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In the setting of myocardial infarction (MI), ischemia reperfusion injury (IRI) occurs due to

occlusion (ischemia) and subsequent re-establishment of blood flow (reperfusion) of a

coronary artery. A similar phenomenon is observed in heart transplantation (HTx) when,

after cold storage, the donor heart is connected to the recipient’s circulation. Although

reperfusion is essential for the survival of cardiomyocytes, it paradoxically leads to

additional myocardial damage in experimental MI and HTx models. Damage (or

danger)-associated molecular patterns (DAMPs) are endogenous molecules released

after cellular damage or stress such as myocardial IRI. DAMPs activate pattern recognition

receptors (PRRs), and set in motion a complex signaling cascade resulting in the release of

cytokines and a profound inflammatory reaction. This inflammatory response is thought to

function as a double-edged sword. Although it enables removal of cell debris and

promotes wound healing, DAMP mediated signalling can also exacerbate the

inflammatory state in a disproportional matter, thereby leading to additional tissue

damage. Upon MI, this leads to expansion of the infarcted area and deterioration of

cardiac function in preclinical models. Eventually this culminates in adverse myocardial

remodeling; a process that leads to increased myocardial fibrosis, gradual further loss of

cardiomyocytes, left ventricular dilation and heart failure. Upon HTx, DAMPs aggravate

ischemic damage, which results in more pronounced reperfusion injury that impacts

cardiac function and increases the occurrence of primary graft dysfunction and graft

rejection via cytokine release, cardiac edema, enhanced myocardial/endothelial damage

and allograft fibrosis. Therapies targeting DAMPs or PRRs have predominantly been

investigated in experimental models and are potentially cardioprotective. To date,

however, none of these interventions have reached the clinical arena. In this review we
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summarize the current evidence of involvement of DAMPs and PRRs in the inflammatory

response after MI and HTx. Furthermore, we will discuss various current therapeutic

approaches targeting this complex interplay and provide possible reasons why clinical

translation still fails.

Keywords: ischemia reperfusion injury, myocardial infarction, heart transplantation, damage-associated molecular

patterns, pattern recognition receptors, innate immunity, sterile inflammation

INTRODUCTION

Acute myocardial infarction (MI) is typically the result of

hampered blood flow to the myocardium due to atherosclerotic
plaque rupture or erosion (1). Consequential to hampered blood

flow, the myocardium becomes ischemic with subsequent loss of

viable cardiac muscle. Timely and adequate reperfusion leads to

limitation of the infarct size (IS), partial preservation of cardiac

function and subsequent reduction of morbidity and mortality

(1). In heart transplantation (HTx)-ischemic time has been
linked to primary graft dysfunction and rejection. To limit

ischemic injury as much as possible, the donor heart is

arrested with a cardioplegic solution and stored on ice in the

same solution. Hypothermia reduces the metabolic demands and

thereby protects the tissue from acute deprivation of nutrients.

Unfortunately, this protective effect is limited by time. Timely

restoration of blood flow is therefore also essential for
preservation of cardiac function and thereby outcome of HTx

(2–4).

Although reperfusion is the single most effective treatment in

salvaging the ischemic area at risk, it also causes additional

cardiomyocyte death (5). This phenomenon is known as

ischemia reperfusion injury (IRI) and is characterized by initial
intracellular metabolic changes that amplify damage (1, 5).

During the (hyper)acute phase of reperfusion (seconds to

minutes), disruption of electron transport leads to intracellular

calcium overload and reactive oxygen species (ROS) formation.

This induces opening of mitochondrial permeability transition

pores culminating in increased mitochondrial calcium levels,

subsequent mitochondrial membrane rupture, and eventual
cell death.

In the following minutes to hours and even days, cell damage

and cell death, provoke a burst of cellular components (e.g. Heat

Shock Proteins (HSPs), High Mobility Group Box-1 (HMGB-1),

Adenosine Triphosphate (ATP), nuclear and mitochondrial

DNA (mtDNA), and RNA) into the extracellular space and the
circulation where these molecules act as so called damage (or

danger)-associated molecular patterns (DAMPs). The

constitutive molecules that are excessively released during cell

injury or cell death have also been called alarmins but the terms

DAMPs and alarmins have been used interchangeably in various

studies (6). DAMPs are essential activators of the complex

signaling cascade that eventually leads to reperfusion induced
cardiac damage. DAMPs serve as ligands for pattern recognition

receptors (PRRs) that, when activated, induce nuclear

translocation of various transcription factors (e.g. Nuclear

Factor kappa-light-chain-enhancer of activated B cells (NF-

kB)) and promote pro-inflammatory cytokine release (7, 8).

Targeting the inflammatory response after myocardial IRI has
in part proven to be successful in small and large animal models,

whereas clinical translation has proven to be very challenging

and cumbersome (9). In this review we summarize the current

evidence of involvement of PRRs and DAMPs in the

inflammatory response induced by IRI in the light of MI and

HTx (summarized in Figure 1). Furthermore, we will discuss the

various current therapeutic approaches targeting this complex
interplay and provide possible reasons why these therapies are

currently not successfully translated to clinical therapies.

DAMAGE-ASSOCIATED MOLECULAR
PATTERNS RELATED TO MYOCARDIAL
ISCHEMIA REPERFUSION INJURY

Multiple DAMPs play a role in myocardial IRI (summarized in

Table 1) and they are extensively studied in experimental MI

models (70, 71). The goal of these models is to mimic clinical IRI

as closely as possible and investigate possible DAMP-related

therapies as closely as possible. The primary outcome

measurements are typically myocardial IS and cardiac function
following ischemia and reperfusion (5). DAMPs and IRI are

investigated less intensively in HTx (72). However, targeting

DAMPs, was studied in kidney, liver and lung transplantation,

aiming for a reduction of primary graft dysfunction and rejection

Abbreviations: AGEs, advanced glycation end products; ASC, apoptosis-

associated speck like protein containing a caspase-recruitment domain; ATP,

adenosine triphosphate; cfDNA, cell-free deoxyribonucleic acid; CM, cardiac

myosin; CpG, deoxycytidylate-phosphate-deoxyguanylate; DAMPs, damage-

associated molecular patterns; Dex-TO, dextran carrier conjugated to thiazole

orange; DNA, deoxyribonucleic acid; EDA, extra domain A; EGCG,

epigallocatechin-3-gallate; EVHP, ex vivo heart perfusion; exATP, extracellular

ATP; exRNA, extracellular RNA; GGA, geranylgeranylacetone; GL, gycyrrhizin;

HA, hyaluronic acid; HMGB-1, high mobility group box-1; HSPs, heat shock

proteins; HTx, heart transplantation; IkBa, nuclear factor of kappa light

polypeptide gene enhancer in B-cells inhibitor, alpha; IKK, IkB kinase; IL,

interleukin; IRI, ischemia reperfusion injury; IS, infarct size; LPS,

lipopolysaccharides; MI, myocardial infarction; mtDNA, mitochondrial DNA;

NF-kB, nuclear factor kappa-light-chain-enhancer of activated b cells; NLRP3,

NOD-, LRR- and pyrin domain-containing protein 3; NLRs, NOD-like receptors;

NOD, nucleotide-binding oligomerization domain; PPADS, pyridoxal phosphate-

6’-azopheny-2’,4’-disulphonate; PRRs, pattern recognition receptors; P2X7, P2X

purinoceptor 7; RAGE, receptor for advanced glycation end products; RNA,

ribonucleic acid; ROS, reactive oxygen species; shRNA, short hairpin RNA;

siRNA, small interfering RNA; sRAGE, soluble RAGE antagonist; STEMI, ST-

elevated myocardial infarction; TAK-242-NP incorporation of TAK-242 into

poly-(lactic-co-glycolic acid) nanoparticles; Th17, T helper cells type 17; TLRs,

Toll-like receptors; TNF-a, tumor necrosis factor-a.
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(73–76). Here we will discuss the most relevant DAMPs and

PRRs and therapies targeting their interplay in the setting of
myocardial IRI following both MI and HTx (summarized in

Table 2).

High Mobility Group Box 1
High mobility group box 1 (HMGB-1) is a nuclear protein that

regulates transcription, DNA replication and DNA repair.

Consequently, cells lacking HMGB-1 have an increased

susceptibility to DNA damage. Upon cell stress or injury,
HMGB-1 can be passively or actively released (112). Outside the

cell, HMGB-1 induces an immune response by acting as a DAMP

on multiple PRRs (113). The first receptor found to interact with

HMGB-1 was the receptor for advanced glycation end-products

(RAGE), but HMGB-1 can also act as a DAMP on both Toll-like

receptor (TLR)2 and TLR4 in neutrophils and macrophages (10).

Following these observations, rodent studies focused on the
role of HMGB-1, in MI and HTx. Surprisingly, overexpression

of HMGB-1 in MI models of permanent ligation and

administration of HMGB-1 after infarct induction resulted in

the attenuation of dendritic cell influx, smaller IS and the

preservation of left ventricular ejection fraction (15, 16). These

beneficial effects were further accompanied by enhanced
angiogenesis (16). Similarly, administration of anti-HMGB-1 in

rats, both in a MI model of permanent ligation and an IRI model

led to an enlarged IS and thinning/expansion of the infarct scar,

suggesting a possible essential role for HMGB-1 in the healing

process after MI (17, 18).

Conversely, the opposite was observed in a study by Andrassy

et al., where recombinant HMGB-1 enhanced cardiac TNF-a
and IL-6 mRNA levels, increased IS and worsened IRI. In line

with these findings, HMGB-1 box A, a functional antagonist of

extracellular HMGB-1 and HMGB-1 interaction with RAGE, led

to a pronounced reduction of IS (11). HMGB-1 was also studied

in humans and showed to be significantly elevated in serum after

acute MI, within 24h of symptom onset, compared to healthy
volunteers (114). Furthermore, higher peak levels were

associated with a higher incidence of adverse cardiac outcomes,

such as pump failure, cardiac rupture, and in-hospital cardiac

death (18).

In HTx models, the use of anti-HMGB-1 neutralizing

antibody during whole-heart cold reperfusion reduced systemic

A

B

FIGURE 1 | Myocardial Ischemia Reperfusion Injury (IRI) following myocardial infarction (MI) or heart transplantation (HTx). IRI leads to the release of damage

associated molecular patterns (DAMPs) which subsequently leads to an increased infarct size following MI (A). In HTx, the release of DAMPs leads to a pro-

inflammatory state that ultimately can lead to primary graft dysfunction (PGD) and rejection (B). Figure was created with BioRender.com.
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release of pro-inflammatory cytokines in the mouse allograft

(19). In a mouse model of acute rejection, blockade of HMGB-1

significantly decreased infiltration of neutrophils and alloreactive

T helper 17 (Th17) cells leading to prolonged allograft survival

(20). Furthermore, the administration of a specific anti-HMGB-1

monoclonal antibody in a mouse model of chronic rejection
decreased cardiac allograft vasculopathy and fibrosis. This was

accompanied by attenuation of T-cell infiltration, reduced

numbers of inflammatory dendritic cells together with

decreased Th17 and interferon-gamma production in the

allograft and the recipient’s spleen (21). These results suggest

that anti-HMGB-1 treatment may improve both short and long

term HTx outcome.
Glycyrrhizin (GL) is a natural inhibitor of extracellular

HMGB-1 and inhibits the formation of pro-inflammatory

cytokines (77, 78). In a rat model of MI, the use of GL dose-

dependently attenuated IRI (78). When added to the

preservation solution during cold storage in a HTx mouse

model, GL improved cardiac allograft function and resulted in
less myocardial damage (79). Additionally, intraperitoneal

administration of GL to the mouse recipient, 5 min before

reperfusion in a HTx mouse model, markedly reduced the

production of interleukin (IL)-23 and IL-17A and decreased

cardiac troponin T and cardiomyocyte apoptosis (80).

It has been postulated that discrepant results in different

animal models of MI (permanent ligation vs. IRI) indicate that
HMGB-1 elicits both beneficial (promoting-angiogenesis in

chronic repair) and harmful effects (IRI) following MI. These

heterogeneous results make it challenging to determine the

therapeutic window for beneficial effects and hinders clinical

translation in the setting of MI. Therefore, an improved

understanding of the release mechanism of HMGB-1 as well as

the downstream effects in the light of IRI following MI or HTx
will be critical for elucidating the various physiological roles of

HMGB-1 in cardiovascular disease. In summary, given the

complexity of the role of HMGB-1, it is unlikely that selective

HMGB-1 (ant)agonists will reach the clinical area.

Heat Shock Proteins
Heat shock proteins (HSPs) are chaperone proteins that organize

the folding, assembly, and degradation of cellular proteins and
are present in all cells. HSPs were initially defined as proteins

released in response to heat shock and they are further grouped

into families based on their molecular weight (115, 116).

Particularly HSP60 and HSP70 are associated with IRI in MI

and HTx. It is debatably whether HSPs are true DAMPs, since

detectable levels of certain HSPs exist in unprovoked
extracellular environments, while DAMPs are intracellular

molecules, expressed upon stress or damage, that normally are

not exposed to the extracellular environment (117).

Exposure of rodent cardiomyocytes to exogenous HSP60

induces apoptosis and leads to a significant increase of

inflammatory cytokines through TLR4 and TLR2 mediated

signaling (22, 23). Transient myocardial ischemia results in a

TABLE 1 | DAMPs and PRRs related to MI and HTx.

DAMP Ligand for DAMP’s effect in MI DAMP’s effect in HTx

Protective Detrimental Protective Detrimental

HMGB-1 RAGE, TLR2, TLR4, TLR9

(10–14)

↑ cardiac output,

↓IS (15–18)

↓ cardiac output (18)

↑ IRI (11)

– ↑ inflammation,

↑ rejection (19–21)

HSP60 TLR2, TLR4 (22, 23) – ↑ inflammation,

↑ damage (24–26)

↓rejection (27) –

HSP70 TLR2, TLR4 ↓IS (28) ↑ inflammation, ↑ IS (29)

↑ adverse remodeling, ↑

IS (30)

↑ contractility,

↑ endothelial and mitochondrial function

(31, 32)

↓ rejection (33)

–

Fibronectin-EDA TLR2, TLR4 (34–36) – ↑ adverse remodeling (35)

↑ heart failure (35)

↑ IRI (36)

– ↑ rejection (37, 38)

↑ inflammation (39)

Hyaluronic acid TLR2, TLR4 (40, 41) ↑ cardiac function,

↓IS (42, 43)

↑ edema (44)

↑ damage (45)

– ↑ edema,

↑ rejection (46)

↑ inflammation,

↑ fibrosis (47)

mtDNA TLR9, NLRP3, RAGE (12,

48–50)

– ↑ mtDNA replication,

↑ damage (51, 52)

↑ inflammation (12, 50,

53)

↑ IS (53)

– –

Circulating RNA TLR3, TLR7 (54, 55) – ↑ inflammation (55–57)

↑ IS (56–58)

– –

Cardiac myosin TLR2, TLR8 (59) – ↑ inflammation (59) – ↑ rejection (60, 61)

↓ graft survival (62,

63)

Extracellular ATP P2X7/NLRP3 (64–66) – ↑ IS (67)

↓ cardiac function (68)

– –

Calgranulins RAGE (14, 69) – ↓ recovery (69) – –
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Frontiers in Immunology | www.frontiersin.org December 2020 | Volume 11 | Article 5995114

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


TABLE 2 | Experimental therapeutics.

Target Compound Compound effect on primary outcome

MI HTx Other transplant Human studies

HMGB-1 Anti-HMGB-1 antibody ↑ IS (16)

↑ infarct scar (17)

↑ graft survival,

↓inflammation (19–

21)

– –

BOX A ↓IS (11) – – –

Glycyrrhizin ↓IRI/IS (77, 78)

↓ inflammation (77, 78)

↑ graft survival,

↓inflammation (79,

80)

– –

HSP70 Bimoclomol ↓ IS (28) – – –

GGA ↓IRI (81, 82) – – ↑HSP concentration (83)

Fibronectin-

EDA

Anti-Fibronectin-EDA antibody ↓ IS (36) – – –

mtDNA Epigallocatechin-3-gallate (EGCG) ↓ IS,

↓ inflammation (53)

– – –

Exscien-1-III ↓ remodeling,

↑ cardiac function (84)

– – –

exRNA RNase ↓ IS,

↓ inflammation,

↓necrosis (56, 58)

– – –

Dex-TO ↓ IS, inflammation (57) – – –

TLR4 Eritoran ↓ IS and inflammation

(85)

– ↓ inflammation (86) = inflammation (87)

TAK-242 ↓ IS (88) – – = inflammation (89)

TLR2 OPN-305 ↓ IS,

↓ inflammation,

↓remodeling,

↑ cardiac function (90,

91)

– ↑ Renal function (92) ↓ IL-6, no adverse effects (93)

NLRP3 INF4E ↓ IS,

↑ cardiac function (94)

– – –

16673-34-0 ↓ IS and inflammation

(95)

↑ graft function (96) – –

Dapansutrile ↓ IS,

↓inflammation,

↑ cardiac function (97)

– – ↓ IL-1b, Safe, well-tolerated (98–

100)

MCC950 ↓ IS,

↑ cardiac function (101)

– – –

P2X7 shRNA ↓ IS,

↓ inflammation,

↑ cardiac function (67)

– – –

siRNA (NONRATT021972) ↑ cardiac function (102) – – –

PPADS ↓ IS,

↓ cell death,

↑ cardiac function (68)

– – –

Genestin ↓ IS,

↓inflammation (103)

– – –

Periodate-oxidized ATP – ↓ rejection (104) – –

RAGE sRAGE/A + genetic silencing of

RAGE

↓ IS and fibrosis (105) – – –

NF-kB BAY 11-7082 ↓ IS,

↓inflammation (106) – – –

BAY 65-1942 ↓ IS,

↓inflammation

↑ cardiac function (107)

– – –

PS-519 ↓ IS,

↓inflammation

↑ cardiac function (108)

– – –

Tacrolimus ↓ myocardial necrosis

↓inflammation (109) – – –

PDTC – ↑ graft survival (110) ↓IRI lung transplant

(111)

–
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pronounced release of HSP60 and is associated with cardiac

inflammation and damage in vitro and in vivo (24–26).

Furthermore, the expression of HSP60 following MI seems to

differ over time suggesting different significance in the acute

phase following IRI and (sub)acute phase of adverse remodeling

and progression to heart failure (118).
The role of HSP70 in MI has shown to be complex since

opposed results have been published. HSP70 can induce the

release of pro-inflammatory cytokines in human monocytes (29).

However, pharmacological treatment with HSP co-inducer

Bimoclomol increased levels of HSP70, but decreased IS in a

rat MI model of IRI (28). Additionally, induction of HSP70
expression following pretreatment with pharmacological agent

Geranylgeranylacetone (GGA), also revealed cardioprotective

effects in rat models of IRI (81, 82). Moreover, a small cohort

of 26 patients undergoing coronary artery bypass grafting was

randomized to 3-day pre-treatment with GGA (400mg/day) or

placebo. Treatment with GGA resulted in higher levels of HSP70
and other small HSPs in the myofilament fractions of right and

left atrial appendage tissue. This could indicate that GGA

treatment results in the upregulation of beneficial HSPs that

could potentially attenuate IRI following MI (83). Importantly,

both bimoclomol and GGA are indirect regulators of HSP70 and

these studies fail to establish a clear causal role between

upregulation of HSP70 and the observed treatment effects.
A recent study in ST-elevated Myocardial Infarction (STEMI)

patients observed that serum levels of HSP70 were significantly

increased following MI and were associated with increased IS,

adverse remodeling and worse clinical outcome. This study

indicates that HSP70 can serve as a biomarker of clinical

outcome, albeit it does not prove a causal role of HSP70 as a
key player of the post-MI inflammatory response (30).

Although less studied in HTx, a clinical study demonstrated

that endomyocardial HSP60 levels were low just before and

during acute rejection. The levels of HSP60 increased after

treatment with immunosuppressive agents, suggesting that

HSP60, in contrast to what was reported in MI, may be

released as part of a protective response following acute tissue
damage in HTx (27). Cardioprotective effects of HSP70 in HTx

were reported as well. In a clinical heart preservation protocol in

rats, it was observed that HSP70 gene transfection protected

endothelial as well as mitochondrial function, resulting in

improved ventricular contractility (31, 32). A clinical HTx

study could not demonstrate HSP70 expression in
cardiomyocytes of patients with rejection, whereas patients

without rejection did show levels of HSP70. This suggests a

possible inverse relationship between HSP70 expression and

rejection, implicating cellular HSP70 could possibly serve as a

marker to predict graft function (33). Similar results were also

observed in clinical liver transplantation studies, where lower

levels of HSP70 in biopsies prior to transplantation and organ
perfusates were associated with early graft loss (119).

Taken together, contradicting evidence of HSPs exists. In the

aforementioned studies no evidence is provided that the

pharmacological stimulation of HSP70 release is selective. One

could speculate that the beneficial results after compound

administration are due to unexplored pleiotropic effects.

Additionally, no clear direct molecular interaction of HSPs

with specific PRRs other than TLR2 and TLR4 has been

reported so far and interaction with unidentified PRRs could

possibly explain the ambiguous role of these HSPs. It is not fully

understood whether these HSPs are innocent bystanders that
increase upon myocardial injury or are causally involved in the

inflammatory response after MI. Taken together, these

discrepant results uncover a gap of knowledge on the role of

HSPs in both MI and HTx. Consequently, targeting HSPs

directly at this stage is only feasible when mechanistic studies

uncover the complex role of different HSPs in IRI.

Fibronectin-EDA
Fibronectin is a glycoprotein that is present in the extracellular

matrix. It may contain a spliced exon encoding type III repeat

extra domain A (EDA). Fibronectin-EDA is believed to be

predominantly released by fibroblasts, in response to injury

and showed its ability to act as a DAMP via TLR2 and TLR4

stimulation (34, 35).
Deletion of fibronectin-EDA is associated with less adverse

remodeling and heart failure in a MI mouse model of permanent

coronary ligation (35). Fibronectin-EDA also showed to

contribute to myocardial IRI via TLR4-mediated signaling in

hyperlipidemic mice (36) and administration of an anti-

fibronectin antibody, 15 min post-reperfusion, reduced IS
following ischemia/reperfusion in the same mouse model as

well (36). In HTx, rodent studies revealed involvement in

chronic cardiac allograft rejection (37, 38). Fibronectin-EDA

expression showed to be associated with cardiac allograft

vasculopathy and fibrosis. Acute rejection, however, was

similar in fibronectin-EDA-deficient compared to wildtype

mice (38). Additionally, a clinical study observed an association
between levels of fibronectin-EDA and inflammation in biopsies

of HTx patients with signs of chronic rejection (39). The exact

role of fibronectin-EDA in the pro-inflammatory response and as

a therapeutic target following MI and HTx, however, needs

further investigation.

Hyaluronic Acid
Hyaluronic acid (HA, also known as Hyaluronan) is a

polysaccharide that together with collagen is one of the most

abundant components of the extracellular matrix and is

expressed in several tissues. In humans, HA is actively
produced upon tissue injury and is involved in tissue repair

(120, 121). The cell signaling functions of HA largely depend on

its molecular weight. In case of tissue injury, such as following

MI or HTx, HA is more polydisperse and fragmented (122).

Both low and high molecular weight HA fragments can act as

ligands for TLR2 and TLR4 and therefore have the potential to

act as DAMPs during the inflammatory response in IRI (40, 41,
70). However, low molecular weight (LMW)-HA is known to be

pro-inflammatory whereas high molecular weight (HMW)-HA

has anti-apoptotic and anti-inflammatory effects (123–126).

Increased expression of HA was observed in a MI rat model of

permanent ligation. HA expression showed to increase rapidly in
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the infarcted myocardium and was associated with increased and

harmful cardiac edema (44). More recently, the role of HA in a

mouse model of IRI was studied. Inhibition of HA secretion, by

genetic deletion of the HA Synthase 2 (Has2) gene, worsened

cardiac function and increased IS. This shows that the early HA

response appears to be part of essential repair mechanisms after
IRI, albeit this study did not elaborate on the type of HA that is

responsible for these cardioprotective effects (42). Furthermore,

it was shown that intravenous injections of degradative

fragments of HMW-HA improve myocardial function, reduce

IS and promote angiogenesis in a MI mouse model of permanent

ligation. These HA oligosaccharides potentially cause this
protective effect by suppressing neutrophil activity and

stimulating polarization of M2 type macrophages (43). The

results in these different models indicate that HA has an

essential role in cardiac repair following MI and IRI and,

although it can act as a ligand for TLR2 and TLR4, questions

its role as a detrimental DAMP. A recently published clinical
study showed that the plasma HA levels are significantly

increased in patients with acute MI and indicate that it has the

potential to serve as a biomarker of myocardial damage but failed

to establish a causal role between HA upregulation and cardiac

damage (45).

The role of HA in HTx is largely unknown and only few dated

experimental studies report on the expression of HA following
HTx. In a rat model of HTx interstitial accumulation of HA was

associated with increased edema and cardiac allograft rejection

(46). More recently, in another rat model of HTx, IRI resulted in

increased expression of HA and HA synthases shortly after

transplant. This increased HA was followed by a pronounced

infiltration of T-cells and graft fibrosis (47).
The complex role of HA in the inflammatory response

following MI and HTx, with multiple forms being both of

positive and negative influence on cardiac damage following

IRI, makes it a difficult direct target for future clinical translation.

mtDNA
Mitochondrial DNA (mtDNA) can be released in the

extracellular space and in the circulatory system as a
consequence of cell death. It can act as a DAMP and has the

ability to activate the innate immune system (127–129). MtDNA

is circular and carries unmethylated deoxycytidylate-phosphate-

deoxyguanylate (CpG) regions similar to bacterial DNA and is

therefore easily recognized as a DAMP (127, 128). During

myocardial IRI, ROS production is aggravated which leads to
the oxidation of mtDNA and this subsequently induces cellular

damage and secondary upregulation of genes involved in

mtDNA replication, activating a positive feedback loop (51,

52). MtDNA can be recognized by TLR 9, RAGE and the

NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3)

inflammasome and activates various pro-inflammatory signaling

cascades (12, 48–50).
Pharmacological inhibition of mtDNA was studied with

Epigallocatechin-3-gallate (EGCG), which is a catechin with

well-known anti-inflammatory properties, in a rat model of

IRI. Significant positive correlations were observed between

levels of mtDNA and pro-inflammatory cytokines (TNF-a and

IL-6) in the myocardial tissue of non-treated rats.

Administration of EGCG, prior to reperfusion, significantly

reduced the levels of mtDNA, TNF-a and IL-6 and limited IS.

This suggests that the cardioprotective effects were achieved by

inhibiting mtDNA release, but the mode of action is not

completely elucidated (53). Another study shows that
administering Exscien1-III, a mitochondria-targeted fusion

protein containing endonuclease III, during reperfusion in a

mouse model of MI attenuates cardiac remodeling and preserves

cardiac function (84). More recently, a study in mice provided

further mechanistic insight in mtDNA-induced myocardial IRI

and suggests that the detrimental effects are based on a combined
effect with HMGB-1. It was observed that, upon IRI, both

HMGB-1 and mtDNA are released into the bloodstream. Solo-

treatment of either HMGB-1 or mtDNA infusion did not result

in increasing IS, while combined treatment of HMGB-1 and

mtDNA did have clear harmful effects via RAGE signaling (12).

Although these results are interesting, to the best of our
knowledge no clinical trials with drugs targeting mtDNA have

been reported and whether mtDNA could also serve as a

potential therapeutic target in patients, remains to be elucidated.

Circulating Extracellular RNA
RNA molecules can be actively or passively secreted into the

extracellular milieu following IRI and were shown to act as a

DAMP by inducing pro-coagulatory and pro-inflammatory
responses (130). These circulating extracellular RNA (exRNA)

molecules elicit a strong immune response by stimulation of

TRIF-signaling, induction of interferon secretion (independent

of TLR2/4‐MyD88 signaling) and upon interaction with different

TLRs, such as TLR3, TLR7 and TLR8 both in vitro and in vivo in

myocardial IRI (54–56, 131, 132). It was further demonstrated

that treatment with RNase attenuates necrosis-induced cytokine
production in cardiomyocytes and protects mice against IRI,

marked by smaller IS (56). This protective effect of exRNA

inhibition was confirmed by administration of a non-toxic

RNase1 which resulted in reduced IS and preserved cardiac

function in an experimental in vivo mouse model of

myocardial IRI as well as in the isolated IRI Langendorff-
perfused rat heart (58).The same group tested this concept in a

clinical study on patients undergoing cardiac bypass surgery and

demonstrated that upon remote ischemic preconditioning, by

four 5-min cycles of blood pressure cuff inflation around the left

arm, prior to the surgery, the levels of cardioprotective RNase1

were increased whereas the concentration of exRNA and Tumor
Necrosis Factor-a (TNF-a) were decreased. This study does not
report the direct effects on cardiac function neither does it prove

a causality between upregulation of RNAse1 and a reduction of

exRNA and TNF-a. The exact mechanism of RNase1-induced

cardioprotection, therefore, still remains to be clarified (133).

Others developed a multivalent nucleic acid scavenging

nanoprobe, fluorochrome thiazole orange conjugated to a
dextran carrier (Dex-TO), to scavenge nucleic acids. Dex-TO

was administered intravenously to mice subjected to MI, initially

at the onset of IRI and again 4 h later, resulting in a reduced

inflammation and a decrease in IS in the Dex-TO treated

mice (57).
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These data indicate that RNA-induced tissue injury can

potentially be reduced with RNase, TLR inhibitors, and other

RNA scavenging chemicals compounds. However, more studies

in large animals and clinical data are needed to support these

beneficial effects observed in pre-clinical experimental studies.

Cardiac Myosin
Cardiac myosin (CM) is a contractile protein that is a part of the

sarcomeric complex. It is unique to the myocardium and forms

the most abundant protein in the heart. CM is released from

necrotic myocytes to the blood following MI and induced

humoral immune responses in patients post-MI. In vitro, CM

released by damaged cardiomyocytes, demonstrated to stimulate
the innate immune response. Binding of CM to TLR2 and TLR8

resulted in the release of pro-inflammatory cytokines by

monocytes which could be involved in the detrimental

inflammatory response in vivo (59). However, its role in

myocardial IRI was not further investigated.

CM is also thought to be involved in HTx as it is recognized

by both T-cells and B-cells during cardiac rejection (60). Mouse
models of HTx have shown that sensitization with CM prior to

transplant can lead to an augmented rejection of both allogenic

and syngeneic cardiac grafts (60). Modulation of the CM-specific

response can also influence alloreactivity and graft survival in a

mouse model of HTx (62). Higher anti-myosin IgG antibody

levels post HTx have shown to be associated with acute cardiac
rejection in a clinical study (61). Furthermore, high levels of anti-

myosin IgG pre-transplant were shown to be linked with poor

survival after HTx, and increased levels post-transplant were

related to increased risk of acute rejection (63).

PATTERN RECOGNITION RECEPTORS
RELATED TO MYOCARDIAL ISCHEMIA
REPERFUSION INJURY

Toll-Like Receptors
Toll-like receptors (TLRs) are transmembrane proteins that are
expressed by a variety of cells and play a pivotal role in the innate

and adaptive immune system. The immune response provoked

by TLR-activation differs according to the type of the stimulus

(134). It was shown that almost all cell types present in the heart

express TLRs (135). TLR4 and TLR2 have been studied

extensively in the light of IRI during experimental MI (136)

and HTx (137).

TLR4
Most research on TLRs has been performed on mouse strains
that are deficient of certain TLRs. There is strong evidence that

TLR4 contributes to IRI in both MI (138–140) and HTx (137,

141). The role of TLR4 in transplantation has also been

confirmed for other solid organ transplants (142–145). Given

these observations, TLR4 inhibition may have beneficial effects in

limiting IRI. Several compounds targeting TLR4 have been
developed and some were tested in myocardial IRI upon MI or

organ transplantation. In this perspective, it was shown that

pretreatment with the TLR4 antagonist Eritoran reduced IS by

33% in a MI mouse model of IRI (85). Additionally, the release of

TNF-a, IL-6, and IL-1b was significantly attenuated. Another

TLR4-antagonist that has been studied in a MI mouse model of

IRI is TAK-242. Incorporation of TAK-242 into poly-(lactic-co-

glycolic acid) nanoparticles (TAK-242-NP), was shown to
improve drug delivery to monocytes and macrophages

compared to non-encapsulated TAK-242. Administration of

these TAK-242-NP resulted in a significant reduction of IS

(88). Although these drugs have not been tested in models of

HTx, Eritoran showed to reduce monocyte infiltration and pro-

inflammatory cytokine production (TNF-a, IL-1b, and IL6)
upon renal transplantation with 40 min of ischemia in rats

(86). Eritoran and TAK-242 have not been studied in large

animal models for IRI in MI or HTx, but were tested in

patients as a possible treatment for sepsis (87, 89). Both drugs

failed to reach hard clinical end points and overall circulating

cytokine levels were unaffected.

TLR2
Comparable to TLR4, the causal role for TLR2 in MI related IRI

was established in TLR2 deficient mice (146, 147). The promising

findings resulted in the development and investigation of a

monoclonal anti-TLR2 antibody OPN-305 (OPN-301 in mice).

Antagonizing TLR2 led to a reduction in IS and preservation of

cardiac function and geometry upon cardiac ischemia
reperfusion in a mouse model of IRI. This effect was attributed

to reduced influx of leukocytes, decreased cytokine production

and enhanced cardiomyocyte survival (90). In an open chest pig

model of myocardial IRI, the administration of OPN-305

resulted in a dose-dependent reduction of IS (45% reduction

with the highest dose of OPN-305) and preserved systolic

function. However, the authors did not observe signs of
reduced myocardial inflammation (91).

In contrast with the consistent results in MI, the role of TLR2

in HTx seems to be more ambiguous. Increased messenger RNA

expression of TLR2 in the cardiac allograft is associated with

increased risk of cardiac allograft rejection in humans (141). This

is in line with earlier studies showing similar findings in kidney
transplantation (143, 144). A recent study using TLR2-deficient

mice on the other hand showed poor graft survival time, due to

increased immune cell infiltration and enhanced pro-

inflammatory Th17 cell responses (148). OPN-301 was not

tested in models of HTx but was studied in a mouse model of

renal transplantation, where it was administered after 30 min of
cold ischemia prior to reperfusion. This treatment significantly

improved kidney function after 6 days of transplantation based

on blood urea nitrogen levels, which correlated with preserved

tubular structure in mice that were treated with OPN-301 (92).

The first translational steps with OPN-305 were set with a

randomized, double-blind, placebo controlled, dose escalating

Phase 1 trial. In this trial a single dose of increasing
concentration of the antibody was administered to study

pharmacokinetics and – dynamics in 41 healthy subjects. TLR2

blockade was confirmed in a dose-dependent manner and as a

consequence, inhibition of IL-6 release was observed without

adverse events (93). Unfortunately no data is published on the
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placebo-controlled clinical trial to evaluate the efficacy of OPN-

305 in delayed renal graft function that was completed in

2013 (149).

Other TLRs
Although other TLRs are investigated less extensively, some of

these receptors showed to be involved in inflammation following
MI. Mice deficient for TLR3 and TLR7 showed to develop

smaller IS, had less influx of inflammatory cells and better

cardiac function compared to wildtype mice (150, 151).

Recently, TLR9 also showed to contribute to the inflammatory

response following MI in a mouse model through stimulation by

HMGB-1 and mtDNA (12). However, a contrary report observed
that TLR9-HMGB-1 was essential for survival of cells, wound

healing and angiogenesis in a model with a longer follow-up (13).

Experimental studies investigation the role of TLR5 were also

performed and it is expressed in the hearts of mice, rats and

humans (152). TLR5 deficiency in knock out models increased IS

and myocardial oxidative stress, suggesting that TLR5 is more

involved in cardioprotective signaling (153). The role of TLR8 is
not completely clear but human cardiac myosin, once released

after cardiomyocyte damage, can act as a ligand for TLR8 (59).

Whether the pathways that are induced via other TLRs

contribute to, or hamper cardiac IRI is not fully substantiated

and warrants further investigation before these PRRs can be

evaluated as therapeutic targets.

NOD-Like Receptors
The nucleotide-binding oligomerization domain-like receptors,

or NOD-like receptors (NLRs) are intracellular receptors that

can recognize a wide variety of DAMPs. Some are known to form
multi-protein complexes named “inflammasomes” (154).

Activation of the inflammasome is a two-step process of

priming and activation. The priming signal is provided by the

interaction of DAMPs with PRRs, such as TLRs, and leads to the

upregulation of the separate inflammasome components via NF-

kB activation (64). The activation signal is again provided by

multiple DAMPs, including exATP and intracellular DAMPs like
ROS (64). This leads to the assembly of the multiple components

of the inflammasome resulting in a conformational change of

caspase-1. In turn, this enables maturation and release of the

cytokines interleukin (IL)-1b and IL-18, thereby inducing a

potent inflammatory response (64). Additionally, caspase-1

induces pyroptosis, which is a pro-inflammatory form of
regulated cell death. The best studied inflammasome is the

NLRP3 inflammasome and it has been associated with

cardiovascular disease extensively (155–157). It consists of

three components (1): NLRP3 (2), Apoptosis-associated speck

like protein containing a caspase-recruitment domain (ASC),

and (3) caspase-1. Knock-out models and silencing RNA

administration of NLRP3-inflammasome components revealed
a possible role for the NLRP3 inflammasome in myocardial IRI

(68, 158). Furthermore, IRI showed to induce a strong

upregulation of NLRP3 and caspase-1 expression in the mouse

heart (159). These experimental findings led to the development

of selective NLRP3 inhibitors that were tested in animal models

of IRI. Several compounds showed to preserve cardiac function

and reduce IS.

Pretreatment with INF4E, a compound that inhibits the

ATPase activity of NLRP3, reduced IS and improved

postischemic left ventricular pressure in isolated male Wistar

rats (94). 16673-34-0, a NLRP3 inflammasome inhibitor derived
from glyburide, reduced caspase-1 activity in cardiomyocytes

upon LPS (priming) and ATP (activation) stimulation in vitro. In

a MI mouse model of IRI treatment with 16673-34-0 led to a 40%

reduction of IS (95). More recently, OLT1177 (dapansutrile),

showed to reduce IS up to 70% in multiple experimental

IRI scenarios (short/longer ischemia times, administration
during reperfusion and after 1 h of reperfusion) in mice (97).

Furthermore, cardiac function 24 h and 7 days after reperfusion

was significantly improved compared to placebo and caspase-1

activity in the heart was reduced by 50%. One study tested the

effect of NLRP3 inflammasome inhibition in a large animal

model of IRI (101). Daily infusion of MCC950, showed to
reduce IS up to 16% and preserved cardiac function in a dose-

dependent manner in a pig model of 75 min of left anterior

descending artery occlusion (101).

In a HTx mouse model, the levels of ASC and IL-1b increased

with the progression of cardiac allograft rejection (160). Clinical

data is lacking but a small study investigated the hearts of 8

patients with acute transplant rejection and clearly showed
formation of ASC (161). Furthermore, a correlation was

established between increased ASC formation and rejection

grade. Although the study is limited by small numbers these

results could indicate that inhibition of the inflammasome has a

potential role in the prevention of acute cardiac rejection. Very

recently, administration of 16673-34-0 showed a clear
improvement in donation after circulatory death (DCD) heart

graft function 24 h after implantation in a rat model of HTx (96).

One third of the non-treated DCD hearts showed to be necrotic

after 24 h, while none of the hearts treated with the NLRP3

inflammasome inhibitor failed.

Results of clinical trials with selective NLRP3 inflammasome

inhibitors in myocardial IRI have not been published thus far,
although dapansutrile is currently under investigation in

multiple phase IB-II clinical trials (98, 99). The compound

showed to be safe, was well-tolerated and meaningful plasma

levels were obtained in healthy volunteers. Additionally, IL-1b
release was clearly reduced in in vitro testing on human

macrophages (100). Very recently it was studied in a small
phase-IIa study of patients with monosodium urate crystal-

proven gout flare. Treatment resulted in a reduction of IL-6

and inflammatory pain (162).

Although the results on NLRP3 inflammasome inhibition in

small animal IRI models seem very promising, these results

should be interpreted with caution. Experimental evidence

suggests that divergent effects and potential translation failure
could also be the case for the NLRP3 inflammasome inhibitors,

since also negative results have been published (163). In NLRP3

KO mice, no protection against IRI was seen in ex vivomodels or

in in vivo coronary artery ligation mouse models (164, 165).

These findings suggest compensatory mechanisms or,
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inflammasome independent protective effects of NLRP3

inhibitors (163). Furthermore, deletion of the NLRP3 receptor

showed to abolish cardiac ischemic preconditioning in

Langendorff-perfused mice hearts (166). This was specific for

NLRP3 and not the case for hearts of ASC-deficient mice. In

addition, another study, using an in vivo mouse model of IRI,
reported larger infarcts in mice deficient for NLRP3 and

preconditioning did not reduce IS in NLRP3 -or ASC

-deficient hearts in contrast to wildtype mice (165).

To justify clinical trials with selective NLRP3 inhibitors in

patients with acute MI or HTx it is important to expand our

knowledge about the exact mechanisms of the NLRP3
inflammasome and perform translational research in large

animal models to fully evaluate the potential of these

selective inhibitors.

P2X Purinoceptor 7
In a healthy cell, ATP is generated intracellularly and is released

through transmembrane channels to the extracellular space in a

regulated manner. In case of danger, damage and/or stress,
however, very high levels of ATP are translocated to the

extracellular space, acting as important immunomodulatory

DAMPs by activating the P2X purinoceptor 7 (P2X7) (167).

P2X7 activation results in potassium efflux leading to activation

of intracellular signaling pathways causing the release of pro-

inflammatory cytokines (65). The most investigated function of
P2X7 in IRI is probably its role in NLRP3 inflammasome

assembly and subsequent maturation (65).

In a rat model of MI, it was demonstrated that

intramyocardial injections of P2X7 specific short hairpin RNA

(shRNA) directly after coronary ligation and subsequent MI

induction leads to P2X7 signaling blockage which resulted in

reduced infiltration of circulating cells, a reduction of IS and
improved cardiac function. This effect was shown to be

associated with inhibiting the Akt and ERK1/2 pathways and

NF‐kB activation (67). Another study in rat hearts showed that

long non-coding siRNA (NONRATT021972) decreased the

upregulation of P2X7 in the superior cervical ganglion and

improved cardiac function after MI in a rat model of
permanent ligation (102). Results that were further supported

by a study that investigated (pyridoxalphosphate-6′-azopheny-

2′,4′-disulfonate) PPADS, which is a pharmacologic P2X7

inhibitor. In vitro, PPADS significantly reduced cell death

exposed to ischemia. In vivo, PPADS reduced IS and improved

cardiac function in a mouse model of permanent ligation (68). A

rat model of IRI suggests beneficial effects of regulating P2X7 as
well. Genestin, a flavonoid with anti-inflammatory properties,

reduced IS following IRI and was associated with decreased levels

of P2X7 in myocardial tissue and pro-inflammatory cytokines,

such as TNF-a and IL-6, in serum (103).

In HTx, a report showed that P2X7 was specifically

upregulated in graft-infiltrating lymphocytes in cardiac-
transplanted humans and mice. It also showed that short term

blocking of P2X7 with periodate-oxidized ATP attenuated heart

transplant rejection in mice recipients (104). On the contrary, a

clinical study highlighted the role of a mutation in P2X7 in

predicting poor cardiac allograft outcomes. It was demonstrated

that cardiac-transplant patients bearing a loss of function

mutation for P2X7, have a dysregulated P2X7/NLRP3 pathway

which is associated with higher risk for developing rapidly

progressive cardiac allograft vasculopathy and higher frequency

of acute rejection episodes (66). This indicates that complete
blockage of P2X7 may not have favorable outcomes in HTx.

Drugs targeting P2X7 were tested in clinical studies for several

inflammatory diseases (168–171). Unfortunately, none of these

inhibitors have been investigated in the setting of MI or HTx.

Novel strategies targeting exATP signaling, particularly through

P2X7 could have considerable translational potential and novel
P2X7 inhibitors that are already available for clinical use can also

be considered for clinical testing in the setting of MI or HTx.

Receptor for Advanced Glycation End-
Products
In 1992 the Receptor for Advanced Glycation End-Products

(RAGE) was first mentioned as a receptor involved in the

binding of non-enzymatic glycation products and oxidation of

proteins and lipids (14, 172). Further research revealed that

RAGE is expressed by multiple cell types including

cardiomyocytes, vascular cells, fibroblasts and infiltrating
inflammatory cells, and can act as a PRR for a variety of

DAMPs, such as HMGB-1 and calcium-binding polypeptides

called S100/calgranulins (14). Evidence linking RAGE to MI and

IRI dates back to 2006. Knock-out mice for RAGE showed

cardioprotective characteristics in the setting of IRI and

ischemic rat hearts showed increased RAGE expression.

Additionally, pretreatment with pharmacological RAGE
blockade, reduced IRI (173).

As mentioned, multiple ligands for RAGE have been

identified (e.g. HMGB-1, mtDNA). Additionally, calgranulin

also has shown to act on RAGE. Administration of calgranulin

in wildtype mice significantly reduced cardiac recovery

compared to mice deficient for RAGE, suggesting that
activation of RAGE is important for post-MI adverse

remodeling and heart failure (69). More recently the treatment

of pharmacological blockade with soluble RAGE antagonist

(sRAGE/A) and genetic silencing of RAGE was investigated in

an in vivo rat model of IRI. Treatment with these two strategies

synergistically showed a reduction on IS and fibrosis (105). The

association between RAGE-mediated signaling following MI in
humans has also been reported. AGEs were measured in patients

with acute MI and showed to be a predictor for post-MI heart

failure, reinfarction and cardiac death (174, 175).

Surprisingly, no increase of plasma AGE or RAGE

concentrations was observed in rats in a 4-month follow-up

period in the MI group versus a sham group. Furthermore,
despite increased RAGE concentrations in the cardiac tissue, no

association between early AGE/RAGE levels and cardiac

function was observed. These observations indicate that the

degree of detrimental effects of RAGE activation differs

between animal models and could be attributable to different/

unidentified DAMPs activating RAGE directly in the heart (176).
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Data on the role of RAGE in HTx is scarce but one study has

evaluated its role in a mouse transplant model (177). This study

from Moser et al., demonstrated that the intraperitoneal

administration of a sRAGE/A, starting one day prior to

surgery and daily until sacrifice, had multiple beneficial effects

on the cardiac allograft. Graft survival was extended by 2 weeks
in the sRAGE/A group compared to the placebo control group in

a model of heterotopic, allogeneic HTx. The improved survival

was accompanied by attenuated infiltration of inflammatory

cells, decreased number of CD3 T cells and reduced apoptosis

in the allograft. RAGE-mediated inflammation has also been

demonstrated in observational and prospective studies in human
following liver transplantation (178, 179).

Nuclear Factor-Kappa B
Although NF-kB is neither a DAMP nor PRR, it is thought to be

a crucial factor in the downstream signaling cascade after PRR

activation, especially for TLRs and RAGE. NF-kB dimers are

usually located in the cytoplasm as an inactive complex with its

natural inhibitor, nuclear factor of kappa light polypeptide gene
enhancer in B-cells inhibitor, alpha (IkBa) (180). Activation of

NF-kB requires the release of IkBa, followed by a subsequent

translocation to the nucleus. The release of IkBa is mediated by

IkB kinase (IKK). IKK consists of two catalytic parts; IKK-a and

IKK-b, and a regulatory part IKK-g. After activation by upstream

DAMP-PRR ligation, IKK rapidly phosphorylates IkB, which
enables the complex to enter the nucleus (180). Upon

translocation binding of NF-kB to DNA occurs and gene

transcription of inflammatory cytokines is initiated (71, 180).

Studies using rodent models that are deficient for NF-kB or its

subunits or mouse models overexpressing IkBa showed a clear

reduction of inflammatory cytokine release (IL-1b, IL-6, TNF-a)
and smaller IS following myocardial IRI (181–183). Additionally,
various (direct and indirect) NF-kB inhibitors have been

developed and tested in preclinical models of myocardial IRI

(106, 108, 184, 185). BAY 11-7082, a compound that is known to

downregulate the activation of NF-kB, was administered in a rat

model of IRI and showed to reduce cardiac inflammation and IS

(106). Similar effects were observed in mice with BAY 65-1942,
an inhibitor that selectively targets IKKb kinase activity (107).

Furthermore, pharmacological inhibition of the proteasome that

is needed for the release of IkBa, also significantly preserved

cardiac function, reduced IS, and attenuated expression of

inflammatory genes in a mouse model of IRI (108). Similarly,

administration the calcineurin inhibitor tacrolimus after
reperfusion has shown to block the early activation of NF-kB
in a rat model of IRI with a subsequent reduction in myocardial

necrosis, myeloperoxidase activity, ICAM-1 gene activation and

leukocyte accumulation (109).

In HTx, enhanced activity of NF-kB has also been associated

with IRI and cardiac allograft rejection although the effects of

pharmacological NF-kB inhibition are less studied (186, 187).
Nonetheless, pyrrolidine dithiocarbamate (PDTC), a potent

inhibitor of NF-kB, did show prolonged longevity of

heterotopic cardiac transplants in rats (110). Furthermore,

PDTC showed to attenuate IRI after lung transplantation in a

pig model (111).

These results suggest a potential role for NF-kB inhibition in

myocardial IRI following MI and HTx. In line with many

previously discussed therapeutic targets, translation to the

clinic so far hast not been successful. A potential reason for

hampered clinical translation could be the activation of other

transcription factors, parallel to NF-kB after DAMP-PRR
interaction. An example of this is interferon (IFN)-regulatory

factor 3 (IRF3) translocation after TLR activation. This pathway

results in increased cardiac apoptosis and the release of

inflammatory cytokines, such as type 1 interferons, which may

also play a role in myocardial IRI when NF-kB is inhibited (56,

188, 189). Possible differences regarding the actions of NF-kB
after activation of different PRRs (e.g. TLR2, 4, 9 and RAGE) still

have to be elucidated.

LOST IN TRANSLATION

The inflammatory response following IRI upon MI and HTx is

orchestrated by a complex interplay between DAMPs and PRRs

that are released from, and bound to multiple cardiac and

circulating cell types (Figure 2). Years and years of research

showed the cardioprotective potential of targeting these

mechanisms in experimental small animal models and tried to
unravel the immense complexity of the mechanisms at hand. To

date, however, none of these promising treatments have been

implemented in standard clinical treatment strategies (9, 74). A

reduction in the effectiveness of cardioprotective therapies when

moving along the translational axis, from small to large animal

models, is well described in the literature (190–192). Multiple
explanations of this so-called translational failure can be

provided (Figure 3).

Animal models used in the setting of IRI in MI are numerous

and incredibly heterogeneous (193). Mice are most used for

obvious reasons, but great variety exist even within this species

regarding coronary anatomy, IS as a percentage of the area at risk

and overall inflammatory response initiated by damage to the
myocardium (194). Furthermore, many different techniques of

coronary occlusion are available and some of these techniques

(open vs. closed chest) directly influence systemic inflammation

and thus could affect treatment results (194, 195). The duration

of myocardial ischemia also greatly differs and is known to

influence treatment efficacy. Additionally gender, age and
housing conditions of mice and other species are known to

influence anti-inflammatory treatment efficacy in the setting of

MI (196). In line with this, the animal models used to study HTx

are often far from clinical reality. In rodents, most studies are

performed with heterotopic transplantation, in which the donor

heart is connected to the native heart in a parallel fashion. This

approach is followed to increase the survival of the recipient and
maintain circulation in case of severe acute rejection. Nowadays,

this technique is rarely used in the clinical setting since

orthotopic transplantation is preferred. A better strategy to

study the involvement of DAMPs and PRRs in IRI following

HTx may be found in using ex vivo heart machine perfusion

(EVHP). Using healthy, physiologically relevant, pig hearts or
rejected transplant hearts in the EVHP system allows to better
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reflect the human situation and to study inflammatory

mechanisms and effect of therapeutics in more detail (197,

198). Additionally, ischemia time is an important factor in IRI

and transplantation outcome (199). In the clinical setting, the
average ischemia time for HTx is 4 h and never exceeds 6 h

whereas in rodent models the studied ischemia time varies from

0 to 8 h. Moreover, there is no clear consensus on administration

route, treatment frequency or duration. Taken together, these

factors make studies difficult to compare and hampers

translation of positive findings directly to clinical therapies.
Accordingly, given the heterogeneity of current animal models

used to study cardiac IRI, it is reasonable to assume that the

inflammatory response following MI and HTx differs between

animal species. It is not unlikely that dominant PRRs and their

function differ between mice, pigs and humans. It is therefore

important and essential to further expand our knowledge on the

release of DAMPs and PRR expression in large animals and
humans. There are major differences between the preclinical

models used and the actual patient. In patients with severe

atherosclerosis and comorbidities, such as diabetes and obesity, a

chronic low grade level of inflammation with concomitant

activation of the innate immune response, either local or

systemic, is already present (200). For example, the NLRP3

inflammasome is activated in stable atherosclerotic disease by

cholesterol crystals and oxidized low-density lipoprotein (201). It
is not clear whether this chronic systemic and local “activation”

could result in reduced or increased impact of the NLRP3

inflammasome and/or other DAMP-PRR interaction. The

inflammatory response in atherosclerotic patients, however, is

most likely different than in healthy animals with non-

atherosclerotic arteries. Additionally, we cannot rule out the
possibility that other therapies, that are already used as a standard

cardiac treatment (aspirin, beta-blockers, ACE-inhibitors, statins)

or during HTx (immunosuppressors as Tacrolimus, Sirolimus and

Cyclosporin-A), diminish beneficial effects of inhibiting PRRs,

DAMPs and immune responses. Statins, for example, exert

inhibitory effects on inflammasome and TLR activation (202).

Future research should therefore also focus on the role and effects
of co-medication on cardioprotective pathways and the

interferences with potential new drugs. Ideally, in animal models,

experimental therapies should be tested on top of optimal medical

treatment regimes, if possible, in an atherosclerotic background.

FIGURE 2 | Simplified overview of DAMP/PRR-mediated inflammation following myocardial infarction and heart transplantation. Ischemia/reperfusion following MI and

heart transplantation leads to the release of DAMPs (e.g. ATP, HMGB-1, HSP, mtDNA), which act on PRRs (e.g. TLRs, RAGE and P2X7). Stimulation leads to nuclear

migration of NF-kB. This results in the production of pro-inflammatory cytokines and NLRP3 inflammasome activation. ATP, Adenosine Triphosphate; CM, Cardiac

myosin; DAMP, Damage associated molecular pattern; EDA, Extra Domain A; HA, Hyaluronic acid; HMGB-1, High mobility group box-1; HSP, Heat shock protein; IL,

interleukin; NLRP3, NOD- Leucine-Rich Repeat- and pyrin domain-containing protein 3; mtDNA, Mitochondrial DNA; NF-kB, Nuclear Factor kappa-light-chain-enhancer

of activated B cells; P2X7, P2X purinoceptor 7, RAGE, Receptor for Advanced Glycation End products; RNA, Ribonucleic Acid; TLR, Toll-like receptor. Figure was

created with BioRender.com.
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A possible explanation for translational failure is the “Janus

face” that many of these DAMPs and PRRs have. DAMPs like

HMGB-1 and HSPs are involved in both protective and harmful
signaling following IRI and MI. Similar observations were made

for PRRs, such as TLRs and NLRP3. The inflammatory response

after myocardial IRI can both be thought of as a functional, since

cell debris needs to be removed and as detrimental, since viable

myocardium can potentially be permanently damaged. The

inflammatory response should therefore be carefully ‘fine-

tuned’ rather than rigorously altered (203). The influence of
certain DAMPs in IRI is also time-dependent. This is clearly

illustrated by the role of HMGB-1, where different effects of

inhibition in the pre- and post-ischemic phase where observed

(113). Furthermore, the activity of the NLRP3 inflammasome

seems to increase between 1 and 3 h post reperfusion and IS was

not increased by NLRP3 inflammasome mediated signaling
within the first hour after ischemia (156). This implicates that

both timing and treatment duration are of vital importance for

study outcome and could be explanatory for contradictory

results. Importantly knock-out and pretreatment studies may

be pivotal for mechanistic insights but are not compatible with

clinical treatment protocols. Pretreatment with an agonist
(preconditioning) to a certain receptor could lead to similar

effects as posttreatment with an antagonist and in part

explains the observed contradictory results in this line of

research. Results from preclinical models that are incompatible

with clinical disease course should therefore be interpreted with

great caution.

Effective treatments have the aim to either prevent DAMP
release or target the released DAMPs (200). When choosing a

therapeutic strategy it is important to realize that different forms

and locations of certain DAMPs can have contradicting effects.

For example, extracellular HSP60 showed clear detrimental

effects during IRI, but just recently intracellular HSP60 showed

to be essential for normal mitochondrial and cardiomyocyte

homeostasis, indicating that complete blockage or deletion of

HSP60 is not a feasible cardioprotective strategy (204). In
addition, the ability of HMGB-1 to bind certain PRR’s and the

subsequent inflammatory response following IRI, highly relates

to the ability of the different redox states of HMGB-1 (113).

Hence, this indicates that HMGB-1 inhibition should be selective

to the redox forms that are only involved in damaging

inflammatory signaling. In order to be able to specifically

target DAMPs in the context of IRI, the impact of different
active forms and their specific cellular location, at different time

points following reperfusion should be better established.

Since PRRs are activated by multiple DAMPs, one could

hypothesize that it is more attractive to target PRRs directly

rather than targeting specific DAMPs. The different PRRs,

however, share common ligands for activation and are
multifunctional. It is insufficiently investigated if the released

DAMPs that cannot bind the single inhibited PRR, as a

consequence, activate and mediate downstream inflammatory

pathways of other PRRs. Further research should elucidate what

the effect is of specific PRR inhibition on other DAMP-PRR

interactions. Given the clear level of interplay between the
different inflammatory pathways and the complexity of IRI in

patients it has been hypothesized that, to effectively target IRI, we

should try multitargeted approaches. A combination of an anti-

inflammatory drug with a drug targeting other pathways that

lead to cardiomyocyte death, or one that activates endogenous

cardioprotective pathways was proposed (205). Given the high

level of cross-talk between DAMPs and PRR’s we could, also
think of combined approaches that target both PRRs and

DAMPs. This combined DAMP/PRR approach should be

evaluated in animal models before heading to the clinic,

considering the higher chance that crucial pathways for

recovery could be blocked as well.

FIGURE 3 | Lost in translation. Reduced effectiveness of therapies targeting the inflammatory response following IRI when moving along the translational axis is a

constant in literature. Possible explanations for this translational failure are the incredibly heterogeneous models used, the complexity of the cardiac patient, the lack

of knowledge on DAMP/PRR mediated signaling in humans and the “Janus face” that many of the mediators have. Figure was created with BioRender.com.
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CONCLUSION AND FUTURE
RECOMMENDATIONS

In conclusion, extensive research led to the identification of
multiple molecules that act as DAMPs on several PRRs. This

upstream interaction is thought to be crucial for a pro-

inflammatory milieu that significantly contributes to the

harmful effects of IRI in MI and HTx. This signaling cascade

has been subject to development of novel therapeutic approaches

for decades now. Nevertheless, the road to clinical translation has

not been straightforward.
Future studies targeting DAMP/PRR mediated inflammation

should therefore be performed in multiple, standardized, clinically

relevant animals before proceeding to the clinical arena.

Additionally, it is essential to ensure reproducibility at different

locations and in multiple scenarios. Translational research should

focus on further unraveling the complex interaction and level of
cross-talk that many of these mediators have. Finally, human

studies that investigate if these mechanistic pathways play similar

roles in myocardial IRI are urgently warranted to underline that

these studied mechanisms in animal models are also essential in

the cardiac patients we aim to treat.
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