ2 and number of degrees of freedom, ∆ν, is shown with respect to

model I2.

Bin m2
ππ (GeV/c2)2 I = 2 π+π+ S wave

# Bin range Magnitude (a.u.) Phase (◦)

1 0.1 — 0.2 3.62±0.44 –113.9±7.0

2 0.2 — 0.3 4.31±0.37 –115.8±4.7

3 0.3 — 0.4 4.51±0.33 –120.7±3.6

4 0.4 — 0.5 6.17±0.33 –116.8±2.4

5 0.5 — 0.6 6.84±0.34 –118.9±2.1

6 0.6 — 0.7 8.13±0.35 –121.8±1.8

7 0.7 — 0.8 7.77±0.35 –121.7±1.9

8 0.8 — 0.9 8.65±0.35 –125.5±1.7

9 0.9 — 1.0 8.95±0.37 –126.3±1.6

10 1.0 — 1.1 9.61±0.42 –127.9±1.5

11 1.1 — 1.2 11.69±0.55 –127.9±1.3

12 1.2 — 1.3 10.04±0.93 –132.0±1.5

13 1.3 — 1.4 12.43±1.01 –131.0±1.2

14 1.4 — 1.5 12.92±0.98 –131.1±1.3

15 1.5 — 1.6 9.51±0.98 –131.4±1.8

16 1.6 — 1.7 11.56±1.00 –134.7±1.8

17 1.7 — 1.8 11.75±1.10 –142.5±2.1

18 1.8 — 1.9 10.52±2.02 –156.1±5.2

FF(%) 9.8±0.4

∆χ2/∆ν (390 − 416)/(−36 + 20)

We repeated the fits with the radii for the Blatt-Weisskopf [19] form factors a factor of
2 larger and smaller than their nominal values and found negligible change in the central
result.

Depending on the model we apply additional systematic variations, which are also in-
cluded in systematic uncertainties. In model C and model I2, discussed in Sec. IV, we
consider variation of the resonance parameters as follows:

• Float parameters of the K∗(892) and K∗

0 (1430) resonances. The mass and width are
shown in Table IV.

• Float parameters of the K∗

2 (1430) or K
∗(1680) resonances. The mass and width are

shown in Table IV.

• Add a K∗(1410) contribution. We find that it is not significant: FFK∗(1410) < 0.1% at
90% C.L.

• In model C we test the event sample selected without a kinematic fit with appropriate
coefficients for efficiency and background shapes. We find that the resulting variation
is negligible, and this study is not performed for the other fit models.
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TABLE X: Results for Kπ P and D binned waves using model I2, which is also shown by dots with

error bars in Figs. 13 and 14, respectively. Variation of the χ2 and number of degrees of freedom,

∆ν, is shown with respect to model I2. The D wave is used only in the range [0.9,2.7] (GeV/c2)2

as explained in the text.

Bin m2
Kπ (GeV/c2)2 Binned P wave for K∗(1680) Binned D wave for K∗

2 (1430)

# Bin range Magnitude (a.u.) Phase (◦) Magnitude (a.u.) Phase (◦)

1 0.4 — 0.5 1.96±1.26 41.0±28.0 · · · · · ·
2 0.5 — 0.6 2.90±1.12 199.2±11.2 · · · · · ·
3 0.6 — 0.7 0.67±0.93 50.1±15.8 · · · · · ·
4 0.7 — 0.8 0.81±0.36 46.4±18.4 · · · · · ·
5 0.8 — 0.9 0.60±0.35 102.3±33.7 · · · · · ·
6 0.9 — 1.0 0.58±1.36 73.2±25.7 0.71±0.17 –61.8±23.6

7 1.0 — 1.1 1.87±0.77 79.5±7.01 0.31±0.14 –5.0±69.6

8 1.1 — 1.2 0.09±0.42 51.7±22.4 0.66±0.16 –15.6±27.2

9 1.2 — 1.3 1.12±0.38 81.3±10.6 1.14±0.19 –50.0±12.9

10 1.3 — 1.4 1.49±0.33 74.4±8.79 1.09±0.19 –28.7±13.1

11 1.4 — 1.5 0.81±0.33 83.9±13.3 0.97±0.19 –9.9±14.2

12 1.5 — 1.6 1.25±0.33 80.8±10.6 1.30±0.21 –15.5±14.0

13 1.6 — 1.7 1.30±0.34 73.3±9.79 1.45±0.24 11.6±13.5

14 1.7 — 1.8 1.77±0.36 77.7±8.34 2.18±0.26 –16.3±10.2

15 1.8 — 1.9 1.16±0.40 88.1±11.1 3.28±0.28 24.4±7.83

16 1.9 — 2.0 1.79±0.45 90.9±9.91 5.77±0.38 31.9±5.45

17 2.0 — 2.1 1.86±0.42 102.1±11.2 4.77±0.52 70.2±5.90

18 2.1 — 2.2 2.42±0.45 104.3±12.2 4.45±0.70 100.2±7.41

19 2.2 — 2.3 2.58±0.52 115.7±12.6 4.69±0.97 127.8±8.52

20 2.3 — 2.4 1.66±0.55 119.6±16.6 3.79±1.13 116.8±16.3

21 2.4 — 2.5 3.76±0.60 108.8±11.4 0.18±1.42 –3.3±84.7

22 2.5 — 2.6 4.19±0.75 113.6±13.7 4.86±1.72 135.8±33.2

23 2.6 — 2.7 6.71±0.98 105.0±16.9 1.54±2.58 184.8±78.5

24 2.7 — 2.8 3.35±1.59 142.4±29.4 · · · · · ·
25 2.8 — 2.9 7.03±2.49 183.2±22.5 · · · · · ·
26 2.9 — 3.0 32.66±17.9 232.2±11.6 · · · · · ·

FF(%), 2× 0.20±0.03 0.15±0.01

∆χ2/∆ν (373 − 416)/(−52 + 20) (400 − 416)/(−36 + 20)

• In QMIPWA we use the binned K−π+ S wave as a histogram without linear interpo-
lation.

None of these variations reveal an obviously dominant source of systematic uncertainty.
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B. Additional cross-checks

Common cross-checks listed below bring us to models that are different enough that we
do not include these results in the total systematic uncertainty.

◦ Remove the K∗

2 (1430) resonance contribution. We find a significant degradation of
the fit quality. For example, ∆χ2 = 370 in model C.

◦ Remove the K∗(1680) resonance contribution. We find a significant degradation of
the fit quality. For example, ∆χ2 = 250 in model C.

Based on these fits we conclude that the K∗

2(1430) and K∗(1680) resonances cannot be
removed. Their contributions are small (FF< 1%) but significant and the fit quality is
very poor without these resonances. We apply a similar backward check for model I2 and
QMIPWA:

◦ We remove the I = 2 π+π+ S wave contribution and get a poor quality fit.

FIG. 8: Projections of the fit to the Dalitz plot with model C on (a) m2(Kπ) (two entries per

event) and (b) m2(ππ) variables. Residuals between data and the total p.d.f. are shown by dots

with statistical error bars on the top insets along with minor contributions from the K∗(1680) and

K∗

2 (1430) resonances, plotted with factor ×4.
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FIG. 9: Projections of the fit to the Dalitz plot with model I2 on (a) m2(Kπ) (two entries per

event) and (b) m2(ππ) variables. Residuals between data and the total p.d.f. are shown by dots

with statistical error bars on the top insets along with minor contributions from the K∗(1680) and

K∗

2 (1430) resonances, plotted with factor ×10.

VII. DISCUSSION

A. K
∗

0
(1430) and K

∗(892) parameters

The K∗

0 (1430) parameters, which we obtain in fits with the isobar models, listed in
Table IV as well as in Tables V-VII, are consistent with each other and are significantly
different from the PDG [1] values which are dominated by the LASS measurement. Our
data prefer a K∗

0 (1430) resonance that is 50 MeV/c2 heavier and about 2 times narrower.
Our result is consistent with E791 [6] and FOCUS [23] measurements. Possible explanations
include that the K∗

0 (1430) resonance parameters depend on its production mechanism which
are different in Kπ scattering and D-meson decays or that the K∗

0 (1430) parameters are
strongly model-dependent. In particular, they may depend on interference with other S
wave contributions.

In all of our fits, as seen in Tables IV and VII, theK∗(892) parameters are consistent with
each other. The measured masses are consistent with the nominal value [1], but the widths
are about 5 MeV/c2 narrower. The K∗(892) width in the PDG is an average value over
about 20 experimental measurements. Our measurement does not contradict any single
result included in PDG. The largest difference is about 3 standard deviations from the
LASS value. We also tested the K∗(892) width model dependence. The largest variation is
expected from applying Blatt-Weisskopf form factors. A variation of the radial parameters
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FIG. 10: Projections of the fit to the Dalitz plot with QMIPWA on (a) m2(Kπ) (two entries per

event) and (b) m2(ππ) variables. Residuals between data and the total p.d.f. are shown by dots

with statistical error bars on the top inset along with minor contributions from the K∗(1680) and

K∗

2 (1430) resonances, plotted with factor ×10.

from zero to 4 times their nominal values causes a variation in the width of 0.7 MeV/c2, which
cannot explain the large difference with the PDG average. Recent results from FOCUS [24]
and Belle [25] also indicate a K∗(892) width smaller than the PDG value.

B. Partial waves

The factorized Gaussian form factors used in model C for theKπ S wave components may
cause an enhancement of the complex function magnitude at low Kπ mass, as mentioned in
Sec. IVB. However, the form factor is a real function and does not change the phase of the
complex S wave. In model I2 and QMIPWA we measure the total Kπ S wave amplitude
without using a form factor. It means that the measured S wave absorbs the form factor.
The measured S wave magnitude is essentially constant up to 1.4 GeV/c2, as demonstrated
in Fig. 11. The phase of the complex S wave amplitude shows smooth variation from –80◦

at Kπ threshold to 40◦ at 1.4 GeV/c2. At higher mass the amplitude is distorted by a
contribution from the K∗

0 (1430) resonance. Our data require a dominant contribution from
the Kπ S wave, which at low mass is not well described as a regular resonance structure.

In QMIPWA the S wave is measured in a model-independent way, while the P and D
waves are parametrized by Breit-Wigner resonances. In cross-checks we add more freedom
to the P and D waves by replacing the K∗(1680) and K∗

2 (1430), respectively, Breit-Wigner
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FIG. 11: The magnitude and phase of the Kπ S wave in model I2 and QMIPWA. The dots with

error bars for statistical uncertainties and the solid curve show the binned Kπ S wave without

K∗

0 (1430) and the total Kπ S wave from Table VIII, respectively. Other curves show the S wave

components of model I2 with parameters from Table VII.

shapes with the binned amplitudes, as illustrated in Figs. 13 and 14. We did not find
improvement in the fit quality or any significant deviation of the binned wave from the
analytic function of the isobar model. The systematic uncertainties described above are
larger than variations caused by the possible model dependence of the P and D waves.

In model I2 and QMIPWA we find that the I = 2 π+π+ S wave amplitude is not consistent
with a constant term as seen in Fig. 12. Its behavior is well modeled by the analytic function
[Eq. (26)]; the binned wave also describes the behavior consistently.

C. Comparison of fit models

Note that in model C, model I2, and QMIPWA (Tables IV-VII) the magnitudes and
phases for the resonance contributions K∗(892) (by construction), K∗

0(1430), K
∗

2 (1430), and
K∗(1680) are consistent. On the other hand, the fit fractions for the resonances differ
significantly among the models. The differences in fit fractions arise from our models of
the Kπ S wave and the I = 2 π+π+ S wave when it is included. Indeed, in model C the
Kπ S wave amplitude is represented by the NR term and a broad Breit-Wigner resonance
for the κ. They have small magnitudes, and they interfere constructively. This leads to
small fit fractions and the sum of all fit fractions is less than 100%. In model I2 the Kπ S
wave amplitude is represented by the NR term and the complex pole for the κ. The I = 2
π+π+ S wave is also included in this model. These amplitudes are large, and they interfere
destructively. This leads to large fit fractions, and the sum of all fit fractions is greater than
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FIG. 12: The magnitude and phase of the I = 2 π+π+ S wave in model I2 and QMIPWA. The dots

with error bars for statistical uncertainties represent results from Table IX. Other curves show the

I = 2 π+π+ S wave of the model I2 and QMIPWA with parameters from Table VII.

100%. Both models describe the total Kπ S wave with complex functions that qualitatively
show very similar behavior. However, the fit fractions, especially for the components of the
Kπ S wave, strongly depend on the assumed composition of this amplitude.

In contrast the QMIPWA represents the Kπ S wave amplitude as a single function. We
make no assumptions about the composition of the Kπ S wave in this case. It also includes
the I=2 π+π+ S wave, which plays a key role in improving the fit quality. We feel this
approach is the most reliable presentation of results for the fit fractions for resonance and
S wave contributions to the D+ → K−π+π+ decay.

VIII. SUMMARY

We describe a partial wave analysis of the D+ → K−π+π+ events on the Dalitz plot.
We use the CLEO-c data set of 572 pb−1 of e+e− collisions accumulated at the ψ(3770),
which corresponds to a sample of 1.6 × 106 D+D− pairs produced in the process e+e− →
ψ(3770) → D+D−. We select 140793 candidate events for the Dalitz plot with a small
background of 1.1%. We compare our results with the best previous measurements from
E791 [6] using the isobar model. Our results agree with the E791 measurement, as shown
in Table V for their best model. The fit quality can be improved if we add the I = 2 π+π+

S wave contribution, as presented in Table VII.
We apply a model-independent approach, developed in Ref. [7], to measure the magnitude

and phase of the Kπ S wave in the invariant mass range from threshold to the maximum
value in this decay. In contrast to E791, we have measured the Kπ S wave without factor-
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FIG. 13: The magnitude and phase of the Kπ P wave in model I2 and QMIPWA. The dots with

error bars for statistical uncertainties represent results from Table X. Other curves show the P

wave components of model I2 and QMIPWA with parameters from Table VII.

ization of the form factor for scalar resonances. Our results on the Kπ S wave phase and
magnitude measurement are presented in Table VIII and in Fig. 11. The accuracy of the
Kπ S wave measurement is improved, compared to the only previous measurement [7]. We
find that the total observed S wave magnitude in the D+ → K−π+π+ decay is essentially
constant from Kπ production threshold to 1.4 GeV/c2. The phase shows smooth variation
from –80◦ to 40◦ in the same range. At higher invariant massmKπ > 1.4 GeV/c2, the S wave
behavior is dominated by the K∗

0 (1430) resonance. We find that the P wave contribution is
dominated by K∗(892) and K∗(1680) Breit-Wigner resonances, and the D wave has only a
contribution from K∗

2 (1430). Using binning techniques, we find no significant deviation of
the P and D waves from the isobar model, as demonstrated in Figs. 13 and 14.

In the model-independent approach for the I = 2 π+π+ S wave we obtain the binned
amplitude parameters, listed in Table IX and shown in Fig. 12, which are consistent with the
analytic form of this wave. We find that the I = 2 π+π+ S wave has a nonuniform variation
in the amplitude across the m(π+π+) kinematic range with a fit fraction of 10%–15%. As
expected, the measured amplitude behavior and the fit fraction of the Kπ S wave changes
slightly with the addition of the I = 2 π+π+ S wave. The addition of the I = 2 π+π+ S
wave to either the isobar model or the model-independent partial wave approach is the key
piece that gives good agreement with the data in both cases.
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FIG. 14: The magnitude and phase of the Kπ D wave in model I2 and QMIPWA. The dots with

error bars for statistical uncertainties represent results from Table X. Other curves show the D

wave components of model I2 and QMIPWA with parameters from Table VII.
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APPENDIX A: APPENDIX: KINEMATIC VARIABLES AND ANGULAR DIS-

TRIBUTIONS

Following previous CLEO analyses (see, for example, Ref. [18]) we use the angular dis-
tributions [Eqs. (10)–(12)] obtained from a covariant-tensor formalism. The E791 form
[7] was applied to the orbital momentum partial wave decomposition using the term
(−2PaPc)

LPL(cos θ) in stead of ΩL(s, t) in Eq. (9). Here PL(cos θ) is a Legendre polynomial,
Pa, Pc, and θ are the momenta and the angle between particles a and c in the resonance
R rest frame, respectively. In this section we show that both approaches are equivalent up
to constant coefficients. As a by-product we also obtain expressions for the decay momenta
used in the Blatt-Weisskopf form factors [Eqs. (13)–(16)].

The kinematic variables in the decay under study, schematically shown in Fig. 6, can
be expressed in terms of invariant variables (masses and invariant masses) in the decaying
particle d (D+ meson) or resonance R rest frames. The energy and momentum of particle a in
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the resonance R or (ab) rest frame can be obtained from the 4-momentum balance equation

pb = pR− pa, where pR = (mab,~0) and pa = (Ea,Pa). Then, p
2
b = m2

b = m2
ab +m2

a − 2mabEa,
giving the energy

Ea =
m2

ab +m2
a −m2

b

2mab
, (A1)

and relevant momentum squared

P2
a = E2

a −m2
a =

1

4

(

m2
ab − 2m2

a − 2m2
b +

(m2
a −m2

b)
2

m2
ab

)

. (A2)

The energy and momentum of the particle c in the resonance R rest frame can be obtained
from the particle d invariant mass squared, m2

d = (pc + pR)
2. In the resonance rest frame

pc = (Ec,Pc) and pR = (mab,~0), and therefore m2
d = m2

c + m2
ab + 2mabEc, from which we

find its energy

Ec =
m2

d −m2
ab −m2

c

2mab
, (A3)

and the associated momentum squared

P2
c = E2

c −m2
c =

1

4

(

m2
ab − 2m2

d − 2m2
c +

(m2
d −m2

c)
2

m2
ab

)

. (A4)

The energy and momentum of the same particle c in the D meson rest frame, denoted
here by the asterisk, have different expressions:

E∗

c =
m2

d −m2
ab +m2

c

2md
, P∗2

c = E∗2
c −m2

c . (A5)

The angular distributions in the E791 [7] analysis are defined by the Legendre polynomials
PL(cos θ),

P0(x) = 1, P1(x) = x, P2(x) =
3x2 − 1

2
, P3(x) =

5x3 − 3x

2
, . . . , (A6)

where θ is the angle between particles a and c in the resonance R rest frame. This cos θ
can be expressed through the known energies and momenta of particles a and c and their
measured invariant mass squared m2

ac = (pa + pc)
2 = m2

a +m2
c + 2EaEc − 2PaPc cos θ, so

cos θ =
m2

a +m2
c + 2EaEc −m2

ac

2PaPc
. (A7)

Substituting Ea and Ec from Eqs. (A1) and (A3) in the numerator of Eq. (A7) we get

cos θ =
1

4PaPc

(

m2
bc −m2

ac +
(m2

d −m2
c)(m

2
a −m2

b)

m2
ab

)

. (A8)

Note that these angular distributions are equivalent to formulas used in Eqs. (10)–(12) up
to constant factors. Indeed, comparing the expressions for (−2PaPc)

LPL(cos θ) from Ref. [7]
with ΩL we get
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(−2PaPc)
0P0(cos θ) = 1 = ΩL=0, (A9)

(−2PaPc)
1P1(cos θ) = −2PaPc cos θ =

1

2
ΩL=1, (A10)

(−2PaPc)
2P2(cos θ) = 4(PaPc)

2 3 cos2 θ−1
2

=
3

8
ΩL=2. (A11)

[1] W.-M. Yao et al., Journal of Physics G 33, 1 (2006).

[2] J. Adler et al. (MARK III Collaboration), Phys. Lett. B 196, 107 (1987).

[3] M.P. Alvarez et al. (NA14/2 Collaboration), Z. Phys. C 50, 11 (1991).

[4] J.C. Anjos et al. (E691 Collaboration), Phys. Rev. D 48, 56 (1993).

[5] P.L. Frabetti et al. (E687 Collaboration), Phys. Lett. B 331, 217 (1994).

[6] E.M. Aitala et al. (E791 Collaboration), Phys. Rev. Lett. 89, 121801 (2002).

[7] E.M. Aitala et al. (E791 Collaboration), Phys. Rev. D 73, 032004 (2006).

[8] R.H. Dalitz, Philos. Mag. 44, 1068 (1953).

[9] D. Bugg, hep-ex/0510014.

[10] D. Bugg, Phys. Lett. B 632, 471 (2006).

[11] J.A. Oller, Phys. Rev. D 71, 054030 (2005).

[12] W. Hoogland et al., Nucl. Phys. B 126, 109 (1977); N.B. Durusoy et al., Phys. Lett. 45B,

517 (1973); B.S. Zou et al., published in Hadron 2003 Proceedings, AIP Conf. Proc. 717:347

(2004) [hep-ph/0405118].

[13] G. Viehhauser, Nucl. Instrum. Methods A 462, 146 (2001); D. Peterson et al., Nucl. Instrum.

Methods Phys. Res., Sect. A 478, 142 (2002); Y. Kubota et al., Nucl. Instrum. Methods Phys.

Res., Sect. A 320, 66 (1992); R.A. Briere et al. (CESR-c and CLEO-c Taskforces, CLEO-c

Collaboration), Cornell University, LEPP Report No. CLNS 01/1742 (2001) (unpublished).

[14] S. Dobbs et al. (CLEO Collaboration), Phys. Rev. D 76, 112001 (2007).

[15] H. Albrecht et al., Phys. Lett. B 229, 304 (1989).

[16] G. Bonvicini et al. (CLEO Collaboration), Phys. Rev. D 76, 012001 (2007).

[17] D.J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[18] S. Kopp et al. (CLEO Collaboration), Phys. Rev. D 63, 092001 (2001).

[19] J.M. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics, Wiley, New York, 1951, p. 361.

[20] N.A. Tornqvist, Z. Phys. C 68, 647 (1995).

[21] N.N. Achasov and G.N. Shestakov, Phys. Rev. D 67, 114018 (2003).

[22] D.E. Groom et al., The European Physical Journal C 15, 1 (2000).

[23] J.M. Link et al. (FOCUS Collaboration), Phys. Lett. B 653, 1 (2007).

[24] J.M. Link et al. (FOCUS Collaboration), Phys. Lett. B 621, 72 (2005).

[25] D. Epifanov et al. (Belle Collaboration), Phys. Lett. B 654, 65 (2007).

33

http://arxiv.org/abs/hep-ex/0510014
http://arxiv.org/abs/hep-ph/0405118

	Introduction
	Detector and experimental technique
	Detector
	Event Reconstruction
	Fit method
	Efficiency Parametrization
	Background Parametrization

	Decay amplitude parametrization
	Matrix element
	Partial K amplitudes
	Resonance shapes
	Isospin-two ++ S wave amplitude
	Binned amplitude
	Fit fraction
	Expected contributions

	Fits to data using the isobar model
	Comparison with E791 Model C
	Variations of Model C
	Model I2
	Variations of Model I2

	Quasi-model-independent partial wave analysis
	QMIPWA for K S wave
	Cross-check for binned I=2 ++ S wave
	Cross-checks for binned K P and D waves

	Cross-checks and systematic uncertainties
	Systematic uncertainties
	Additional cross-checks

	Discussion
	K0*(1430) and K*(892) parameters
	Partial waves
	Comparison of fit models

	Summary
	Acknowledgments
	Appendix: Kinematic variables and angular distributions
	References

