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Structural health monitoring of large systems is a complex engineering task due to important practical issues. When dealing with
large structures, damage diagnosis, localization, and prognosis necessitate a large number of sensors, which is a nontrivial task
due to the lack of scalability of traditional sensing technologies. In order to address this challenge, the authors have recently
proposed a novel sensing solution consisting of a low-cost so� elastomeric capacitor that transduces surface strains intomeasurable
changes in capacitance. 
is paper demonstrates the potential of this technology for damage detection, localization, and prognosis
when utilized in dense network con�gurations over large surfaces. A wind turbine blade is adopted as a case study, and numerical
simulations demonstrate the e�ectiveness of a data-driven algorithm relying on distributed strain data in evidencing the presence
and location of damage, and sequentially ranking its severity. Numerical results further show that the so� elastomeric capacitormay
outperform traditional strain sensors in damage identi�cation as it provides additive strain measurements without any preferential
direction. Finally, simulation with reconstruction of measurements from missing or malfunctioning sensors using the concepts
of virtual sensors and Kriging demonstrates the robustness of the proposed condition assessment methodology for sparser or
malfunctioning grids.

1. Introduction

Damage diagnosis, localization, and prognosis on large struc-
tural surfaces, or mesosurfaces, are a complex task due to the
large geometries under monitoring. Traditional o�-the-shelf
sensing solutions can dicultly be deployed in their unal-
tered form, because of important scalability limitations. For
example, accelerometers are o�en used for global vibration-
based monitoring of structures [1–3], but they necessitate
complex signal processing algorithms to enable damage diag-
nosis and localization over large geometries. Also, resistive
foil gauges are geometrically too small to be capable of diag-
nosing and localizing a damage within an acceptable level of
probability [4].

A solution to the mesoscale challenge in structural health
monitoring is to engineer and deploy large arrays of sensors.

e literature counts successful application examples of
sensor networks capable of damage diagnosis and localization
a�er a strategic deployment.
is includes piezoelectric wafer
active sensors (PWAS) networks [5, 6], as well as �ber optics-
based technologies [7–9]. Some authors have also studied the
deployment of electrically conductive nanoparticle networks,
such as carbon nanotubes, within cement-based materials, to
detect local damage in structures [10–12]. Recent advances in
the �eld of 	exible electronics have enabled the fabrication
of large area electronics (LAE) that can be deployed at large-
scales. LAE technologies are o�en analogous to sensing skin,
in the sense that they are capable of discrete sensing over
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Figure 1: Fabrication process of the SEC.

large areas. Examples of LAE for structural healthmonitoring
include 	exible strain sensors [13–15] and sensing sheets [16,
17].

We have recently proposed a highly scalable LAE for
strain measurement over large surfaces [18]. 
e sensor is
a so� elastomeric capacitor (SEC). 
e sensing principle is
based on a measurable change in capacitance that occurs
upon a change in the sensor’s geometry. 
e capacity of the
SEC at detecting and localizing fatigue cracks in a network
con�guration using pure strain data has been experimentally
demonstrated in [19]. Damage detection and localization
were conducted by comparing the levels of strain readings,
where a fatigue crack would provoke a signi�cant change in a
particular sensor reading. However, unlike traditional resis-
tive strain gauges, the SEC measures additive in-plane strain
components, where both the principal strain components
and directions are hidden in the information. An algorithm
has been proposed to decompose measurements from an
SEC network into principal components to reconstruct strain
maps, but it requires accurate assumptions on the system’s
boundary conditions in order to perform accurately [20].

In this paper, we propose to leverage dense network appli-
cations of the SEC to detect and localize damage and to eval-
uate its severity.
is is an improvement to prior work, which
does not rely on surges in sensor readings or on assumptions
on boundary conditions. Instead, the algorithm consists of
comparing the spatial and temporal sensor relative responses
and evaluating changes in such responses.While themethod-
ology is applicable to any network of strain gauges, it will be
demonstrated that the additive strainmeasurement feature of
the SEC is an advantage, as it enables amore accurate damage
localization.


e paper is organized as follows. Section 2 gives the
background on the SEC technology, including a description
of the fabrication process and a derivation of its addi-
tive measurement features. Section 3 describes the research
methodology. Section 4 presents and discusses results from
numerical simulations on a wind turbine blade. Section 5
extends the simulations to the case of missing or malfunc-
tioning sensors. Section 6 concludes the paper.

2. Background


is section provides the background on the SEC technology.
It �rst describes its fabrication process and then derives its
electromechanical model.

2.1. Sensor Fabrication. 
e fabrication process of the SEC
is described in details in [22] and illustrated in Figure 1.
Brie	y, its dielectric is fabricated by dissolving a styrene-co-
ethylene-co-butylene-co-styrene (SEBS) matrix into toluene
(Figure 1(step (1))) and incorporating titanium dioxide
(TiO2) via sonication to increase the permittivity of themate-
rial (Figure 1(step (2))) before drop-casting the solution on a
glass plate to allow evaporation of the toluene (Figure 1(step
(3))). While the dielectric is drying, carbon black (CB) parti-
cles are added to a solution of SEBS and dispersed in a son-
ication bath to create a conductive paint (Figure 1(step (4))).
Both surfaces of the dielectric are painted with the CB-SEBS
solution to create the electrodes and copper tapes are embed-
ded in the paint to createmechanical connections to the wires
(Figure 1(step (5))) and allowed to dry (Figure 1(step (6))).


e geometry of the sensor is governed by the geometry
of the glass plate used for the drop-cast process. It is customiz-
able in shapes and sizes.
eSEBSmatrix, TiO2, andCBare all
relatively inexpensive materials. Combined with the simple
fabrication process listed above, the economical feature of the
sensing technology highly facilitates its scalability. Figure 2(a)

is a picture of a single SEC measuring 76.2 × 76.2mm2 (3 ×
3 in2).

2.2. Electromechanical Model. 
e electromechanical model
of the sensor can be derived as follows. Within the low
frequency range (<1 kHz) the SEC can be approximated as a
nonlossy capacitor:

� = �0���ℎ� , (1)

where � is the capacitance, � = � ⋅ � the surface area of the
electrodes of width � and length �, ℎ� the thickness of the
dielectric (Figure 2(b)), �0 = 8.854 pF/m the vacuum per-
mittivity, and �� the dimensionless relative permittivity (�� ≈4.2). A deformation of the sensor is measured as a change
in capacitance Δ�. For small changes in geometry, and con-
sidering the reference system depicted in Figure 2(b), where
the �-axis is normal to the monitored surface, (1) can be
di�erentiated to obtain an expression for Δ� as a function of
the monitored strain:

Δ�
� = (Δ�� +

Δ�
� − Δℎℎ ) = �� + �� − �� (2)
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Figure 2: (a) A picture of a single SEC (76.2 × 76.2mm2 (3 × 3 in2)) and (b) schematic of SEC with principal axes.

and using Hooke’s Law under plane stress assumption, the
strain along the �-axis can be written:

�� = − ]

1 − ] (�� + ��) , (3)

where ] is Poisson’s coecient of the sensor material. 
e
gauge factor � of the SEC is readily obtained by substituting
(3) into (2):

Δ�
� = � (�� + ��) , (4)

where

� = 1
1 − ] . (5)

Equation (4) shows that the sensor’s outputΔ�, which can be
measured via a data acquisition system, is proportional to the
sum of �� and ��, which is referred to as the additive in-plane
strain measurement feature.

2.3. Validation. 
e SEC and its electromechanical model
have been validated in [18]. 
is subsection summarizes a
key result from an experiment conducted over small strain
(0 to 850��). In the experiment, the SEC was adhered onto
the bottom surface of a simply supported beam. 
e beam
was subjected to a three-point quasi-static load using a
servohydraulic testing machine (MTS).
e load consisted of
a triangular load of frequency varying from 0.0167 to 0.40Hz.
An o�-the-shelf resistive foil gauge of resolution 1 �� (Vishay
Micro-Measurements, CEA-06-500UW-120) was adhered
next to the SEC to measure the applied bending strain. Data
from the SEC were acquired using an o�-the-shelf capaci-
tance data acquisition system (ACAM PCap01) and sampled
at 95.4Hz, and the foil gauge data were acquired using a
Hewlett-Packard 3852 and sampled at 1.7Hz. Data from the
SEC were converted into strain using (4) specialized for
uniaxial strain. 
e test was repeated three times. Figure 3 is
a plot of a typical result. 
e measured strain (from the SEC)
agrees with the applied strain (measured from the resistive
foil gauge). 
e precision of the SEC is approximately 25 ��.
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Figure 3: Measured (from SEC) versus applied (from foil gauge)
strains.

3. Methodology


e capacity of a network of SECs at detecting, localizing,
and estimating the severity of damage using the pure signal
from (4) is investigated via numerical simulations. 
is
section describes the algorithm used for damage detection
and localization, along with the numerical model.

3.1. Algorithm. 
e algorithm for damage detection and
localization consists of comparing spatial and temporal
relative measurements of SECs within a sensor network
comprising � sensors. At any time, the response of a sensor is
compared with the average response of its nearest neighbors:

��,� = ��,�∑	∈�� �	,�/�� , (6)
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Table 1: Material properties for the wind turbine blade model.

Layer Material (orientation) �� (GPa) �� (GPa) ��� (GPa) Density (kg/m3) 
ickness (mm)

1 Carbon-�berglass fabric (+45∘) 84.10 8.76 4.38 3469 13

2 C520 �berglass (0∘) 37.30 7.60 6.89 1874 9

3 Carbon-�berglass fabric (−45∘) 84.10 8.76 4.38 3469 13
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Figure 4: Wind turbine blade dimensions (mm) (a) top view and (b) cross section.

where ��,� is the measurement of the �th sensor at time � and
the sum in the denominator is extended to the subset, ��, com-
posed by the �� sensors that are in the neighborhood of the�th sensor. Neighboring sensors are determined and ranked
in terms of Euclidean distance. Following this de�nition, ��,�
is the relative response of sensor �with respect to its �� closest
neighbors. A map of relative responses can be constructed
by assembling all ��,� at a particular time � for � = 1, . . . , �,
denoted by��. A damage indexmap, ��, can be constructed by
comparing �� with a reference map ��∗ :

�� = ��∗ − ��. (7)

In a dynamic loading case, ��∗ and �� can be the average
values taken over a �nite period of time, �:

�� = 1� ∫


0
��d� (8)

with

�� = ��∗ − ��. (9)

A negative value of �� at a particular sensing location indicates
that the sensor has a larger relative responsewith respect to its
closest neighbors, thus suggesting a possible local plasticiza-
tion of the monitored structure. Conversely, a positive value
would indicate that its relative response decreased, thus hav-
ing the possibility of a change in the load path. In the numeri-
cal simulations, di�erent damage cases will be compared. Fol-

lowing the notation above,��∗ will consist of the average rela-
tive response map for the undamaged case, while �� will cor-
respond to the average relative response map under various
damage cases. Note that this comparison of relative responses
enables a temporal comparison of sensor responses indepen-
dent of the input, thus making this an output-only condition
assessment technique.

3.2. Numerical Model. 
e numerical model used for the
simulations represents a 9-meter wind turbine blade, mod-
eled a�er the CX-100 carbon �ber wind turbine blade [23].

is particular blade has been used in numerous studies

Table 2: Comparison of model and experimental frequencies.

Frequency Model (Hz) Experimental (Hz) [21] Di�erence (%)

Flatwise 4.16 4.56 −8.8
Edgewise 8.02 7.49 +7.1

(see [21, 24, 25], for instance). A �nite element model of a
simpli�ed representation of the CX-100 blade was generated
in ANSYS using shell elements. It consists of a tapered
cantilever plate of 9m length, 1.03m largest width, and
0.035m thickness, as shown in Figure 4.
e plate is modeled
with 3 di�erent layers and orientations, and with 2 di�erent
materials as listed in Table 1.


eplate boundary (�xity)wasmodeled to approximately
match the �rst 	atwise and edgewise frequencies reported in
[21]. Table 2 lists themodel and experimental values, showing
an agreement within a 10% di�erence, taken as acceptable
given the simpli�ed model.

3.2.1. Wind Loads. 
e blade was subjected to di�erent wind
load representations generated using the procedure described
in [26]. Brie	y, the wind speed, ]�(�), is assumed to have a
perfect spatial correlation over the blade, due to its relatively
small dimensions, and is modeled as

]� (�) = ]� + ]� (�) + ]� (�) + ]� (�) , (10)

where ]� is the average wind speed, ]� the wind speed ramp,
]� the wind gust, and ]� the wind turbulence.
e wind speed
ramp is taken as

]� =
{{{{{{{{{

0 if � < ���,
]ramp if ��� < � < ���,
0 if � > ���,

(11)

where ]ramp = � ramp((� − ���)/(��� − ���)), � ramp is the
amplitude ofwind speed ramp, and��� and��� are the starting
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and end times of wind speed ramp, respectively. 
e wind
speed gust is characterized by

]� (�) =
{{{{{{{{{

0 if � < ���,
]gust (�) if ��� < � < ���,
0 if � > ���,

(12)

where ]gust(�) = �gust(1 − cos(2$((� −���)/(��� −���)))) with�gust being the amplitude of the wind speed gust and ��� and��� are the starting and end times of wind speed gust, respec-
tively. Under the classic assumption of modeling wind tur-
bulence as a zero-mean Gaussian stochastic process, its time
domain realization is generated by the waves superposition
formula as follows [27, 28]:

]� (�) = √2
�∑
�=1
[*� (3�) Δ3]1/2 cos (3�� + 9�) , (13)

where 3� is the frequency (Hz), 9� is a random phase
uniformly distributed between 0 and 2$, and *�(3�) is the
power spectral density function of wind turbulence [26]:

*� (3�) = �]� (ln( ℎ�0)
2)
−1

(1 + 1.53��
]�
)−5/3 , (14)

where ℎ is the height from the ground (m), � is the turbulence
length scale (m), and �0 is the roughness length (m) that
can be determined from [29]. In (14) the wind spectrum
is discretized using ?� equally spaced frequency points,3� = @Δ3, with a frequency step amplitude Δ3 and a cuto�
frequency3� = ?�Δ3. Finally, thewind pressure*�(�) acting
over the blade is obtained using [30]

*� (�) = 0.5A]� (�)2 ��, (15)

where A is the air density and �� is a constant denoting the
combined pressure coecient.

Wind pressure generated by (15) is applied as a uniform
pressure onto the top surface of thewind turbine blademodel.
Each damage case (described below) is simulated under a
di�erent wind load realization using the same base param-
eters listed in Table 3. Figure 5 shows a typical wind speed
time series generated at a sampling rate of 10Hz over a 10-
minute duration.

3.2.2. Damage Cases. Di�erent damage cases are considered
in the simulation, consisting of di�erent locations and sever-
ities. 
e four damage locations under study are schematized
in Figure 6, represented by the red-dashed parallelograms.

e blue circles in the �gure represent the location of the
simulated 74 sensors. Damage location 1 (Figure 6(a)) is a ver-
tical defect close to the root, damage location 2 (Figure 6(b))
is a horizontal defect close to the root, damage location 3
(Figure 6(c)) is a vertical defect close to midlength, and dam-
age location 4 (Figure 6(d)) is the combination of damage
locations 1 and 3.

Damage is introduced as a change in the sti�ness of the
laminate layer 2. Di�erent damage severities are considered

Table 3: Wind speed model parameters.

Parameter Value

]� 20m/s

� ramp 3m/s

�gust −2m/s

��� 50 s

��� 150 s

��� 100 s

��� 250 s

ℎ 40m

� 600m

�0 0.2m

?� 213
3� 20$ rad/s

under load location 1 (Figure 6(a)), which correspond to dif-
ferent changes in the �rst natural frequencies of the blade: 1%,
2%, 5%, 10%, and 15% (35.5%, 54.8%, 80.6%, 92.3%, and 96.7%
sti�ness loss of the damaged elements in the strong axis).
All SECs are simulated as errorless and noiseless sensors.

4. Simulation Results

Simulations were conducted on the numericalmodel to study
the capacity of the novel sensor network at detecting, local-
izing, and estimating the severity of damage. 
e �rst set of
simulations is conducted on a single damage location (loca-
tion 1) of di�erent severity, equivalent to 1%, 2%, 5%, 10%, and
15% changes in the �rst natural frequency through a change
in the layer’s sti�ness. Figures 7(a)–7(e) are damage maps �
(Equation (9)) constructed by computing the relative signal
with four closest neighbors and using the undamaged case

as the reference relative response map ��∗ . All damage plots
were performed by creating triangular elements between
sensors and linearly interpolating results between points to
create a smoother variation in colors. 
e damaged area is
clearly identi�ed by the darker red region (positive values)
for all damage levels. However, the maximum � value within
this region is relatively low for the 1% damage case, which
may be harder to identify in cases of high noise or sensor
malfunction. 
e dark blue area (negative values) under the
damaged area indicates that the load path migrated through
that region and formed a plastic deformation, because the
relative response of the sensors within that region increased.
Figure 7(f) summarizes the maximum and minimum values
for � taken for the sensors located within the region 1 ≤ C ≤2m. 
ere is a sequential trend of the maximum value of �,
which is located within the damage area, with the increasing
damage level. An inspection of the minimum value of �,
located under the damage, also exhibits a similar trend. 
is
demonstrates that the sensing method can further be utilized
to evaluate the severity of the damage.

It is also interesting to assess the bene�ts of the additive
strain measurements feature of the SEC by comparing its
performance against unidirectional sensors (e.g., resistive foil
gauges). Figure 8 is used to compare the damage maps � for
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Figure 5: Typical realization of a wind time series at a 10Hz sampling rate: (a) 10-minute duration and (b) zoom on 20 seconds.
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Figure 6: Damage locations under study: (a) location 1, (b) location 2, (c) location 3, and (d) location 4.
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Figure 7: Damage maps � for damage cases corresponding to (a) 1%, (b) 2%, (c) 5%, (d) 10%, and (e) 15% reduction in the �rst natural
frequency of the blade.
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Figure 8: Comparison of damage maps � for 5% damage using (a) strain along the C-axis only and (b) strain along the D-axis only.

the 5% damage case at location 1 obtained using the additive
strain �� + �� from the SEC network (Figure 7(c)) with the
damage maps obtained using unidirectional strain along theC-axis �� (Figure 8(a)) and along the D-axis �� (Figure 8(b)).

e unidirectional strain data along C (Figure 8(a)) is not
capable of clearly identifying damage, showing di�erent pos-
sible regions of highly positive andnegative � values, while the
unidirectional strain data along D (Figure 8(b)) does provide
a good detection and identi�cation of the damage, with a
substantially higher � value, but also it exhibits a region of
possible damage close to the root. Note that these results were
obtained assuming errorless and noiseless sensors. However,
the precision of o�-the-shelf resistive foil gauges is beyond
the precision of the SEC, as indicated in Section 2.3. Research
is being conducted to improve the performance of the SEC,
notably via the development of dedicated electronics.

Figures 9(a)–9(c) show the damagemaps � obtained from
the SECnetwork for di�erent damage locations. All simulated
damage cases correspond to an approximate loss of 5% in the
blade’s �rst natural frequency.
e sensing strategy is success-
ful at localizing all damage.
ere is a loss in resolution for the
joint damage case (location 4). 
is can be explained by the
lower number of sensors located between both damage lines.

5. Sparser Sensor Network via Kriging


is section investigates the possibility of condition assess-
ment from a sparser sensor network that would result from
missing sensors or hardware malfunctions, for instance.
Additional simulations are conducted by removing 31 sen-
sors, which correspond to 42% of the sensors used in the
previous section. Figure 10 shows the distribution of the new
sensor network, where the removed sensors are denoted
“inactive.”
e damage detection, localization, and prognosis
exercise is repeated on the di�erent damage levels for damage
location 1 using the samewind realization.
is time, themap� is constructed by computing the relative response from the
two closest neighbors only, due to the sparsity of the network
yielding inaccurate damage localization results using a higher

number of neighbors. Figure 10 shows a similar trend as in
Figure 7, but with a notable loss in resolution.

In order to recover the resolution of the �gure, albeit in
absence of dense sensory feedback, Kriging is implemented.
In the example explored herein, the spatial coordinates of
the sensor locations comprise the inputs C, while the addi-
tive strain measurements comprise the outputs �(C) in the
observed (red squares) and unobserved (blue circles) loca-
tions in Figure 10. Kriging provides a prediction of the output
variable in the unobserved locations as

� (C) = E9 (F, C) + GH (C) , (16)

where H(C) denotes a regression (polynomial) part, 9(F, C)
denotes a correlation (radial) part, and E and G are coecient
vectors. For further implementation details, the interested
reader is referred to [31]. 
e DACE A MATLAB Kriging
Toolbox [32] is herein used for the analysis, where �rst
order polynomials are used for the regression part and cubic
spline functions are used for the correlation part. In order to
appropriately select these functions, the algorithm is trained
via use of the data extracted in the undamaged state, where it
assumed that information from the dense (reference) sensor
network is available. Once the con�guration parameters are
selected, Kriging is employed for inferring the additive strain
time histories in the locations of the “virtual sensors” and the
process outlined earlier for detecting damage is once again
enforced.


e results are plotted in Figure 12 for various damage
levels. By comparing with Figure 11 (sparse network) and
Figure 7 (original network), it can be observed that the res-
olution has been recovered. 
is example demonstrates that
the coupling of the proposed sensing solution with advanced
postprocessing schemes results in a resilient framework for
strain monitoring of wind turbine blades.

6. Conclusion

A strategy for damage detection, localization, and prognosis
over large structural surfaces has been proposed. It consists of
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Figure 9: Damage maps � for di�erent damage locations: (a) location 2, (b) location 3, and (c) location 4.
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Figure 11: Damage maps � for damage cases when considering the sparse sensor network of Figure 10. Damage corresponds to (a) 1%, (b)
2%, (c) 5%, (d) 10%, and (e) 15% reduction in the �rst natural frequency of the blade.
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Figure 12: Damage maps � for damage cases when considering the sparse sensor network of Figure 10 and Kriging interpolation. Damage
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the deployment of a novel sensor, the so� elastomeric capac-
itor (SEC), in a network con�guration, combined with a sim-
ple data-driven algorithm based on raw strain data. Numer-
ical simulations considering a wind turbine blade as the
benchmark case study have clearly demonstrated the e�ec-
tiveness of the proposed structural health monitoring solu-
tion in detecting a damage, providing its location, and rank-
ing its severity. Results have also highlighted that the use of
the SECmay provide enhanced damage detection capabilities
in comparison with conventional directional strain gauges,
because of its additive strain measurement feature. Finally,
the application of the concepts of Kriging has strengthened
the sensor network approach by replacing missing or mal-
functioning sensors by virtual sensors, yet providing a high
level of damage detection resolution.
eoverall performance
of the SEC at the condition assessment task, combined with
its high scalability, makes the technology a promising candi-
date for structural health monitoring of large and complex
geometries.
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