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Abstract. Damage to structures may occur as a result of normal operations,
accidents, deterioration or severe natural events such as earthquakes and storms.
Most often the extent and location of damage may be determined through visual
inspection. However, in some cases this may not be feasible. The basic strategy
applied in this study is to train a neural network to recognize the behaviour of the
undamaged structure as well as of the structure with various possible damaged
states. When this trained network is subjected to the measured response, it should be
able to detect any existing damage. This idea is applied on a simple cantilever beam.
Strain and displacement are used as possible candidates for damage identification
by a back-propagation neural network. The superiority of strain over displacement
for identification of damage has been observed in this study.

Keywords. Back-propagation neural network; damage assessment; finite ele-
ment method; mean square error.

1. Introduction

Structural systems in a wide range of aeronautical, mechanical and civil engineering fields
are prone to damage and deterioration during their service life. So an effective and reliable
damage assessment methodology will be a valuable tool in timely determination of damage
and deterioration in structural members. The information obtained by a damage assessment
process can play a vital role in the development of economical repair and retrofit programmes.

Most of the damage assessment methods proposed in the literature follow more or less
the same approach. First, a mathematical model for the structure is constructed. This is then
used to develop an understanding of the structural behaviour and to establish correlations
between specific member damage conditions and changes in the structural response. These
mathematical models are inherently direct process models, proceeding linearly from causes
(damage location and extent) to effects (structural response). However, the identification of
member damage from the response of the damaged structure is an inverse process; causes
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must be discerned from effects. Researchers have proposed damage assessment schemes
based on analyses of measured responses of the structure before and after damage. Cawley &
Adams (1979) used decrease in natural frequencies and increase in damping to detect cracks
in fibre-reinforced plastics. Sanayei & Onipede (1991) used static displacement to determine
damage under applied loads. In a truss model, damage is introduced by reduction of cross-
sectional area. Pandeyet al (1991) utilized curvature damage factor to determine damage in
cantilevers and simply supported beam structures.

Recently, neural computing has been applied successfully in many fields. Most of these
applications deal with problems of pattern recognition (Bishop 1998). Various researchers
have started to experiment with neural networks (NNs) for damage identification purposes
during the last decade (Worden 1996; Rytter & Kirkegaard 1997; Friswell & Mottershea 1999)
as an alternative to the updating methods. NNs have some advantages that make them very
attractive: the ability to treat damage mechanisms implicitly, and the capacity to generalize
their responses and robustness in the presence of noise. The strategy of these approaches is to
train an NN to recognize different damage scenarios from the measured response of the system.
In these approaches, the selection of damage parameters, damage scenarios and the adjustment
of the numerical model to the physical system are prerequisites for success. Wuet al (1992)
used the pattern matching capability of a neural network to recognize the location and the
extent of individual member damage from the measured frequency spectrum of the damaged
structure. Tsou & Shen (1994) used the change of its dynamic properties (eigenvalues and
mode shapes) to find damage using a backward-propagation neural network. They carried
out their experiment on 3-DOF spring-mass-damper system. Barai & Pandey (1995a) applied
neural network based damage detection on bridge truss configuration after carrying out for
both static and dynamic analysis of structure. They have also studied (Barai & Pandey 1995b)
the performance of the generalized delta rule in the context of multilayer perception simulation
of damage identification in truss structures considering strain as structural input parameter.
Issues related to the performance of the network with reference to hidden layers and neurons
were examined and suggested to choose more than one hidden layer, provided the number
of connections is not constant. Nakamuraet al (1998) has proposed a nonparametric method
for damage detection in a building damaged during the Hyogo-Ken Nambu Earthquake of 17
January 1995. Wahab & Roeck (1999) used curvature damage factor to determine damage.
They showed that curvature damage factor shows more clear peaks at damage locations than
curvature mode shape. Cerri & Vestroni (2000) addressed the problem of identifying structural
damage affecting one zone of a beam using measured frequencies. The beam model has a
zone in which the stiffness is lower than the undamaged value. Chinchalkar (2001) described
a numerical method for determining the location of a crack in a beam of varying depth when
the lowest three natural frequencies of the cracked beam are known. The author modelled the
crack as a rotational spring and plotted graphs of spring stiffness versus crack location for
each natural frequency. The point of intersection of the three curves gives the location of the
crack. Morassi (2001) presented a method, which deals with the identification of a single crack
in a vibrating rod based on the knowledge of the damage-induced shifts in a pair of natural
frequencies. Yongyonget al(2001) presented a genetic algorithm-based shaft crack detection
technique based on the finite element method. However, the authors suggested that the finite
element model of the shaft crack needs to be studied deeply, so that the model simulates the
real system more reasonably and higher accuracy of the detection can be expected. Zapico
& Gonzalez (2003) have dealt with a methodology based on NNs intended to give overall
information about the localization and the amount of damage in the steel-quake structure after
seismic loading. The natural frequencies of the structure were used as inputs of the NNs.
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A robust damage assessment methodology must be capable of recognizing patterns in
the observed response of the structure resulting from individual member damage, including
the capability of determining the extent of damage. This capability is within the scope of
the pattern matching capabilities of neural networks. The utilization of these capabilities of
neural networks in damage assessment is the basis of the study described here. In the present
study, neural networks are used to extract and store the knowledge of the patterns, which
is the response of the undamaged and damaged structure. Thus the need for construction of
mathematical models and comprehensive inverse search is avoided.

The objective of the present paper is to locate and assess the damage occurring at any posi-
tion in a cantilever beam by back-propagation neural network considering displacement and
strain as input parameter to the network. The approach here consists of three sub-processes.
First, by varying the model parameters of the structure, their corresponding response to the
system is calculated through the finite element method. Second, a neural network is iteratively
trained using a number of training patterns. Here, structural responses are given as input to
the neural network, while parameters to be identified are shown to the network as desired
data. Finally some structural responses measured are given to the well-trained network, which
immediately outputs the appropriate value of parameters for untrained patterns. The model
parameter taken here is theEI value of the structural member and the structural responses
are displacement and strain for a comparison of the performance of the damage assessment
algorithm.

2. Theoretical formulation

2.1 Finite element formulation of structure

The cantilever beam is idealized here considering the 2-dimensional plane stress formulation.
The beam is modelled with 8-noded isoparametric element. The stiffness matrix for the present
case may be written as

[K ] = b

∫∫
A

[B]T [D][B ]dxdy, (1)

where [K] is assembling stiffness matrix of structure,b is the width of the beam, [B] is the
strain-displacement relationship matrix and [D] is the constitutive matrix of the structure.
The nodal displacement due to applied load may be calculated by the following equation

[F ] = [K ]{d }, (2)

where{d} is the nodal displacement and{F } is the applied load in the node.
Strain may be calculated from the strain–displacement relationship

{ε} = [B]{d}. (3)

2.2 Brief introduction to neural networks

An artificial neural network is a framework consisting of many neuron-like processing units.
Each neuron is simulated by the sum of the incoming weighted signals and transmits the acti-
vated response to the other connected neuron units. Such a network represents an efficient and
parallel computational entity and reflects the level of simulations by different input signals.
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Figure 1. A three-layer neural network.

The dynamic weights which connect neurons of different layers are continuously modified
during the process of learning. Rumelhartet al (1986) provided an excellent algorithm that
allows the multilayer neural network to internally organize itself so to be able to reconstruct
the presented patterns. This method leads to the recent very popular neural network learning
scheme called the back-propagation algorithm. A typical architecture of a multilayer neural
network is shown in figure 1. The input layer receives input patterns; it usually does not have
processing units in this layer but simply transmits the signal to the next layer. The hidden
layer or layers, residing between input layer and the output layer, consist of a certain num-
ber of processing units. Each node in the preceding layer is fully connected to all processing
units, and the connections are called the weights that represent different weighting scales to
the input signals. The processing unit sums up the weighted signals and activates a response
transmitting to the next layer. The activation function may be a monotonically increasing non-
linear (or linear) function. In this study, a nonlinear sigmoidal activation function is used. The
input pattern is propagated forward, and calculated responses are obtained. The difference
between the desired outputs and the calculated outputs is then propagated backward through
the network, providing vital information for weight adaptation. The back-propagation algo-
rithm uses this information to adjust the weights such that the “mean-square” error measure is
minimized. This supervised learning algorithm, using gradient descent optimization scheme,
helps the network converge to a minimum in the weight space and completes the learning
process.

Preparing a good set of training pattern is very important for the neural network learning
process. The data generated for the training must be properly sampled and should contain all
range of data within the domain. However, it is difficult to get the generalized data set for
training and also higher oscillation in the data may make it difficult to reach global minima.
On the other hand, the network with more noisy data, if trained properly can predict this in
a better way. The number of hidden layers and the number of nodes in the hidden layer is
rather problem-dependent and is an open topic for research in getting the optimal number.
There is no convincing evidence found that the network with one hidden layer performs badly
compared to networks with two or more hidden layers. But by increasing the number of hidden
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layers the CPU time increases considerably. Therefore single hidden layer network has been
used. In this paper, a three-layer back-propagation neural network (figure 1) is developed for
damage detection.

3. Numerical examples and results

The computer codes developed in the present study with formulation outlined are applied on a
simple cantilever beam structure. The calculated static displacement and strain at some nodal
points are used for training the neural network. Element damage is defined as a reduction of
EI value of the element. In the present study damage at single location and multiple locations
in structure are determined.

A cantilever beam with rectangular cross-section subjected to an end moment, which is
replaced by a couple of forces is considered in the present analysis. The dimensions of the
beam are shown in figure 2. Displacements at node numbers 5, 13, 21, 29 and 37 are calculated
and used as neural network input. The values of input and output are both normalized between
0·1 and 0·9 using the following equation

y = 0·1 + 0·8(x − xmin)/(xmax − xmin), (4)

wherey is the normalized value of input/output,x is the original value of input/output, and
xmax andxmin are the maximum and minimum values of a particular data set respectively.
Single element damage: In this category, damage in the element is simulated by reducingEI

values from 5 to 95% at 5% intervals. Mean square error (MSE) for training samples are taken
as 0·001 after considering convergence and accuracy of training.
Multiple element damage: For this case more than one element in the structural member
is considered to be damaged. Two elements, i.e., element numbers 5 and 8 are considered
damaged in the present study. By varyingEI values from 10 to 90% with 10% interval total
81 number of samples are generated in which 56 samples are used for training and 25 samples
for testing in the present analysis. The MSE chosen for this case is 0·005.

Figure 2. Cantilever beam problem.
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Figure 3. A 3-DOF spring-mass-damper system.

3.1 Validation of the proposed algorithm

The code developed for single hidden layer back-propagation neural network training is
compared with the results obtained by Tsou & Shen (1994) on a 3-DOF spring–damper–
mass system. The 3-DOF spring-mass-damper system is shown in figure 3. Results obtained
by Tsou & Shen (1994) and proposed network are shown in table 1 for comparison, where
1K1, 1K2 and1K3 are change in spring stiffness. The comparison shown in table 1 validates
the present algorithm.

3.2 Displacement as neural network input

After training for different values of nodes on hidden layer, learning rate(η) and momentum
coefficient(α), some optimum values for training and testing error with number of iterations
for both the cases are given in table 2. The variation of training and testing error with number of
iterations for single and multiple damage cases are shown in figures 4 and 5. It is observed from
figure 4, which represents the single damage case, that the difference of training and testing
error becomes negligible after 3000 iterations, where the performance is well enough. Also,
the errors do not reduce significantly after this number (3000) of iterations. It is interesting
to note that the error gets reduced significantly after a few iterations (500 in this case) as the
weights are randomly initialized. However, it is observed that the performance at that point
is very poor. For the multiple damage case, the results plotted in figure 5 show that after 2000
iterations, the errors do not reduce significantly. The comparison of desired output to neural
network output is shown in the form of bar charts from figures 6 to 8. Performance of the
network for the single element damage case is shown in figure 6. It is important to note that the
largest discrepancies in testing pattern occur at 5% and 95% damage cases. This is because
these testing patterns are beyond the training representative range which is from 10 to 90%
in these cases. However, the estimated results are still in good range. Figure 7 represents the
performance of the network for the multiple damage case with damage in element number 5,

Table 1. Comparison of neural network performance.

Spring damage by Tsou & Shen (1994) Spring damage by proposed network
Damage
(%) 1K1 1K2 1K3 1K1 1K2 1K3

20 19·59 19·62 19·57 20·48 18·86 19·35
25 24·81 24·80 24·76 25·45 23·55 24·60
45 45·17 45·17 45·26 44·81 45·25 46·30
65 64·75 64·77 64·75 65·80 66·98 66·01
95 93·21 93·37 93·26 90·93 90·34 96·06
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Table 2. Training and testing error for different nodes, with different values ofη andα (displacement
as neural network input).

Problem No. of nodes No. of Mean square Mean square
type on hidden layer η α iterations training error testing error

Single 3 0·6 0·4 8843 0·0010018 0·0025624
element 3 0·5 0·7 4371 0·0010014 0·0023924
damage 4 0·6 0·4 9024 0·0010013 0·0030669

4 0·5 0·7 6869 0·0010020 0·0027212

Multiple 4 0·3 0·4 4090 0·0050241 0·0082753
element 4 0·5 0·5 2479 0·0050241 0·0100939
damage 5 0·3 0·4 3987 0·0050242 0·0070288

5 0·5 0·5 4251 0·0050243 0·0085932

Figure 4. Variation of training and testing error with number of iterations (single damage case).

Figure 5. Variation of training and testing error with number of iterations (multiple damage case).
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Figure 6. Comparison of actual output and neural network output (single damage case).

whereas, figure 8 represents the same with damage in element number 8. It is understood from
bar chart that the results obtained from neural network training and the actual values are quite
close which indicates that the performance of the proposed network is quite satisfactory.

3.3 Strain as neural network input

Strains are calculated at the same nodal points to that of displacement. Thus in this case also,
neural networks inputs have five nodes consisting of strain values. The input and output values
are normalized from 0·1 to 0·9 using (4) as mentioned earlier. Two categories of problems,
i.e., single element and multiple element damage problems, are solved. The MSE chosen
for both the cases are the same as those considered in the previous case. After training for
different values of nodes on hidden layer, learning rate(η) and momentum coefficient(α),

Figure 7. Comparison of actual output and neural network output (multiple damage case).
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Figure 8. Comparison of actual output and neural network output (multiple damage case).

some optimum values for training and testing error with number of iterations for both the
cases are given in table 3. The results show that the desired error level (0·001) for single
damage case may be reached after 2459 iterations. The variation of testing and training error
with number of iterations for single and multiple damage cases are shown in figures 9 and
10. It is observed from figure 9, which represents the single damage case, that the difference
of training and testing error becomes negligible after 1500 iterations. It is interesting to note
that the number of iterations and of testing errors become less when strain is taken as neural
network input compared to displacement input. Similarly, from figures 5 and 10, for the
multiple damage case, performance of the network is better when strain is considered as input
parameter. Comparisons of desired output to neural network output are shown in figures 11 to
13. It is observed from the bar chart that the results obtained from neural network training and
the actual values are quite close which reflects that the performance of the proposed network
is quite satisfactory.

Table 3. Training and testing error for different nodes, with different values ofη andα (strain as
neural network input).

Problem No. of nodes No. of Mean square Mean square
type on hidden layer η α iterations training error testing error

Single 3 0·6 0·4 2839 0·0010021 0·0020982
element 3 0·5 0·7 2459 0·0010022 0·0019259
damage 4 0·6 0·4 3144 0·0010022 0·0020913

4 0·5 0·7 2606 0·0010021 0·0019288

Multiple 4 0·6 0·4 507 0·0050233 0·0069615
element 4 0·5 0·5 490 0·0050203 0·0065825
damage 5 0·6 0·4 658 0·0050239 0·0065120

5 0·5 0·5 745 0·0050226 0·0063706
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Figure 9. Variation of training and testing error with number of iterations (single damage case).

Figure 10. Variation of training and testing error with number of iterations (multiple element damage).

Figure 11. Comparison of actual output and neural network output (single damage case).



Damage assessment of structures using neural networks 325

Figure 12. Comparison of actual output and neural network output (multiple damage case).

4. Conclusion

The primary objective of the present investigation is to determine the location and amount
of damage of a beam member by a neural network based technique. With the above view, a
computer code is developed in which structural response due to damage is carried out. The
response data are fed into the network to determine the damage. It is observed that neural
networks can successfully identify and calculate the amount of damage for both single and
multiple element damage cases. The main advantage of a neural network is that response
measurement is required only at a limited number of points. This makes the technique more
practical oriented. It is clearly observed from the result that selection of network architecture
is of paramount importance in the accuracy of method. The network trains better by producing
less MSE of testing sample for some particular values ofα andβ, and a certain number of

Figure 13. Comparison of actual output and neural network output (multiple damage case).
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nodes on hidden layers. The performance of the network is poor in some testing patterns
because of the lack of generalization of the training patterns. The network topology and the
learning parameters are also problem dependent and lot of uncertainty is associated with it.
However, it is an open area of research to get optimum value of the parameters and topology.
It is observed from the output results that the network performance improves when strain is
used as input pattern instead of displacement. In almost all the cases strain as input gives less
training and testing error than displacement.
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