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Abstract

In this paper, a passive structural health monitoring (SHM) method capable of detecting

the presence of damage in carbon fibre/epoxy composite plates is developed. The method

requires the measurement of strains from the considered structure, which are used to set

up, train, and test artificial neural networks (ANNs). At the end of the training phase, the

networks find correlations between the given strains, which represent the ‘fingerprint’ of

the structure under investigation. Changes in the distribution of these strains is captured

by assessing differences in the previously identified strain correlations. If any cause

generates damage that alters the strain distribution, this is considered as a reason for

further detailed structural inspection. The novelty of the strain algorithm comes from its

independence from both the choice of material and the loading condition. It does not

require the prior knowledge of material properties based on stress-strain relationships and,

as the strain correlations represent the structure and its mechanical behaviour, they are

valid for the full range of operating loads. An implementation of such approach is herein

presented based on the usage of a distributed optical fibre sensor that allows to obtain

strain measurement with an incredibly high resolution.
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1 Introduction

Fibre reinforced composite materials exhibit superior mechanical properties, in terms of

specific strength and modulus, compared to metallic materials. They are desirable for use in

the aeronautical and aerospace industries due to the increasing demand for lightweight

structures. The content of composites in aircraft structures has increased from less than 5%

in the late 80 s to more than 50% in recent years [1]. The design of composite structures is

often complex due to the challenges associated with their manufacture and the effect on the

resulting mechanical properties. The manufacturing process may introduce defects such as

voids, resin rich regions, and misalignment of fibres. The design of composite structures

becomes more critical where the concerned structures are subjected to anomalous or cyclic

loading conditions when in service [2, 3]. In addition, the wide range of damage and defects

that can occur independently and simultaneously has made it fundamental to monitor struc-

tures in real-time to detect anomalies at an early stage. Furthermore, as aircraft travel is

increasing considerably, the research community is driven towards the simplified application

of structural inspection methods, leading to quicker maintenance procedures.

At present, for the assessment of the safety, structural integrity, and durability of engineer-

ing structures, non-destructive evaluation (NDE) methods are widely used. The most common

techniques include visual inspection, eddy-current, thermography, optical interferometry,

ultrasonic inspection, radiography, and vibration/modal analysis [4]. Assessments are conduct-

ed at regularly scheduled intervals, but real-time structural health information is obtained. For

this reason, permanently integrated structural health monitoring (SHM) techniques have

recently gained more interest. SHM techniques aim to provide real-time diagnoses of the host

structure, at the local and global scale [4]. An SHM system will generally involve the

permanent integration of sensors (e.g. strain gauges, piezoelectric transducers, and optical

fibres), transmission of the recorded data, and computational processing of the data to form a

diagnosis. SHM techniques can be classified as active or passive. Active methods infer the

health of the structure by exciting it in some way, at defined regular intervals; assessments are

performed on-demand. Passive ones continuously acquire data from the structure without

providing any excitation; the data is a direct result of changes in the structure that occur due to

the onset of damage. Typical examples of active and passive SHM techniques include the use

of guided waves [5–7] and the evaluation of static-parameters (e.g. strains and displacements),

respectively [8]. Strain-based approaches are common and tend to make use of electrical strain

gauges that are adhesively bonded to the structure. In the case of composites, the use of

distributed optical fibre sensors (DOFS) is appealing due to their light weight and small size.

Optical fibres have been used successfully for quasi-distributed [7] and distributed strain

monitoring [9]. In addition, fibre optic sensors are particularly suitable for the health moni-

toring of large structures as well, because they provide distributed sensing over long distances.

The small size of fibre optic sensors (< 250 micron in diameter) imposes negligible intrusion

into the host structure and allows fast interrogation with minimal wiring requirements [10].

As the loss of structural integrity mainly relies on the failure of materials resulting from

deformation and strain concentrations, the analysis of strain fields seems to be useful and likely

to lead to more reliable predictions aimed to reduce premature or unnecessary repairs. The

product changes are usually classified into ‘minor’ or ‘major’, depending on the entity of the

effect on balance, structural reliability, weight, and other operational characteristics. Minor

repairs are generally correlated to the so-called ‘Category 1 Damage’ that refers to barely

visible impact damage (BVID) and to all those damage configurations that have proved to be
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sustained by the in-service structures [11]. Such category is related to the use of NDE in

service applications and it has been recently supported by appropriate SHM tools, in order to

establish cheap, reliable and robust procedures.

1.1 Machine Learning as a Tool for Structural Health Monitoring

The data acquired from SHM systems (both active and passive) may be considered as

belonging to the “big data” type, due to their wide complexity, variability, and diversity. Many

challenges may be encountered when dealing with big data, such as difficulty in searching,

capturing, and storing significant data, as well as in building adequate computational archi-

tectures and data-processing models. So, the appeal of the big-data field has led to the

development of sophisticated algorithms and computing platforms that make it possible to

reduce the size of the data itself [12].

Damage is defined as something that causes a modification to a material and/or its

geometry, which leads to a change in its mechanical performance. Machine learning based

SHM in the context of composite materials requires the definition of indicators that relate to

different damage, based on the evaluation of measured data and features. Machine learning

approaches can be described as either supervised or unsupervised. Supervised and partially

supervised approaches require prior label information, i.e. there is a set of training data

available, where the relationship between the measured data and physical damage phenomena

is known. This prior knowledge is then applied when dealing with the analysis of new datasets.

Unsupervised approaches do not make use of prior information and can be considered as

‘blind’. They make use of patterns and similarities in data features in order to find labels [13].

Though unsupervised approaches can be more adaptable, supervised and partially-supervised

methods are often preferred in applications where the signature of damage is well characterised

and understood. Algorithms based on artificial neural networks (ANNs) have been developed for

damage detection in wind turbine blades [14]. The use of auto-associative ANNs in this

application has enabled a smaller subset of sensors to be used for SHM of the whole turbine

blade, therefore significantly reducing the size of the dataset. Convolutional neural networks have

also been shown to be successful in civil engineering applications [15] and in fatigue analysis of

aircraft structures combined with Lamb waves [16]. Other examples may be found in [17, 18]. In

both cases, the damage identification on aerospace composite structures has been carried out

throughMachine Learning tools (such as a self-organising map for pattern recognition and ANNs

based on dynamic measurements). Finally, a model for the damage detection in composite

structures based on feedforward neural networks trained via strain data measured on real test

cases may be found in [8]; the latter will be employed in the following sections.

According to literature, machine learning algorithms seem to be very useful tools for SHM

purposes as they are able to automatically extract patterns in groups of data after being properly

trained. In particular, ANNs are desirable when dealing with damage identification problems that

may be classified as typical examples of binary learning (‘healthy’ or ‘damaged’). A neural

network able to implement binary learning can be modelled following two approaches:

discrimination-based learning or recognition-based learning. In the first approach, the network

is trained using both ‘positive’ and ‘negative’ samples in order to learn how to discriminate among

them; in the second, the network is trained using only ‘positive’ samples and it is able to recognise

only these [19]. Damage diagnosis represents a typical engineering problem for which it is almost

impossible to forecast all the ‘negative’ events, since this would mean to be able to discover all the

possible perturbations that a structural component would suffer as damage.

Applied Composite Materials (2020) 27:657–671 659



1.2 Strain-based Structural Health Monitoring Methods

Static-parameter-based techniques are locally sensitive to defects, simple to operate, and cost-

effective to implement. They rely on the assumption that the presence of damage causes

changes in the distribution of displacements and strains compared with a ‘pristine’ state. The

strain of a structure under load can be readily measured and monitored over time using

electrical strain gauges or optical fibre-based sensors, which can be placed in known structural

‘hotspots’, where defects or damage under certain loading conditions could trigger premature

failure.

When dealing with strain data, some challenges are often encountered. As the size of

collected data is generally extended, it is necessary to perform unfolding, centring and scaling

data operations before any damage assessment [20]. These operations are generally combined

with principal component analysis (PCA) that allows to extrapolate the main features of data

sets in order to obtain a new set of input data that is the linear combination of the original ones

[21]. This is useful to reduce the dimensionality of data-rich strain fields and, consequently, to

limit their redundancy. Nevertheless, as the data-reduction operations usually involve the

whole set of data, in real-life applications, they might be undesirably time-consuming and

computationally demanding. In addition, most of the methods presented in open literature:

(i) rely on the combination of strain measurements with other techniques (such as acoustic

emission and digital image correlation) [22];

(ii) they are strictly dependent on the evaluation of the material’s stress-strain behaviour [23];

(iii) they are unavoidably related to the evaluation of a high number of damage patterns (e.g.

cracks of different lengths and entities) [24].

Finally, although these models and methods have shown their reliability in providing damage

assessment in different scenarios, it remains a challenge to obtain information on damage

occurrence just from strain measurement and mapping [25] because even high strain values

would not necessarily indicate the presence of damage. This is essentially due to the highly

scattered mechanical properties of multi-layered composites [26] and the variability and

unpredictability of internal damage modes, especially when they interact [27].

The procedure firstly presented in [8] and herein discussed aims to go over the previous

aspects, introducing some novelties in the strain-based methods field.

1.3 Contribution

As a contribution to the development of new ways to process data collected from sensors, in

this work a method for damage detection is studied. The method has been presented for the

first time in [8], where Grassia et al.. proposed their damage diagnosis strain algorithm for

composites’ Structural Health Monitoring and they proved it against two experimental aero-

nautical test cases equipped with networks of strain-gauges.

The proposed methodology relates strains measured in some locations across a structure to

the strains measured in their ‘neighbourhood’, based on the idea that strains in neighbouring

locations are representative of the deformations in those locations. So, defining correlations

among those strains means defining a law that characterises the evaluated structure’s mechan-

ics, even if its mechanical properties are not known. The correlations among strains are

assessed through one-layer feed-forward neural networks that are trained with strain data

collected on the pristine configuration of the evaluated structure. The novelty of the method
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stands in its independence from both the choice of material and the loading condition. The

method does not require the prior knowledge of material properties based on stress-strain

relationships and, as the strain correlations represent the structure and its mechanical behav-

iour, they are valid for the full range of operating loads. In the framework of the proposed

approach there are no damage patterns to correlate to strains, so it is not necessary to perform

data reduction or classification operations, in contrast with the methods available in literature.

This is essentially due to the exceptional extrapolation and recognition capabilities of ANNs

[28].

The current work shows an implementation of the aforementioned method on in a novel

experimental scenario. The test case is a carbon fibre reinforced polymer (CFRP) plate

comprising an embedded DOFS. The specimen is subjected to four-point bending tests during

which strain data are collected by the DOFS and, then, analysed through the help of one-layer

feed-forward neural network trained via back-propagation algorithm. The novelty stands in

testing the experimental case using a distributed sensor and in assessing the potentiality of both

ANNs and the method when handling large-dimensions data sets, as the ones collected by the

FOS.

2 ANN-based Damage Diagnosis Procedure

The methodology applied for data analysis is described below, while for further details on the

algorithm the reader is referred to [8].

The present diagnosis procedure uses transfer functions that correlate the strains experi-

enced in neighbouring locations on the host structure, independently of the externally applied

loads. Strains are recorded in discrete locations on the host structure. When relative strain

comparisons are made, these discrete locations are termed ‘master’ and ‘slave’ nodes. The

correlations between the strains at master and slave nodes act as a ‘fingerprint’ of the structure

and are established using ANNs. Each master-slave location pair has its own neural network,

which describes the relationship between strains in their respective locations. Once the

networks have been initialised, the algorithm is ready to be used. The logic on which the

procedure is based relies on the assumption that only the locations in the ‘neighbourhood’ (i.e.

in close proximity) of a damage event are affected by its presence, while locations that are

sufficiently far from the damage are not sensitive to its presence. Figure 1 describes the steps of

the algorithm applied to the recorded strain data. A step-by-step description of the procedure is

given below:

Step 1. First, the reference structure is subjected to operational loads – in this case, 0.55 kN.

During loading, the strains in both master and slave locations �
R

m;s

n o� �

are recorded.

Step 2. Then introducing some damage on the structure and re-subjecting it to the operational

loads, the strains �
D

m;s

n o� �

are measured again.

Step 3. After the acquisition of all the necessary data, the core of the procedure is imple-

mented. The strains measured on the reference structure are used to train the neural

networks. The strains measured in slave locations ( �
R

s

� �

) are used as input data,

while those measured in master locations ( �
R

m

� �

) are used as output data.
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Step 4. At this point, the strains measured in the slave locations on the damaged structure (

�
D

s

� �

) are provided as new input data to the trained networks. The networks produce

the strain predictions at master locations ( �
P

m

� �

) as output data.

Step 5. The strain predictions output by Step 4 are compared to the actual strains measured

on the damaged structure ( �
D

m

� �

). The evaluation of the mismatch eð Þ , shown in

Eq. (1), leads to the detection of damage:

e ¼ �
D

m

� �

� �
P

m

� �
�

�

�

�: ð1Þ

As the ANNs have been trained using strains from the reference structure, if new input data not

belonging to the training set (e.g. strain measured near damaged area) are provided, they will

respond with ‘out-of-scale’ output data. This means that, in this case, ANNs are not able to provide

reliable predictions ( �
P

m

� �

) of the experimentally measured data ( �
D

m

� �

) and, so, the mismatch

reported in Eq. (1) shows non-negligible values. This happens because, as the local structural

stiffness has changed due to damage, the correlations between �
R

s

� �

and �
R

m

� �

, found during the

training phase and established as transfer function of ANNs, will not apply anymore. The correlation

between strains directly relates to the mechanical features of the analysed structure: the deformation

Fig. 1 Damage diagnosis procedure flowchart
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capability of a structure depends on its stiffness. So, as soon as some generic cause leads to the

formation of damage, the mechanical features of structure itself (such as stiffness) change, and so do

both its deformation and the strain correlations.

It has to be mentioned that during the neural networks training phase (Step 2), as there is no

universal technique to choose the number of hidden neurons, the number of neurons for each

network has been chosen adopting a simple procedure:

1 Training each network several times increasing the number of hidden neurons k;

2 Evaluating the Performance Index of each training, defined in Eq. (2):

P
k

n;LRt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

LRt

X

LRt

l¼1
�
RP

n;l
� �

R

n;l

� �2

s

ð2Þ

where �RP
n;l

represents the strain predicted by the n-th network for the reference structure under

the l-th loading step, �R
n;l
represents the strain measured on the reference structure under the l-th

loading step,LR is the total number of loading steps applied on the reference structure andLRt
is

the number of load steps picked randomly from the database, with 1determining the optimum

hidden neurons number (kn) as shown in Eq. (3):

8n � N ; kn ¼ kjP
n;LRt

¼ inf Pkn;LRt

n o

k¼1;H
; k ¼ 1; ;H;H 2 N ð3Þ

where N is the total number of ANNs and H is the maximum number of hidden neurons used.

3 Implementation of the Proposed ANN on an Experimental Case

The described damage diagnosis procedure is implemented on strain data measured from a

fibre reinforced polymer composite plate (400 mm x 200 mm) that consists of eight plies of

carbon fibre fabric (PX35-13 50 k unidirectional fabric, supplied by Zoltek) infused with an

epoxy-based resin system (Araldite LY564 and Aradur 2594, supplied by Huntsman, Basel,

Switzerland).

The plate was a cross-ply symmetric laminate, with orientation [90/0/0OFS/90]S, in which, during

the lay-up process, a single-mode, polyimide-coated silica glassDOFS (of 155 µmdiameter and 2m

length) was embedded (in a 0-degree layer, named 0OFS), so that it could be parallel to the fibre

direction (Fig. 2). The plate was manufactured by vacuum assisted resin infusion moulding

(VARIM) [29] followed by an oven curing process, as detailed in [7]. During composite fabrication,

the development of strains was monitored in situ and in real time.

After the manufacturing process, several quasi-static four-point bending tests were con-

ducted on the plate, following the ASTM D7264 standard [30] on an Instron 5969 universal

testing machine fitted with a 50 kN load cell. To ensure uniform distribution of the load across

the width of the panel, aluminium ‘spreader bars’ were placed between the loading noses and

the specimen.

The first loading cycle was conducted on the plate in the pristine condition, reaching a

maximum applied load of 0.55 kN. Then, a 2.5 mm diameter hole was drilled in the centre of

the plate and this new configuration was subjected to further four-point bending, reaching

again a maximum applied load of 0.55 kN. Between successive cycles of loading, the diameter
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of the hole was increased, according to the details provided in Table 1. During each cycle of

loading, distributed strain data was collected from the DOFS via an optical frequency domain

reflectometry (OFDR) based interrogator from Luna Inc. (Roanoke, VA, USA).The selected

hardware set-up enabled strains to be measured with a gauge length of 1.25 mm which allows

to obtain several differently distributed strain readings.

Strains measured every 5 mm along the length of the optical fibre were selected from the

large dataset collected. These selected strains were then used to initialise, train, and test a set of

neural networks, in accordance with the procedure described in Section 2.

4 Results and Discussion

The results of the procedure’s implementation are herein presented and discussed. Firstly, Figs.

3, 4 and 5 show the contour plots of the strains collected by the optical fibre sensor at the most

severe loading condition (i.e. the maximum applied load) during loading cycles 1, 9, and 11,

respectively, for each of the represented points, that correspond to the selected strain measure-

ment locations along the length of the optical fibre sensor (5 mm apart). The first loading cycle

Fig. 2 (a) Schematic of the composite plate and (b) photograph of the plate after manufacture

Table 1 Four-point bending tests details - number, maximum achieved load and entity of drilled hole

Test number Maximum load (kN) Hole diameter (mm)

1 0.55 No hole

2 0.55 2.5

3 0.80 2.5

4 0.64 2.5

5 0.80 3.0

6 1.00 3.0

7 1.00 4.0

8 1.00 4.0

9 1.00 6.0

10 1.00 8.0

11 1.50 8.0
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represents the one applied on the pristine configuration. All of the displayed strain values are

expressed in micro-strains (µε) and their entity is expressed through the colorbar. Since the

first experiment (Fig. 3), the map of measured strains has highlighted that the top part of the

plate shows higher strains and, so, lower stiffness than the rest of the sample. This is likely due

to the fact that the plate experienced a non-uniform infusion during the manufacturing process

leading to an uneven final thickness. A similar trend has been found out for the other two cases

(Figs. 4 and 5), where the higher values of measured strains are related to higher applied loads.

As the deformation behaviour of the top edge of the plate is already evident during loading

cycle 1 and as the strain data measured during that cycle were used to train the ANNs, it is

clear that their training was established taking this condition into account. In addition, from

Figs. 3, 4 and 5, it may be deduced that strain mapping is a useful tool to easily visualise the

strain distribution across a structure and the possible strain concentration. Taking a look at the

maps of strains measured during loading cycles 9 (Fig. 4) and 11 (Fig. 5) and quickly

comparing the maximum compressive strain for each of them with the maximum compressive

strain measured during loading cycle 1 (Fig. 3), a difference of about 750 µε and 1050 µεmay

be noticed, respectively.

Concerning the ANNs used for the current work, they are single-layer networks belonging

to the family of Feed-forward Perceptron Networks trained via the Levenberg-Marquardt

backpropagation algorithm [31] implemented in Matlab’s Neural Network Fitting Tool [32].

As described in Section 2, the Performance Index has been calculated through Eqs. (2) and (3).

Then, it has been averaged on the total number of ANNs (N) and is reported in Fig. 6 in which

it is plotted against the number of loading steps used for the training (LRt
Þ:Analysing the figure

it appears that the average Performance Index (that is a quantification of the training error)

becomes stable approximately around 100 loading steps.

As mentioned in the previous sections, the procedure in object is based on the idea that the

locations far from the damage are not affected by it and so, as the ANNs are trained on the

reference structure, they will continue to work as expected. On the contrary, as near the

damage the strain distribution will be influenced by the damage itself, the ‘damaged’ strains –

Fig. 3 Contour plot of the composite plate strains collected during Test 1 (max. applied load = 0.55 kN)
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that do not belong to the training set – provided to the ANNs will let the ANNs themselves

produce ‘out-of-scale’ output data. This anomalous response received from the ANNs is

reflected in high values for the quantity expressed in Eq. (1); in addition, it does not represent

a quantification of the damage condition but only allows to understand that, where and when it

happens, there is something to worry about or to simply take in consideration.

Figure 7 shows the results provided by the implemented procedure when applied on the

same data used for the ANN training phase (i.e. strain data measured on the pristine plate

configuration during loading cycle 1). The colour of the measurement points represents the

entity of the mismatch evaluated by Eq. (1), expressed in µε. The mismatch in Eq. (1) takes

negligible values, as the data provided to the trained ANNs are the same that had been used

during the training phase. This proves that the ANNs training was successful.

Fig. 4 Contour plot of the composite plate strains collected during Test 9 (max. applied load = 1.00 kN)

Fig. 5 Contour plot of the composite plate strains collected during Test 11 (max. applied load = 1.50 kN)
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Figure 8 shows the results provided by the implemented procedure when applied on data

measured on the ‘damaged’ configuration. The meaning of the represented graphical elements

is the same explained for Fig. 8. In addition, in Fig. 7 there is the representation of the hole

drilled in the plate (empty circle in the plate centre).

In particular, Fig. 8 shows the results of the ANN procedure for the 9th and 11th cycles of

loading on the plate, when the diameter of the hole was 6 mm and 8 mm, respectively. The

maximum evaluated value of e (Eq. 1) is of about 1100 µε (Fig. 8.a) or higher (1200 µε in

Fig. 8.b), as visible through the colour bar.

According to the procedure logic, higher values of the mismatch e are expected in the

region close to the hole. However, in the current work, the algorithm is not able to capture the

hole. Instead, the optical fibre section close to the top edge of the plate is highlighted as having

higher mismatch values.

Consequently, the fact that Fig. 8 shows high values of the mismatch evaluated in Eq. (1),

in correspondence of the same plate edge highlighted previously, means that during the loading

cycles the plate experienced such a deterioration that caused the change of strain relationships

in that region, captured by the ANNs procedure as expected. So, as the evaluation of the

mismatch in Eq. (1) gives a stronger ‘warning’ signal, as seen in Fig. 8, than the traditional

strain difference, the procedure has shown to be more sensitive to the structural changes than

the evaluation of strain maps.

The use of ANNs to establish correlation among strains is fundamental because it means

determining a function that is representative of the mechanical behaviour of the structure itself

under given boundary conditions. The benefit of using ANNs is the possibility to exploit their

generalisation capability [28].

In the present case, this means that if the baseline structure, subjected to a given loading

condition, is characterised by a certain strain-correlation function (found as a result of the

ANNs training), this function will still be valid, for instance, even in case of a different

Fig. 6 Average training error of neural networks as function of training loading steps (blue line). The shaded

region represents the confidence interval in terms of standard deviation

1 Loading steps are defined as the selected measurement intervals during the specified cycle of loading, as a

function of time.
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maximum applied load – provided equal boundary conditions. Then, if the occurrence of

damage caused a change in the mechanical features of the structure, the previous strain-

correlation function would not be valid anymore, due to the change in the spatial dependence

of strains from each other. So, the novelty of the proposed approach stands in the possibility to

infer the eventual damage state of a structure evaluating the change of the aforementioned

function, instead of simply looking at the strain mapping shape and values that could be

insufficient for the intended purposes, as seen in the previous sections.

In addition, some of the studies highlighted in Section 1.3 have showed that strain fieldmappings

are often related to stress-strain relationships calculation, damage patterns and/or data reduction

operations. Therefore, measuring variation of strains correlation using neural networks appears to be

easier, less time-consuming and more flexible than other strain-based methodologies.

This is due to the fact that there is no need to:

(i) associate damage patterns to strains. This means that data do not need to be reduced or

characterised with computational-expensive procedures;

(ii) rely on stress-strain relationships. This means that the material properties are not

necessary to implement the procedure and, therefore, it is not needed to calculate them

analytically or numerically.

So, as this approach only relies on the evaluation of relationships between strains and how they

could change due to the presence of damage, the procedure could be used for any kind of

material, even for those whose properties are not known. In this way, the whole algorithm

could be implemented on any kind of structure, even if it is a first-time seen one.

Finally, it must be noticed that the hole did not represent a significant damage configuration on

the evaluated structure. This is mainly due to its small dimension and to its neatness that make it

undetectable and, consequently, to the fact that the DOFS is not enough close to the hole itself. In

terms of damage-tolerance and fatigue evaluation philosophy, as explained in Section 1, this damage

belongs to the aforementioned ‘Category 1 damage’ [11]. An additional reason.

Fig. 7 Mismatch in strain correlations, as predicted by the ANN-based damage detection procedure, evaluated

when the data provided to the ANNs are the same used for the training phase. The colour of each point represents

the strain mismatch as per the scale bar to the right of the plot
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5 Concluding Remarks

The current work presents an implementation of a method for the structural health monitoring

of composite structures supported by artificial neural networks. The algorithm is based on

establishing correlations among strains measured in a given area of the structure under

investigation. Any change in those correlations that may be caused by the presence of damage,

propagation of defects and flaws, may lead to the detection of them. The algorithm was

implemented on data collected by a distributed optical fibre sensor embedded in a composite

plate subjected to several four-point bending tests.

The novelty of the proposed approach stands in its independence from both the loads applied

on the structure and from the kind of material the structure is made of. In contrast with other

machine-learning-based SHM techniques, the presented ANNs-based approach does not need to

be supported by data reduction procedures and, as the algorithm is trained using only ‘positive’

(i.e. healthy) samples, it does not need to be associated to damage patterns. For these reasons, the

proposed method is less time-consuming and less computational-expensive and, so, it may be

Fig. 8 Mismatch in strain correlations as predicted by the ANN-based damage detection procedure: (a) during

loading cycle 9 (load = 1.00 kN), and (b) during loading cycle 11 (load = 1.50 kN)
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useful in real-life structural health monitoring applications. In addition, the procedure has shown

to be more sensitive to the change in strain relationships than the traditional strain maps; in

particular, the change in strain relationships were about 200 µε higher than strain variation

evaluated through strain mappings. Finally, the algorithm was able to identify anomalous

situations even if they were not significantly worrying under a structural point of view.

As the introduced damage falls into the undetectable damage categories, in near future work

the sample should be subjected to more noticeable damage configurations, in order to better

explore the structure’s capabilities especially in case of more severe damage categories.
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