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Abstract 

Background: Butanol is currently one of the most discussed biofuels. Its use provides many benefits in compari-

son to bio-ethanol, but the price of its fermentative production is still high. Genetic improvements could help solve 

many problems associated with butanol production during ABE fermentation, such as its toxicity, low concentra-

tion achievable in the cultivation medium, the need for a relatively expensive substrate, and many more. Clostridium 

pasteurianum NRRL B-598 is non-type strain producing butanol, acetone, and a negligible amount of ethanol. Its main 

benefits are high oxygen tolerance, utilization of a wide range of carbon and nitrogen sources, and the availability of 

its whole genome sequence. However, there is no established method for the transfer of foreign DNA into this strain; 

this is the next step necessary for progress in its use for butanol production.

Results: We have described functional protocols for conjugation and transformation of the bio-butanol producer C. 

pasteurianum NRRL B-598 by foreign plasmid DNA. We show that the use of unmethylated plasmid DNA is necessary 

for efficient transformation or successful conjugation. Genes encoding DNA methylation and those for restriction-

modification systems and antibiotic resistance were searched for in the whole genome sequence and their homolo-

gies with other clostridial bacteria were determined. Furthermore, activity of described novel type I restriction system 

was proved experimentally. The described electrotransformation protocol achieved an efficiency 1.2 × 102 cfu/

μg DNA after step-by-step optimization and an efficiency of 1.6 × 102 cfu/μg DNA was achieved by the sonopora-

tion technique using a standard laboratory ultrasound bath. The highest transformation efficiency was achieved 

using a combination of these approaches; sono/electroporation led to an increase in transformation efficiency, to 

5.3 × 102 cfu/μg DNA.

Conclusions: Both Dam and Dcm methylations are detrimental for transformation of C. pasteurianum NRRL B-598. 

Methods for conjugation, electroporation, sonoporation, and a combined method for sono/electroporation were 

established for this strain. The methods described could be used for genetic improvement of this strain, which is suit-

able for bio-butanol production.
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Background
Interest in biofuel production, which could represent 

a useful substitute for standard fuels derived from fos-

sil resources, has increased significantly over the last 

decade [1]. Butanol formed during acetone-butanol-

ethanol (ABE) fermentation by solventogenic clostridia 

represents an interesting option for biofuel production, 

especially taking into account its physico–chemical prop-

erties that better suit requirements of gasoline motors 

compared to ethanol. Although butanol production by 

ABE has been known for more than 100  years [2], its 

industrial-scale production is hampered by a low final 

concentration, lower yield compared to ethanol, and in 

most species, an association of butanol production with 

sporulation. In addition, clostridia, including solvento-

genic species, are a polyphyletic group of bacteria, where 

transfer of knowledge gathered for one species, or even 

strain to another species/strain is difficult if not impossi-

ble. Most knowledge regarding the ABE process has been 

obtained from a single strain, Clostridium acetobutylicum 

ATCC 824, which differs in many features from other sol-

ventogenic clostridia [3]. Most other species, with the 

exception of C. beijerinckii NCIMB 8052 [4], have been 

described relatively poorly. �ese drawbacks have pre-

cluded the biotechnological production of bio-butanol 

on a larger scale [5]. Genetics and metabolic engineering 

represent new approaches with the possibility of signifi-

cantly improving the ABE process.

�e existence of methods for genetic manipulation 

of industrial microorganisms is generally essential for 

improving their properties to be appropriate for bio-

fuel production. However, these methods are also very 

important for better, quicker and more effective research 

that could lead to the acquisition of important informa-

tion useful in industrial processes. �e most commonly 

used method for introducing foreign DNA into bacte-

rial cells is transformation (an exogenous molecule of 

DNA is introduced directly through the cell membrane), 

conjugation (mediated by tight contact between donor-

recipient cells and pili formation), and transduction 

(mediated by virus particles). In most cases, transforma-

tion of Gram-positive bacteria is more difficult compared 

to Gram-negatives and the development of transforma-

tion protocols is demanding. Gram-positive bacteria pos-

sess a thick peptidoglycan layer that is further enveloped 

by a protein S-layer and these bacteria also have only 

one cytoplasmic membrane, whose distortion can lead 

to immediate disruption of cell homeostasis and often 

death.

Transformation of gram-positive, strictly anaerobic 

bacteria of the genus Clostridium, is also usually accom-

panied by many drawbacks. For the introduction of for-

eign DNA into clostridial cells, several protocols have 

been described, based on conjugation with Escherichia 

coli [6, 7] or Enterococcus [8] donors, PEG-induced pro-

toplast transformation [9, 10] and more recently, elec-

troporation [11–14]. In addition, some less frequently 

used transformation approaches such as chemical treat-

ment by Tris-PEG method [15] or sonoporation [16] have 

been tested.

Here, we describe the development of methods for 

genetic modification of C. pasteurianum NRRL B-598—a 

solventogenic bacterium producing butanol, acetone, 

and ethanol [17]. �is strain is unique in its exceptional 

oxygen resistance, which is much higher than the stand-

ard butanol-producing model strains such as C. pas-

teurianum ATCC 6013, C. beijerinckii NCIMB 8052 or 

C. acetobutylicum ATCC 824. Also the whole genomic 

sequence is available for this strain [18, 19]. Moreover, 

only one system for genetic manipulation of C. pasteu-

rianum species (type strain ATCC 6013) has been pub-

lished [12]. We found that the development of methods 

for introducing DNA into the non-type, and at first 

sight untransformable, strain C. pasteurianum NRRL 

B-598, was problematic and completely different from 

other clostridia. We believe that our contribution to this 

field will strengthen knowledge on bacterial (especially 

Clostridium) transformation methods and encourage 

those who tackle similar tasks, trying to apply protocols 

developed for different species/strains, to their particular 

microorganisms.

Results
Initial transformation attempts

Initially, we conducted a series of pilot experiments based 

on previous descriptions of the transfer of foreign DNA 

to other clostridial species, as described in the litera-

ture [6, 8, 20, 21]. First, we tested various conditions for 

plasmid transfer by conjugation using various growth 

media (TYA, RCM, CBM, P2, YTG), time of conjugation 

(5–24 h), donor:recipient ratios (from 1:10 to 10:1) and, 

when no transformants resulted, electroporation was 

tested using various growth states of cells (OD 0.4–1.2), 

electroporation buffers (SMP, PEG, glycerol), cuvettes 

(0.2 and 0.4  cm gap), and electrical parameters (field 

strength 2.5–15  kV  cm−1, time constant 5–20  ms). We 

also used plasmids from the pMTL80000 series encoding 

different replicons and antibiotic resistance markers [21]; 

this was to minimize the possibility that the plasmids 

may encode unsuitable origins of replication or antibiotic 

resistance for our strain. Unfortunately, no conditions 

that we tested during these pilot experiments led to suc-

cessful transformation.

During pilot experiments, we discovered that strain 

C. pasteurianum NRRL B-598 was naturally resistant to 

chloramphenicol and thiamphenicol, therefore plasmids 
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encoding thiamphenicol resistance, classically used as 

a selection marker for most clostridial strains, were not 

applicable. On the other hand, such a marker could be 

used for counter-selection during conjugation. We also 

verified that C. pasteurianum NRRL B-598 was not resist-

ant to erythromycin or spectinomycin (20 μg/μl, 700 μg/

μl resp.) at concentrations previously reported in the lit-

erature [21], but when a lower concentration of antibiotic 

was used, or too many cells were seeded onto agar plates, 

a very strong background growth was observed. Simi-

larly, almost normal growth of cells was observed after 

longer periods (2–3  days) in TYA broth supplemented 

with appropriate concentrations of antibiotics.

Bioinformatics analysis of the C. pasteurianum NRRL B-598 

genome

Because all attempts at plasmid transformation of our 

strain failed, we decided to perform a more detailed bioin-

formatics analysis. �e main purpose was to reveal genes 

encoding putative restriction-modification (R-M) sys-

tems that could present a problem during transformation 

of clostridia, and genes encoding putative DNA methyl-

transferases that could be connected with these R-M sys-

tems for protection of their own DNA [8, 12, 22, 23].

We took advantage of SMRT sequencing data used for 

the genome assembly [19] to study DNA methylation 

on a genome-wide scale. We analyzed all base modifi-

cations to determine modified sequence motifs. Out of 

the total, 2033 positions in the C. pasteurianum NRRL 

B-598 genome were detected as being methylated (m4C 

or m6A) with the majority being m6A methylations (1996 

positions). Both detected motifs (GAAYNNNNNNN-

RTANYC, GAYNNNNNNCTAG) demonstrated novel 

recognition sequences that have not been described previ-

ously. Letters in bold denote methylated bases. Highlighted 

‘T’ represents methylation of ‘A’ in the opposite strand.

�e data were deposited in the REBASE PacBio data-

base (http://rebase.neb.com/cgi-bin/pacbiolist) [24] and 

were connected to the R-M system based on homology 

searching. �e detected methylation motifs, both m6A 

types, are summarized in Table 1, along with the corre-

sponding methyl transferase (MT)-encoding genes.

In addition to above-mentioned type I R-M sys-

tems, three more putative R-M systems were predicted, 

including two type II R-M systems and a single type IV 

R-M system. A summary of all five systems is found in 

Table 2. BLAST results also showed that no genes homol-

ogous to E. coli Dam and Dcm were present in the C. 

pasteurianum NRRL B-598 genome.

We also searched for antibiotic resistance genes. In 

total, 28 ORFs with antibiotic resistance functions, 

divided into nine resistance classes, were identified in 

the genome. All of these ORFs were assigned GenBank 

accession numbers for the relevant protein product 

(Fig. 1). As expected, we verified the presence of a gene 

for chloramphenicol acetyltransferase (cat, [GenBank: 

ALB45592]) that encoded resistance to chloramphenicol 

and thiamphenicol, as observed during our experiments. 

Moreover, genes encoding erythromycin or spectinomy-

cin resistance were not identified. A substantial part of 

the antibiotic resistance of C. pasteurianum NRRL B-598 

is mediated by an antibiotic efflux system.

Investigation of potential restriction barriers

As described previously, nucleases can be located on the 

surface of cells and in some cases and degradation of 

DNA can already start after adding DNA to the cells [25]. 

In other cases, enzymes with nuclease activity are located 

in the cytoplasm. Hence we examined nuclease activities 

in both the protoplast crude lysate (without any parts of 

the cell envelope) as well as in the whole cell extract.

We did not detect any restriction activity when 

pMTL83253 (plasmid does not contain motifs of pre-

dicted type I R-M systems) was incubated with crude 

extracts and whole cell lysate. In the case of pMTL82254 

(contains one of each predicted motifs), plasmid DNA 

was nearly completely digested in broad spectrum of cul-

tivation conditions. Restriction did not provide separate 

bands (DNA fragments) like in case of cultivation with 

crude extract from C. pasteurianum DSM 525, but led to 

one fuzzy smear (see Fig. 2). �e same restriction pattern 

was obtained at 30 and 37 °C.

In�uence of methylation and establishment of an 

electroporation protocol

As a next step, we wanted to test whether plasmid DNA 

without Dam and Dcm methylation could be used for 

transformation. We extracted plasmids from E. coli 

Table 1 Methylated motif detected for C. pasteurianum NRRL B-598

R-M system  
type

Motifs (±strand) No. in  
genome

No. detected 
(±strand)

% detected 
(±strand)

Locus tag Nomenclature

I GRNTAYNNNNNNNRTTC/
GAAYNNNNNNNRTANYC

406 385/380 94.83/93.60 X276_10630 M.Cpa598I

I CTAGNNNNNNRTC/
GAYNNNNNNCTAG

606 573/560 94.55/92.41 X276_12360 M.Cpa598II

http://rebase.neb.com/cgi-bin/pacbiolist
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JM110 (dam−/dcm−), a strain used for preparation of 

unmethylated DNA. After pilot electrotransformation 

experiments using unmethylated pMTL83253 (con-

taining the pCB102 origin derived from C. butyricum) 

and conditions described previously for C. beijerinckii 

[25], a few erythromycin-resistant colonies (1–12  CFU) 

were obtained after 48  h of growth on selective agar 

medium. Also other tested plasmids (pMTL83353-

pCB102 replicon and spectinomycin selection marker; 

pMTL82251-pBP1 replicon; pMTL84251-pCD6 replicon; 

pMTL85251-pIM13 replicon) were transformed success-

fully but the CFU yields were much lower (a maximum 

of 4 CFU). Because of the best transformation efficiency 

achieved, as well as the fact that the pCB102 origin is the 

replicon that is used, for example, in standard pMTL007 

plasmids (ClosTron system) [7] used for fast and specific 

knock-outs, we performed all following experiments with 

pMTL83253. �e presence of pMTL83253 in erythro-

mycin-resistant colonies was verified by its isolation and 

restriction digestion by PstI. Bands of the digested DNA 

were compared to bands of pMTL83253 isolated from E. 

coli and digested in the same way (Fig. 3). �e presence of 

pMTL83253 was confirmed in all erythromycin-resistant 

colonies that we tested.

After achieving successful transformation, we aimed 

to improve transformation efficiency for unmethylated 

plasmid DNA because the twelve colonies observed 

(observed maximum) corresponded to a transformation 

efficiency of only 6  cfu/μg DNA, which is very low and 

would not be compatible with the use of this method for 

genetic manipulations.

Initially, we tested different voltages (2500–

15,000  V  cm−1). A second parameter, investigated and 

optimized during the first experiments, was the growth 

state of the cells, represented by culture optical density. 

For this purpose, we prepared electrocompetent cells 

from cultures of different OD600 (0.6–0.8 and 1.2–1.4), 

representing the previously used states of culture for 

electrotransformation of clostridia. When cells at an 

OD600 of around 1.2–1.4 were used, transformation effi-

ciency was significantly improved (Fig.  4). In the fol-

lowing electroporation experiments, time constant, as 

the main parameter of electroporation, was investigated 

using the best voltage and cell growth conditions (see 

Table 2 R-M systems in C. pasteurianum NRRL B-598 genome

a  R restriction endonuclease, M restriction endonuclease coupled methylation protein, S R-M speci�c protein

b  Predicted recognition site

Type Name Genea Meth. type Recognition Locus (X276_) Most similar (% identity)

I Cpa598IP R m6A GAAYNNNNNNNRTANYC 10620 CspMORF4102P (95 %)

M.Cpa598I M 10630 M.CbeG117ORFCP (97 %)

S.Cpa598I S 10635 S.CspMORF4102P (49 %)

I Cpa598IIP R m6A GAYNNNNNNCTAG 12355 Csc25775ORFJP (90 %)

M.Cpa598II M 12360 M.Csc25775ORFJP (96 %)

S.Cpa598II S 12365 S.Bme201ORFGP (56 %)

II M1.Cpa598ORF20205 M m5C – – M1.CboKAPB3ORF12160P (87 %)

M2.Cpa598ORF20205 M 01545 M2.CboKAPB3ORF12160P (84 %)

R1.Cpa598ORF20205 R – R2.Cce743ORF4007P (46 %)

R2.Cpa598ORF20205 R 01555 R1.Bce3081ORF2217P (31 %)

II M.Cpa598ORF2410P M m6A GATCb 20735 M.Cbe59BORF1284P (100 %)

IV Cpa598ORF12465P R – – 12465 Cdi15410ORFAP (93 %)

Fig. 1 Antibiotic resistance genes in C. pasteurianum NRRL B-598 

genome. Overall resistance in the center, resistance classes in the 

middle, and individual resistance genes (and their NCBI accession 

numbers) on the outer ring
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above). We observed that shorter electric pulses (5  ms) 

were significantly better for transformation efficiency 

compared to higher values. CFUs obtained using differ-

ent time constants are shown in Fig. 4. Square-wave pulse 

delivery was also tested, but transformation efficien-

cies were significantly lower than with exponential pulse 

mode (see Fig. 4).

We also tested a set of various electroporation buffers 

(30 % PEG 8000 and SMP buffer at different pH values). 

However, no increase in transformation efficiency was 

obtained in any other buffers during these experiments. 

�e addition of cell-wall weakening additives (differ-

ent concentrations of glycine, ampicillin or Tween 80) 

or treatments with various concentrations of lysozyme 

prior to electroporation, which have been described 

previously [12, 26] as methods for significantly increas-

ing transformation efficiency in Gram-positive bacteria, 

was not successful and no transformants or poor trans-

formation efficiencies were observed (data not shown). 

Generally, very poor growth was observed in the pres-

ence of low concentrations of glycine (more than 0.25 %), 

even with sucrose or PEG osmotic protection. Equally, 

addition of osmoprotective agents (various concentra-

tions of sucrose, PEG or lactose) to the recovery medium 

always had detrimental effects on growth and transfor-

mation efficiency, and addition of sucrose to the growth 

medium at high concentrations (0.2 M and more) led to 

a significant decrease in growth. Importantly, when cul-

ture degeneration [27] was observed (represented mainly 

by formation of very long, mycelium-like cells in log and 

late-log phase), transformation efficiency was reduced 

drastically and only a few colonies grew on the selective 

medium.

After optimization of electrotransformation steps, 

we wanted to better understand the influence of Dam 

and Dcm methylation individually to resolve which 

one is detrimental or potentially helpful in transfor-

mation. We compared electroporation transformation 

Fig. 2 Testing the presence of potential restriction barriers. Cultivation of pMTL83253 (a) and pMTL82254 (b) with crude protoplast extract (PE) and 

whole cell lysate (WL) prepared from C. pasteurianum NRRL B-598 at 37 °C. Positive control (c): cultivation of pMTL83253 with PE prepared from C. 

pasteurianum DSM 525 by the same method
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efficiencies of experiments where plasmid DNA iso-

lated from the following methylation-deficient E. 

coli strains were used: JM110 (dam−/dcm−), BL21 

(dam+/dcm−) and GM33 (dam−/dcm+). DNA 

extracted from E. coli DH5α (dam+/dcm+) was also 

used for confirmation that Dam and Dcm methyla-

tions represent a real obstacle to transformation, even 

when the optimized electrotransformation protocol 

was performed. A few erythromycin-resistant colonies 

(a maximum 8 of CFU) containing pMTL83253 were 

sometimes obtained if DNA from DH5α (fully meth-

ylated) was transformed. Relatively consistent results 

were achieved by transformation of hemimethylated 

plasmid DNA. Both methylations led to a significant 

reduction in transformation efficiency. �e influence of 

various methylations on electrotransformation efficien-

cies is summarized in Table 3.

Establishment of conjugational transfer

Conjugation was not observed when an E. coli strain sup-

porting Dam or Dcm methylation was used as a donor 

for transmission of pMTL80000 series plasmids to our 

strain used in the pilot experiment (see above). Based on 

our experience from electrotransformation experiments, 

we constructed a new conjugation donor strain by 

transmission of RP4  helper plasmid to E. coli JM110 

(dam−/dcm−) containing pMTL83253. With this donor 

ensuring transfer of unmethylated pMTL83253 between 

donor and recipient cells, we tested for conjugation. Con-

jugation using a methylation-deficient donor was suc-

cessful and many erythromycin-resistant colonies were 

Fig. 3 Confirmation of pMTL83253 presence in C. pasteurianum NRRL 

B-598 erythromycin-resistant transformants. a pMTL83253 isolated 

from E. coli JM110 (a1) and C. pasteurianum NRRL B-598 transformants 

(a2). b pMTL83253 isolated from E. coli JM110 (b2) and C. pasteuri-

anum NRRL B-598 transformants (b3) cleaved by PstI (resulting frag-

ments 370 bp and 4413 bp) compared to the GeneRuler 1 kb DNA 

ladder - Thermo Scientific (b1)

Fig. 4 Optimization of electrotransformation conditions. Influence 

of various voltages and cell growth state presented by OD600 (used 

conditions: 0.2 cm gap electroporation cuvette, time constant 11 ms) 

on transformation efficiency (a); influence of different time constants 

(conditions used: 0.2 cm gap electroporation cuvette, voltage 1 

000 V) on transformation efficiency (b); influence of square-wave 

pulse delivery (c)
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observed after 48 h. CFUs achieved after various conju-

gation times (6 or 24 h) are summarized in Table 4.

Use of sonoporation for transmission of plasmid DNA

As described previously, ultrasound could also be a use-

ful technique to use for transformation of Gram-positive 

bacteria. From a few sonoporation media tested (TYA 

broth, 0.5 M CaCl2, sterile water, SMP and PEG), only 10 

and 30 % PEG 8000 were suitable for relatively high-effi-

ciency transformation. No or only a few transformants 

were achieved when other sonoporation media were 

used. An adequate time of ultrasonic pulse was designed 

according to previous experiences with sonoporation of 

Gram-positive bacteria, where 20  s was identified as a 

critical time for ultrasound-mediated plasmid DNA deg-

radation but less time led to a reduction in transforma-

tion efficiency [16]. Sonoporation has been proven to be 

a very effective method of transformation that provides 

even higher transformation efficiencies than electro-

transformation. Efficiencies of transformation achieved 

by sonoporation are summarized in Table 4.

Combined sono/electroporation for increased 

transformation e�ciency

Because cell-wall weakening approaches were not suc-

cessful, we compiled a combined method using both 

sono- and electroporation for improving transformation 

efficiencies. During the first set of sono/electroporation 

experiments, we observed that a square-wave pulse pro-

vided more consistent results and significantly higher 

efficiency than the previously used exponential pulse. 

Also, different amounts of DNA (0.25–2  μg) were used 

for establishing the most efficient approach. Slightly 

higher voltage (1250  V) produced the most transfor-

mants in the square-wave mode and best transformation 

efficiency was achieved with 0.5 μg of plasmid DNA (see 

Fig.  5). By a combination of both techniques, we were 

able to reach a transformation efficiency of 5.3 × 102 cfu/

μg DNA (see Table 4).

Discussion
�e development of methods for efficient genetic manip-

ulation of clostridial bacteria is generally very challeng-

ing. Protocols for transmission of foreign DNA to many 

clostridial species have been developed [20], but these 

transformation procedures use very different conditions 

and their overall efficiencies vary by orders of magnitude 

from 100 to 106 transformants/μg of DNA. Furthermore, 

transformation conditions are often useful for only one 

strain and cannot readily be used for other species or 

even strains. At least, rational step-by-step optimization 

of the protocol is necessary in order to achieve consist-

ent results. A unique approach to transformation must be 

developed when the strain expresses a specific restriction 

Table 3 In�uence of DNA methylation stage to the electrotransformation e�ciency

a 2 μg of DNA was used for transformation

DNA amount [μg]/E. coli strain (designation) CFU (average count)a E�ciency (CFU per μg DNA)

2 μg/DH5α (dam +/dcm +) 3 1.5

2 μg/GM33 (dam −/dcm +) 27 13.5

2 μg/BL21 (dam +/dcm −) 28 14

2 μg/JM110 (dam −/dcm −) 236 118

Table 4 Summary of pMTL83353 containing CFU yielded by conjugation, sonoporation, and combined sono/electropora-

tion approaches

a 2 μg of DNA was used for transformation

b 0.5 μg of DNA was used for transformation

Method CFU (average count) E�ciency (CFU per μg DNA)

Conjugation (E. coli JM110 containing RP4 and pMTL83253 donor)

6 h of conjugation 12

24 h of conjugation 37

Sonoporation

10 % PEG 8000 buffer, 20 s pulse 225a 112.5

30 % PEG 8000 buffer, 20 s pulse 321a 160.5

Sono/electroporation

 30 % PEG 8000 buffer, 20 s ultrasound pulse, 5 ms square-wave pulse 5 ms (1250 V) 265b 530



Page 8 of 14Kolek et al. Biotechnol Biofuels  (2016) 9:14 

barrier that prevents effective transformation, or when 

conditions from previously published approaches are 

unsuccessful, as in our case.

C. pasteurianum NRRL B-598 represents a non-type 

strain of solventogenic clostridium that could be a good 

candidate for production of organic solvents in an ABE 

process. �is strain excels in very high oxygen resist-

ance and overall robustness that could be helpful for a 

large-scale ABE process. Moreover, biosynthesis of some 

nonspecific proteases that allows the use of cheap nitro-

gen sources in its cultivation (e.g., waste whey products) 

has been described previously for this strain [28]. Dur-

ing our experiments, we showed that C. pasteurianum 

NRRL B-598 carries a cat gene encoding resistance to 

chloramphenicol and thiamphenicol, the antibiotics that 

is normally effective against many strains of clostridium 

bacteria. �is finding is a little surprising because chlo-

ramphenicol and thiamphenicol resistances have only 

been observed in solventogenic species such as C. beijer-

inckii, but not C. pasteurianum.

�e action of various restriction-modification (R-M) 

systems represents a frequent obstacle in the transforma-

tion of clostridia, as well as other Gram-positive species. 

Type II R-M systems recognize a defined short sequence 

in the foreign DNA and promote its degradation after 

transmission to the cytoplasm, or even immediately on 

the cell surface [29]. R-M II systems were described as a 

reason preventing transformation of C. acetobutylicum 

ATCC 824 [22], C. pasteurianum ATCC 6013 [12] or C. 

cellulolyticum ATCC 35319 [8]. In these cases, special 

treatment by DNA-methyltransferase, which masks all 

recognition sequences, was necessary before transfor-

mation. Type I R-M systems could also be responsible 

for a decrease in transformation efficiency like in C. sac-

charobutylicum NCP 262 [23]. Specific protein inhibi-

tors (such as TypeOne restriction inhibitor), protective 

methylation or heat inactivation could be approaches 

for overcoming these systems [29]. Equally, reduction 

of transformation efficiency could be caused by R-M III 

or IV, but these systems have, so far, been very poorly 

described in clostridia.

Based on the analysis of PacBio SMRT data, we demon-

strated the genomic existence of two type I R-M systems, 

Cpa598I and Cpa598II. Activity of these systems was also 

confirmed experimentally by cultivation of pMTL82254 

which contained recognition sequences of both R-M 

systems. Restriction provides probably unspecific cleav-

ing of DNA in the direction from the recognized motifs 

which is typical for type I R-M systems [30]. Both rec-

ognized motifs are included in sequence of pBP1 repli-

cation origin module of pMTL80000 plasmids system 

thus it is better to use other replicon for transformation 

of this strain. On the other hand, when unmethylated 

pBP1 replicon-based plasmid (pMTL82251) was trans-

formed by electroporation, we were still able to obtain a 

few transformants.

Both type II R-M systems are most certainly inac-

tive because no methylated recognition sequence for 

Cpa598ORF2410 system was found and no m5C meth-

ylations assigned to Cpa598ORF20205 system were 

detected. We note that the kinetic signatures of m5C 

bases may not have been strong enough to study prop-

erly, but in a relatively high sequence coverage (79×) 

not a single m5C methylation was detected and also no 

active type II R-M system was obtained during experi-

mental testing of their presence in the protoplast or 

whole cell lysates. Activity of the remaining type IV R-M 

system remains unclear, since these systems are poorly 

described and neither recognition sequence nor the type 

of methylation was assigned to this system. Nevertheless, 

because Cpa598ORF12465P is a methyl-directed restric-

tion enzyme, its activity could also be the reason for 

decreased transformation efficiency. Further studies are 

required to verify these hypotheses.

�e C. pasteurianum NRRL B-598 genome contains a 

relatively large number of antibiotic efflux genes. Anti-

biotic resistance can be confirmed by almost normal 

Fig. 5 Optimization of sono/electroporation conditions. Influence of 

various voltages and exponential and square-wave pulse deliveries 

(a); influence of DNA amount on transformation efficiency (b)
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growth of cells in a medium containing various antibiot-

ics over long periods of time.

�e addition of TypeOne restriction inhibitor, which 

has been described previously as a functional agent for 

overcoming R-M I systems in E. coli or Salmonella typh-

imurium [31], also did not lead to successful transforma-

tion. Based on these results, we assumed that a restriction 

barrier requiring methylation protection of plasmid DNA 

probably did not constitute a relevant obstacle during 

transformation of DNA extracted from E. coli or its con-

jugal transfer to C. pasteurianum NRRL B-598.

Methylation of transmitted DNA can also clearly affect 

the efficiency of bacterial transformation. Significant 

reductions in transformation efficiencies when methyl-

ated DNA was used were described for many bacterial 

species such as Streptomyces or Lactobacillus. Methyl-

specific restriction systems probably play a major role in 

these observations [32, 33], but the fact that methylated 

ori sequences on a plasmid may not associate with a spe-

cific replication protein could also play an important role 

in transformation efficiency [34]. Fully methylated DNA 

isolated from Escherichia coli (dam+/dcm+) was, in 

most cases, referred to as the best template for clostridial 

transformation because Dam and Dcm methylation could 

protect DNA from degradation by nucleases and could 

increase clostridial transformation efficiencies. Reported 

cases of detrimental influences of E. coli methylation 

were observed in C. thermocellum DSM1313 and C. ljun-

gdahlii DSM 13528, but eventually only Dcm methylation 

was identified as the origin of transformation problems 

in both experiments [13, 34]. Surprisingly, when unmeth-

ylated plasmid DNA was used for electrotransformation 

of C. pasteurianum NRRL B-598, we suddenly obtained 

a few transformants. For electrotransformation, a previ-

ously published protocol for C. beijerinckii NCIMB 8052 

[25] was used and the maximum transformation effi-

ciency, achieved with pMTL82353, was 6  cfu/μg DNA. 

�e transformation efficiency achieved was very low 

compared to other clostridia or Gram-positive bacteria 

and could not be used for effective genetic manipulations 

or research on this strain. Because a previously published 

protocol for other species was used without changes, we 

wanted to optimize it directly for C. pasteurianum NRRL 

B-598, hopefully leading to an improved transformation 

efficiency.

�e efficiency of electrotransformation may be affected 

by many parameters such as growth medium, cell growth 

phase, composition of electroporation buffer, voltage of 

electric pulse, or its length (influenced mainly by capaci-

tance and resistance of the electroporator). For electro-

transformation of clostridial species, cells in early-log to 

late-log growth phase, different electroporation buffers 

with low conductivity containing osmostabilizing agents 

(sucrose, PEG, etc.), and a relatively low electric field 

(around 5 kV cm−1) are usually used [20]. We found that 

the best growth phase of C. pasteurianum NRRL B-598 

for electrotransformation was between late logarithmic 

and early-stationary phase (OD600 1.2–1.4), which is not 

typical for most solventogenic strains. Similarly, the best 

transformation efficiency was obtained when electropo-

ration was conducted in 10  % PEG 8000 and decreased 

when the SMP electroporation buffer (at various pH val-

ues) was used. �rough step-by-step optimization, we 

were able to achieve an average electrotransformation 

efficiency of 1.2 × 102  cfu/μg DNA when unmethylated 

DNA was used. �is was much lower than for the type 

strains C. acetobutylicum or C. beijerinckii, where the 

electrotransformation efficiencies reached 104–105 trans-

formants per μg of DNA [22, 25]. Nevertheless, this effi-

ciency is sufficient to use this method for some genetic 

improvements and basic research on this intractable 

strain.

Achieved transformation efficiency showed clearly 

that with a decreasing number of any E. coli methyla-

tions, transformation efficiency significantly increased. 

�us, both Dam and Dcm methylations were shown 

to be detrimental to transformation, a fact that has not 

been described previously in transformation of other 

clostridia. Previously, Pyne et  al. [20] described similar 

effect of CpG methylation which presence led to obtain 

no transformants even though CpG provided good pro-

tection against digestion by described R-M system. If 

we take into account the number of Dam- and Dcm-

specific methylation sites on pMTL83253 (10 and 18 

resp.), we can postulate that Dam methylation could be 

a little more detrimental than Dcm, which is at variance 

with findings obtained previously [13, 35]. Decreased 

efficiency could be caused by a reduction in replication 

efficiency or some methyl-specific restriction system that 

may be present in cells as a protection against foreign 

DNA, e.g., bacteriophage, exhibiting a foreign methyla-

tion pattern. �e best described similar systems are, for 

example, the DpnI system in Streptococcus pneumoniae 

[36] or model methylation-dependent systems McrA, 

McrBC, and Mrr as described in E. coli [30]. If some 

methyl-specific type IV restriction system occurs in our 

strain (see above), it would be quite interesting because 

no restrictions were obtained when we conducted an 

examination of restriction systems with Dam and Dcm 

methylated pMTL83253. However, we focused mainly on 

R-M I and II systems, so some putative R-M IV (methyl-

specific) systems may not be active under these in vitro 

conditions.

�e influence of E. coli methylation was also verified 

in conjugation experiments, where pMTL82353 trans-

mission was only successful in the methylation-deficient 
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donor strain (JM110 containing RP4). �e existence of 

effective conjugal transfer could be very useful because it 

represents an effective way to transfer large plasmids to C. 

pasteurianum NRRL B-598, which is poorly transform-

able by electroporation and sonoporation techniques. 

No evidence concerning the use of a conjugation donor 

mediating transfer of unmethylated DNA between E. 

coli and clostridia has been published previously and this 

method could represent a fast and relatively easy method 

for an initial examination of the influence of methylation 

on transmission efficiency because this IncP-based con-

jugation method is applicable for many clostridial species 

in a similar arrangements of experiments.

Sonoporation is a relatively new method that is not 

used frequently for bacterial transformation. It is prob-

ably based on the cavitation of the cell wall and mem-

brane, mediated by ultrasound pulse delivery that results 

in transmission of DNA into the cell [37]. Historically, a 

few transformations of thermophilic clostridia were con-

ducted successfully using ultrasound-mediated transfer 

[16]. We were able to transform C. pasteurianum NRRL 

B-598 by sonoporation using a simple 20-s ultrasound 

pulse. Surprisingly, the average efficiency of pMTL82353 

transfer was 1.6 × 102 cfu/μg DNA, which was even more 

efficient than electrotransformation. Moreover, sonopo-

ration is a method that does not require any special or 

expensive equipment and is fast and reliable. On the 

other hand, it is likely that ultrasound-mediated transfor-

mation is limited by the size of the transferred plasmid 

because larger plasmids can be more rapidly destroyed by 

sonication. Polyethylene glycol probably plays an impor-

tant role in transformation of C. pasteurianum NRRL 

B-598 because it may act as an osmostabilizer and also as 

an agent ensuring easier transmission through the bacte-

rial membrane. Sonoporation of unmethylated DNA was 

the necessary condition and when DNA extracted from 

DH5α was used, no or only a few transformants were 

obtained.

Ultrasound pre-treatment prior to electrotransfor-

mation was used previously e.g., for Saccharopolyspora 

erythraea [38] or Streptomyces spp. [39]. Ultrasound 

can effectively disorganize the cell wall; therefore, it may 

be useful to increase the efficiency of transformation. 

Because we were not successful using standard cell-wall 

weakening procedures (glycine addition or lysozyme 

treatment), we attempted to enhance the uptake of DNA 

into bacterial cells by sonication prior to electroporation, 

especially in this case where sonication was proven to be 

the best approach for transformation. Sono/electropo-

ration proved to be the best method for transformation 

of C. pasteurianum NRRL B-598, producing relatively 

consistent results over many replicates. It was shown to 

be important to use a square-wave pulse during sono/

electroporation because when a standard exponential 

pulse was delivered, transformation efficiency decreased. 

�is was mainly result of higher cell mortality probably 

due to ultrasound-caused cell wall disturbances. By the 

combination of both methods, we were able to achieve 

transformation efficiency of 5.3  ×  102  cfu/μg DNA, 

which was about four times higher than using sonopora-

tion or electroporation alone.

�e transformation efficiency that was achieved is suf-

ficient for effective plasmid DNA delivery to C. pasteu-

rianum NRRL B-598 and could be used, for example, for 

simple gene over-expression or knock-out experiments. 

Due to restrictions with equipment, all transformation 

steps (electroporation, sonoporation, and partial culture 

manipulation) were performed outside of the anaerobic 

chamber. We assume that strict anaerobic conditions 

may improve the efficiency of DNA transmission how-

ever even under the described conditions, we were able 

to achieve usable and repeatable results for this oxygen 

resistant strain. It is also possible that less well-described 

E. coli methylases (e.g., genomic orphan methylases) 

could be responsible for the relatively low efficiency of 

DNA transmission and could be the subject of further 

research.

Conclusions
We have described methods for transmission of foreign 

DNA to C. pasteurianum NRRL B-598 for future poten-

tial genetic manipulation. Using PacBio kinetic data, we 

described 2 previously unknown recognition motifs for 

type I R-M systems in the C. pasteurianum NRRL B-598 

genome as well as demonstrated the inactivity of 2 type 

II R-M systems. We also discovered a putative type IV 

methyl-directed R-M system that could be responsible 

for low transformation efficiency. Transformation or 

conjugal transfer of non-methylated DNA was necessary 

for high-efficiency transmission by all methods tested, 

which is unusual for clostridial transformation meth-

ods described to date. Methods for conjugation, elec-

trotransformation, not frequently used sonoporation, 

and even their combination (sono/electroporation) were 

described and a maximum transformation efficiency of 

5.3 × 102 cfu/μg DNA was achieved. In this paper, we also 

demonstrated that development of genetic methods for a 

non-type strain could be challenging and be completely 

different to the type strain or even other clostridia. All 

described methods could lead to more effective research 

that would make this strain useful in biofuel production. 

�is work also reveals new knowledge about the diversity 

of defense mechanisms against foreign DNA in solvento-

genic clostridia and shows the possibility of using sono/

electroporation for efficient transformation of Gram-

positive bacteria.
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Methods
Bacterial strains and growth conditions

All strains described in this paper are summarized in 

Table  5. C. pasteurianum NRRL B-598 was maintained 

as a spore suspension in sterile distilled water and grown 

in TYA medium [40] containing in g/l: 20 glucose; 2 

yeast extract (Merck); 6 tryptone (Sigma); 0.5 KH2PO4; 3 

ammonium acetate; 0.3 MgSO4.7H2O; 0.01 FeSO4. TYA 

plates (solidified by 1.5 % agar) were supplemented with 

erythromycin (20  μg/ml), spectinomycin (700  μg/ml), 

chloramphenicol (25  μg/ml), or thiamphenicol (15  μg/

ml) as required. C. pasteurianum DSM 525 was cryopre-

served in 30 % glycerol solution (maintained in −80 °C) 

and grown in RCM broth (Merck) supplemented by glu-

cose to a final concentration of 20 g/l. Cultivation of both 

strains was performed in an anaerobic chamber (Concept 

400; Ruskinn Technology, UK) in a stable atmosphere of 

95 % N2/5 % H2 and at 37 °C. Clostridium basal medium 

(CBM) [41], semi-defined P2 medium [42], and YTG [43] 

media were also used during this study.

All E. coli strains were cryopreserved in 20  % glyc-

erol solution (maintained in −80  °C) and grown on LB 

medium (containing in g/l: 10 tryptone; 5 yeast extract; 5 

NaCl) in 37 °C. LB broth or plates (1.5 % agar) were sup-

plemented with erythromycin (500  μg/ml), spectinomy-

cin (100 μg/ml), ampicillin (100 μg/ml), or streptomycin 

(30 μg/ml) as necessary.

Plasmids, oligonucleotides, and DNA manipulation

All plasmids used in this paper are summarized in 

Table 5. Plasmid DNA was transmitted to E. coli strains 

by standard CaCl2 treatment; transmission of RP4 

helper plasmid between E. coli strains was performed 

by conjugation. For isolation of plasmid DNA, a High 

Pure Plasmid Isolation Kit miniprep (Roche, Switzer-

land) was used. Plasmid DNA from C. pasteurianum 

NRRL B-598 was extracted by the method described 

previously for C. pasteurianum ATCC 6013 [12] with 

modifications. For isolation, 8 ml of culture (OD600 ca. 

1.3–1.5) was harvested by centrifugation (10,000×g, 

2 min.), washed once in 1.5 ml KET buffer (0.5 M KCl; 

0.1  M EDTA; and 0.05  M Tris–HCl; pH  8.0) and SET 

buffer (25  % sucrose, 0.05  M EDTA, and 0.05  M Tris–

HCl, pH  8.0) and resuspended in 250  μl of SET buffer 

containing 5 mg/ml of lysozyme. �e mixture was incu-

bated for 10  min at 37  °C. Lysis and purification were 

completed using the High Pure Plasmid Isolation Kit 

miniprep (Roche, Switzerland) where the first step was 

addition of 250  μl of lysis buffer. �e original protocol 

was followed after this step.

Detection of restriction systems

For identification of putative restriction systems in C. 

pasteurianum NRRL B-598, a protoplast crude extract 

and whole cell lysate were tested for restriction activ-

ity. �e whole cell lysate was prepared by sonication 

(30  min) of the bacterial cells, which were harvested 

from 30 ml of culture (OD600 0.6–0.8) and resuspended 

in 5  ml of nuclease-free distilled water. For protoplast 

preparation, 50  ml of culture (OD600 0.6–0.8) was cen-

trifuged (10,000×g, 2  min.), washed with lactose-con-

taining protoplast buffer (25 mM potassium phosphate, 

6 mM MgSO4, 15 % lactose, pH 7.0) [12, 44] and resus-

pended in 2–4 ml of protoplast buffer containing 10 mg/

ml of lysozyme. �e mixture was incubated at 37  °C in 

the anaerobic chamber for 45–60  min (at least 90  % of 

Table 5 Summary of bacterial strains and plasmid DNA used in this thesis

Bacterial strains Genotype Source

Clostridium pasteurianum NRRL B-598 ARL collection (NRRL)

 Clostridium pasteurianum DSM 525 (ATCC 6013) Coding type II restriction system CpaAI DSMZ

 Escherichia coli DH5α (DSM 6897) dam +/dcm+ DSMZ

 Escherichia coli JM110 (DSM 11539) dam−/dcm− DSMZ

 Escherichia coli BL21(DE3) dam+/dcm− CGSC

 Escherichia coli GM33 dam−/dcm+ CGSC

 Escherichia coli HB101 (DSM 1607) dam+/dcm+ DSMZ

E. coli plasmids

 RP4 (RK2) Coding IncP-based conjugation function DSMZ

E. coli/Clostridium shuttle plasmids

 pMTL83353 aad9, pCB102 origin of replication [21]

 pMTL82251 ermB, pBP1 origin of replication [21]

 pMTL83253 ermB, pCB102 origin of replication [21]

 pMTL84251 ermB, pCD6 origin of replication [21]

 pMTL85251 ermB, pIM13 origin of replication [21]
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cells were transformed to protoplasts). Protoplasts were 

collected by centrifugation (1200×g, 10  min) and lysed 

in 20 ml TEMK buffer [22] at 37 °C for 1 h after which, 

cell debris were removed by additional centrifugation 

(20,000×g, 20  min., 4  °C). �e C. pasteurianum DSM 

525 protoplast crude extract was prepared in the same 

way as above (15–20  min. cultivation with lysozyme-

containing buffer was enough in this case) and used as 

a positive control in the restriction-system detection 

assay. Protoplasts and whole cell crude extracts were 

used immediately for reactions with plasmid DNA.

�e reaction mixture composition was the follow-

ing: 5 μl of protoplast crude extract or whole cell lysate; 

0.5  μg of plasmid DNA (pMTL83253 and pMTL82254); 

reaction buffer added to a final 1× concentration; deion-

ized water was added to a final volume of 20 μl. Reactions 

were performed at 30 and 37 °C for at least 8 h (4 h in the 

case of the positive control). After incubation, reactions 

were analyzed by standard 1 % agarose-gel electrophore-

sis. Reaction buffers that were tested were the following: 

commercial R, O, G, B, and Tango buffers for restric-

tion enzymes (�ermo Scientific, USA), a commercial 

CutSmart buffer for restriction enzymes (NEB, UK) and 

CpaAI reaction buffer [45].

Bioinformatics

Bioinformatics analysis was focused on revealing genes 

for antibiotic resistance, putative restriction barriers and 

methylation enzymes and motifs in the C. pasteurianum 

NRRL B-598 whole genome sequence.

�e methylome was characterized using PacBio Single 

Molecule Real-Time sequencing (2× SMRT cell) kinetic 

data collected during the genome sequencing process 

[46]. SMRT Analysis v.2.3 using “RS_Modification_and_

Motif_Analysis.1" protocol was used for genome‐wide 

base modification and detection of the affected motifs. 

�e default quality value (QV) score of 30 was used for 

motif determination. �e detected motifs were uploaded 

and further analyzed using the REBASE database [24]. 

�e complete genome was also scanned for homologs 

of R-M system genes using BLAST searching against 

REBASE and GenBank databases.

Identification of antibiotic resistance genes was car-

ried out with RGI (Resistance Gene Identifier) version 

2 [47]. �e predicted ORFs were manually compared 

to genes in the C. pasteurianum NRRL B-598 complete 

genome [19] predicted by NCBI Prokaryotic Genome 

Annotation Pipeline (PGAP) (http://www.ncbi.nlm.nih.

gov/genome/annotation_prok/) and GenBank accession 

numbers of protein products of relevant genes were 

assigned.

Statistics analyses describing transformation efficiency 

were calculated and visualized using Matlab 2014b.

Preparation of electrocompetent cells and electroporation 

conditions

For all electroporation experiments, a GenePulser Xcell™ 

electroporator including both CE and PC module (Bio-

Rad, USA) was used. For preparation of electrocompe-

tent cells, 100  ml of TYA medium was inoculated with 

different proportions of spores and grown overnight. 

Following a day’s culture, the competent cells were pre-

pared from cells in late-log to early-stationary growth 

phase (OD600 1.2–1.4). Bacterial cells were centrifuged 

(10,000×g, 3 min, 4 °C), washed once with an equal vol-

ume of chilled electroporation buffer (10  % PEG 8000) 

and gently resuspended in 1/20 volume of the same 

buffer. Electrocompetent cells were maintained on ice 

and used for electroporation immediately.

Into a 0.2-cm gap electroporation cuvette (BioRad, 

USA), 480 μl of competent cells and 2 μg of plasmid DNA 

dissolved in 20 μl of demineralized water were mixed and 

transferred to the electroporator. During optimization of 

electroporation parameters a Time Constant mode was 

used. �e most successful parameters were the follow-

ing: 5 ms time constant, 1000 V (corresponding to 50 μF 

capacitance and 100  Ω resistance). Electroporated cells 

were incubated for 10 min in the anaerobic chamber on 

ice and 100 μl of shocked cells were then inoculated into 

2  ml of prewarmed and prereduced TYA broth. After 

6 h of culture, all cells were harvested by centrifugation, 

resuspended in 100–500 μl of TYA and plated onto TYA 

agars with appropriate antibiotic selection, or directly 

seeded onto plates in different volumes. Growth of anti-

biotic-resistant colonies was observed after 24–48 h.

All centrifugation and electroporation steps were con-

ducted out of the anaerobic chamber because chamber 

construction did not allow them to be performed inside.

Gene transfer by conjugation

Escherichia coli HB101 and JM110 both containing helper 

plasmid RP4 were used as conjugation donors. �e donor 

was transformed by pMTL83253 as described above and 

conjugation was conducted as described previously [21]. 

An overnight culture of donor (1 ml) was washed twice 

with LB broth and 200 μl of overnight recipient culture 

were added. �e mixture was spotted in small drops onto 

TYA agar medium without antibiotic selection and incu-

bated for 6–24  h. Cells were scraped and washed from 

the agar with 600 μl of PBS, twice, and plated onto TYA 

with appropriate antibiotic selection and chlorampheni-

col or thiamphenicol counter-selection for suppression of 

E. coli donor growth.

Gene transfer by sonoporation

Sonoporation was performed using a standard laboratory 

ultrasonic bath (Elmasonic E120H, Elma Schmidbauer 

http://www.ncbi.nlm.nih.gov/genome/annotation_prok/
http://www.ncbi.nlm.nih.gov/genome/annotation_prok/
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GmbH, Switzerland). Competent cells were prepared in the 

same way as electrocompetent cells (see above) but were 

finally resuspended in 1/20 volume of sonoporation buffer 

(30  % PEG 8 000). Into a flat-bottom glass vial, 480  μl of 

competent cells and 2 μg of plasmid DNA were mixed and 

immediately sonoporated in the middle of the ultrasound 

bath for 20 s. Recovery of the mixture was conducted in the 

same way as during electrotransformation. Growth of anti-

biotic-resistant colonies was observed after 24–48 h.

Combined technique for higher transformation e�ciency

For the best transformation efficiency, a combination of 

sonoporation and electroporation was performed. Com-

petent cells and transformation mix were prepared in 

the same way as during the standard sonoporation pro-

cedure; however only 0.25–2  μg of plasmid DNA was 

used for transformation. Immediately after sonoporation, 

cells were transferred to the 0.2-cm gap electroporation 

cuvette and electroporated using a square-wave pulse 

(5  ms, 1250  V). For recovery of the cells, the standard 

method was used (see above).

Statistical and control approaches

All transformation experiments were performed at least 

three times. Transfer efficiencies of foreign DNA were 

calculated as an average value derived from three inde-

pendent experiments. Negative controls (transformation 

mixture without DNA added or conjugation with donor 

strain without appropriate a pMTL80000 series plasmid) 

were used in all transformation experiments.
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