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Shear connectors are generally used to link the slab and girder together in slab-on-girder bridge 

structures. Damage of shear connectors in such structures will result in shear slippage between the 

slab and girder, which significantly reduces the load-carrying capacity of bridges. A damage detection 

approach based on transmissibility in frequency domain is proposed herein to identify the damage of 

shear connectors in slab-on-girder bridge structures with or without reference data from the 

undamaged structure. The transmissibility, which is an inherent system characteristic, indicates the 

relationship between two sets of response vectors in the frequency domain. Measured input force and 

acceleration responses from hammer tests are analyzed to obtain the frequency response functions at 

the slab and girder sensor locations by the experimental modal analysis. The transmissibility matrix 

that relates the slab response to the girder response is then derived. By comparing the transmissibility 

vectors in the undamaged and damaged states, the damage level of shear connectors can be identified. 

When the measurement data from the undamaged structure are not available, a study with only the 

measured response data in the damaged state for the condition assessment of shear connectors is also 

conducted. Numerical and experimental studies on damage detection of shear connectors linking a 

concrete slab to two steel girders are conducted to validate the accuracy and efficiency of the 

proposed approach. The results demonstrate that the proposed method can be used to identify shear 

connector damages accurately and efficiently. The proposed method is also applied to the condition 

evaluation of shear connectors in a real composite bridge with in-field testing data.  
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1. Introduction 

Structures may deteriorate with time and will continuously accumulate damage during their services 

due to aging, material deterioration, and natural hazards. The unnoticed and uncorrected anomalies 

may potentially produce further damage and finally lead to catastrophic structural failures with a huge 

loss of properties. Therefore the desire to monitor a structure for detecting local damage at an early 

stage is prevailing throughout the civil engineering community. Dynamic measurements are usually 

conducted for the condition assessment of civil structures. Generally, vibration-based damage 

detection methods can be classified into non-model based (direct correlation) and model-based 

(model updating). With non-model based methods, the measured structural dynamic characteristics 

are directly compared for the undamaged and damaged states of structures. The measured vibration 

properties of interest include frequencies [1], mode shapes [2], mode shape curvature [3], flexibility 

[4], modal strain energy [5], frequency response function [6], etc. On the other hand, the model-based 

methods require the finite element model of the structure for iterative updating to make the analytical 

and measured structural vibration properties as closely as possible. One major difficulty of these 

methods is that an accurate initial finite element model is required for the updating. In fact, many 

sources of uncertainties that were introduced into the structure during their construction and service 

stages make it not easy to obtain an accurate finite element model of the intact structure. 

 Many bridges are built as the slab-on-girder structures. The concrete slab is supported on the 

concrete or steel girders, and stirrups are embedded in the girders and cast into the slab as shear 

connectors to link the slab and girders together. The shear connections between the slab and girders 

are often subjected to serious stressing, overloading, and fatigue. Consequently, damages may 

involve a deterioration or break of shear connections in some regions of the structure, causing a 

decrease of the overall rigidity of the composite structure and a reduction of its ultimate resistance [7]. 

Damage of shear connectors in slab-on-girder bridges will result in shear slippage between the slab 

and girder, which significantly reduces the load-carrying capacity of bridges. Condition assessment 

of shear connectors is of great interest and importance to evaluate the structure integrity of this type of 

bridges.  

Xia et al. [8] proposed a local detection method by directly comparing the frequency response 

functions of simultaneously measured vibrations on the slab and girder. It was found that the local 
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method gave better identification results than the global methods, since the global modal information 

is less sensitive to the local damage of shear connectors. The proposed local detection approach was 

extended to assess the integrity of shear connectors in real slab-on-girder bridges with in-field testing 

data [9]. Recently, the wavelet based Kullback-Leibler distance [10] and wavelet packet energy [11] 

have also been proposed for damage identification of shear connectors. Liu and De Roeck [12] 

proposed a local condition assessment approach to identify the damage location of shear connectors 

by using the modal curvature and wavelet transform modulus maxima. All of the aforementioned 

methods are non-model based methods. 

 The generalized transmissibility matrix for a multi-degrees-of-freedom system in frequency 

domain was proposed by Ribeiro et al. [13]. The transmissibility matrix indicates the relationship 

between two sets of response vectors in frequency domain. The generalized transmissibility concept 

was applied to the structural dynamic response reconstruction in a structure or a substructure in 

frequency domain [14]. In Refs. [15, 16], a novel structural health monitoring methodology based on 

the measured transmissibility from the structure was proposed. The transmissibility functions have 

also been adopted for damage detection [17] using system zeros in the transfer function as the damage 

indicators. Besides, the transmissibility concept in frequency domain has been used to identify 

structural modal parameters [18, 19], to update finite element models [20], and to identify structural 

damages [21].  

 This paper proposes a non-model based damage detection approach with transmissibility in 

frequency domain to identify the damage of shear connectors in slab-on-girder bridge structures. The 

transmissibility is an inherent systematic characteristic, which represents the relationship between 

two sets of response vectors in frequency domain. Measured input force and acceleration responses 

from hammer tests are analyzed to obtain the frequency response functions at the slab and girder 

sensor locations by experimental modal analysis, and then to derive the transmissibility that relates 

the slab response to the girder response. The transmissibility vectors in the undamaged and damaged 

states of slab-on-girder bridge structures are compared to identify the damage of shear connectors. In 

case where the measurement data from the undamaged structure are not available, the measured 

response data in the damaged state only is used for the condition assessment of shear connectors. 

Numerical and experimental studies of a concrete slab on two steel girders are conducted to validate 

the correctness and effectiveness of the proposed approach. Finally, the proposed method is applied to 
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a real composite bridge. 

 

2 Damage Detection with Existing Methods 

In order to demonstrate the superiority of the proposed method, the commonly used vibration-based 

methods are also used to identify shear connector conditions. These methods are briefly reviewed 

here.  

 

2.1 Coordinate Modal Assurance Criteria 

The Coordinate Modal Assurance Criteria (COMAC) describes the correlation of mode shapes with 

respect to an individual point over all the modes. For point q , the COMAC is defined as [22] 
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where u  and d  are the structural mode shapes in the undamaged and damaged states;  
q

u

i  and 

 
q

d

i  represent the i th mode shape values at point q  from the undamaged and damaged structures 

and nm  is the number of mode shapes involved in the COMAC computation. Normally a low 

COMAC value indicates a worse correlation between two mode shapes and a possible existence of a 

damage around the point. 

 

2.2 Modal Flexibility 

The modal flexibility matrix can be estimated from the measured modal frequencies and 

mass-normalized mode shapes [23] as 
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where F  is the flexibility matrix, i  the i th modal frequency, i  the i th mode shape and nm  is 

the number of mode shapes.  

 If two sets of measurements, one from the intact structure and another from the damaged 

structure, are taken and modal parameters have been identified from the measurements, the flexibility 
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matrix for the two cases can be obtained and its change is calculated as 

di FF                                   (3) 

where 
iF  and dF  are the flexibility matrices for the intact and damaged cases, respectively. For 

each measurement location j , let 
j  be the maximum absolute value of the elements in the 

corresponding column of  , i.e. 

ij
i

j  max                                 (4) 

where 
ij  are elements of the j th column of  . To detect and locate damages in a structure, the 

quantity 
j  is used as the measure of change in flexibility for each measurement location. 

 

2.3 Relative Difference of Frequency Response Functions between Slab and Girder 

The abovementioned two methods are global detection methods, which are achieved by comparing 

the identified modal information from the undamaged and damaged structures. They need 

measurements from the undamaged structure. A local method has been proposed [9] based on the 

relative difference of the frequency response function (RDFRF) between the slab and girder from the 

existing structure only, which is used to evaluate the condition of the shear connectors. The RDFRF is 

defined as 
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where, iH  is the frequency response function at the i th point; superscript G and S denote that 

sensor points are on the girder and slab, respectively;   is the Euclidean norm and   is the 

absolute value (or magnitude of the complex numbers). A high value of RDFRF means a significant 

difference in the responses at a particular point, which indicates the existence of damage in the 

vicinity. 

 

3. Damage Detection of Shear Connectors with Transmissibility  

The damage detection of shear connectors in slab-on-girder bridge structures is conducted with the 

transmissibility in frequency domain. Two cases are studied in this paper. In the first case, the 
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measured responses from the undamaged structure are used as the reference. In the second case, it is 

assumed that no measurement data from the reference structure are available, which represents a 

more realistic situation in assessment of existing structures. The generalized transmissibility concept 

in frequency domain for a multi-degree-of-freedom (DOF) system was proposed by Ribeiro et al. 

[13]. The transmissibility concept for damage detection of shear connectors for the two cases 

mentioned above will be briefly reviewed. 

 

3.1 Frequency Response Function 

The equation of motion of a damped structure with n  DOFs can be written as 

          )()()()( tFtxKtxCtxM                          (6) 

where M , C  and K  are the nn  mass, damping and stiffness matrices of the structure,  

respectively; x , x  and x  are respectively the nodal acceleration, velocity and displacement 

vectors of the structure; and   tF  is a vector of applied forces. Rayleigh damping is assumed in the 

numerical study. 

The Fourier transform of Equation (6) gives 

      FXKCjM  2                          (7) 

Therefore, the displacement response in frequency domain is given as 

          FKCjMFHX d

12 
                  (8) 

where     12 
 KCjMHd   is the displacement frequency response function matrix. The 

frequency response function matrix represents the inherent system frequency response characteristics. 

It can be reconstructed from the experimental modal analysis, or obtained from the finite element 

analysis of the structure.  

The acceleration response in frequency domain can be obtained from Equation (7) as 

            FHFHXX da

22                   (9) 

where     da HH
2  is the acceleration frequency response function matrix. In this study, the 

acceleration frequency response function is obtained from the experimental modal analysis using the 

measured input force and output acceleration responses with the DIAMOND toolbox [24] in Matlab 
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environment by the rational fraction polynomial method [25].  

 

3.2 Transmissibility in a Structure in Frequency Domain  

Assuming that  F  is a vector of applied excitation forces on the structure in frequency domain, 

 1X  is the first set of acceleration response transformed to the frequency domain, and  2X  is 

the second set of acceleration response in the frequency domain. The following equation can be 

obtained from Equation (9) 
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where  1
aH  and  2

aH  denote the sub-matrices of the acceleration frequency response function 

matrix relating the applied forces to the first and second sets of response vectors, respectively. The 

following response reconstruction equation can be obtained as 

      12 XTX                             (11) 

where  T  is the transmissibility matrix.  

        12
aa HHT                         (12) 

 Equation (11) represents the relationship between the first and second sets of response vectors. It 

should be noted that the number of coordinates in the first set response vector should be at least equal 

to or greater than the number of applied force coordinates such that a pseudo-inverse   1
aH  can 

be obtained [26]. It is noted that the transmissibility is a vector with scalar numbers at all the 

frequency lines   in the spectrum when only one response in the first set and one response in the 

second set are available. 

 

3.3 Damage Detection with Measured Responses of Undamaged Structure  

A local condition assessment approach is proposed based on the fact that when the shear connector is 

damaged, the behavior of the slab that is not fully connected to the girder may not be exactly the same 

as that of the girder. The difference in the responses of the slab and girder then can be used to detect 

the conditions of shear links. When the measured responses from the undamaged structure are 
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available, the transmissibility from the slab response to the girder response is used to detect the 

damage of shear connectors. The reason that the local transmissibility is selected for shear connector 

condition identification is that it will change significantly as the loading transfer path from the slab to 

the girder varies due to the damage of shear connectors. Sensors are placed on top of the slab to 

measure the response of the slab, and underneath the corresponding girder location to record the 

response of the girder.  

 The damage index is defined as the relative difference of the magnitude of transmissibility 

vectors between the undamaged and damaged states 
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where udT  and dT  are the transmissibility matrices from the slab response to the girder response in 

the undamaged and damaged states, respectively. They are represented using Equation (12) as 
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where  g

audH  and  s

audH  are the acceleration frequency response functions corresponding to 

sensor locations on the girder and slab in the undamaged state, respectively;  g

adH  and  s

adH  

are the corresponding frequency response functions in the damaged state. Since there is only one 

response in each set response vector, e.g. one response in the first set and one response in the second 

set, respectively, Equation (14) can also be written as 
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It can be seen that the transmissibility vectors  udT  and  udT  are two complex vectors at all 

frequency lines. A high damage index value in Equation (13) denotes a significant difference in the 

transmissibility at a specific location and indicates the existence of damage of shear connector in the 

nearby area. The proposed damage detection method is cataloged as the non-model based method as 

the finite element model of the structure is not required in the identification.  
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3.4 Damage Detection without Measured Responses of the Undamaged Structure  

In practice usually no measurement data from the reference model is available. In this case, only the 

responses from the structure in its current state can be measured and used for damage identification. 

In our previous study [9], a damage index based on the RDFRF between the vibration signals 

measured simultaneously on bridge deck and girder was proposed. The advantage of the method is 

that it does not need any data on a reference model. The drawback of the method is that although the 

proposed damage index is based on the vibration measurement and sensitive to shear link damage, its 

sensitivity range is limited to a radius of about 1 m [9]. In other words, shear link damage can be 

reliably identified only when the measurement location is within a 1 m distance from the damaged 

location. In the present paper, a new technique and damage index based on vibration transmissibility 

are proposed. The transmissibility reflects the local change and increases the sensitivity in identifying 

the damage of shear connectors. 

To perform the damage detection with only the measured responses in the current state, a 

reference sensor is defined here to compute the transmissibility vectors from this reference sensor 

location to a slab sensor location and the corresponding girder sensor location, respectively. These 

transmissibility vectors can be expressed as 

     
     










r

ad

g

adgr

r

ad

s

adsr

HHT

HHT

/

/
                         (16) 

where  r

adH  is the acceleration frequency response function at the reference sensor location in the 

damaged state.  

 The frequency response functions  r

adH  at the reference sensor location in the first and 

second rows of Equation (16) are the same. If the damage of shear connectors is present, the 

frequency response function at the slab sensor location  s

adH  will be different from that at the 

girder  g

adH . Therefore, the transmissibility from the reference sensor to the slab sensor  srT  

should not be exactly the same as the transmissibility from the reference sensor to the girder sensor 

 grT . A damage index is then defined based on this fact for identifying the damage of shear 

connectors as  
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A high damage index value from Equation (17) indicates the significant difference between the two 

transmissibility vectors and thus the existence of damage of shear connectors nearby. 

 

3.5 Establishment of a Threshold Value for Damage Detection 

When n  damage indices are obtained at different sensor locations, the mean value and standard 

deviation of these damage indices can be computed and expressed as   and  . The one-side upper 

confidence limit for the damage index can be obtained as [27] 

n
ZUL

                                (18) 

where Z  is the value of a standard norm distribution with zero mean and unit standard deviation 

such that the cumulative probability is  %1100  . The upper confidence limit UL  is considered 

as a threshold value to indicate possible abnormalities in the damage index. The definition of this 

threshold value is based on the statistical properties of the calculated damage indices from measured 

responses. Damage index values larger than the threshold value indicate the existence of damage, and 

those smaller than the threshold value are identified as undamaged. In this regard, a new damage 

indicator  ULDI   is used in this study to identify the occurrence of damage, in which DI  is the 

damage index obtained from Equations (13) or (17). It should be noted that the measured locations 

are identified to be undamaged when the damage index DI  is less than the threshold value. To 

highlight the damage locations detected, the values of  ULDI   on undamaged locations are taken 

as zeros and positive values of  ULDI   on possibly damaged locations will be shown.  

 

4. Numerical studies 

Numerical studies on a simply-supported slab-on-girder structure are conducted to demonstrate the 

accuracy and efficiency of the proposed approaches for damage detection of shear connectors in 

composite bridges. Figure 1 shows the plan view and cross section of the structure and details of a 
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shear connector. The concrete slab is placed on two steel I-type girders, and shear connectors are used 

to link the slab and girders together. Each girder has 16 shear connectors with equal space and there 

are 32 shear connectors in total in the structure. They are denoted as SC1~SC32 in Figure 1(a). The 

cross-section of the structure is shown in Figure 1(b). To be consistent with the experimental study 

that will be described later, the shear connector is simulated as a metric bolt screwing into a metal nut, 

as shown in Figure 1(c). The shear link fixity is provided by securing the metric bolt. When the bolt is 

unscrewed from the metal nut, it represents the damage of the corresponding shear connector. 

 

4.1 Finite Element Model and Sensor Placement Configuration  

Slab and steel girders are modeled with shell elements, and shear connectors are modeled with beam 

elements [9] that link the slab and girders. The axial stiffness and shear stiffness of a shear connector 

are obtained by the formulas in an existing study [28]. The finite element model of the slab-on-girder 

structure consists of 695 nodes, 600 shell elements and 32 beam elements. Each node has six DOFs 

and the system has 4170 DOFs in total. The Young’s modulus and mass density of the slab concrete 

are MPa
41018.3   and 3/2500 mkg , respectively, and those of the steel girder are MPa

5102  

and 3/8092 mkg , respectively. The first three natural frequencies of the undamaged structure in the 

vertical direction are 35.74 Hz, 109.94 Hz and 144.76 Hz, respectively. Rayleigh damping is assumed 

and the damping ratios for the first two modes are taken as 012.0 .  

Figure 2 shows that accelerometers are placed on the slab, denoted as "SA1-SA8" and 

"SB1-SB8", and underneath the girders, denoted as "GA1-GA8" and "GB1-GB8", to measure the 

acceleration responses from impact tests. Two damage scenarios are assumed, as shown in Table 1. 

Damage of shear connectors are simulated by fully removing the specific shear links (represented by 

beam elements in the finite element model) to simulate the failure of blots. Measured responses from 

the structure in both the undamaged and damaged states are obtained. 8192 points of measured input 

and response data with a sampling rate of 1000 Hz are used to analyze the frequency response 

functions with DIAMOND toolbox. The obtained frequency response functions at slab and girder 

sensor locations are used to calculate the transmissibility.  

To simulate the effect of measurement noise, a normally distributed random noise with zero 

mean and specific standard deviation is added to the calculated dynamic response as 
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)( caloisepcaln xstdNExx                            (19) 

where 
nx  and calx  are the simulated response with noise effect and the original calculated response, 

respectively; 
pE  is the noise level and equals to 0.03 if 3% noise is included in the response; oiseN  is 

a standard normal distribution vector; and )( calxstd   denotes the standard deviation of the original 

calculated response. Two noise levels (3% and 5%) are considered in the measured acceleration 

responses and 1% noise in the hammer excitation force in this study. 

 

4.2 Modal Analysis Results 

Natural frequencies and the identified four vertical mode shapes of the structure in the undamaged 

and damaged states from responses without noise are identified and the modal frequencies are shown 

in Table 2. Modal Assurance Criterion (MAC) values of these mode shapes at the slab sensor 

locations of two damage scenarios are shown in Table 3. It can be seen that the changes of the 

identified frequencies are not prominent in damage Scenario 1. The largest one is 3.2% in the second 

frequency, indicating it could be difficult to confidently identify the damage with the changes of 

frequencies. For damage Scenario 2, the change of the first frequency is 5.48% and it is up to 13.1% 

in the fourth frequency. MAC value of the fourth mode shape is 0.36. These significant changes are 

observed because the shear connectors at the two support locations are removed and this structure has 

no diaphragms at the two ends. Therefore the damage of shear connectors at the two support locations 

induces large changes of frequencies and MAC values. Shear forces of a simply-supported structure 

at the two support locations are generally larger than those at other places, therefore it is possible and 

practical that the damages of shear links are presented near the supports. These significant changes 

indicate the damage existence could be confidently identified with global modal information. 

However, the damage location cannot be identified without performing further analysis such as model 

correlation and updating.   

 

4.3 Case A: Damage Detection with Measured Responses of Undamaged Structure 

In this case, acceleration response data and hammer impact force from the structure in both the 

undamaged and damaged states are measured to identify the modal information, including 



[Type text] 
 

frequencies, mode shapes and the frequency response functions for damage detection.  

 

4.3.1 Damage Detection with Global Modal Information 

Damage detection results with COMAC based on the identified four mode shapes are shown in 

Figure 3. It can be seen that COMAC fails to identify the damages in Scenario 1 as no obvious 

reductions in COMAC values are observed at the sensor location No. 5 in both girders. For Scenario 2, 

COMAC can identify the damages in sensor locations No. 1 and No. 8 of Girder A. However, two 

false identifications are detected at sensor locations No. 1 and No. 8 of Girder B as they are located in 

the opposite girder of the true damaged locations, and two more false identifications are observed at 

sensor location No. 4 in the middle of both girders. Figure 4 shows the damage detection results with 

changes in flexibility. It can be found that the damages in sensor location No. 5 of Scenario 1 can be 

detected, while two false identifications are observed at sensor location No. 6 in both girders as they 

are adjacent to the true damage locations. The damages simulated in Scenario 2 are identified 

accurately indicating that the detection using changes in flexibility is more sensitive than COMAC by 

comparing Figures 3 and 4. However, the detection results with global modal information from noisy 

responses can be much worse with more possible false identifications.  

 

4.3.2 Damage Detection with Transmissibility 

The transmissibility vectors in the frequency range of 25~125 Hz in the undamaged and damaged 

states are used to calculate the damage index. This frequency range covering only the first two modes 

is defined to investigate the reliability and robust of the proposed damage detection approach.   is 

set to be 0.02 in Equation (18) to obtain the upper confidence limit and then compute the damage 

index  ULDI   with consideration of this threshold value. Figure 5 shows the damage detection 

results from measurements without noise effect. The identified results of Scenario 1 for girders A and 

B are shown in Figures 5(a). It can be clearly seen that higher damage indices at the sensor location 

No. 5 close to the damaged shear connectors in both girders are observed. Figure 5(b) shows the 

detection results of Scenario 2 in girders A and B. It can be seen that damage index values at sensor 

locations No. 1 and No. 8 in girder A are around 0.2, which indicates that the damage of shear 

connectors are presented in these sensor locations. These identified locations matches well with the 
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introduced damage locations. However, it should be noted that the damage index at sensor location 

No.4 in girder A is also relatively high and around 0.05. This may lead to a false identification 

because the response at the mid span of the simply-supported model is the largest. The steel girder 

and concrete slab in the current structure model are only connected by 16 shear connectors between 

each girder and slab. Some difference in responses on slab and girder is expected, and is most 

significant when the response is relatively large at the mid span. This response difference is also 

picked up by the proposed damage index. Nonetheless the proposed method successfully identified 

all the simulated shear connector damages, which are not likely to be detected with visual inspections 

because shear connectors are buried inside the structures, and might not be able be identified 

accurately with other vibration-based parameters such as frequencies, mode shapes and flexibility as 

demonstrated above. 

 Figure 6 shows the detection results from the simulated data with smeared noise. The damage 

index values in Scenario 1 at sensor location No.5 in both girders A and B are around 0.15 in two 

noise cases, indicating the existence of damage of shear connectors in the nearby area. Damage index 

values in Scenario 2 at sensor locations No.1 and No.8 in girder A are around 0.2 in two noise cases. 

The introduced damages of shear connectors in both Scenarios 1 and 2 are identified correctly even 

the vibration signals are smeared with noise. The robustness of the proposed approach for damage 

detection of shear connectors from noisy measurements is demonstrated. However, similar to the 

results shown in Figure 5(b), a false identification at sensor location No.4 in girder A occurs in 

Scenario 2. The damage index value at this location increases with the noise level and is up to 0.1 

when the noise level is 5%.  

Detection results with COMAC and changes in flexibility shown in Figures 3 and 4 demonstrate 

that using global modal information may not correctly identify the damages of shear connectors in 

minor damage case with very small frequency and MAC changes. The proposed local dynamic 

condition assessment approach can successfully identify the shear connector damage locations in two 

damage scenarios and shows the advantages over the traditional detection method based on global 

modal information with more accurate results and less false identifications. A few false 

identifications occur at the mid span owing to relatively large displacement response at this location 

since the steel girders and concrete slab are not continuously connected together in the model 

considered in this study.  
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4.4 Case B: Damage Detection without Measured Responses of the Undamaged Structure 

Damage detection of shear connectors with only the measured data from the damaged structure is 

conducted. The detection is conducted with both the method in a previous study [9] and the proposed 

approach, and a comparison is made to demonstrate the performance and advantages of the proposed 

approach.  

 

4.4.1 Damage Detection with Relative Difference of Frequency Response Functions  

The relative difference between frequency response functions on the slab and corresponding girder 

locations is used to detect the damage of shear connectors. Figures 7 and 8 show the damage detection 

results based on the relative difference of frequency response functions without and with noise effect, 

respectively. The introduced damages are identified correctly with several false identifications on the 

close sensor locations, such as sensor location No.4 in Scenario 1 and sensor locations No.1 and No.8 

of Girder B in Scenario 2. 

 

4.4.2 Damage Detection with Transmissibility 

One more sensor location is added in the sensor placement configuration described in Section 4.3.2. It 

is placed at the central slab location on the top of girder A and defined as the reference sensor, as 

shown in Figure 2. The same damage scenarios are defined. The transmissibility vectors from the 

reference sensor response to the slab and girder responses in the damaged state respectively are 

obtained from Equation (15), and the transmissibility vectors in the frequency range of 25~125Hz are 

used to compute the damage index in Equation (17).   is set to be 0.02 to obtain the upper 

confidence limit. Figures 9(a) and 9(b) show the identified results of damage Scenarios 1 and 2 from 

the measured responses without noise, respectively. It can be clearly seen that the introduced damages 

of shear connectors are identified accurately in both damage scenarios. Several very small false 

identifications are observed and their damage index values are less than 0.05, such as sensor location 

No.4 in girder A in Scenario 1 and sensor location No.8 in girder B in Scenario 2. They are close to 

the true damage locations and wrongly identified due to the smearing effect in the damage detection. 

Figure 10 shows the damage detection results from simulated measured responses with noise. The 

identified results demonstrated that the locations of damages in both scenarios are detected accurately. 
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The damage index values in Scenario 1 at sensor locations No.5 in both girders are around 0.15 in two 

noise cases. The identified damage indices in Scenario 2 at sensor locations No.1 and No.8 in girder A 

are around 0.3. Several false identifications at sensor location No.4 in girder A in Scenario 1 and No.8 

in girder B in Scenario 2 are observed and their damage index values increase up to 0.05 with 5% 

noise included in the responses.   

 

5. Experimental Validation 

5.1 Experimental Setup 

Experimental studies are conducted to validate the proposed damage detection approach. A 

slab-on-girder structure fabricated in the laboratory provided the measured acceleration responses 

with measurement and environmental noises for the damage detection. The performance of the 

proposed approach for damage identification of shear connectors is investigated. 

 A structural model with a concrete slab supported on two steel girders was designed and 

constructed. Sixteen shear connectors were equally mounted in each girder linking the slab and steel 

girder together. The bridge was located on two steel frames which were fixed on the strong ground as 

shown in Figure 11. The design of shear connectors considers the ability not only to simulate failure 

of specific shear links, but also to reset-up them to the undamaged state. Therefore, a metric bolt 

screwing into a metric nut connecting the slab and girder was simulated as the shear connectors. The 

metric nuts were welded onto the reinforcement bar in the slab before pouring. Design and setup of 

shear connectors can be seen in Figure 12. If all the bolts are screwed into the nuts, the structural 

condition corresponds to the undamaged state. The damage of shear connectors is introduced into the 

structure by fully removing some of the bolts to simulate the failure of blots. The dimensions of the 

laboratory model are the same as those of the model in the numerical study. It should be noted that 

since the proposed damage detection approach for shear connectors is non-model based, the finite 

element model of the structure is not required. Therefore the dimensions and material properties of 

the slab, girder and shear connectors are not required for identification.  

Nine Kistler 8330A3 accelerometers were used in the laboratory dynamic tests to collect the 

acceleration responses of the structure. A sixteen-channel conditioner and data acquisition system 

was employed to record the signals. An instrumented 5820A sledge hammer with a rubber tip was 
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used to generate the impact excitation. Figure 13 shows the numbering of shear connectors and sensor 

locations defined in the testing model. One sensor is placed on the reference location and other eight 

sensors were repeatedly placed on the slab or underneath the girders to measure the responses at 

sensor locations SA1~SA8, SB1~SB8, GA1~GA8 and GB1~GB8. Two damage scenarios are listed 

in Table 4. Excitation with hammer impact was applied at the left quarter span of the slab as shown in 

Figure 13. The measuring sampling frequency was set as 2000Hz. DIAMOND data analyzing 

software was employed to conduct the experimental modal analysis and obtain the frequency 

response function at each sensor location. 

 

5.2 Identified Frequencies and Mode Shapes  

The first three identified natural frequencies of the structure in the undamaged and damaged states are 

listed in Table 5. Figure 14 shows the corresponding identified mode shapes of the undamaged 

structure. The identified mode shapes of the damaged structure are similar and not shown in this 

paper due to the page limit. MAC values of three mode shapes at the slab sensor locations of two 

damage states are shown in Table 6. It can be seen from Table 5 that the minor changes of the first 

three frequencies are observed in damage Scenario 1. The largest one is 0.82% at the third frequency, 

and its corresponding MAC value is 0.923. Therefore it could be difficult to identify the damage with 

the changes of frequencies and mode shapes. For the damage Scenario 2, the largest change of natural 

frequency is 17.08% at the third mode, and its MAC value is 0.449. This observation is consistent 

with those in the modal analysis of numerical studies with same explanations.   

 

5.3 Case A: Damage Detection with Measured Responses of Undamaged Structure  

5.3.1 Damage Detection with Global Modal Information 

Figure 15 shows that COMAC fails to identify the damages in Scenarios 1 and 2 indicating that 

COMAC is not a good indicator to detect the local damage of shear connectors because the identified 

frequency and mode shapes would be polluted by the noise effect in lab testing and not easy to locate 

the local change of shear link conditions. Figure 16 shows the damage detection results with changes 

in flexibility. It can be found that the damages in Scenario 1 are not detected correctly, while damages 

in Scenario 2 are identified accurately indicating that the detection using change in flexibility is better 

than COMAC but not applicable for the minor damage case with smaller modal information changes. 
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5.3.2 Damage Detection with Transmissibility 

 The same 16384 recorded data points were used to perform the signal analysis to obtain the 

frequency response function. Hanning window was used to reduce the leakage in the fast Fourier 

transform. Transmissibility vectors in the undamaged and damaged states were calculated from 

Equation (15). Figure 17 shows the Fourier spectrum of the measured response at sensor location SB5 

from damage Scenario 1. It is shown that the magnitude of Fourier spectrum after 400Hz is very small. 

Therefore the transmissibility matrices in the frequency range 15Hz ~ 400Hz in the undamaged and 

damaged states are used to compute the damage index and identify the damage location of shear 

connectors. Since more uncertainties may exist in the experimental testing,   is set as 0.05 such that 

the cumulative probability of the upper confidence limit is 95%.  

 Figures 18(a) and 18(b) show the identified results of Scenarios 1 and 2, respectively. It can be 

found from Figure 18(a) that two damage index values at the sensor location No.4 in two girders are 

observed indicating that the damage of shear connectors presented in this area in Scenario 1. This 

observation illustrates that the introduced damage of SC7, SC8, SC23 and SC24 can be identified 

correctly. It should be noticed that the damage index at the sensor location No.4 in girder B is around 

0.15, while it is very small at sensor location No.4 in girder A although the damage severity at the two 

locations is the same. This may be because the residual friction forces between the concrete and the 

steel girder in these two locations are not exactly the same. A larger residual friction force may exist 

in sensor location No.4 of girder A, making the difference between the responses on the slab and 

underneath the girder not significant. This observation indicates that it is difficult to use damage 

index value to quantify the damage. This limitation is the same as other non-model based methods, 

i.e., they can locate the damage but very difficult to quantify the damage.  Damage detection results 

for Scenario 2 in girders A and B are shown in Figure 18(b). It can be found that these two damage 

locations are identified accurately. The damage index at sensor location SA1 is around 0.6, while its 

value at SA8 is around 0.05. This is similar to the observations of Scenario 1 with the same possible 

explanation.  
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5.4 Case B: Damage Detection without Measured Responses of the Undamaged Structure 

5.4.1 Damage Detection with Relative Difference of Frequency Response Functions  

Figure 19 shows the damage detection results with the relative difference of frequency response 

functions between slab and girder. Measured acceleration and hammer impact force data are used to 

extract the frequency response functions in the damaged state for identification. The damages in both 

scenarios are identified, while with several false identifications, for example, sensor locations No.3 

and No.8 of Girder B in Scenario 1, sensor location No.5 of Girder B in Scenario 2.  

 

5.4.2 Damage Detection with Transmissibility 

When only the measured responses from the damaged structures are available, the transmissibility 

vectors from a reference sensor response to a slab response and a girder response respectively can be 

computed and used to derive the damage index with Equation (16). A reference sensor location is 

defined as shown in Figure 13 in this study. Figure 20 shows the magnitude of the transmissibility 

from reference sensor response to slab response at sensor location SA1 in damage Scenario 1. It can 

be seen that this transmissibility covers all the frequency range with same order of magnitudes. 

Therefore, transmissibility matrices in the frequency range of 15Hz~1000Hz are used to compute the 

damage index. Figures 21(a) and 21(b) show the damage detection results from the measured 

responses in the damaged states for Scenarios 1 and 2, respectively. It can be seen that the introduced 

damages of shear connectors in both damage scenarios are identified accurately. A small false 

identification is observed at sensor location No.7 in girder B in Scenario 1. The identified results in 

experimental studies demonstrate that the locations of damages in both scenarios are detected 

accurately with only the measured responses from the damaged structure. 

Experimental studies demonstrate that the proposed damage detection approach with 

transmissibility in frequency domain can identify the damage locations of shear connectors 

accurately and efficiently with and without reference data from the undamaged structure. Comparing 

the results shown in Figures 19 and 21 from the method in Ref. [9] and the proposed approach, better 

detection results are given with less false identifications. 
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6. In-field Testing 

The proposed damage detection method is further applied to evaluate the shear link conditions of a 

real bridge. Bridge No.852 is located on North West Coastal Highway over the Balla Balla River in 

the Shire of Roebourne, Western Australia. It is a pre-streesed concrete bridge constructed in 1975, 

which consists of three spans with an overall length of 53.95m and width of 9.398m. The central span 

of the bridge is 18.288m and the external spans are 17.831m. The deck of the bridge is the cast-in-situ 

reinforced concrete slabs supported by seven precast pre-stressed I-type girders, as shown in Figure 

22. The shear connectors are used to link the slab and girders together. They are 12mm in diameter 

and enter the RC slab for a 100mm length before being bent for anchorage. Spacing of the connectors 

varies from 76mm in the ends to 381mm in the center of the girders. More details about the design of 

the bridge are referred to a technical report [29]. 

 Field dynamic testing on this bridge was carried out in 2005 [29]. These data are analyzed in this 

study to identify shear link conditions with only the measurements from the existing structure. Figure 

23 shows the sensor placement on the slab and girders. The bridge has three spans each with seven 

girders, and so accelerometers were placed on the slab locations corresponding to the seven girders, 

allowing comparison with the underneath girder measurements. There are nineteen sensor locations 

on the slab along the longitudinal direction in each row. Site condition and in-field testing safety 

concerns make the measurement points underneath the girders limited to the sensor locations shown 

in Figure 23(b). The girders are numbered as A, B, C, D, E, F and G, respectively. An instrumented 

DYTRAN 5803A sledge hammer was used in the impact tests, and eight Kistler accelerometers were 

repeatedly employed to measure the acceleration responses on slab and girders. The sampling rate 

was set to 100Hz, and 1024 data points were recorded in each impact.  

 Frequency response functions were extracted from the measured acceleration response data and 

hammer impact force with DIAMOND toolbox. Frequency range from 1 ~ 21Hz is used to include 

the first ten modes [29]. Five reference sensors, e.g. A10, B10, C10, D10, E10 and F10 are defined to 

average the damage index. Figure 24 shows the identification results based on the differences of 

frequency response functions and transmissibility vectors. Damages of shear connectors from both 

methods are mostly identified at the support locations, especially near the abutments 1 and 2 as the 

shear forces at the supports are generally larger than those at other locations. The condition 
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assessment results are reasonable since the shear connections at the support locations are more easily 

and likely to be damaged. 

 

7. Conclusions  

This paper presents a dynamic condition assessment approach with transmissibility in frequency 

domain to identify the damage of shear connectors in slab-on-girder bridge structures. The method 

can be used to detect shear connector damages with or without reference measurement data of the 

undamaged structure. Numerical and experimental studies are conducted to demonstrate the accuracy 

and efficiency of the proposed approaches. Both numerical and experimental results demonstrated 

that the proposed approaches can reliably identify shear connector damages and outperforms the 

traditional global modal-based methods to detect shear link damages. The proposed approach gives 

detection results with less false identifications. The proposed method is also used to detect shear link 

conditions in a real bridge. Both the proposed method and local method based on the difference in 

frequency response functions predict the similar shear connector conditions of the bridge, i.e., 

possible shear connector damages exist near the supports of the three-span continuous bridge.    
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Table 1 - Damage scenarios in numerical study 

Damage scenario Shear connectors removed 

Scenario 1 SC9, SC10, SC25 and SC26 

Scenario 2 SC1, SC2, SC15 and SC16 

 

 

Table 2 - Frequencies of the undamaged and damaged structures in numerical study 

Mode Undamaged (Hz) 
Damage 

Scenario 1 (Hz) 
Change (%) 

Damage 

Scenario 2 (Hz) 
Change (%) 

1 35.74 35.55 0.53 33.78 5.48 

2 109.94 106.42 3.2 101.27 7.89 

3 144.76 143.13 1.13 142.77 1.37 

4 233.5 228.9 1.97 202.91 13.1 

 

 

Table 3 - MAC values of the damaged structure in numerical study 

Mode Damage Scenario 1 Damage Scenario 2 

1 1.000 0.96 

2 0.999 0.63 

3 0.992 0.59 

4 0.940 0.36 
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Table 4 - Damage scenarios in experimental study 

Damage scenario Shear connectors removed 

Scenario 1 SC7, SC8, SC23 and SC24 

Scenario 2 SC1, SC2, SC15 and SC16 

 

 

Table 5 - Identified frequencies of the undamaged and damaged structures in experimental study 

Mode Undamaged (Hz) 
Damage 

Scenario 1 (Hz) 
Error (%) 

Damage 

Scenario 2 (Hz) 
Error (%) 

1 41.27 41.12 0.36 38.05 7.80 

2 116.61 116.52 0.08 100.35 13.94 

3 265.54 263.37 0.82 220.19 17.08 

 

 

Table 6 - MAC values of the damaged structure in experimental study 

Mode Damage Scenario 1 Damage Scenario 2 

1 1.000 0.984 

2 0.999 0.898 

3 0.923 0.449 
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Figure 1 - Dimensions and shear connector details of the slab-on-girder structure (unit: mm) 
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Figure 2 - Sensor locations on the slab and underneath the girders 
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Figure 3 - Damage detection results with COMAC 

 

 



[Type text] 
 

 

 

 

1
2

1
2

3
4

5
6

7
8

0

1

2

3

4

5

6
x 10

-4

Girders A - B

(a) Damage Scenario 1

Sensor location

D
am

ag
e 

in
de

x

1
2

1
2

3
4

5
6

7
8

0

0.05

0.1

0.15

0.2

0.25

Girders A - B

(b) Damage Scenario 2

Sensor location

D
am

ag
e 

in
de

x

True damage locations

 

Figure 4 - Damage detection results with changes in flexibility 
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Figure 5 - Damage detection results with measured data of undamaged structure (without noise) 
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Figure 6 - Damage detection results with measured data of undamaged structure (with noise)  
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Figure 7 - Damage detection results with RDFRF (without noise)  
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Figure 8 - Damage detection results with RDFRF (with noise) 
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Figure 9 - Damage detection results without noise and data of undamaged structure  
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(2) 5% noise 
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Figure 10 - Damage detection results with noise and without data of undamaged structure 

 

 

 

 



[Type text] 
 

 

 

Figure 11 - Experimental test setup of the slab-on-girder structure 
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(a) Metric bolt and nut 

 

(b) Bolt screwed into the nut  

 

(c) Plan view of shear connectors 

 

 

 

 

(d) Shear connector in the structure 

Figure 12 - Design of shear connectors 
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Figure 13- Experimental sensor placement 
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(1) First mode 
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(2) Second mode 
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(3) Third mode 
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Figure 14 - Identified first three mode shapes of the undamaged structure 
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Figure 15 - Damage detection results with COMAC 
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Figure 16 - Damage detection with changes in flexibility 
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Figure 17 - Fourier spectrum of the measured response at SB5 in the damaged state 
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Figure 18 - Damage detection results with measured data of undamaged structure 
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Figure 19 - Damage detection results with RDFRF 
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Figure 20 - Transmissibility at sensor location SA1 of damage Scenario 1 
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Figure 21 - Damage detection results without measured data of undamaged structure 
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Figure 22 - General view of Bridge No. 852 
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(a) Slab 

 

(b) Girders 

 

Figure 23 - Sensor placement on slab and girders 
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Figure 24 - Damage detection results for Bridge No.852 (a) with RDFRF, left span; (b) with RDFRF, 

right span; (c) with transmissibility, left span; (d) with transmissibility, right span 


