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Abstract

We investigate the capabilities of transfer learning in the area of structural health monitoring. In particular, we are

interested in damage detection for concrete structures. Typical image datasets for such problems are relatively small,

calling for the transfer of learned representation from a related large-scale dataset. Past efforts of damage detection using

images have mainly considered cross-domain transfer learning approaches using pre-trained IMAGENET models that are

subsequently fine-tuned for the target task. However, there are rising concerns about the generalizability of IMAGENET

representations for specific target domains, such as for visual inspection and medical imaging. We, therefore, evaluate a

combination of in-domain and cross-domain transfer learning strategies for damage detection in bridges. We perform

comprehensive comparisons to study the impact of cross-domain and in-domain transfer, with various initialization

strategies, using six publicly available visual inspection datasets. The pre-trained models are also evaluated for their ability

to cope with the extremely low-data regime. We show that the combination of cross-domain and in-domain transfer

persistently shows superior performance specially with tiny datasets. Likewise, we also provide visual explanations of

predictive models to enable algorithmic transparency and provide insights to experts about the intrinsic decision logic of

typically black-box deep models.

Keywords Damage detection � Transfer learning � Pre-trained models � In-domain learning � Cross-domain learning �

Visual inspection

1 Introduction

Civil structures such as bridges are reaching their end of

service life due to aging, increased usage, and adverse

climate impact [14]. Asset owners have to employ human

experts to conduct periodic visual inspections to ensure

structural safety and usability. In particular, so-called

condition scorecards are used to rate the condition of

bridges, whereas damage details are captured in images for

further analysis [25]. Given that countries have thousands

of bridges, for instance, 60,000 bridges across the USA and

39,000 bridges in Germany, such expert-driven visual

inspections are very costly and labor-intensive.

Toward a more automated process, unmanned aerial

vehicles (UAVs) equipped with cameras, thermal infrared

sensors, GPS, as well as light detection and ranging

(LiDAR) sensors have proved useful to characterize cracks,

spalls, concrete degradation, and corrosion [13, 36, 44].

Although UAVs are cost-effective and safe for harder-to-

reach areas, they capture both damaged and structurally

sound parts of bridges. As a consequence, an enormous

amount of high-dimensional sensory data is created [9].

Manual damage identification from such an enormous data

source demands tremendous efforts and is prone to dis-

crepancies due to human errors, fatigue, and poor judg-

ments of bridge inspectors [2, 46]. For image data, the

involved subjectivity in a visual inspection process results

in inaccurate outcomes and poses serious concerns for

public safety [40], as shown by the collapsing incidents

like the Malahide viaduct [50] or the I-35 Minneapolis

bridge [63].
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The large unlabeled datasets from visual inspections call

for state-of-the-art machine learning methods. In particular,

we focus on damage detection of concrete surfaces. The

field of computer vision has witnessed unprecedented

developments since the advent of deep learning and the

availability of large-scale annotated datasets, such as IMA-

GENET. Deep neural networks, specifically convolutional

neural networks (CNNs), have shown strong performance

in tasks such as object detection [20, 21, 53], image seg-

mentation [29], image synthesis [47], and reconstruc-

tion [22], with promising applications in multiple domains.

While the use of deep learning techniques for structural

health monitoring of civil structures is gaining

momentum [18, 70],

to the best of our knowledge only six bridge inspection

datasets [26, 28, 37, 11, 42, 67] are publicly available that

can be utilized to develop automated damage detection

models. These datasets are relatively small scale because of

the tedious process of image acquisition and data labeling

by experts.

Due to the limitation of small-scale datasets, recent

studies for damage detection of bridges, tunnels, and roads

have adopted transfer learning as the de facto standard for

crack detection [7, 31, 52], pothole identification [39, 68],

and related defect classification tasks [67]. These studies

exclusively rely on cross-domain transfer learning, where

IMAGENET is used as the source dataset (or upstream task),

which is then fine-tuned for specific downstream tasks.

However, there is skepticism about employing transfer

learning for disparate target domains [19, 23, 27, 32]. For

instance, [24] showed that reusing of IMAGENET features

offers little benefit to performance when evaluated with

medical imaging. Similar to medical images, bridge

inspection datasets are fundamentally different from

the IMAGENET dataset in terms of the number of classes, the

quality of images, the size of the areas of interest, and the

task specification.

The problem of choosing the relevant source dataset to

learn general-purpose representations for the visual

inspection target dataset is overlooked in the literature.

Recent studies on damage detection adopt IMAGENET

dataset as a default choice of source dataset, which falls

under the realm of cross-domain transfer learning. This

work seeks to eliminate this literature gap and performs a

fine-grained investigation to study the potential advantages

and downsides of cross-domain transfer learning for

structural damage detection. We also learn and transfer in-

domain representation and its combination with cross-do-

main transfer strategies for automated damage detection

tasks. Specifically, in-domain transfer learning refers to a

strategy in which the source and target dataset belong to a

similar domain. Furthermore, we evaluate the transfer-

ability of learned representations under a low-data regime.

Besides transfer learning strategies, we also compared

three state-of-the-art pre-trained models (InceptionV3,

VGG16, and ResNet50) to small vanilla CNN models for

the six publicly available bridge inspection datasets. The

models are compared and evaluated using different ini-

tialization techniques, namely random, in-domain, and

cross-domain initialization.

This work offers following contributions and findings:

• We conduct rigorous evaluations of transfer strategies

with different initialization settings and network archi-

tectures for damage detection using the six publicly

available visual inspection datasets. We also establish

benchmarks for publicly available damage detection

datasets.

• We develop multiple CNN models using cross-domain

and in-domain transfer learning strategies for damage

detection (classification) tasks.

• We find that the cross-domain transfer of pre-trained

models proves helpful only when they are fine-tuned on

the target task.

• We show that the smaller and simpler CNN models

provide comparable performance to standard architec-

tures when used as a fixed-feature extractor.

• We note that in-domain representations provide perfor-

mance improvements compared to the random

initialization.

• We show that the in-domain representations together

with IMAGENET show performance gains compared to an

independent transfer setting, particularly when the

target dataset has fewer training samples.

• We provide visual explanations of multilayered deep

neural networks to reveal their learning mechanisms.

Such an interpretability analysis enables algorithmic

transparency, validates the robustness of trained mod-

els, and gains practitioners’ trust in typically black-box

models.

The paper is structured as follows: Section 2 first intro-

duces standard IMAGENET models, and then concerns rela-

ted work about damage detection using deep transfer

learning and feature transfer using pre-trained models.

Section 3 introduces the publicly available bridge inspec-

tion datasets. Section 4 explains the methodology of our

approach, along with the experimental setup. Section 5

presents the results of the experiments and provides com-

parisons to the baselines. An interpretability analysis of the

developed models is given in Section 6. Finally, the con-

clusions of this study are presented in Section 7.
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2 Background and related work

This section first provides a brief introduction to pre-

trained models and their architectures for transfer learning.

Next, we introduce related studies about automatic damage

detection using deep (transfer) learning. Then, we highlight

studies about possible limitations of generic feature trans-

fer using pre-trained models. Additionally, for complete-

ness, we highlight related topics from deep learning

domains that are often associated with transfer learning.

2.1 Pre-trained models and standard neural
architectures

Deep convolutional neural networks (CNNs) are a special

type of multilayered neural network that have contributed

to spectacular advancements in the computer vision field.

Even though CNNs have been used for object detection

tasks for several years [35], their widespread recognition

and adoption are relatively recent, when the AlexNet

model achieved state-of-the-art performance in the IMA-

GENET classification challenge [33]. Owing to the AlexNet

success, the practice of training a CNN on IMAGENET (i.e.,

pre-training) and then adapting (e.g., fine-tuning) it to a

target task has become a norm for several computer vision

problems. Since pre-training on a large dataset is compu-

tationally expensive and time-consuming, several pre-

trained models have been made publicly available by

academics and industry.

In this study, we evaluate three state-of-the-art deep

CNN models, namely VGG16 [55], Inception-v3 [58], and

ResNet50 [23], which are lately being employed for

damage detection tasks in structural health monitoring. An

in-depth explanation of CNNs is beyond the scope of this

study. The interested reader may refer to [65]. The section

provides an architectural overview of the selected pre-

trained models.

VGG16 invented by Visual Geometry Group of

Oxford University [55] won the first place

for IMAGENET object localization and the

second place in the image classification chal-

lenge in 2014. Figure 1 provides a schematic

representation of the VGG16 network.

VGG16 improves over the AlexNet model

by introducing a uniform structure of five

convolution blocks having a fixed filter size of

3x3 with the stride of one. With its 13

convolutional layers and three fully connected

layers, VGG16 demonstrated that the deeper

models are desirable for improved classifica-

tion accuracy. However, the VGG’s simple

architecture comes at a high computational

cost, with 138 million parameters (3x more

than AlexNet) and prolonged training time.

Inception-v3 improves the GoogleLeNet model that won

the 2014’s IMAGENET classification challenge.

In addition to classification accuracy, Incep-

tion-v3 focuses on reducing the computational

expense, improving the training efficiency,

and optimizing the network for easier adap-

tion to different use cases [59]. It is one of the

first non-sequential models that emphasize a

wider and deeper network by employing an

inception module, as illustrated in Fig. 2.

Instead of applying a single convolution with

a fixed-size kernel, multiple convolutions with

varying kernels (e.g., factorized 7x7) are

applied to an input layer, which are then

concatenated for another inception module.

Additionally, to avoid the gradient vanishing

problem, two auxiliary classifiers with batch

normalization are included. Inception-v3 is 48

layers deep with 11 concatenated inception

modules.

ResNet50 was the winner of famous 2015’s IMAGENET

classification challenge. Residual network

with several variants (such as ResNet10 and

ResNet52) mainly dealt with the vanishing

gradient problem. The residual network intro-

duced an intuitive idea of skip connections

with identity function mappings, as shown in

Fig. 3. Specifically, the residual block learns

the residual mappings, which captures the

difference between actual input and approxi-

mate output rather than fitting the desired

underlying mappings [24]. By approximating

the identity function, residual learning does

2x blocks 3x blocks

Input Convolution MaxPool Fully connected Softmax

Fig. 1 Schematic representation of VGG16

4x blocks3x blocks

2x blocks

Auxiliary classifier
Input Convolution MaxPool AvgPool

Concat Dropout Fully connected

Softmax

Fig. 2 Schematic representation of Inception-v3
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not introduce additional parameters and keeps

the computational complexity similar to deep

vanilla networks. ResNet50 consists of four

stages, each containing two to six residual

blocks with a kernel size of 1x1 and 3x3. In

progressing from one stage to another, the

channel width is doubled while the input size

is reduced to half.

Various terminologies are interchangeably used to refer

to the pre-trained models. The CNN architectures are

referred to as pre-trained models or IMAGENET models,

when pre-trained using IMAGENET weights. These net-

works without learned representations are referred as s-

tandard architectures due to their wide usage in multiple

application domains.

2.2 Damage detection using deep (transfer)
learning

Visual inspection datasets are small scale and are expen-

sive to curate. Therefore, several studies adopt standard

architectures—such as VGG16, Inception-v3, LeNet,

YOLO, or ResNet50 often pre-trained with IMAGENET

representations—for the detection of cracks

[31, 56, 61, 75], potholes [39], spalls [68], and multiple

other damages including corrosion, seapage, and exposed

bars [17, 28, 72, 78]. In Table 1, we provide a non-ex-

haustive list of recent literature studies that have used

transfer learning for concrete damage detection tasks. It is

notable that except for one, all studies have utilized IMA-

GENET as a source dataset. Additionally, pre-trained CNN

models are also being utilized for vibration-based damage

localization [1, 4, 69], condition assessment [30], and fault

diagnosis [66].

Specific (visual) detection tasks in the damage recog-

nition setting are strongly influenced by various operating

conditions, such as surface reflectance, roughness, concrete

materials, coatings, and weather phenomena for different

components of a bridge [42]. Given the unique character-

istics of visual inspection dataset, the problem of choosing

an appropriate source dataset for damage detection

remained an open question. This study seeks to address this

by conducting a thorough investigation to evaluate the

transferability of cross-domain representations (i.e., fro-

m IMAGENET) for damage detection tasks.

2x blocks 5x blocks3x blocks 2x blocks

Input Convolution MaxPool Fully connected Softmax Residual

Fig. 3 Schematic representation of ResNet50

Table 1 List of recent studies that utilize transfer learning for concrete damage detection

Proposed method Year Task Pre-trained model Source dataset

CovNet Model [56] 2017 Concrete surface cracks VGG16 IMAGENET

Custom CNN [3] 2017 Corrosion detection VGG16 IMAGENET

CNN & edge detection [10] 2018 Crack detection in concrete AlexNet IMAGENET

Custom CNN [11] 2018 Crack detection in concrete AlexNet IMAGENET

Custom CNN [39] 2018 Road damage detection MobiNet IMAGENET

TERNAUSNET [5] 2019 Crack segmentation VGG16 IMAGENET

Custom CNN [17] 2019 Structural damage detection Inception-v3 IMAGENET

Custom CNN [78] 2019 Bridge defects detection Inception-v3 IMAGENET

Multi-classifier [28] 2019 Concrete bridge defects Inception-v3 IMAGENET

Custom CNN [12] 2019 Crack detection in concrete VGG16 IMAGENET

Semantic seg. network [75] 2019 Crack detection in concrete VGG16 IMAGENET

Custom CNN [64] 2020 Concrete surface roughness ResNet IMAGENET

Extension of YOLOv3 [73] 2020 Bridge damage detection YOLOv3 COCO

Improved EfficientNetB0 [57] 2020 Crack detection in concrete MobileNetV2 IMAGENET

Modifed YOLO [61] 2021 Crack detection in concrete YOLO IMAGENET

Shallow CNN [31] 2021 Surface crack detection LeNet-5 IMAGENET

Custom CNN [52] 2021 Road surface damage detection ResNet34 IMAGENET

CNN for pixel level [7] 2021 Crack classification & seg. Multiple models IMAGENET
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2.3 Feature transfer using pre-trained models

Transfer learning via IMAGENET representations is a widely

adopted standard for learning from small-scale datasets

across several domains. The availability of a multitude of

pre-trained models such as MoBiNet, YOLO, ResNet, or

GoogLeNet has further encouraged the application of

transfer learning beyond the standard datasets consisting of

day-to-day objects. The learned representations are typi-

cally utilized either via a fixed-feature extraction or fine-

tuning methods depending on the target tasks.

Due to the widespread adoption of transfer learning,

several fine-grained studies examine the transferability of

features concerning the number of layers, the order of fine-

tuning [38, 60, 71, 74], the generalizability of the archi-

tecture or learned weights [32, 48], and the characteristics

of data used for pre-training [27]. Besides the popularity of

transfer learning and its perceived usefulness, it has been

argued that feature transfer does not necessarily deliver

performance improvements compared to learning from

scratch [23, 49]. Moreover, learned representations from

pre-trained models may be less generic than often sug-

gested [32], and the choice of data for pre-training is not as

critical for the transfer performance [27].

2.4 Related topic

In the context of in-domain and cross-domain strategies,

domain adaption is often misinterpreted as a general

transfer learning method. In fact, domain adaption is a sub-

category of transfer learning in which both target and

source datasets are required during training, and the target

dataset is weakly labeled or unlabeled [45]. However, in a

standard transfer learning setting, the target dataset is

supervised (labeled), and only pre-trained models can be

used for learning without explicit access to the source

dataset. Further details about transfer learning and pro-

posed strategies are provided in the following sections.

3 Datasets

Due to the ubiquitous nature of images, several traditional

application domains such as retail, automotive, or agri-

culture have benefited from massive labeled datasets to

develop deep neural networks to solve various tasks. These

natural datasets are relatively easy to label and do not

require specific domain expertise. On the other hand,

bridge inspection datasets are very scarce due to the vital

domain knowledge required to identify and label damages.

Moreover, the differences in human expertise for annota-

tion make these datasets susceptible to noisy labels. To the

best of our knowledge, only six visual inspection datasets

are publicly available. Datasets having less than 100 ima-

ges are too small to train and evaluate CNNs and are

therefore not considered here. Table 2 provides a brief

overview of the datasets. A few typical example images are

shown in Fig. 4.

Four of the datasets mainly focus on crack detection

tasks. The other two datasets are for damage classification

in a multi-label setting in which multiple damages coexist

on a single input image. We briefly introduce the key

characteristics of each dataset.

CDS [26]. The Cambridge dataset is a small bridge

inspection dataset that seeks to detect concrete defects. The

binary classes are divided into healthy and unhealthy of

691 and 337 images, respectively. Besides different lumi-

nous conditions on all images, the unhealthy class consists

Table 2 Overview of (bridge) visual inspection datasets

Dataset Instances Classes Problem

CDS [26] 1,027 2 Binary

SDNETv1 [11] 13,620 2 Binary

BCD [67] 5,390 2 Binary

ICCD [37] 60,010 2 Binary

MCDS [28] 2,411 10 Multi-label

CODEBRIM [42] 8,304 6 Multi-label

(a)

(c)

(e) (f)

(d)

(b)

Fig. 4 Examples from the bridge inspection datasets. From left to

right: (a) complex lighting with no crack, Crack with efflorescence,

and exposed bars. (b) Intact concrete, minor crack, (c) Intact concrete,

large crack on deck, (d) crack with rust stains, crack with minor

scaling, (e) concrete scaling, corrosion with exposed bars, (f) spalla-

tion and efflorescence, rust stains
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of concrete damage such as cracking, graffiti, vegetation,

and blistering.

SDNET [11]. The dataset has 230 images of reinforced

concrete decks, walls, and pavements sub-segmented into

56000 images. However, we found misclassified label

categories in the datasets. To utilize the data, we performed

a manual cleaning of deck images only. The new dataset is

referred as SDNETv1, which is highly imbalanced having

2, 025 crack and 11, 595 uncracked images.

BCD [67]. Bridge crack detection consists of 4, 058

crack and 2, 011 background images. The background

images consist of healthy concrete surfaces. The dataset

contains crack images with details like shading, water

stains, and strong lights.

ICCD [37]. The image-based concrete crack detection

dataset is one of the largest crack datasets having 60,000

images with an equal distribution of crack and uncracked

classes. The images are captured using smartphone cam-

eras under varying lighting conditions. In addition to

cracks, the images predominately show corrosion strains.

MCDS [28]. The multi-classifier dataset has original

inspection data and collected images from ten highway

bridges. The authors defined the problem in a multistage

classification manner. However, we used the dataset in a

multi-label setting having ten classes, i.e., crack (789),

efflorescence (311), scaling (168), spalling (427), general

defects (264), no defects (452), exposed reinforcement

(223), no exposed reinforcement (203), rust straining

(355), and no rust straining (415).

CODEBRIM [42]. The COncrete DEfect BRidge

IMage Dataset provides the overlapping defects images of

30 bridges collected via camera and UAVs. The dataset

consist of six classes, i.e., cracks (2507),spalling (1898),

efflorescence (833), exposed bars (1507), corrosion stain

(1559), and background (2506). The authors have framed

the damage detection problem as a multi-target multi-class

due to the overlapping damages in images. Here, we utilize

the dataset in a multi-label setting only.

4 Methodology

4.1 In-domain and cross-domain transfer
strategies

We propose to employ transfer learning as a natural

solution for learning and improving the performance of

damage detection models on small labeled datasets, as

shown in numerous other vision tasks [45]. Transfer

learning attempts to transfer the learned knowledge from a

source task to improve the learning in a related target

task [62]. Here, we consider variants of transfer learning,

referred to as cross-domain and in-domain, and their

combination as shown in Fig. 5. The main difference

between these approaches is the type of dataset used as a

source task (also called the upstream dataset).

In cross-domain transfer learning, a convolutional

neural network is trained over a large IMAGENET dataset

having one million images of generic objects [8]. The

learned representations are then fine-tuned for the specific

downstream tasks, such as for damages detection. Given

the computational requirements of network training using

the massive IMAGENET dataset, several pre-trained models

are made available by academia and industry. The pre-

trained models, such as VGG16, Inception-v3, and

ResNet50, have shown to yield state-of-the-art perfor-

mance for object detection and image localization in the

ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC). The pre-trained models consist of representa-

tions (or weights) learned from IMAGENET and a standard

CNN architecture.

For in-domain transfer learning, the upstream and

downstream datasets belong to a similar application

domain, for instance, in medical imaging and asset

inspection, among others. For comparison purposes, we

utilize standard CNN architectures for training on a visual

inspection dataset, which are then fine-tuned for a specific

task. It is important to note that the dataset used for

upstream and downstream tasks are mutually exclusive as

depicted by one less square in Fig. 5b. In theory, in-domain

transfer learning should provide improved model perfor-

mance compared to cross-domain due to the availability of

similar visual concepts. However, cross-domain transfer

learning is standard in the computer vision field as repre-

sentations are learned from a large dataset having diverse

classes.

We also study the combination of in-domain and cross-

domain transfer learning to enable further performance

improvements for damage detection tasks. Here, the pre-

trained models having IMAGENET representations are first

trained on a visual inspection dataset before fine-tuning to a

specific damage detection problem. The combination

transfer strategy is depicted in Fig. 5c.

4.2 Details of the experiments

We conduct several experiments to evaluate different

transfer strategies for improved damage detection tasks.

The experiments seek to answer the following questions:

• Do features reused from standard pre-trained models

prove helpful compared to learning from scratch for

damage detection task?

• Does the standard architecture perform better than

small custom CNN models?
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• Does in-domain transfer learning provide a perfor-

mance benefit compared to the state-of-the-art cross-

domain transfer approach?

• Does the combination of in-domain and cross-domain

perform better than their stand-alone versions?

• How well do the representations generalize given an

extremely small downstream training dataset?

To acquire pre-trained (IMAGENET) features, we utilize pre-

trained models, namely VGG16, Inception-v3, and

ResNet50. The choice of these models is motivated by the

fact that they are widely used for damage detection tasks,

as shown in the literature [6, 28, 34, 68, 77]. The tradi-

tional strategies for leveraging transfer learning include:

(i) using a pre-trained model as a fixed-feature extractor

(FE) in which pre-trained layers are kept frozen, (ii) fine-

tuning (FT) all or a few of the layers of an existing model

so that the weights are updated for the target task, and (iii)

training IMAGENET weights from scratch and then fine-

tuning on the target task. Since training on IMAGENET from

scratch is computationally expensive, in our experiments,

we opted for feature extraction and fine-tuning strategies

appended with additional convolution (2D) and a dropout

layer to avoid overfitting.

For the comparative evaluation of standard architecture,

four small and simpler CNNs models are also adopted

from [49]. [49] referred to these models as a CBR family

and used them to evaluate pre-trained networks for medical

imaging. The simpler network consists of four to five layers

of convolution, batch normalization, and ReLU activation

with varying numbers of filters and kernel sizes. Depending

on the architecture configuration, the size of CBR CNNs

networks ranges from a third of the IMAGENET architecture

size to one-twentieth of the size as described in [49]. Due

to the extensive computation costs of training IMAGENET,

we perform architectural comparisons with random ini-

tialization only.

Besides cross-domain transfer, we investigate in-domain

transfer learning for structural damage detection where a

dataset from a similar domain is utilized for upstream and

downstream tasks. For comparison purposes, we evaluated

the best performing random initialized and IMAGENET

model for the specific downstream damage detection task.

Finally, we conduct several experiments with fewer labeled

examples from training sets to assess the quality of learned

representation from cross-domain and in-domain learning

within a low-data regime.

4.3 Evaluation approach and metrics

For the performance evaluation, we employ the held-out

approach in which the complete dataset is split into train-

ing, validation, and test split with an approximate ratio of

70%, 10%, and 20%. For ICCD and CODEBRIM dataset, the

predefined train/validation/test ratios are used. The vali-

dation set is used for the hyper-parameter tuning of the

model. We perform five independent runs of the models for

30 epochs with a 64 batch size for all the experiments. The

learning rate is kept as low as 10�4 with a binary or cat-

egorical cross-entropy loss function depending on the

problem. It is important to reiterate that the main focus of

this study is to evaluate the network architecture and the

source dataset characteristics in the sense of transferring

robust representations for structural damage detection. We

deliberately avoid the extensive hyper-parameters tuning to

compare dataset characteristics and architectural impact on

performance. We use the standard parametric configuration

(a) Cross-domain

Predictions

IMAGENET IMAGENET

CNNs CNNs

CNNs

CNNs

Upstream
datasets VI dataset

Model 
architectures VI dataset

(b) In-domain (c) Combination

(VGG16, Inception-v3, ResNet50,
 & custom small networks)

Downstream
Visual Inspection (VI)

datasets

CNNs CNNs CNNs

Predictions Predictions

Fig. 5 Schematic representation

of transfer learning strategies
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of the Keras framework unless explicitly stated above. For

the hardware, we use a machine with two Nvidia Tesla T4

GPUs on the Google Cloud Platform.

Additionally, for the performance evaluation and com-

parison of the deep models, we compute the AUC-ROC

(area under the receiver operating characteristic curve)

score, which is one of the most robust evaluation metrics

for classification tasks having skewed class distribu-

tion [16]. AUC-ROC computes the area under the curve

across all classification thresholds and summarizes the

ROC in a single number. We provide a comparison of

models using the AUC-ROC score since it is a classifica-

tion threshold invariant. This means that AUC-ROC score

provides information about the model’s prediction quality

irrespective of the specifically chosen threshold value. The

AUC-ROC score ranges in value from 0 to 1. The best

performing model will achieve a score closer to 1. A

classifier with a zero or 0.5 score is considered random

with no predictive capability. For the sake of completeness,

we also report accuracy, F-score, precision, and recall

scores in Appendix 1.

5 Results and comparisons

5.1 Transferability of pre-trained models

Five independent runs (i.e., training and evaluation) of

CBR models and pre-trained IMAGENET models are per-

formed on six different bridge inspection datasets. The

averaged AUC-ROC performance scores and standard

deviation are shown in Table 3. First, we note that transfer

learning with fine-tuning performed consistently well for

the majority of bridge inspection datasets, as depicted with

bold entries in Table 3.

VGG16 with fine-tuned weights achieved the best per-

formance on all datasets except for CODEBRIM dataset. For

BCD, ICCD, and CODEBRIM datasets, the results from Incep-

tion-v3 and ResNet50 models are also comparable with the

difference of 0.1 scores only. Next, in a random initial-

ization setting, the vanilla CBR model, with their one-

twentieth to the standard architecture size, performed best

on four datasets, followed by VGG16 for the other two

datasets as depicted with underlined entries. The relatively

sub-optimal performance of standard architectures can be

attributed to overfitting due to a heavily parameterized

network.

Finally, we note that the feature extraction yielded a

poor performance compared to random initialization and

fine-tuning. This poor performance may be due to consid-

erable differences in the IMAGENET and bridge inspection

datasets regarding the number of classes, quality of images,

size of the area of interest, and task specification.

5.2 Impact of in-domain representation learning

In-domain representation learning typically follows two

steps [43]: (a) Learning of representations using in-domain

data, called upstream training, (b) evaluation of learned

representations by transferring them to a new and unseen

task, termed as downstream. For upstream, we utilize the

best performing models that were trained from scratch, and

fine-tuned IMAGENET models (see Table 3). The learned

representations are further fine-tuned on all the new and

unseen downstream tasks.

Table 3 AUC-ROC

performance scores of CBR

models and standard IMAGENET

architectures with different

initializations. VGG16 with

fine-tuning performed best for

five datasets, followed by

ResNet50, as shown with bold

entries. Under random

initialization and fixed-weight

settings, the CBR models

performed better than the

standard IMAGENET architecture

for four datasets followed by

VGG16, as shown with

underlined entries

CDS SDNETv1 BCD ICCD MCDS CODEBRIM

Random Initialization

CBR Tiny 0.79 ± 0.02 0.74 ± 0.01 0.97 ± 0.00 0.93 ± 0.13 0.67 ± 0.02 0.80 ± 0.04

CBR Small 0.78 ± 0.02 0.72 ± 0.01 0.96 ± 0.0 0.98 ± 0.0 0.67 ± 0.02 0.80 ± 0.03

CBR LargeW 0.75 ± 0.03 0.74 ± 0.01 0.97 ± 0.01 0.96 ± 0.02 0.67 ± 0.01 0.80 ± 0.04

CBR LargeT 0.74 ± 0.02 0.67 ± 0.0 0.96 ± 0.00 0.96 ± 0.02 0.64 ± 0.01 0.79 ± 0.01

VGG16 0.78 ± 0.04 0.50 ± 0.00 0.98 ± 0.01 0.78 ± 0.26 0.59 ± 0.01 0.82 ± 0.01

Inception-v3 0.69 ± 0.03 0.60 ± 0.06 0.90 ± 0.03 0.96 ± 0.01 0.61 ± 0.01 0.77 ± 0.02

ResNet50 0.69 ± 0.02 0.61 ± 0.08 0.60 ± 0.20 0.93 ± 0.03 0.57 ± 0.01 0.73 ± 0.02

Fine-tuning of pre-trained models.

VGG16 0.82 – 0.02 0.84 – 0.0 0.99 – 0.0 0.98 – 0.0 0.77 – 0.03 0.88 ± 0.01

Inception-v3 0.73 ± 0.02 0.78 ± 0.01 0.98 ± 0.00 0.98 ± 0.0 0.72 ± 0.01 0.89 ± 0.0

ResNet50 0.62 ± 0.02 0.82 ± 0.01 0.98 ± 0.01 0.98 ± 0.0 0.54 ± 0.01 0.90 – 0.01

Feature extractions from pre-trained models.

VGG16 0.77 ± 0.01 0.72 ± 0.02 0.98 ± 0.01 0.93 ± 0.00 0.64 ± 0.01 0.78 ± 0.00

Inception-v3 0.55 ± 0.01 0.50 ± 0.01 0.52 ± 0.02 0.67 ± 0.04 0.54 ± 0.0 0.55 ± 0.01

ResNet50 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.01 0.50 ± 0.00 0.50 ± 0.00
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Table 4 provides the results of the in-domain transfer.

For comparison purposes, the results from random initial-

ization are also provided. The first column depicts the

upstream datasets, and the rest of the columns’ names are

downstream datasets. Out of six datasets, the in-domain

transfer yields performance improvement for at least four

datasets than learning from scratch. SDNETV1 and MCDS

show notable performance improvements with an increase

of 0.7 and 0.2 in the AUC-ROC score, respectively.

Additionally, BCD and ICCD datasets predominantly showed

good transfer of in-domain knowledge across all the target

tasks, despite the considerable difference in their sizes.

We also evaluate the combination of in-domain and

cross-domain transfer for performance gains. Compared to

discrete IMAGENET or in-domain transfer, the combination

shows further performance improvement for the majority

of datasets, as shown with bold entries in Table 5. With the

in-domain and cross-domain transfer combination, it is

difficult to remark about the usefulness of a specific dataset

since the performance scores across the different source

datasets are very similar. When used as a source, most of

the datasets show comparable performance results irre-

spective of their size and number of classes. It is essential

to mention that the combination of in-domain and cross-

domain transfer can introduce additional computation costs

due to fine-tuning of large pre-trained models. In the

practical setting, the performance gains and computational

cost can be compared to gauge the usefulness of this

approach.

Figure 6 presents the comparison of loss and perfor-

mance during training of network with four different ini-

tialization settings. These comparisons show the

convergence capacity of the network with respect to a

specific dataset and initialized weights. It is noted that the

network initialization with in-domain and combination of

in-domain and cross-domain converges faster than IMA-

GENET for binary classification datasets, namely for CDS,

SDNETv1, and BCD. For multi-label dataset, the IMA-

GENET network shows better convergence capacity.

Table 4 AUC-ROC performance scores for in-domain transfer per

dataset. The rows represent the upstream source model trained for the

target task, and the column shows the results of in-domain transfer for

each dataset. The bold entries depict the best performing models

compared to the random initialization (given in the first row)

CDS SDNETv1 BCD ICCD MCDS CODEBRIM

Rand. Init. 0.79 – 0.02 0.74 ± 0.01 0.98 ± 0.01 0.97 ± 0.0 0.67 ± 0.02 0.82 – 0.01

CDS 0.73 ± 0.05 0.99 ± 0.00 0.96 ± 0.01 0.67 ± 0.02 0.80 ± 0.03

SDNETv1 0.75 ± 0.01 0.98 ± 0.00 0.97 ± 0.00 0.67 ± 0.01 0.77 ± 0.03

BCD 0.77 ± 0.04 0.81 – 0.00 0.98 – 0.00 0.61 ± 0.01 0.81 ± 0.00

ICCD 0.78 ± 0.02 0.80 ± 0.00 1.00 – 0.00 0.69 ± 0.00 0.76 ± 0.03

MCDS 0.76 ± 0.02 0.72 ± 0.07 0.98 ± 0.00 0.97 ± 0.01 0.79 ± 0.02

CODEBRIM 0.75 ± 0.04 0.80 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.70 – 0.01

Upstream model architecture: CBR Tiny (CDS, SDNETV1, MCDS) CBR Small (ICCD)

VGG16 (BCD, CODEBRIM)

Table 5 AUC-ROC performance scores for in-domain and IMAGENET

transfer. The rows represent the upstream model of in-domain and

IMAGENET representations, and the column entries show the results of

transfer for each dataset. The bold entries depict the best performing

models compared to transfer from IMAGENET only (given in the first

row)

CDS SDNETv1 BCD ICCD MCDS CODEBRIM

IMAGENET 0.82 ± 0.02 0.84 ± 0.0 0.99 ± 0.0 0.98 ± 0.0 0.77 ± 0.03 0.90 – 0.01

CDS 0.84 ± 0.01 0.99 ± 0.0 0.99 – 0.0 0.75 ± 0.02 0.885 ± 0.01

SDNETv1 0.76 ± 0.02 0.99 ± 0.0 0.98 ± 0.0 0.70 ± 0.02 0.86 ± 0.01

BCD 0.80 ± 0.03 0.85 – 0.0 0.98 ± 0.0 0.75 ± 0.01 0.88 ± 0.01

ICCD 0.81 ± 0.02 0.84 ± 0.01 1.00 – 0.0 0.70 ± 0.01 0.87 ± 0.01

MCDS 0.84 – 0.02 0.83 ± 0.02 0.99 ± 0.0 0.98 ± 0.0 0.88 ± 0.0

CODEBRIM 0.82 ± 0.02 0.81 ± 0.01 0.99 ± 0.0 0.98 ± 0.0 0.79 – 0.0

Upstream model architecture: VGG16 architecture for all except for CODEBRIM which used ResNet50
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5.3 Effectiveness of transfer learning in a low-
data regime

Bridge inspection datasets are typically smaller than IMA-

GENET due to the laborious process of acquiring the labeled

images. This lack of data necessitates the effective transfer

of knowledge from pre-trained models. Thereby, to further

explore the generalizability of in-domain and cross-domain

representations for a low-data regime, we perform further

experiments with a smaller number of training samples

ranging from 5%, 10%, 20%, and 50% of the datasets.

Figure 7 reports the AUC-ROC performance score with

different initialization settings for fewer training samples

of datasets. Transfer learning either with in-domain or

cross-domain datasets provides significant performance

gains with very small datasets compared to learning from

scratch. The combination of in-domain and ImageNet

transfer show significant performance with as few as 5% of

training samples only.

(a)

(d) (e) (f)

(b) (c)

Fig. 6 Comparison of network training (with precision and loss) for

30 epochs with different initialization settings. RI: random initializa-

tion, IMAGENET: pre-trained VGG16 with IMAGENET, in-domain: pre-

trained with one of the visual inspection datasets, in-do-

main?IMAGENET: combination of in-domain and IMAGENET pre-

training
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(a)

(c)

(e) (f)

(d)

(b)

Fig. 7 AUC-ROC score on test set after training with different initialization over a limited number of training samples
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Despite significant size differences of the IMAGENET

dataset, having millions of images, and the largest in-do-

main dataset with 60,000 images, their transfer shows

comparable performance for binary datasets. For multi-la-

bel datasets, i.e., MCDS and CODEBRIM datasets, the impact of

different initialization on performance scores is notable.

For the CODEBRIM dataset, the in-domain transfer performs

notably well compared to IMAGENET when only 5% to 20%

data is used. In contrast, with the increasing size of the

training samples, the IMAGENET surpasses the other

initializations.

To summarize, the combination of in-domain and cross-

domain transfer is a desirable transfer setting when the

target data is extremely small. However, with larger target

datasets, the combination of in-domain and cross-domain

transfer yield similar performance as when only IMAGENET

is used as source dataset.

5.4 Comparison with baselines

This section conducts a comparison to the baselines to

assess the performance of the proposed transfer learning

strategies. Table 6 presents the accuracy scores for each

dataset and provides the comparison to the baselines.

Transfer learning with a combination of in-domain and

cross-domain strategies shows improved results for at least

four datasets as depicted by bold entries. For the other two

datasets, i.e., [42] and [28], a direct comparison is not

feasible due to the disparity in research methodologies.

[42] treated the damage classification problem in multi-

label multi-target settings in which the exact match of

predicted and actual multi-labels is ensured. [28] dealt

with damage classification in a multistage multi-classifi-

cation manner, where several multi-class and binary clas-

sifier are defined. Instead, in our approach, we develop a

single classifier for multiple damages detection. Besides

transfer learning, the results provided in Table 6 can be

used for future performance comparisons and improve-

ments for the publicly available visual inspection datasets.

It is worth noting that different IMAGENET architectures

and transfer learning strategies introduced varying com-

putational costs. Pre-trained IMAGENET and in-domain

models can be efficient for feature extraction and fine-

tuning. The combination of cross-domain and in-domain

models can be computationally expensive. However, the

combination of cross and in-domain transfer can provide

superior performance when the target dataset is extremely

small.

6 Interpretability of damage detection
models

Transparency and interpretability of predictive models are

indispensable to enable their use in practice. Deep neural

networks are well known for exploiting millions of

parameters, processed by several nonlinear functions and

pooling layers to learn optimal weights. It is intractable for

humans to follow the exact mapping of data from input to

classification through these complex multilayered net-

works. To encourage CNN’s usage in practice, the inter-

pretability and explainability of deep neural networks are

increasingly popular and an active research area. Several

model-agnostic, visual explanations and example-based

methods have recently been proposed [15, 41].

In this study, we employed gradient-weighted class

activation mapping (Grad-CAM) to visualize and localize

the areas of an input image that are most important for the

models’ prediction. Grad-CAM is a class-discriminative

localization technique that, unlike its predecessor [76],

does not require any change in the CNNs architecture or

retraining for generating visual explanations [54]. Several

studies have shown that the deeper layers of CNNs capture

high-level abstract constructs; therefore, Grad-CAM uti-

lizes the gradient information flowing into the last convo-

lution layer to evaluate each neuron’s importance. We

apply importance scores with logistic regression and a

nonlinear activation function to obtain coarse heatmaps for

discriminative class mappings.

Figure 8 shows the visual explanation of the fine-tuned

VGG16 model, which has predominantly performed well

for most of the damage detection datasets (see Table 3 for

results). We utilized the tf-explain implementation of

Grad-CAM to generate visual mapping [51]. In addition to

Table 6 Accuracy scores of

transfer learning strategies and

comparisons with baselines. The

bold entries depict the best

performing transfer learning

strategy

CDS (%) SDNETv1 (%) BCD (%) ICCD (%) MCDS (%) CODEBRIM (%)

Rand. Init. 82 94 98 98 68 82

Cross-domain 86 95 98 98 76 90

In-domain 83 95 99 98 69 82

Combination 87 96 99 99 79 90

Previous studies – 92 [11] 96 [67] 99 [37] 85* [28] 72** [42]

*Multiple (binary and multi-class) classifiers approach

**Multi-target accuracy score
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the last convolution layer of CNN, Grad-CAM can be used

to extract discriminative class mapping with any interme-

diate convolution layer. We experimented with various

convolution and pooling layers to generate visual expla-

nations, as shown in Fig. 8. The visual explanations with

the correct predicted class validate that the model is paying

attention to the right areas of an image to identify and

localize a specific damage category. It is interesting to

notice Fig. 8, where the model misclassified the healthy

patch of concrete as cracked by assigning higher weights to

the textured concrete patch.

The visual interpretations of CNN models reveal why

the models predict, what they predict. The visual expla-

nation also provides localization of specific damage in an

input image without additional labeling or segmentation

activity. By revealing the decision logic of these complex

models, the decision-makers and infrastructure managers

can trust them for automatic damage detection tasks.

7 Conclusions

This paper presents transfer learning strategies and con-

ducts comprehensive experiments to evaluate their useful-

ness for damage detection tasks. We compared different

initialization settings, namely random initialization, in-

domain, cross-domain, and their combination for transfer

learning on six publicly available visual inspection datasets

of concrete bridges. We found that cross-domain transfer

yields performance improvements only when fine-tuned for

the target damage detection task.

Our main message is that the combination of in-domain

and cross-domain representations provide enhanced

performance compared to their stand-alone versions.

Additionally, in contrast to pre-trained IMAGENET models,

in-domain transfer provides training efficiency and flexi-

bility in selecting relatively smaller yet powerful CNNs

architecture. In our exploration of learning for tasks with a

limited number of training samples, in-domain and IMA-

GENET representations show comparable performance. The

results demonstrate considerable performance gains when

in-domain and cross-domain (IMAGENET) representations

are used jointly for the target dataset having fewer training

samples.

We further assessed the best performing IMAGENET

models by developing visual explanations using gradient-

weighted class activation mapping. The visual explanation

shows the class discriminative regions of an input that are

most paramount for specific damage prediction. Addition-

ally, the interpretability of models’ prediction localizes the

specific damages and enables decision-makers to under-

stand the underlying intrinsic decision logic of the neural

model. Such visual exploration of damage detection and

localization also encourages the use of predictive models in

practice.

Additional results

We provide additional results to compare different transfer

learning strategies in Table 7. In addition to AUC-ROC

scores, we provide accuracy, F-score, precision, and recall

measures. Accuracy is essentially computed by taking a

fraction of correctly predicted samples to the total number

of samples. However, in the case of an imbalanced dataset,

accuracy as performance metric can be misleading.

(a) (b)

(d) (e) (f)

(c)

Fig. 8 Visual explanations for classification and localization of VGG16 models for all six datasets. Grad-CAM highlights class discriminative

features. The heatmap localizes the specific damage regions
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Therefore, we report weighted accuracy and weighted F-

score here. The weighted aspect considers the data imbal-

ance of the target class and assigns the weights to data

samples accordingly. The F-score is a combination of

precision (or positive predictive value) and recall (sensi-

tivity) measures. The precision determines the exactness of

the model, whereas the recall provides a measure of the

model’s completeness.
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