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DAMAGE DETECTION AND MODEL REFINEMENT USING ELEMENTAL 
STIFFNESS PERTURBATIONS WITH CONSTRAINED CONNECTIVITY 

Scott W. Doebling‘ 
Engineering Sciences and Applications Division 

Engineering Analysis Group (ESA-EA) 
Los Alamos National Laboratory 

M I S  P946, Los Alamos, NM, 87545 

ABSTRACT E, l Young’s modulus, cross-sectional mo- 

ment of inertia 

A new optimal update method for the correlation nd 
of dynamic structural finite element models with 
modal data is presented. The method computes a n~ 
minimum-rank solution for the perturbations of the 
elemental stiffness parameters while constraining 
the connectivity of the global stiffness matrix. The re- 
sulting model contains a more accurate representa- 
tion of the dynamics of the test structure. The 
changes between the original model and the updated Modification of a structural finite element model 
model can be interpreted as modeling errors or as (FEM) such that the FEM eigensolution matches the 
changes in the structure resulting from damage. The results of a modal vibration experiment is a subject 
motivation for the method is presented in the context that has received much attention in the literature in 
of existing optimal matrix update procedures. The recent years. Methods for this type of FEM updating 
method is demonstrated numerically on a spring- are applicable to problems such as model refinement, 
mass system and is also applied to experimental data for better prediction of structural static and dynamic 
from the NASA Langley 8-bay truss damage detec- response, and structural damage detection, for loca- 
tion experiment. The results demonstrate that the tion of cracks and failures in structures such as air- 
proposed procedure may be useful for updating ele- craft skin, bridge supports and offshore oil platforms. 
mental stiffness parameters in the context of damage 
detection and model refinement. One class of methods for correlating measured 

modal data with analytical finite element models is 
the minimization or elimination of “modal force er- 

NOMENCLATURE ror,” which is the error resulting from the substitu- 

tion of the analytical FEM and the measured modal 
structural mass, damping, and stiff- data into the structural eigenproblem. Various meth- 

ods have been developed to minimize or eliminate ness matrices of “correct” model 
some measure of the error in the eigenproblem by 

structural mass, damping, and Stiff- perturbing the baseline values in the analytical mod- 
ness matrices of nominal model el, such as the components of the stiffness, damping 

“sensitivity-based model update,” uses the sensitivi- ness matrix perturbations 
ties of the modal response parameters of the FEM 

aj, { O j ) ,  { E j }  circular modal frequency, mode (such as modal frequencies and mode shapes) to the 
shape, and force error f O r j t h  mode structural design parameters (such as Young‘s mod- 

Vector and diagonal math of ele- ulus, density, etc.) to iteratively minimize the modal 
force error (see, for example, Hemez and Farhat, [ l l ,  

{ P 1, [PI 
ment-level stiffness parameters 

121, [31). Another type of method, known as “eigen- 
[AI Stiffness connectivity matrix structure assignment,” designs a controller which 

minimizes the modal force error. The controller gains 
are then interpreted in terms of structural parameter 

1. Postdoctoral Research Associate, 
modifications (see, for example, Lim and Kashangaki 
[4]). Still another type of method, known as “optimal 
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matrix update,’’ solves a closed-form equation for 
the matrix perturbations which minimize the 
modal force error or constrain the solution to sat- 
isfy it (see, for example, Baruch and Bar Itzhack 
151, Kabe [61, Berman and Nagy [71, Smith and 
Beattie [81, [91, Kaouk andzimmerman [lo], [111) 
It is this type of method which is of interest in 
this paper. Much of the research done in optimal 
matrix update has focused on estimating pertur- 
bations to the mass and stiffness properties di- 
rectly. In the context of structural damage 
detection and health monitoring, the perturba- 
tions to the stiffness properties are usually the 
most relevant. In this paper, only the perturba- 
tion of the structural stiffness properties will be 
considered. 

- 

Computing the stiffness property perturba- 
tions which eliminate the modal force error is of- 
ten an underdetermined problem, since the 
number of unknowns in the perturbation set can 
be much larger than the number of measured 
modes and the number of measurement degrees 
of freedom. In this case, the property perturba- 
tions which satisfy the modal force error equation 
are non-unique. Optimal matrix update methods 
thus apply a minimization to the property pertur- 
bation to select a solution to the modal force error 
equation subject to constraints such as symme- 
try, positive definiteness, and sparsity. Typically, 
this minimization applies to either a norm or the 
rank of the perturbation property matrix or vec- 
tor. 

The main distinction between optimal update 
methods which minimize some measure of the 
stiffness property perturbations can be drawn 
based on two characteristics: First, the stiffness 
property which is varied, and second, the objec- 
tive function that is used to select the solution. 
The stiffness properties can be categorized as the 
global stiffness matrix, the elemental stiffness 
matrices, or the elemental stiffness parameters 
(e.g. E, I, etc.). The objective functions are either 
the minimum of a norm of the property perturba- 
tion or the minimum of the rank of the property 
perturbation. Table (1) shows how several of the 
most widely known optimal matrix update proce- 
dures can be categorized according to these char- 
acteristics. The columns in this table categorize 
methods (and cite examples from the literature) 
according to which model parameter is used in 
the update procedure. The rows categorize the 
methods by whether a minimum norm (e.g. least- 

squares) or a minimum rank function is used as 
the objective of the optimization. 

As shown in Table (11, the majority of the ear- 
ly work in optimal matrix update used the mini- 
mum norm perturbation of the global stiffness 

matrix El, 161, [81, [71. The motivation for using 
this objective function is that the desired pertur- 
bation is the one which is “smallest” in overall 
magnitude. Later work by Kaouk and Zimmer- 
man [lo], as shown in the second row of Table (11, 
used the minimum rank perturbation of the glo- 
bal stiffness matrix. This was motivated by the 
application of damage detection, where the per- 
turbations could be assumed to be limited t o  a 
few isolated locations. The minimum rank stiff- 
ness matrix perturbation can be thought of as the 
stifkess matrix perturbation with the smallest 
number of nonzero values. An extension of this 
work computes the perturbations at the element 
stiffness matrix level, to limit the computed per- 
turbations to certain structural DOF. [ll] 

A common drawback of the methods listed in 
the first two columns of Table (1) is that the com- 
puted perturbations are made to stiffness matrix 
values at the structural DOF, rather than at the 
element stiffness parameter level. There are 
three main advantages to computing perturba- 

tions to the elemental stiffness parameters rath- 
er than to  stiffness matrix entries: 1) The 
resulting updates have direct physical relevance, 
and thus can be more easily interpreted in terms 
of structural damage or errors in the FEM; 2) The 
connectivity of the FEM is preserved, so that the 
resulting updated FEM has the same load path 
set as the original; and 3) A single parameter 
which affects a large number of structural ele- 
ments can be varied independently. This advan- 
tage is especially relevant, for example, in civil 
engineering applications, where a parameter 
such as the Young‘s modulus of concrete may be 
uniform throughout a number of elements but 
not precisely known. Previous techniques to  com- 
pute perturbations at the element parameter lev- 
el have been proposed by Chen and Garba [121 
and Li and Smith [131. These techniques use the 
sensitivity of the entries in the stiffness matrix to 
the elemental stiffness parameters so that the 
minimum norm criterion can be applied directly 
t o  the vector of elemental stiffness parameters. 
Thus the resulting update consists of a vector of 
elemental stiffness parameters that is a mini- 
mum norm solution to  the optimal update equa- 
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tion. The stiffness parameters that are updated 
can be limited in the construction of the sensitiv- 

ity matrix. 

The method proposed in this paper computes 
perturbations t o  the element-level stiffness pa- 
rameters by solving the optimal update equation 
for the stiffness matrix subject to a minimum 
rank objective fimction. For convenience, the new 
technique is termed the minimum rank elemen- 
tal update (MREU). This method is designed to 
exploit the advantages of both the minimum rank 
solution technique and the computation of ele- 
ment-level stiffkess perturbations. The remain- 
der of the paper is organized as follows: First, the 
theory of optimal matrix update is summarized, 
including brief outlines of the existing methods. 
Second, the theoretical development of the 
MREU is presented, followed by a method for 
computing the required “stiffness connectivity 
matrix.” Next, the method is demonstrated using 
a numerical example, followed by application t o  
experimental data from a NASA truss damage- 
detection experiment. The results of the MREU 
are compared to the results of a minimum-norm 
elemental stiffness update using this experimen- 
tal data set. 

THEORY OF OPTIMAL MATRIX 
UPDATE 

The basic theory of optimal matrix update 
techniques begins with the second-order struc- 
tural equation of motion 

The eigensolution of this equation with no exter- 
nally applied forces represents the free vibration 
of the structure. For the j -th structural vibration 
mode, this is expressed as 

Now presuming that the structural model matri- 
ces contain some error, perhaps because of mod- 
eling errors or changes in the structure such as 
damage, the model matrices can be related t o  the 
true matrices as 

(3) 

where the matrices with subscript u are the 
nominal model matrices, and the A matrices are 
the matrix perturbations. Substituting Eq. (3) 

into Eq. (2) and moving the perturbation terms to 
the right side yields 

Since all of the terms on the lefk side of Eq. (4) are 
known, the modal force error { E j }  can be de- 
fined for each measured mode as 

Then the matrix perturbations can be computed 
by solving 

for [AM], [AD] and [ S I .  Under the assump- 
tions [AM] = 0 and [AD] = 0 ,  Eq. (6) simplifies 
to 

(7) 

As described in the introduction, examples of the 
methods used to solve Eq. (7) are categorized in 

Table (1). A brief summary of the mathematical 
formulations of these methods follows. 

The minimum-norm perturbation of the glo- 
bal stiffness matrix was the approach used by 
Baruch and Bar-Itzhack 151, Kabe [61, Berman 
and Nagy [71, and Smith and Beattie [8]. As de- 
scribed by Smith and Beattie [81, this approach 
can be summarized as 

subject to the constraints of Eq. (7) and [a] 
symmetric and sparse. Constraining the sparsity 
to be the same as the nominal FEM stiffness ma- 
trix has the effect of ensuring that no new load 
paths are generated by the updated model. 
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The minimum-rank perturbation approach of 
Kaouk and Zimmerman [lo] can be summarized 

as Assuming that the global stifhess matrix is a lin- 
ear function of the elemental stiffness parame- 
ters, and assuming [A] is independent of [PI, 
Eq. (11) can be perturbed to  get 

min(rank( [AK])) (9) 

subject to  the constraints of Eq. (7) and [AK] 
symmetric and positive definite. An extension of (13) 
this method partitions the perturbation matrix 

so that only the elemental stiffness matrices as- E ~ ~ & ~ ~  (13) and (11) from 

ed. i l l 1  

[ K  + AK] = [A][P + A.?’][AlT 

sociated with Certain S t r U C t U r d  DOF are updat- it yields the parameterization of the 
global stiffness matrix [AK] , 

The minimum-norm, element-level update 
procedures presented by Chen and Garba [121 
and Li and Smith [13] incorporate the connectiv- 
ity constraint between the element-level stiffness 
parameters and the entries in the global stiffness 
matrix directly into Eq. (7) t o  get 

which is then solved for minimum-norm { Ap } (in 
the underdetermined case) or the least-squares 
error (in the overdetermined case). 

The MREU technique uses an approach sim- 
ilar t o  that presented by Chen and Garba [121 
and Li and Smith [13], by including the connec- 
tivity constraint directly into the modal force er- 
ror equation, but uses a minimum-rank solution, 
as presented by Kaouk and Zimmerman [lo] to 
solve for the elemental parameters. The deriva- 
tion of the MREU is presented in the following 
section. 

DERIVATION OF MINIMUM RANK 
ELEMENTAL PARAMETER UPDATE 

The derivation of the MREU technique be- 
gins with the parameterization of the (nd x nd) 
global stiffness matrix [ K ]  as 

The connectivity constraint can be enforced 

by substituting Eq. (14) into Eq. (7) to get 

To put Eq. (15) in the proper form for minimum 
rank solution, firstperform a minimum norm so- 
lution for [&J [A] {+j} to get 

in the underdetermined case and 

in the overdetermined case. The solution of Eq. 

(16) or Eq. (17) for symmetric minimal rank 
[AI’] is given as in Ref. [lo] as 

(20) 
where the (n, x n,) matrix [A] is defined as the 
“stiffness connectivity matrix,” and the (n, x n,) 
diagonal matrix [PI has the elemental stiffness 
parameters of the (np x 1) vector { p }  as its di- 
agonal entries. Mathematically, this is defined as 

in the underdetermined case and 

[YI = ([AITIAI >-’ [AIT{EjI (21) 
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in the overdetermined case. It should be noted 
that since [ A ]  is typically very sparse, it is more 

efficient to use the algorithms from a sparse lin- 
ear algebra library (such as those contained in 
MATLAB [141) t o  compute [ Y 1 . 

If the finite elements used in the model are 
linear functions of the elemental stiffness param- 

eters, this sensitivity can be computed using a fi- 
nite difference approach as 

In the case where the entire FEM global DOF 
set is used in the analysis, [ A ]  is independent of 
the elemental stiffness parameters [PI. Howev- 
er, when a reduced DOF set is used, such as that 
obtained using Guyan condensation [15], the ma- 
trix [ A ]  becomes a function of the stiffhess pa- 
rameters [ P I ,  so [AP] must be computed 
iteratively. The consequences of this case are not 
addressed in this paper. 

COMPUTATION OF STIFFNESS 
CONNECTIVITY MATRIX 

The stiffness connectivity matrix, as defined 
in Eq. (111, provides a transformation from the el- 
emental stiffness parameters to the global sys- 
tem DOF. It can be computed from a sensitivity 
analysis of the global stiffness matrix using the 
following procedure. Recognizing that [ AP] is 
diagonal, Eq. (14) can be rewritten in tensor form 
(as shown in Ref. 11611, so that the (i, j )  entry in 
the global stiffkess matrix can be parameterized 
as 

This relationship can also be expressed using 
the sensitivity of the (i, j) entry in the global 
stiffness matrix to  the p* elemental stiffness pa- 
rameter, i.e. 

JK.. 
AK-.  = L J ( A p p )  

lJ JPp 
(23) 

Comparing Eq. (23) to  Eq. (22) yields an equiva- 
lence between the entries of the sensitivity ma- 
trix and the stiffness connectivity matrix, which 
can be written 

(24) 

(25) 
aKij - AKij 

app APp 

The stiffness connectivity matrix [ A ]  can then be 
obtained by computing the sensitivity matrix us- 
ing Eq. (25) and then solving Eq. (24) for each en- 
try in the connectivity matrix. 

It should be noted that the stiffness connec- 
tivity matrix [ A ]  is equivalent to that defined by 
Peterson, et. al. (REF disassembly paper). In that 
paper, [ A ]  is computed algebraically using ele- 
ment-level expressions for the connectivity. The 
matrix obtained using the above described sensi- 
tivity computations should be equivalent to the 

matrix obtained using the algebraic method. 

NUMERICAL EXAMPLE 

To demonstrate the numerical implementa- 
tion of the MREU procedure, it is applied t o  the 
spring-mass system shown in Figure (1). The fol- 
lowing example demonstrates that an unknown 
set of stiffness parameter perturbations can be 
computed using only the mass and stiffness ma- 
trix of the nominal model and the measured mod- 
al frequencies and mode shapes of the perturbed 
system. Consider the nominal model of the sys- 
tem to have the parameters 

which has the mass and stiffness matrices 

(26) 

A sensitivity analysis of this stiffness matrix 
[ K , ]  to the four stiEness parameters 
{ K I ,  K z ,  K 3 ,  k4} yields a connectivity matrix [ A ]  

of 
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Now consider a perturbed set of stiffness param- 
eters and perturbed stiffness matrix 

Computing the modal parameters of the per- 
turbed system using the perturbed stifmess ma- 
trix from Eq. (29) and the nominal mass matrix 
from Eq. (27) yields 

{al,  o,, m3}  = {0.7586,1.3703,1.7740} 

-0.7815 0.4086 (30) 

0.0758 -0.6880 

0.61 93 0.5998 1 
Assume that only the first mode is measured, so 

that al and { q I }  from Eq. (30) are known. The 
modal force error { E , }  for this mode is computed 
using by substituting [K,], [ M u ] ,  O, and 
into Eq. (5) to get 

(31) 

The MREU equation can then be formed as in Eq. 
(16) to  get 

0.4715 

0.2151 

0.5067 

-0.2503 

Solving Eq. (32) usini Cq. OS), Eq. (191, and Eq. 
(20) and taking the diagonal entries of [AP]  
yields the parameter perturbations 

which are exactly the perturbations between the 
nominal stiffness parameters of Eq. (26) and the 
perturbed stiffness parameters of Eq. (29). 

EXPERIMENTAL APPLICATION 

To demonstrate the validity of the MREU 
procedure, the method is applied to data from the 
NASA Dynamic Scale Model Technology (DSMT) 
program of Langley Research Center. [171 The 
structure is an eight-bay truss mounted in a can- 
tilevered configuration, as shown in Figure (2). A 
series of modal tests was performed on the struc- 
ture with various structural members removed t o  
simulate different instances of damage. The data 
sets from this test have been analyzed by many 
different researchers (see, for example, Ref. [lo] 
and Ref. [13]). This data set is used to demon- 
strate the validity of the MREU procedure be- 
cause it is known to be well-characterized. 

The structure was modeled in ABAQUS [181, 
using 32 Nodes and 109 truss rod elements, for a 
total of 96 DOF. The element parameters select- 
ed for perturbation are the Young‘s moduli of the 
longerons and battens in bays 6, 7, and 8 (where 
bay 8 is closest to the cantilever) and the diago- 
nals in bay 6, for a total of 26 perturbed parame- 
ters. The first damage case studied involved the 
removal of longeron 46 in bay 8 (denoted damage 
case “a” by Kashangaki) and the second damage 
case involved the removal of two members in bay 
6 -- longeron 35 and diagonal 99 (denoted damage 
case “0” by Kashangaki). The relevant elements 
for these two damage scenarios are shown in Fig- 
ure (2). 

A minimum norm procedure was implement- 
ed to use as a basis for comparison t o  the MREU 
procedure. The minimum-norm algorithm com- 
putes the least-squares solution to Eq. (10) to ob- 
tain the parameter perturbation vector { Ap } , 
and thus is similar to the methods presented by 
Chen and Garba [121, and Li and Smith [131. 

To validate the implementation of the MREU 
and the minimum-norm element stiffness param- 
eter update procedures, the first FEM mode for 
damage case 46 were used to compute the ele- 
mental Young‘s moduli perturbations. The re- 
sults of this update are shown in Figure (3) for 
the MREU procedure and in Figure (4) for the 
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minimum-norm update procedure. These results 
are both nearly perfect, and so the algorithms 
and the stiffness connectivity matrices can be 
considered to be correct. 

The updates resulting from applying the two 

algorithms t o  experimentally measured mode 
number 1 for damage case 46 are shown in Figure 
(5)  and Figure (6).  In this damage case, element 
#9 corresponds to longeron 46. Thus, a perfect re- 
sult would have 100% change in E for element 9 

and 0% change in E for all other elements. The 
result of the MREU, shown in Figure (51, has a 
clear indication of nearly 100% reduction in E for 
element 9, as well as changes of 30% and less for 
surrounding members. However, the minimum 
norm update fails to locate the damaged member. 

It is interesting to note that for damage case 46, 

going from FEM modes to measured modes intro- 
duces some error into the MREU solution (com- 
pare Figure (3) and Figure (5)),  but causes the 
minimum-norm solution to go from nearly perfect 
to completely wrong (compare Figure (4) and Fig- 
ure (6)). 

- 

The application of the MREU and minimum 
norm update techniques applied to damage case 
35/99 are shown in Figure (7) and Figure (81, re- 
spectively. Measured modes 1 and 4 are used for 
these updates. The damaged members corre- 
spond to elements #1 and #21 in these two plots. 
As with damage case 46, the results from the 
MREU technique show two clear peaks near 
100% at the correct member numbers, but also 
show some "smearing" at adjacent members. 
However, the minimum norm technique again 
shows completely wrong results. It is interesting 
to note that the smearing which occurs in the 
MREU result consists of perturbations primarily 
to longerons rather than battens or diagonals. 
This demonstrates the insensitivity of these par- 
ticular modes to changes in the stiffnesses of 
most battens and diagonals. 

A known characteristic of any minimum rank 
update, as reported by Zimmerman, et. al. [191 is 
that the number of modes used in the update is 
equal to the rank of the computed update param- 
eters. Thus, using two modes will give an updat- 
ed parameter matrix or vector with rank two. 
However, since the MREU takes the diagonal of 
the solution to the minimum-rank equation, it is 
not strictly constrained to follow this rule. How- 
ever, the results seen from the application of the 

MREU technique to this experimental data set 
seems t o  support the assertion that the best re- 
sults are obtained when the number of modes 
equals the expected rank of the perturbation ma- 
trix. For example, consider the damage 46 MREU 
result using only mode 1 shown in Figure (5) as 

compared to the damage 46 MREU result using 
modes 1 and 4, shown in Figure (9). The 2-mode 
update of Figure (9) still shows nearly 100% stiff- 
ness reduction in element #9, but the smearing 
effect is increased and more elements have a sig- 
nificant stiffiess change. Likewise, comparison 
of the damage 35/99 MREU result using modes 1 
and 4 in Figure (7) to the damage 35/99 MREU 
result using only mode 1 in Figure (10) shows 
that the stiffness changes in the damaged mem- 
bers (100% change in elements #1 and #21 on the 

plots) are detected more accurately using 2 
modes, but with more smearing. Thus, the opti- 
mal number of modes to use in the MREU seems 
to be equal to the expected rank of the elemental 
stifYness perturbation vector. 

As a final note on these experimental results, 
it is widely assumed that sensor DOF 45 in the 
DSMT 8-bay damage data sets contains errone- 
ous measurements. No attempt to correct this er- 
roneous sensor measurement was made in this 

analysis. 

CONCLUSIONS 

A new optimal matrix update method was in- 
troduced and demonstrated on both numerical 
and experimental data. The method computes a 
minimum-rank vector of perturbations to the el- 
ement-level stiffness parameters while con- 
straining the connectivity of the global stifkess 
matrix. The motivation for the method was 
shown in the context of existing optimal matrix 
update methods. The method was able to locate 
the damaged members using data from the 
NASA Langley Research Center 8-bay truss 
damage detection experiments for both single- 
member and multiple-member damage cases. 
The results indicate that the method may be use- 
ful for modification of dynamic finite element 
models in the context of damage detection and 
model refinement. 
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