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The use of the electro-mechanical (E/M) impedance method for health monitoring of thin plates and

aerospace structures is described. As a nondestructive evaluation technology, the E/M impedance

method allows us to identify the local dynamics of the structure directly through the E/M impedance

signatures of piezoelectric wafer active sensors (PWAS) permanently mounted to the structure. An

analytical model for 2-D thin-wall structures, which predicts the E/M impedance response at PWAS

terminals, was developed and validated. The model accounts for axial and flexural vibrations of the

structure and considers both the structural dynamics and the sensor dynamics. Calibration experiments

performed on circular thin plates with centrally attached PWAS showed that the presence of damage

modifies the high-frequency E/M impedance spectrum causing frequency shifts, peak splitting, and

appearance of new harmonics. Overall-statistics damage metrics and probabilistic neural network

(PNN) are used to classify the spectral data and identify damage severity. On thin-wall aircraft panels,

the presence of damage influences the sensors E/M impedance spectrum.When crack damage is in the

PWAS medium field, changes in the distribution of harmonics take place and when crack damage is in

the PWAS near field, changes in both the harmonics and the dereverberated response are observed.

These effects are successfully classified with PNN and overall-statistics metrics, respectively. This

proves that permanently attached PWAS in conjunction with the E/M impedance method can be

successfully used in structural health monitoring to detect the presence of incipient damage through the

examination and classification of the high-frequency E/M impedance spectra.

Keywords electro-mechanical impedance � piezoelectric wafer active sensors � vibration of

circular plates � aging aircraft � structural health monitoring � overall statistics �

neural networks � E/M impedance � PWAS � EMI � SHM � IVHM � PNN

1 Introduction

Structural health monitoring (SHM) could play

a considerable role in maintaining the safety of

aging aerospace vehicles subjected to heavy fatigue

loads. For such structures, the development of an

integrated sensory system able to monitor, collect,

and deliver the structural health information is
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essential. The upfront cost associated with imple-

menting the SHM systems may be considerable.

This aspect is of concern to both the manu-

facturers and the operators. A full cost-benefit

analysis is needed; such an analysis would have to

be performed in cooperation with the manufac-

turers and the operators. It is envisaged that the

life cycle cost of the complete fleet will noticeably

decrease after the full implementation of SHM

systems.

One of the proposed approaches is to utilize

arrays of piezoelectric wafers attached to the

surface of a metallic structure or inserted between

the layers of a composite material. When attached

to the structure and connected to the electronics,

these piezoelectric wafers become active sensors

that can act as both actuators and detectors of

elastic waves in the structure. For lack of a better

term, we have called them PWAS, which is short

for piezoelectric wafer active sensors. PWAS are

the enabling element in the E/M impedance

method [2], which is able to assess the local

structural response at very high frequencies (typi-

cally hundreds of kilohertz). This high-frequency

response is not affected by the global structural

modes and environmental conditions such as

flight loads and ambient vibrations. Thus, the E/M

impedance method allows monitoring of incipient

local damage (i.e., cracks, disbonds, delamination,

etc.), which produces only imperceptible and

hardly noticeable changes to the large-scale dyna-

mics of the entire structure. For this reason, the

high-frequency E/M impedance method can detect

localized small damage that is otherwise undetect-

able with conventional vibration methods.

The E/M impedance method has been tried

for the SHM of various structural components

and engineering structures. The local-area health

monitoring of a tail-fuselage aircraft junction was

described by Chaudhry et al. [1]. Giurgiutiu et al.

[2] used the E/M impedance method to detect

near-field damage in realistic built-up panels

representative of aging aircraft structures. The

implementation of E/M impedance method for

detecting delamination and crack growth on

composite-reinforced concrete walls was presented

by Raju et al. [3]. More developments in the E/M

impedance method were discussed by Giurgiutiu

and Rogers [4] and by Park and Inman [5].

An extensive study of the damage metrics suitable

for E/M impedance SHM was presented by Tseng

et al. [6] who used an overall statistics approach

to quantify the presence of damage, and found

that the correlation coefficient gave best results.

A comprehensive review of the impedance

method was recently published by Park et al. [28].

Pioneering work on the analysis of sensor–

structure interaction in E/M impedance method

was presented by Liang et al. [7] and Sun et al.

[8]. Further model development was attempted by

Zhou et al. [9] and Esteban [10], but they did not

derive explicit expressions for predicting the E/M

impedance as it would be measured by the

impedance analyzer at the terminals of a struc-

turally attached PWAS. Park et al. [11] performed

the axial vibrations analysis of a bar, but did not

consider the flexural response, or the sensor

dynamics. Giurgiutiu and Zagrai [12] derived an

expression for the E/M admittance and imped-

ance that incorporates both the sensor dynamics

and the structural dynamics. In the structural

dynamics, they included both the flexural and the

axial modes. However, their analysis was limited

to 1-D structures. The present paper continues

this analytical effort and extends it to 2-D

structures, specifically circular thin plates with

centrally located PWAS.

2 Modeling of the Interaction
between a PWAS and
a Circular Plate

Assume a thin isotropic circular plate with a

PWAS surface mounted at its center (Figure 1).

Under PWAS excitation, both axial and flexural

vibrations are set in motion. The structural

dynamics affects the PWAS response, and modi-

fies its electro-mechanical impedance, i.e., the

impedance measured by an impedance analyzer

connected to the PWAS terminals. The purpose of

this section is to model the interaction between

the PWAS and the structure, and predict the

impedance spectrum that would be measured at

the PWAS terminals during the structural identifi-

cation process. In our development, we will

account for both the structural dynamics and the

PWAS dynamics. The interaction between the
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PWAS, and the structure is modeled as shown in

Figure 2. The structure is assumed to present

to the PWAS, an effective structural dynamic

stiffness, kstr(!), which on the excitation frequency

in strict correlation with the local structural

dynamics, will include both axial and flexural

modes. The problem is formulated in terms of

interaction line force, FPWAS, and the correspond-

ing displacement, uPWAS, measured at the PWAS

circumference. The assumption implied in this

model is that the surface adhesion between the

PWAS and the structure can be reduced to an

effective boundary interaction between the radial

displacement and the line force at the PWAS

circumference (similar to the pin–force model in

1-D analysis of PWAS–structure interaction).

When the PWAS is excited with an oscilla-

tory voltage, its volume expands in phase with

the voltage in accordance with the piezoelectric

effect. Expansion of the PWAS mounted to the

surface of the plate induces a surface reaction

from the plate in the form of the line force

(a)

EDM slit

Active
sensor

(b)

Plate

FPWAS

PWAS

Plate

PWAS

z = h/2

ra

r

O A

z

FPWAS

Figure 1 (a) PWAS mounted on a circular plate and (b) PWAS and plate schematics.
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Figure 2 Piezoelectric wafer active sensor constrained by structural
stiffness, kstr(!).
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distributed around the PWAS circumference,

FPWASðtÞ ¼ F̂FPWASe
i!t. The reaction force,

FPWAS(t), depends on the PWAS radial displace-

ment, uPWAS(t), and on the frequency-dependent

dynamic stiffness, kstr(!), presented by the struc-

ture to the PWAS:

FPWASðtÞ ¼ kstrð!Þ � uPWASðtÞ ð1Þ

2.1 Modeling of the PWAS

Electro-mechanical Impedance

To model the circular-shaped PWAS, we start

from the piezoelectric constitutive equations in

cylindrical coordinates as [13–15]:

Srr ¼ sE11Trr þ sE12T�� þ d31Ez

S�� ¼ sE12Trr þ sE11T�� þ d31Ez

Dz ¼ d31ðTrr þ T��Þ þ "T33Ez ð2Þ

Srr and S�� are the mechanical strains, Trr and

T��, the mechanical stresses, Ez the electrical field,

Dz the electrical displacement, sE11 and sE12 the

mechanical compliances at zero electric field

(E¼ 0), "T33 the dielectric permittivity at zero

mechanical stress (T¼ 0), and d31 the piezoelectric

coupling between the electrical and mechanical

variables. For axisymmetric motion, the problem

is �-independent and the space variation is in r

only. Hence, Srr¼ @ur/@r and S��¼ ur/r. Applying

Newton’s second law, one recovers, upon substi-

tution, the wave equation in polar coordinates:

@2ur
@r2

þ
1

r

@ur
@r

�
ur

r2
¼

1

c2
@2ur
@t2

ð3Þ

where c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sE11 � ð1� �2aÞ

p
is the sound speed in

the PWAS for axially symmetric radial motion,

with �a the Poisson’s ratio of the piezoelectric

material (�a ¼ �sE12=s
E
11). Equation (3) admits a

general solution in terms of Bessel functions of

the first kind, J1, in the form

urðr,tÞ ¼ A � J1
!r

c

� �
ei!t ð4Þ

where, the coefficient A is determined from

the normalization condition. When the PWAS is

mounted on the structure, its circumference is

elastically constrained by the dynamic structural

stiffness (Figure 2). Although a solution for the

case of a free boundary condition at the circum-

ference exists in the literature [14], no solution

has been found for the case when the circumfer-

ential boundary condition is in the form of an

elastic constraint of known dynamic stiffness,

kstr(!). Hence, we develop this solution here. At

the boundary r¼ ra,

TrrðraÞ � ta ¼ kstrð!Þ � urðraÞ ð5Þ

where ta is the PWAS thickness. Hence, the

radial stress can be expressed as:

TrrðraÞ ¼
kstrð!Þ � urðraÞ

ta
ð6Þ

Substitution of Equation (6) into Equation

(2) gives, upon rearrangement,

@urðraÞ

@r
¼ �ð!Þ � ð1þ �aÞ

urðraÞ

ra
� �a

urðraÞ

ra

þ ð1þ �aÞd31Ez ð7Þ

where, �(!)¼ kstr(!)/kPWAS is the dynamic stiff-

ness ratio, and kPWAS ¼ ta=ras
E
11ð1� �aÞ is the static

stiffness of the piezoelectric disk. Substitution of

Equation (4) into Equation (7) yields:

A ¼ ðð1þ �aÞ � d31E0Þ
��

ð!=cÞJ0ð!ra=cÞ

� ð1� �a þ �ð!Þ � ð1þ �aÞÞ=ra � J1ð!ra=cÞ
�

ð8Þ

The electrical admittance is calculated as the ratio

between the current and the voltage amplitudes,

i.e., Y ¼ ÎI=V̂V . The current is calculated by

integrating the electric displacement Dz over the

PWAS area to obtain the total charge, and then

differentiating with respect to time, while the

voltage is calculated by multiplying the electric

field by the PWAS thickness. Hence, the electrical

admittance is expressed as:

Yð!Þ ¼ i!C 1� k2p

� �
� 1þ

k2p

1� k2p

ð1þ �aÞJ1ð’aÞ

’aJ0ð’aÞ � ð1� �aÞJ1ð’aÞ � �ð!Þð1þ �aÞJ1ð’aÞ

" #
ð9Þ
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where, ’a ¼ !ra=c and kp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d231= sE11 � ð1� �aÞ"T33

� �q
is the planar coupling factor. Then, the inverse

relationship between impedance and admittance,

Z(!)¼ 1/Y(!), yields:

Equation (10) predicts the E/M impedance

spectrum, as it would be measured by the

impedance analyzer at the embedded PWAS

terminals during a SHM process, and it allows

for direct comparison between calculated predic-

tions and experimental results. The structural

dynamic is reflected in Equation (10) through

the dynamic stiffness factor, �(!)¼ kstr(!)/kPWAS,

which contains the dynamic stiffness of the

structure, kstr(!). This latter quantity results from

the analysis of the circular plate dynamics, as

described here.

2.2 Modeling of the Circular

Plate Dynamics

The equations for axisymmetric axial and

flexural vibrations of circular plates are assumed

in the form [16–18]:

Eh

1� �2
@2u

@r2
þ
1

r

@u

@r
�

u

r2

	 

� �h �

@2u

@t2
¼ �

@Ne
r

@r
þ
Ne

r

r

	 

ð11Þ

Dr4wþ �h �
@2w

@t2
¼

@2Me
r

@r2
þ
2

r

@Me
r

@r
ð12Þ

where u is the in-plane displacement along the

r-direction, w is the transverse displacement, h is

the plate thickness, and � is the plate density.

The quantities Ne
r and Me

r are excitation line

forces and line moments acting over the whole

surface of the plate. These excitation forces and

moments originate in the PWAS force, FPWAS(t),

acting at the surface of the plate at r¼ ra.

Resolving this force at the plate midplane, we get

a line force and a line moment acting:

NaðtÞ ¼ FPWASðtÞ

MaðtÞ ¼
h

2
FPWASðtÞ

ð13Þ

Using the Heaviside step function, we write:

Ne
r ðr,tÞ ¼ NaðtÞ � �Hðra � rÞ½ �

Me
r ðr,tÞ ¼ MaðtÞ � Hðra � rÞ½ �, r 2 ½0,1Þ

ð14Þ

The steady state solution of Equations (11)

and (12) are sought as modal expansions:

uðr,tÞ ¼
X
k

PkRkðrÞ

 !
� ei!t

wðr,tÞ ¼
X
m

Gm � YmðrÞ

 !
� ei!t ð15Þ

where Pk and Gm are the modal participation

factors for axial and flexural vibrations, while

Rk(r) and Ym(r) are the corresponding mode

shapes. For free-edge boundary conditions, the

axisymmetric mode shapes Rk(r) and Ym(r) are

expressed in terms of Bessel functions [19]:

RkðrÞ ¼ AkJ1ð�krÞ

YmðrÞ ¼ Am � J0ð�mrÞ þ Cm � I0ð�mrÞ½ � ð16Þ

The mode shapes Rk(r) and Ym(r) form

orthonormal function sets that satisfy the ortho-

normality conditions:

�h �

Z a

0

Z 2�

0

RkðrÞRlðrÞrdrd� ¼ �h � �a2 � �kl

�h �

Z a

0

Z 2�

0

YpðrÞ�YmðrÞrdrd� ¼ m � �pm

¼ �a2 � �h � �pm ð17Þ

where, a is the outer radius of the circular plate

and �ij are the Kroneker’s deltas. Equations

Zð!Þ ¼ i!C 1� k2p

� �
� 1þ

k2p

1� k2p

ð1þ �aÞJ1ð’aÞ

’aJ0ð’aÞ � ð1� �aÞJ1ð’aÞ � �ð!Þð1þ �aÞJ1ð’aÞ

" #( )�1

ð10Þ
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(13)–(17), yield the modal participation factors

for axial and flexural vibrations:

Pk ¼
2Na

�h � a2
�
raRkðraÞ �

R a
0 RkðrÞHðra � rÞdr

� �
!2
k � 2i&k!!k þ !2

� �
Gm ¼

2Ma

�h � a2
3YmðraÞ þ ra � Y

=
mðraÞ

� �
!2
m � 2i&m!!m þ !2

� � ð18Þ

where �k and �m are modal damping ratios. The

detailed derivation of modal participation factors

can be found in [20].

2.3 Calculation of the Effective

Structural Stiffness

We calculate the effective structural stiffness

kstr(!) from the structural response to PWAS

excitation. The radial displacement at the rim of

the PWAS can be expressed in the form:

uPWASðra,tÞ ¼ uðra,tÞ �
h

2
� w=ðra,tÞ ð19Þ

Note that u(ra,t) and w(ra,t) represent displace-

ments at the plate midsurface, while uPWAS(ra,t) is

measured at the plate upper surface (Figure 1).

Using Equation (15), we write

uPWASðra,tÞ ¼
X
k

PkRkðraÞ � e
i!t

�
h

2

X
m

GmY
=
mðraÞ � e

i!t ð20Þ

Substitution of Equations (18) into Equation

(20) yields the PWAS displacement in terms of

the interface force, FPWAS, and the axial and

flexural dynamics of the plate. Discarding the

time dependence, we write:

ûuPWASð!Þ

¼
F̂FPWASð!Þ

a2 ��

�

"
2

h
�
X
k

�
raRkðraÞ�

R a
0 RkðrÞHðra� rÞdr

�
RkðraÞ�

!2
k� 2i&k!!kþ!2

�

þ
h

2
�
X
m

�
3YmðraÞþ ra �Y

=
mðraÞ

�
�Y=

mðraÞ

!2
m� 2i&m!!mþ!2

� �
#

ð21Þ

Recalling Equation (1), we write kstrð!Þ ¼ ^

FPWASð!Þ=ûuPWASð!Þ, i.e.,

kstrð!Þ¼a2�

�

"
2

h
�
X
k

�
raRkðraÞ�

R a
0 RkðrÞHðra�rÞdr

�
RkðraÞ�

!2
k�2i&k!!kþ!2

�

þ
h

2
�
X
m

�
3YmðraÞþra �Y

=
mðraÞ

�
�Y=

mðraÞ�
!2
m�2i&m!!mþ!2

�
#�1

ð22Þ

Upon inversion, we can also obtain the frequency

response function (FRF) of the structure when

subjected to PWAS excitation:

FRFstrð!Þ

¼
1

a2�

�

"
2

h
�
X
k

�
raRkðraÞ�

R a
0 RkðrÞHðra� rÞdr

�
RkðraÞ�

!2
k� 2i&k!!kþ!2

�

þ
h

2
�
X
m

�
3YmðraÞþ ra �Y

=
mðraÞ

�
�Y=

mðraÞ�
!2
m� 2i&m!!mþ!2

�
#

ð23Þ

3 Model Validation
Through Numerical and
Experimental Results

A series of experiments were conducted on

thin-gage aluminum plates to validate the theore-

tical results. The set of specimens consisted of five

identical circular plates manufactured from 2024

aluminum. The diameter of each plate was 100mm

and the thickness was 0.8mm. Each plate was

instrumented at its center with a 7 mm diameter

piezoelectric wafer active sensor (PWAS). During

the experiments, the specimens were supported

on packing foam to simulate free boundary

conditions. Impedance data was taken using a

HP 4194A Impedance Analyzer. The spectra
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collected on the five specimens showed very little

variation from specimen to specimen (1% stan-

dard deviation in the resonance frequencies as

identified from the E/M impedance real part

spectra Re(Z)).

To validate the theory, we compared the

experimental Re(Z) spectrum with the theoretical

Re(Z) and the theoretical FRF spectrum. The

FRF spectrum was utilized to illustrate the fact

that the Re(Z) spectrum reflects the structural

dynamics, i.e., the peaks of the Re(Z) spectrum

coincide with the peaks the FRF peaks, which

are the structural resonances. Figure 3(a) shows

the FRF spectrum calculated with Equation (23),

using ra¼ 3.5mm, a¼ 50mm, h¼ 0.8mm,

�k¼ 0.07%, and �m¼ 0.4%. The frequency range

was 0.5–40 kHz. Six flexural resonances and one

axial resonance were captured. The numerical

values are given in Table 1. The match between

the theoretical and experimental resonance values

was very good. For most modes, the matching

error is less than 1%. Two exceptions are noted:

(i) the first flexural frequency has a matching

error of �7.7%. This can be attributed to

experimental error, since the E/M impedance

does not work as well at low frequencies as it

works at high frequencies, and hence the peak of

the first flexural mode is very weak. (ii) The first

axial mode has 2% error, which can be attributed

to slight imperfections in the plate contour.

Figure 3(b) compares the experimental and

theoretical Re(Z). The theoretical Re(Z) was

calculated with a modification of Equation (10).

The modifications consisted in introducing a

multiplicative correction factor a/ra, in front of

the stiffness ratio �(!). This correction factor was

needed to account for difference between the kstr
distributed over the radius of the plate and the

kPZT distributed over the radius of the sensor.

The modified formula was:

As seen in Figure 3(b), good matching

between theoretical and experimental Re(Z)

spectra was obtained. Thus, we can conclude

that Equation (24) permits direct comparison of

experimental and theoretical E/M impedance

data, which is the aim of our analysis.

Although the simulation gives a good match-

ing with experimental results, the theoretical model

presented here is limited to the analysis of purely

axis-symmetrical modes. In principle, the axis-

symmetric assumption is consistent with the prob-

lem geometry in which a piezoelectric wafer active

sensor, of circular geometry, is placed exactly at

the center of a circular plate. However, if the sensor

is slightly misaligned, non axis-symmetric modes

will also be excited and will appear in the spec-

trum. This effect is observable in Figure 3, where

the low-amplitude peaks that appear at 15, 24, and

33 kHz on the experimental curves have no match

on the theoretical curves. These small peaks are

due to non axis-symmetric modes that get para-

sitically excited due to slight misalignment in the

placement of the sensor at the center of the plate.

4 Damage Detection in
Circular Plates

Systematic experiments were performed on

circular plates to assess the crack detection

capabilities of the method. As shown schemati-

cally in Figure 4, five damage groups were

considered: one group consisted of pristine plates

(Group 0) and four groups consisted of plates

with simulated cracks placed at increasing dis-

tance from the plate edge (Group 1–4). Each

group contained five nominally ‘identical’ speci-

mens. Thus, the statistical spread within each

group could also be assessed. In our study, a

10-mm circumferential slit was used to simulate

an in-service crack. The simulated crack was

placed at a decreasing distance from the plate

edge. The radial positions 40, 25, 10, and 3mm

from the sensor were considered (Figure 4).

The experiments were conducted over three

frequency bands: 10–40; 10–150, and 300–450 kHz.

The data was processed by plotting the real part

of the E/M impedance spectrum, and determining

Zð!Þ ¼ i!C 1� k2p

� �
� 1þ

k2p

1� k2p

ð1þ �aÞJ1ð’aÞ

’aJ0ð’aÞ � ð1� �aÞJ1ð’aÞ � ða=raÞ�ð!Þð1þ �aÞJ1ð’aÞ

" #( )�1

ð24Þ
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a damage metric to quantify the difference

between spectra. The data for the 10–40 kHz

band are shown in Figure 4. As damage is

introduced in the plate, resonant frequency shifts,

peaks splitting, and the appearance of new

resonances are noticed. As the damage becomes

more severe, these changes become more pro-

found. The most profound changes are noticed

for Group 4. For the higher frequency bands,

similar behavior was observed.

4.1 Overall-Statistics

Damage Metrics

The damage metric is a scalar quantity that

results from the comparative processing of imped-

ance spectra. The damage metric should reveal

the difference between spectra due to damage

presence. Ideally, the damage index would be a

metric, which captures only the spectral features

that are directly modified by the damage pres-

ence, while neglecting the variations due to

normal operation conditions (i.e., statistical dif-

ference within a population of specimens, and

expected changes in temperature, pressure, ambi-

ent vibrations, etc.). To date, several damage

metrics have been used to compare impedance

spectra and assess the presence of damage.

Among them, the most popular are [6]: the root

mean square deviation (RMSD), the mean abso-

lute percentage deviation (MAPD), and the

correlation coefficient deviation (CCD). The

mathematical expressions for these metrics, given

in terms of the impedance real part Re (Z), are as

follows:

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
N

ReðZiÞ �ReðZ0
i Þ

� �2
=
X
N

ReðZ0
i Þ

� �2s

ð25Þ

MAPD ¼
X
N

ReðZiÞ �ReðZ0
i Þ

� �
=ReðZ0

i Þ
�� ��, ð26Þ

CCD ¼ 1� CC,where,

CC ¼
1

	Z	Z0

X
N

ReðZiÞ �Reð �ZZÞ
� �

� ReðZ0
i Þ �Reð �ZZ0Þ

� �
, ð27Þ

where, N is the number of frequencies in the

spectrum and the superscript 0 signifies the

pristine state of the structure. The symbols �ZZ, �ZZ0
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Figure 3 Experimental and calculated spectra for pris-
tine plate specimen: (a) FRF in 0.5–40 kHz frequency
range and (b) E/M impedance in 0.5–40 kHz frequency
range.

Table 1 Theoretical and experimental results for a circular plate with a sensor installed in the center.

Frequency # 1 2 3 4 5 6 7 8

Mode F F F F F F A F
Calc. (kHz) 0.742 3.152 7.188 12.841 20.111 29.997 35.629 39.498
Exp. (kHz) 0.799 3.168 7.182 12.844 20.053 28.844 36.348 39.115
Error, �% �7.708 �0.520 0.078 �0.023 0.288 0.528 1.978 0.97

Legend: F¼ flexural mode; A¼ axial mode.
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signify mean values, while 	Z, 	Z0 signify stan-

dard deviations.

Equations (25)–(27) yield a scalar number,

which represent the relationship between the

compared spectra. Thus, we expect that the

resonant frequency shifts, the peaks splitting, and

the appearance of new resonances that appear in

the spectrum will alter the damage index and

thus, signal the presence of damage. The advan-

tage of using Equations (25)–(27) is that the

impedance spectrum does not need any prepro-

cessing, i.e., the data obtained from the measure-

ment equipment can be directly used to calculate

the damage index. In our experimental study,

we used the scalar values of RMSD, MAPD, and

CCD calculated with Equations (25)–(27) to

classify the different groups of specimens

presented in Figure 4.

The data processing results for the three

frequency bands (10–40, 10–150, 300–450 kHz)

are summarized in Table 2. It seems that the

CCD metric is more sensitive to the damage

presence than RMSD and MAPD. However,

it was also observed that for the 10–40 kHz and

10–150 kHz frequency bands, the CCD variation

with damage severity is not monotonic. This

indicates that the choice of the frequency band

may play a significant role in the classification

process: the frequency band with highest density

of peaks is recommended. Hence, we used the

frequency band 300–450 kHz for further data

analysis. Figure 5 presents the variation of the

metric CCD7 with the crack distance from the

plate center. It is apparent that as the crack is

placed further away, and its influence diminishes,

the value of the CCD7 metric also diminishes.

In fact, the CCD7 damage metric tends to linearly

decrease with the crack position, which may be

very useful in automated damage assessment.

4.2 Probabilistic Neural Networks

(PNN) for Damage Identification

Probabilistic neural networks (PNN) were

first proposed by Specht [21] as an efficient tool

for solving classification problems. In contrast

to other neural network algorithms used for

damage identification [22], PNN has statistically

derived activation function and utilizes Bayesian

decision strategy for the classification problem.

The kernel-based approach to probability density

function (PDF) approximation is used. This
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Figure 4 Dependence of the E/M impedance spectra on the location of damage.
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method, introduced by Parzen [23], permits the

construction of the PDF of any sample of data

without any a priori probabilistic hypothesis [24].

The PDF reconstruction is achieved by approxi-

mating each sample point with kernel function(s)

to obtain a smooth continuous approximation of

the probability distribution [25]. In other words,

using kernel technique, it is possible to map a

pattern space (data sample) into the feature space

(classes). However, the result of such transforma-

tion should retain essential information presented

in the data sample and be free of redundant

information, which may contaminate the feature

space. In this study, we used the resonance

frequencies as a data sample to classify spectra

according to the damage severity. The classical

multivariate Gaussian kernel was chosen for

PNN implementation. In the original Specht’s

formulation [21], this kernel was expressed as:

pAðxÞ ¼
1

n � ð2�Þd=2	d

Xn
i¼1

exp �
ðx� xAiÞ

T
ðx� xAiÞ

2	2

	 


ð28Þ

where i is a pattern number, xAi is the ith training

pattern from A category, n is total number of

training patterns, d is dimensionality of measure-

ment space, and 	 is a spread parameter.

Although the Gaussian kernel function was used

in this work, its form is generally not limited to

being Gaussian. Burrascano et al. [26] used a

PNN with different kernel types for damage

identification.

4.3 Damage Detection in Circular

Plates with Probabilistic

Neural Networks

To construct the PNN input vectors, the

spectra of Figure 4 were processed to extract

the resonance frequencies for each class. At the

beginning, a small number of frequencies was

used, namely the four dominant frequencies that

appear in the pristine plate. In this case, the PNN

consisted of four inputs, five neurons in the

pattern layer, and five neurons in the output layer.

The number of inputs corresponds to number of

resonance frequencies. The pattern layer is formed
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Figure 5 Monotonic variation of the CCD7 damage metric with the crack radial
position on a 50-mm radius plate in the 300–450 kHz band.

Table 2 Overall-statistics damage metrics for various frequency bands.

Frequency band
11–40kHz 11–150kHz 300–450 kHz

compared groups (%) 0–1 0–2 0–3 0–4 0–1 0–2 0–3 0–4 0–1 0–2 0–3 0–4

RMSD 122 116 94 108 144 161 109 118 93 96 102 107
MAPD 107 89 102 180 241 259 170 183 189 115 142 242
CCD 84 75 53 100 93 91 52 96 81 85 87 89
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according to numbers of input/target pairs. The

number of output neurons represents the cate-

gories in which the input data is supposed to be

classified. For training, we initially used one

vector from each class. Then, the other four

vectors from each class (a total of 20) were used

for validation. The PNN was able to successfully

classify the high and intermediate damage levels

(Groups 2, 3, 4). However, for weak damage

(Group 1), the PNN produces inconsistent results.

To correct this, we tried to increase the number of

training vectors in Groups 1 and 0. The incidence

of misclassification diminished, but it did not

disappear completely. Even when the maximum

number of training vectors was considered, some

misclassification between Groups 0 and 1 still

occurred.

To solve the misclassification problem at

weak damage levels, we increased the size of the

input vectors. This was achieved by considering

not only the four dominant frequencies, but also

the two secondary frequencies that appear in the

pristine spectrum. Thus, the size of the input

vector became six. Then, we choose one input

vector from each group for training. The remain-

ing four vectors in each group (a total of 20 in

the data set) were used for validation. This time,

the classification was perfect. Due to the

additional information, the PNN was able to

distinguish even the most difficult classification

cases, i.e., the weak damage class (Group 1).

Furthermore, regardless of the choice of the

training vector, all the validation data were

correctly classified into five classes.

Further in our study, we considered an

extension of the features vector size by incorpo-

rating the new resonances that appeared in the

damaged plates but were not present in the

pristine plates. This feature plays an important

role in distinguishing healthy structures from

damaged structures, especially when the damage

is incipient or located away from the sensor. To

achieve this, we expanded the features vector to

incorporate the new resonance that appeared in

the damaged plates. In order to preserve dimen-

sionality, the pristine plates vectors were zero

filled as needed. Thus, the features vector size

was expanded to eleven. Then, one vector from

each group was used for training, and the rest for

validation. The PNN was again able to correctly

classify data regardless of the choice of the

training vectors. Figure 6 presents the percent of

correct classified data versus number of features

in the input vectors of PNN. The good classifica-

tion results obtained with PNN encouraged us to

further use this method for damage classification

in aircraft structural specimens.

5 Damage Identification in Aging
Aircraft Panels

Realistic specimens representative of real-life

aerospace structures with aging-induced damage
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Figure 6 Number of features in input vector of PNN vs percent
of correctly classified data.
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(cracks and corrosion) were developed at Sandia

National Laboratories and sent to us for testing.

These specimens are aircraft panels with struc-

tural details typical of metallic aircraft structures

(rivets, splices, stiffeners, etc.) Their presence

complicates the structural dynamics and makes

the damage detection task more difficult. The

specimens were made of 1mm (0.04000) thick

2024-T3 Al-clad sheet assembled with 4.2mm

(0.16600) diameter countersunk rivets. Cracks were

simulated with Electric Discharge Machine

(EDM). In our study, we investigated crack

damage and considered two specimens: pristine

(Panel 0), and damaged (Panel 1). The objective

of the experiment was to detect a 12.7mm (0.500)

simulated crack originating from a rivet hole

(Figure 7). The panels were instrumented with

eight sensors, four on each panel (Table 3). On

each panel, two sensors were placed in the

medium field (100mm from the crack location),

and two in the near field (10mm from the crack

location). It was anticipated that sensors placed

in a similar configuration with respect to struc-

tural details (rivets, stiffeners, etc.) would give

similar E/M impedance spectra. It was also

anticipated that the presence of damage would

change the sensors readings. Referring to Figure 7,

we observe that the sensors S1, S2, S3, S5, S6,

and S7 are in pristine regions, and should give

similar readings, while S4 and S8 are in damaged

regions, and should give different readings. High

frequency E/M impedance spectrum was collected

for each sensor in the 200–550 kHz band, which

shows a high density of resonance peaks. During

the experiment, both aircraft panels were sup-

ported on foam to simulate free boundary condi-

tions. The data was collected with HP 4194A

impedance analyzer and through GPIB interface

loaded into PC for further processing.

5.1 Classification of Crack Damage in

the PWAS Near-field

The near-field PWAS were S5, S6, S7, and

S8. All were placed in similar structural config-

urations. Hence, in the absence of damage, all

should give similar impedance spectra. However,

S8 is close to the simulated crack originating

from the rivet hole. Hence, it was anticipated that

S8 should give an impedance spectrum different

from that of S5, S6, and S7. The change in the

spectrum would be due to the presence of crack

damage. Hence, we call S5, S6, and S7 ‘pristine,’

and S8 ‘damage.’ Figure 8(a) shows the super-

position of the spectra obtained from these

sensors. Examination of these spectra reveals that

sensor S8, placed next to the crack, has two

distinct features that make it different from the

other three spectra: (a) a higher density of peaks;

(b) an elevated dereverberated response in the

400–450 kHz range. On the other hand, the

spectra of sensors S5, S6, and S7 do not show

significant differences. To quantify these results,

we used two methods: (i) overall statistics

metrics of the dereverberated response (DR), and

(ii) probabilistic neural networks (PNN).

Figure 8(b) shows the DR curves extracted

from the Figure 8(a) spectra using 9th order

polynomial fit. It is clear that three DRs for

‘pristine’ scenario (S5, S6, and S7) are very

similar. In contrast, the DR for the ‘damage’

scenario, S8, is clearly different. To quantify

these DR differences, we used the overall-

statistics damage metrics defined by Equations

(25)–(27), i.e., RMSD, MAPD, and CCD. The

results of this analysis are presented in Table 4.

Two sets of results are presented: (a) Pristine

versus Pristine, and (b) Damage versus Pristine.

The former is used to quantify the statistical

differences between members of the same class,

i.e., the ‘pristine’ sensors S5, S6, and S7. The

latter is used to quantify the differences the

‘damage’ sensor S8, and any of the ‘pristine’

sensors, S5, S6, S7. Then, in each set, the mean

value was calculated. Examination of Table 4

indicates that the RMSD and MAPD values for

the ‘damage’ case are almost double that for the

‘pristine’ case. This indicates good damage detec-

tion capability. However, the CCD values

indicate an even better detection capability, since

the value for the ‘damage’ case is an order of

magnitude larger than that for the ‘pristine’

case (6.64% vs. 0.55%). This confirms that CCD

is potentially a very powerful damage detection

metric. The mean CCD, MAPD, RMSD values are

presented graphically in Figure 9. The stronger

detection capability of CCD metric is again

highlighted.
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5.2 Classification of Crack Damage

in the PWAS Medium Field

The medium field experiment was designed to

estimate the ability of PWAS to detect damage in

a wider area. In this study, the medium field is
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Figure 7 Schematics of the aging aircraft panel specimens and PWAS configuration: (a) panel 0, sensors S1,
S2, S5, S6; (b) panel 1, sensors S3, S4, S7, S8 and (c) aircraft skin panel 1 with enlarged area of PWAS
installation.

Table 3 Position of PWAS on aircraft panels.

Panel 0 Panel 1

Pristine Pristine Pristine Crack

Medium field S1 S2 S3 S4
Near field S5 S6 S7 S8

Giurgiutiu and Zagrai Damage Detection in Thin Plates and Aerospace Structures 111



(a)

0

10

20

30

200 250 300 350 400 450 500 550

Frequency, kHz

R
e 

Z
, O

hm
s

S5 S6 S7 S8

(b)

0

10

20

30

200 250 300 350 400 450 500 550

Frequency, kHz

R
e 

Z
, O

hm
s

S5
S6
S7
S8

Figure 8 (a) Superposition of PWAS near field E/M impedance spectra in
the 200–550 kHz band and (b) dereverberated response.

Table 4 Response of RMSD, MAPD, and CCD metrics to near field damage (S5, S6, S7¼ pristine, S8¼ damage).

Class
Pristine vs. Pristine (%) Damage vs. Pristine (%)

Sensors S5–S6 S5–S7 S6–S7 S5–S8 S6–S8 S7–S8

RMSD 4.09 8.74 5.71 15.64 14.10 10.10
6.18 13.28

MAPD 3.75 8.43 5.88 13.26 11.89 8.05
6.02 11.07

CCD 0.94 0.63 0.07 5.70 7.45 6.77
0.55 6.64
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called the area with a radius of about 100mm

where the detection of damage is still possible,

but the effect of damage did not manifest as

drastically on the E/M impedance spectra as in

the near field. The distance between PWAS and

crack for the medium field experiment was eight

times bigger than that for near field experiment.

The relative size of near field and medium field

of PWAS is depicted in Figure 7(b).

The medium field PWAS were S1, S2, S3,

and S4. They were located approximately 100mm

from the first rivets in the horizontal rows of

rivets. Though placed at different locations, all

four PWAS were placed in similar structural

situations. Hence, in the absence of damage, they

should give the same spectral readings. However,

S4 is not exactly in the same situation, due to the

presence of the 12.7mm simulated crack originat-

ing from the first rivet hole (Figure 7). Therefore,

the S4 spectrum is expected to be slightly

different. Since S4 is not in the crack near field,

this difference is not expected to be as large as

that observed on S8 in the near-field experiments.

To summarize, S1, S2, and S3 are in ‘pristine’

situations, while S4 is in ‘damage’ situation.

The E/M impedance spectra for S1, S2,

S3, and S4 are presented in Figure 10. It could

be noted that the spectrum of the ‘damage’

sensor S4 displays some higher amplitudes of

some of the spectral resonances in comparison

with the spectra for S1, S2, and S3. On the other

hand, no significant difference was observed

between the S1, S2, and S3 spectra, which are in

the ‘pristine’ class. However, the change due to

damage are much slighter than those observed in

the near-field experiment, and no change in the

dereverberated response could be observed. In

other words, the dereverberated responses observed

in the ‘pristine’ (S1, S2, and S3) and ‘damaged’

(S4) classes follow similar general patterns. For

this reason, the analysis of the dereverberated

response did not yield practical results.

To compare the medium-field spectra, we

used the PNN algorithm. As in the case of the

circular plates, the spectral feature considered

in the analysis were the resonance frequencies.

A feature extraction algorithm was used to

obtain the feature vectors. The algorithm was

based on a search window and amplitude thresh-

olds. The 48 extracted features are shown graphi-

cally in Figure 11. Figure 11(a) shows the S1

results corresponding to a ‘pristine’ scenario,

while Figure 11(b) shows the S4 results corre-

sponding to a ‘damage’ scenario. The resonance

peaks picked by the feature extraction algorithm

are marked with a cross in the data point. It can
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Figure 9 Overall-statistics damage metrics for comparison as calculated
on the near field spectra.
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be seen that the resonance frequencies for the

‘pristine’ and ‘damaged’ scenarios are different.

For example, the ‘pristine’ scenario features

several peaks above 500 kHz, while the ‘damage’

scenario does not show any peaks in this band-

width. As a result of this process, we were able to

construct four feature vectors, each 48 long, that

served as inputs to the PNN. Of these, three

vectors represented ‘pristine’ condition (S1, S2,

and S3) while the fourth vector represented a

‘damage’ condition (S4).

The PNN was designed to classify data into

two classes: ‘pristine’ and ‘damage.’ Since we

have three ‘pristine’ input vectors and one

‘damaged’ input vector, we decided to use one of

the three ‘pristine’ input vectors for training, and

the other three vectors (two ‘pristine’ and one

‘damage’) for validation. (No training was feasi-

ble for ‘damaged’ scenario). This created a

dichotomous situation, in which the PNN would

recognize data when it belongs to the ‘pristine’

class, and would reject it when it did not belong

to the ‘pristine’ class. Thus, the ‘damaged’ situa-

tion was recognized as ‘nonpristine’. We would

like to emphasize that this type of classification

problem often occurs in practice where response

of structure in pristine condition is usually known

and response in damaged condition is frequently

unknown. The results of the PNN study indicated

that, regardless of choice of training vector for

the ‘pristine’ class, the PNN was able to correctly

classify data into the correspondent classes. This

is indicated in Table 5, where T indicates train-

ing, and V validation.

After successfully using the PNN method to

detect damage in the medium field, we back-

tracked and used it for damage classification in

the near field. The raw spectra obtained for the

near field were processed with the features extrac-

tion algorithm using the same settings as for the

medium field experiment. The PNN design, train-

ing, and validation were similar to the medium

field. The PNN correctly classified data into

‘pristine’ and ‘damaged’ for all training vector

choices. We conclude that the classification

problem for both medium field and near field

problems on aging aircraft panels can be success-

fully solved with the PNN algorithm.

Also noticed in our investigation was the

localization property of the E/M impedance

method. As seen in Figure 7, Panel 1 had also

other simulated cracks. However, these cracks
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Figure 10 Superposition of PWAS medium field E/M impedance
spectra in the 200–550 kHz band.
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were away from the sensors, and hence outside

the sensors sensing range. For this reason, these

cracks did not noticeably influence the sensors

readings. The localization property of the E/M

impedance method is important for finding

the approximate location of the damage on

the structure. Since the E/M impedance method

is intended for structural health monitoring,
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Figure 11 E/M impedance spectra for damage detection experiment in
the PWAS medium field: (a) sensor S1 – ‘pristine’ case and (b) sensor
S4 – ‘damaged’ case.
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an approximate location of the damage would

be sufficient for a first alert. Further investiga-

tion of the exact damage location and its

severity would make the object of detailed

NDE investigation, once the vehicle has been

pulled out of service due to structural health

deficiency.

6 Summary and Conclusions

The theoretical and practical aspects of the

application of E/M impedance method to the

structural health monitoring (SHM) of thin-wall

structures using piezoelectric wafer active sensors

(PWAS) was discussed. A circular plate model,

which accounts for sensor structure interaction in

2-D geometry, was derived and validated through

experimental testing. The model considers both

the structural dynamics and the sensor dynamics.

In the structural dynamics, both the axial and the

flexural vibrations were considered. The struc-

tural dynamics was incorporated into the model

through the pointwise dynamic stiffness presented

by the structure to the PWAS. The analytical

model predicts the electro-mechanical (E/M)

impedance response, as it would be measured at

the PWAS terminals. The real part of the E/M

impedance reflects with fidelity the natural fre-

quencies of the structure on which the PWAS

is mounted. Through experimental tests, we were

able to validate both the model capability to

correctly predict the E/M impedance, and the

determination of the structural frequencies from

the E/M impedance real part. Thus, it was

verified that PWAS, in conjunction with the

E/M impedance, act as self-excited high-frequency

modal sensors that correctly sense the structural

dynamics.

Damage detection experiments were per-

formed on circular plates and on aircraft panels.

It was observed that the presence of damage

(through the thickness cracks modeled with 10mm

and 12.7mm slits) significantly modifies the E/M

impedance spectrum, which features frequency

shifts, peaks splitting, and appearance of new

harmonics. The rate of changes in the spectrum

increases with the severity of damage. To quantify

these changes and classify the spectra according

to the severity of damage, two approaches were

used: (a) overall-statistics damage metrics; and

(b) probabilistic neural networks (PNN). In the

overall-statistics damage metrics approach, root

mean square deviation (RMSD), mean absolute

percentage deviation (MAPD), and correlation

coefficient deviation (CCD) were considered.

Through the circular plates experiments, it was

found that CCD7 damage metric is a satisfactory

classifier in the high frequency band where the

resonance peaks density is high (300–450 kHz). In

the PNN approach, the spectral data was first

preprocessed with a features extraction algorithm

that generated the features vectors that serve as

input vectors to the PNN. In our investigation, we

used features consisting of the numerical values

of the resonance frequencies. A reduced-size fea-

tures vector, containing only the four dominant

resonance frequencies, permitted the PNN to

classify correctly the medium and severe damage

scenarios. However, the weak damage scenario

gave some misclassifications. This problem was

overcome by increasing the input vector size to

six resonance frequencies. Further, we studied

the adaptive resizing of the input vector such

Table 5 Damage identification in aircraft panels using probabilistic neural network classification.

Medium field Near field

Vector S1 S2 S3 S4 S5 S6 S7 S8

Test
I T V V V T V V V in

– 0 0 1 – 0 0 1 out
II V T V V V T V V in

0 – 0 1 0 – 0 1 out
III V V T V V V T V in

0 0 – 1 0 0 – 1 out
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as to accommodate the new frequencies that

appeared in the spectrum when damage was

present. Again, all the damage cases were properly

classified.

Aging aircraft panels were used to study the

ability of the E/M impedance method to capture

incipient damage represented by a crack growing

from a rivet hole. The experiments were conducted

with four PWAS placed in the near field and other

four placed in the medium field. Data was

collected in the 200–550 kHz band. The overall

statistics damage metrics could only be used for

the near-field case, when the ‘damage’ spectrum

showed a clear change in the dereverberated

response. In this case, the CDD metric, applied to

the dereverberated response, showed the biggest

change between the ‘pristine’ and the ‘damaged’

situations. The PNN approach was able to

correctly classify both near-field and medium-field

spectra. The PNN inputs consisted of 48 long

features vectors extracted from the spectrum

with a peak-selection algorithm. The PNN had

to select between four spectra, of which only one

was pristine. The procedure was to train the

PNN on one of the ‘pristine’ scenarios, and then

present the remainder three for validation. In all

cases, correct classification was obtained, and

the ‘damage’ scenario was recognized as ‘non-

pristine.’ We conclude that PNN, with the appro-

priate choice of the spread constant, shows good

potential for attacking and solving the complex

real-life classification problems associated with

high-frequency spectrum-based damage detection.

The example of SHM of aging aircraft speci-

mens shows that permanently attached unobtru-

sive and minimally invasive PWAS, used in

conjunction with E/M impedance method, can be

successfully used to assess the presence of incipi-

ent damage through E/M impedance spectra

classification. The E/M impedance method and

the wave propagation method form complemen-

tary techniques and enabling technologies for

in-situ structural health monitoring [27,28].
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