

Damage and Failure of Composite Materials

Understanding damage and failure of composite materials is critical for reliable and cost-effective engineering design. Bringing together materials mechanics and modeling, this book provides a complete guide to damage, fatigue, and failure of composite materials. Early chapters focus on the underlying principles governing composite damage, reviewing basic equations and mechanics theory, before describing mechanisms of damage such as cracking, breakage, and buckling. In subsequent chapters, the physical mechanisms underlying the formation and progression of damage under mechanical loads are described with ample experimental data, and micro- and macro-level damage models are combined. Finally, fatigue of composite materials is discussed using fatigue-life diagrams. While there is a special emphasis on polymer matrix composites, metal and ceramic matrix composites are also described. Outlining methods for more reliable design of composite structures, this is a valuable resource for engineers and materials scientists in industry and academia.

Ramesh Talreja is a Professor of Aerospace Engineering at Texas A&M University. He earned his Ph.D. and Doctor of Technical Sciences degrees from the Technical University of Denmark. He has contributed extensively to the fields of damage, fatigue, and failure of composite materials by authoring numerous books and book chapters as well as by editing several encyclopedic works.

Chandra Veer Singh is an Assistant Professor of Materials Science and Engineering at the University of Toronto. He earned his Ph.D. in aerospace engineering from Texas A&M University, and worked as a post-doctoral Fellow at Cornell University. His research expertise is in damage mechanics of composite materials, atomistic modeling, and computational materials science. His industry experience includes R&D at GE Aircraft Engines.

Damage and Failure of Composite Materials

RAMESH TALREJA

Texas A&M University

CHANDRA VEER SINGH

University of Toronto

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521819428

© R. Talreja and C. V. Singh 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Talreja, R.

Damage and failure of composite materials / Ramesh Talreja, Chandra Veer Singh. p. cm.

Includes bibliographical references.

ISBN 978-0-521-81942-8 (Hardback)

- 1. Composite materials-Fatigue. 2. Composite materials-Fracture.
- I. Singh, Chandra Veer. II. Title. TA418.9.C6T338 2012 620.1'126-dc23

2011035578

ISBN 978-0-521-81942-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface	page ix
1	Durability assessment of composite structures	1
	1.1 Introduction	1
	1.2 Historical development of damage mechanics of composites	3
	1.3 Fatigue of composite materials	5
	References	7
2	Review of mechanics of composite materials	9
	2.1 Equations of elasticity	9
	2.1.1 Strain-displacement relations	9
	2.1.2 Conservation of linear and angular momenta	10
	2.1.3 Constitutive relations	11
	2.1.4 Equations of motion	15
	2.1.5 Energy principles	15
	2.2 Micromechanics	17
	2.2.1 Stiffness properties of a unidirectional lamina	18
	2.2.2 Thermal properties of a unidirectional lamina	19
	2.2.3 Constitutive equations for a lamina	20
	2.2.4 Strength of a unidirectional lamina	21
	2.3 Analysis of laminates	24
	2.3.1 Strain-displacement relations	25
	2.3.2 Constitutive relationships for the laminate	26
	2.3.3 Stresses and strains in a lamina within a laminate	28
	2.3.4 Effect of layup configuration	28
	2.4 Linear elastic fracture mechanics	29
	2.4.1 Fracture criteria	30
	2.4.2 Crack separation modes	31
	2.4.3 Crack surface displacements	32
	2.4.4 Relevance of fracture mechanics for damage analysis	33
	References	34

vi **Contents**

3	Damage in composite materials	36
	3.1 Mechanisms of damage	37
	3.1.1 Interfacial debonding	37
	3.1.2 Matrix microcracking/intralaminar (ply) cracking	39
	3.1.3 Interfacial sliding	39
	3.1.4 Delamination/interlaminar cracking	41
	3.1.5 Fiber breakage	42
	3.1.6 Fiber microbuckling	42
	3.1.7 Particle cleavage	44
	3.1.8 Void growth	44
	3.1.9 Damage modes	45
	3.2 Development of damage in composite laminates	46
	3.3 Intralaminar ply cracking in laminates	49
	3.4 Damage mechanics	50
	References	52
4	Micro-damage mechanics	57
	4.1 Introduction	57
	4.2 Phenomena of single and multiple fracture: ACK theory	58
	4.2.1 Multiple matrix cracking	61
	4.2.2 Perfectly bonded fiber/matrix interface: a modified shear	
	lag analysis	65
	4.2.3 Frictional fiber/matrix interface	67
	4.3 Stress analysis (boundary value problem) for cracked laminates	68
	4.3.1 Complexity and issues	68
	4.3.2 Assumptions	71
	4.4 One-dimensional models: shear lag analysis	73
	4.4.1 Initial shear lag analysis	74
	4.4.2 Interlaminar shear lag analysis	77
	4.4.3 Extended shear lag analysis	79
	4.4.4 2-D shear lag models	80
	4.4.5 Summary of shear lag models	80
	4.5 Self-consistent scheme	84
	4.6 2-D stress analysis: variational methods	87
	4.6.1 Hashin's variational analysis	87
	4.6.2 Effect of residual stresses	96
	4.6.3 $[0_m/90_n]_s$ vs. $[90_n/0_m]_s$ laminates	97
	4.6.4 Improved variational analysis	97
	4.6.5 Related works	101
	4.6.6 Comparison between 1-D and 2-D stress-based models	101
	4.7 Generalized plain strain analysis – McCartney's model	104

	Contents	vii
	4.8 COD-based methods	110
	4.8.1 3-D laminate theory: Gudmundson's model	111
	4.8.2 Lundmark–Varna model	117
	4.9 Computational methods	119
	4.9.1 Finite element method (FEM)	120
	4.9.2 Finite strip method	121
	4.9.3 Layerwise theory	123
	4.10 Other methods	124
	4.11 Changes in thermal expansion coefficients	125
	4.12 Summary	126
	References	126
5	Macro-damage mechanics	134
	5.1 Introduction	134
	5.2 Continuum damage mechanics (CDM) of composite materials	138
	5.2.1 RVE for damage characterization	139
	5.2.2 Characterization of damage	141
	5.2.3 A thermodynamics framework for materials response	144
	5.2.4 Stiffness–damage relationships	148
	Case 1: Cracking in one off-axis orientation	152
	Case 2: Cross-ply laminates	152
	Evaluation of material constants	153
	5.3 Synergistic damage mechanics (SDM)	155
	5.3.1 Two damage modes	156
	5.3.2 Three damage modes	165
	5.4 Viscoelastic composites with ply cracking	170
	5.5 Summary	176
	References	177
6	Damage progression	179
	6.1 Introduction	179
	6.2 Experimental techniques	180
	6.3 Experimental observations	185
	6.3.1 Initiation of ply cracking	185
	6.3.2 Crack growth and multiplication	187
	6.3.3 Crack shapes	189
	6.3.4 Effect of cracking	189
	6.3.5 Loading and environmental effects	191
	6.3.6 Cracking in multidirectional laminates	193
	6.4 Modeling approaches	194
	6.4.1 Strength-based approaches	194
	6.4.2 Energy-based approaches	198
	6.4.3 Strength vs. energy criteria for multiple cracking	210

:::	0
VIII	Contents

	6.5 Randomness in ply cracking	211
	6.6 Damage evolution in multidirectional laminates	217
	6.7 Damage evolution under cyclic loading	223
	6.8 Summary	229
	References	230
7	Damage mechanisms and fatigue-life diagrams	237
	7.1 Introduction	237
	7.2 Fatigue-life diagrams	237
	7.3 On-axis fatigue of unidirectional composites	238
	7.4 Effects of constituent properties	241
	7.5 Unidirectional composites loaded parallel to the fibers	242
	7.5.1 Polymer matrix composites (PMCs)	242
	7.5.1.1 Experimental studies of mechanisms	247
	7.5.2 Metal matrix composites (MMCs)	250
	7.5.3 Ceramic matrix composites (CMCs)	252
	7.6 Unidirectional composites loaded inclined to the fibers	257
	7.7 Fatigue of laminates	259
	7.7.1 Angle-ply laminates	260
	7.7.2 Cross-ply laminates	261
	7.7.3 General multidirectional laminates	263
	7.8 Fatigue-life prediction	265
	7.8.1 Cross-ply laminates	266
	7.8.2 General laminates	273
	7.9 Summary	273
	References	274
8	Future directions	276
	8.1 Computational structural analysis	276
	8.2 Multiscale modeling of damage	278
	8.2.1 Length scales of damage	280
	8.2.2 Hierarchical multiscale modeling	282
	8.2.3 Implication on multiscale modeling: Synergistic damage mechanics	286
	8.3 Cost-effective manufacturing and defect damage mechanics	287
	8.3.1 Cost-effective manufacturing	288
	8.3.2 Defect damage mechanics	200 291
	8.4 Final remarks	296
	References	298
	Author index	301
	Subject index	303

Preface

The field of composite materials has advanced steadily from the early developments during the 1970s when laminate plate theory and anisotropic failure criteria were in focus to today's diversification of composite materials to multifunctional and nanostructured composite morphologies. Throughout the 1970s and 1980s several books appeared along with courses that were developed and taught at advanced levels dealing with mechanics of composite materials and structures. The failure analysis was mostly limited to descriptions of strength that extended previous continuum descriptions of metal yielding and failure. Beginning around the mid-1980s, micromechanics and continuum damage mechanics were applied to multiple cracking observed in composite materials. Under the overall description of "damage mechanics" a flurry of activities took place as evidenced by conferences and symposia. Other than several conference proceedings that recorded such activities, a collection of seminal contributions to the field appeared in a volume (Damage Mechanics of Composite Materials, R. Talreja, ed., Composite Materials Series, R.B. Pipes, series ed., Vol. 9, Amsterdam: Elsevier Science Publishers, 1994). The two main avenues of approach to damage in composite materials and its effect on materials response, now referred to as micro-damage mechanics (MIDM) and macro-damage mechanics (MADM), were presented in a balanced form in that volume. In the years since then, many developments have taken place that have brought this field to such level of maturity that a book coherently presenting the material was felt to be timely. It is hoped that this book will help provide impetus for teaching advanced courses in composite damage at universities as well as support short courses for professional development of engineers in industry. The wealth of material covered can also help new researchers in advancing the field further. To this end, the last chapter provides some guidance in identifying gaps and needs for further work.

The structure of the book is as follows. Chapter 1 lays down the overall strategy for durability assessment of composite structures, emphasizing the needs and motivating the content of the book to follow. Chapter 2 provides an easy reference to the basic continuum mechanics topics that are felt to be relevant to the subsequent treatment. Chapter 3 describes the mechanisms of damage that underlie the phenomena aimed for modeling. Many of the physical observations described there are viewed to be vital to developing proper understanding of the complex field of damage in composite materials. Chapters 4 and 5 deal with the

x Preface

two main approaches stated above, i.e., the MIDM and the MADM. Selected works from the literature, including the authors' own, are given as much treatment as was found justified to generate coherency without overly including details. While these two chapters focus on descriptions of damage and the constitutive property changes caused by it, Chapter 6 is devoted to the progression of damage. The crack multiplication is a distinctive feature of damage in composite materials that distinguishes it from single crack growth in monolithic materials, and therefore justifies treatment in a chapter by itself. Chapter 7 is on fatigue of composite materials. This field suffers from the historical treatments of metal fatigue and is unfortunately the least understood part of damage in composite materials. Multiaxial fatigue illustrates the situation well where the literature displays little understanding of the mechanisms underlying failure. While a separate book on fatigue of composite materials is needed to do full justice to the field, a single chapter here is added to draw attention to the mechanisms-based concepts for proper interpretation and modeling. Finally, Chapter 8 presents a summary of the book and points to the directions in which further advances are seen to be necessary. Particular emphasis is given to the computational incorporation of damage modeling in durability assessment as well as taking account of the manufacturinginduced defects in an integrated manner.

Although the authors have written this book, the credit goes to many researchers who have worked on various aspects of damage in composite materials. Their collective contributions have made it possible for us to present what we have seen as a coherent story at this time. The field is evolving, and future versions of the story will hopefully spur further development and, most importantly, transfer of this knowledge to industry will take place.