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Damage Evaluation in Woven Glass Reinforced Polyamide 6.6/6 
Composites Using Ultrasound Phase-Shift Analysis and X-ray 
Tomography 

Pascal Pomarède1,2 · Fodil Meraghni1 · Laurent Peltier1 · Stéphane Delalande3 · Nico F. Declercq2,4 

Abstract 

The paper proposes a new experimental methodology, based on ultrasonic measurements, that aims at evaluating the anisotropic 

damage in woven semi-crystalline polymer composites through new damage indicators. Due to their microstructure, woven 

composite materials are characterized by an anisotropic evolution of damage induced by different damage mechanisms 

occurring at the micro or mesoscopic scales. In this work, these damage modes in polyamide 6.6/6-woven glass fiber reinforced 

composites have been investigated qualitatively and quantitatively by X-ray micro-computed tomography (mCT) analysis on 

composite samples cut according to two orientations with respect to the mold flow direction. Composite samples are initially 

damaged at different levels during preliminary interrupted tensile tests. Ultrasonic investigations using C-scan imaging have 

been carried out without yielding significant results. Consequently, an ultrasonic method for stiffness constants estimation 

based on the bulk and guided wave velocity measurements is applied. Two damage indicators are then proposed. The first 

consists in calculating the Frobenius norm of the obtained stiffness matrix. The second is computed using the phase shift 

between two ultrasonic signals respectively measured on the tested samples and an undamaged reference sample. Both X-ray 

mCT and ultrasonic investigations show a higher damage evolution with respect to the applied stress for the samples oriented 

at 45◦ from the warp direction compared to the samples in the 0◦ configuration. The evolution of the second ultrasonic damage 

indicator exhibits a good correlation with the void volume fraction evolution estimated by mCT as well as with the damage 

calculated using the measured elastic modulus reduction. The merit of this research is of importance for the automotive 

industry. 

Keywords   Composite materials · Ultrasonics · X-ray tomography · Damage Indicator 

1 Introduction 

Woven reinforced thermoplastic composite materials are 

gaining interest in automotive applications [1–3], due to their 

important weight reduction in comparison with applications 

using metals. In addition, compared to a unidirectional rein- 

 

forcement, a woven fabric allows a better equilibrium and 

uniformity of the mechanical properties. Furthermore, they 

also have a better ability to withstand buckling and impact 

[4]. The latter characteristic is of critical interest for the 

automotive industry [5]; indeed it is essential to ensure a 

maximal resistance of structural parts, in the case of impact 

in particular for the driver’s safety. To assess the in-service 

strength of an automotive component made of woven fab- 

ric composite that is subjected to damage accumulation, the 

development of an efficient methodology evaluating the dam- 

age is mandatory. This assessment should guide decisions to 

replace, to repair or to keep a composite component based 

on its damage tolerance. Non-destructive methods based 

on ultrasonic investigation naturally emerge as promising 

damage evaluation techniques thanks to their practicality, 

efficiency, diversity and their applicability on composite 

parts in-service. Nevertheless, ultrasonic techniques require 
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appropriate signal processing to extract damage indicators 

that permit estimation of the residual stiffness, which is 

related to the component integrity. 

In order to nondestructively assess all the elastic constants 

of a material, Markham [6] has studied a method based on 

ultrasonic measurements in immersion of bulk wave veloci- 

ties and the use of the well-known Christoffel equation. He 

applied the method on an undamaged transversely isotropic 

composite material to determine the stiffness components. 

The method was then successfully used to measure the stiff- 

ness reduction of composites submitted to different levels 

of impact [7,8] and tensile tests [9,10]. One of the advan- 

tages of this method is that the tested material is investigated 

in all directions (i.e. sample orientations) and therefore can 

provide all the components of the stiffness tensor and accord- 

ingly a complete anisotropic damage evaluation of the tested 

sample. This method was also extended for use with guided 

waves in several studies because of their established advan- 

tages [11,12]. In the industry one normally do not require 

full understanding of all physical phenomena involved but 

rather seek practical and workable techniques that are reli- 

able. To our knowledge, no damage indicator, with simple 

interpretation, useful in the industry, for the global damage 

state, has been reported in the literature. Such task is carried 

out here, where an experimental methodology is developed 

for identifying proper damage indicators. 

An alternative method, somewhat similar to the method 

proposed by Markham, is the polar-scan method [13,14]. 

As indicated by its name, a specific point of a sample is 

scanned for all accessible angles of incidence. For each polar 

angle, the signal amplitude is recorded and represented in a 

polar plot. Information such as damage level, stiffness, fiber 

misalignment, etc can be extracted from this polar figure. 

However, this technique requires a more complex appa- 

ratus than the one proposed by Markham because of the 

unavoidable double angular rotations. This limits therefore 

its application on site (in-service). Due to this limitation, the 

present approach measures the elastic constants using the 

ultrasonic method based on wave velocities measurement 

and described in the preceding paragraph. The aim of this 

study is then to propose an ultrasonic methodology to detect 

and to quantify damage growth, even when the cracks that 

propagate inside the sample cannot be detected by classical 

ultrasonic imaging techniques. As mentioned, this method 

could provide the whole stiffness tensor of a sample. How- 

ever, it is more interesting to obtain a sole value to efficiently 

transcribe the global damage state of a tested sample. Two 

different experimental damage indicators are proposed for 

this purpose: The first is the norm of the stiffness tensor and 

the second is the phase angle shift between wave signals 

propagated through a damaged and an undamaged sample. 

It is worth noting that the time required to analyze the exper- 

imental results in order to obtain the first indicator can be 

quite long. 

The woven reinforced composite material exhibits a spe- 

cific damage scheme that  is  highly  dependent  on  both 

the loading direction and the fiber orientation [15,16]. In 

this work, the damage characterization and evolution was 

performed on samples made of co-polyamide 6.6/6 based 

composites reinforced with woven glass fibers and submit- 

ted to tension tests interrupted at different stress levels. Two 

configurations of material samples were tested: (i) samples 

oriented at 0◦ with respect to the warp direction and (ii) sam- 

ples oriented at 45◦ from the warp direction corresponding 

to the mold flow direction. A first damage estimation for 

the two samples configurations was carried out using the 

elastic modulus reduction. Various nondestructive tests were 

performed on the samples after loading, such as ultrasonic C- 

scan imaging that was not able to capture the damage zone in 

all tested samples. To address this aspect, the damage mecha- 

nisms induced by the different tensile tests were investigated 

by X-ray micro-computed tomography (mCT). This provided 

a qualitative description of the main damage mechanisms and 

the quantitative estimation of void volume fraction evolution. 

The latter was compared to the damage indicators evolution 

obtained with the ultrasonic technique. 

The paper is organized as follows: in Sect. 2 the inves- 

tigated composite material and the tensile tests procedure 

are presented. Ultrasonic C-scan imaging results obtained 

on samples after interrupted tensile tests are presented and 

discussed. X-ray mCT investigation procedure and results, 

on samples in both 0◦  and 45◦  configurations are discussed 

in Sect. 3. Ultrasonic analysis and the estimation of the dam- 

age evolution are presented in the 4th section. The evolution 

of the stiffness components function of the applied stress 

level is also discussed for both 0◦ and 45◦ samples. In Sect. 

5, the two proposed damage indicators are calculated using 

the ultrasonic results from the previous section. Both ultra- 

sonic damaged indicators are compared with the estimation 

of damage calculated using the elastic modulus reduction 

(presented in Sect. 2) and with the void volume fraction evo- 

lution (discussed in Sect. 3) leading to concluding remarks. 

2 Material Description and Preliminary Tests 

2.1 Material 

The composite material considered for this study is refer- 

enced as VizilonTM SB63G1-T1.5-S3 and is manufactured 

by DuPont. The studied composite is produced by a thermo- 

compression molding process and it consists of a 2/2 twill 

weave glass fabric reinforced co-polyamide 6.6/6, with three 

plies, of 1.53 mm thick in total. The overall 3D woven fabric 

of the studied composite material is shown in Fig. 1. The 



E 

2. The two different microstructures can be observed in the

Fig. 3. All the samples are stored in a humidity chamber in 

order to have the same initial conditions in terms of relative 

humidity. The latter is set at a level of 50% for all tested 

composite material. Initial tensile tests are performed on the 

material until failure for both 0◦  and 45◦  sample configura- 

tions. The experimental stress/strain curves are normalized 
with respect of the tensile ultimate strength of the 0◦ sample 

configuration. 

Fig. 1 Overall 3D mesostructure of the studied composite consisting 

of 2/2 twill weave fabric reinforced polyamide 6.6/6 matrix 

Fig. 2 Position of the samples oriented at 0◦ and 45◦ with respect to 

the warp direction assumed as the mold flow direction of the composite 

plate 

2.2 Tensile Tests Procedure 

The tested samples are subjected to an interrupted tensile 
loading at different levels. For 45◦ samples configuration, 

the tensile tests are interrupted at the following stress levels: 
0, 30.5, 61.1, and 91.6% of σ UTS45◦ , whereas for 0◦ config- 

uration, the interruption occurs at the levels of 0, 30.8, 46.3, 

61.7, 77.2, and 92.6% of σ UTS0◦ . The chosen loading values 

are schematically illustrated by means of red circles on the 

representative stress/strain curves in Fig. 4. All the tensile 

tests presented in this paper follow the same procedure. 

To estimate the modulus reduction caused by these inter- 

rupted tensile tests, the samples are loaded to the prefixed 

stress values and then are unloaded (elastic release) back to 

zero force. The evolution of damage was computed as: 

En 

weight fiber content is 63% corresponding to a fiber volume 

D = 1 − 
0 

(1) 

fraction of 43%. Ten samples are cut in rectangular plate of 

45 mm length and 150 mm width. Four samples are cut at 

45◦ with respect to the warp direction (mold flow direction) 

and six other ones are cut along the warp direction. The ori- 

entations of these two sets of samples are indicated in Fig. 

Where E0 is the elastic modulus of the tested sample during 

the first loading and En represents the Young’s modulus of the 

tested sample during the elastic release. The E0 is estimated 

for every single sample between 0.2% and 0.4% of strain 

according to the standard ISO 527. The En values are cal- 

Fig. 3 Cross-sectional 

observation with optical 

microscope of the 2/2 twill 

weave fabric reinforced 

polyamide composite 

microstructure for samples 

oriented at 0◦ and 45◦ . a 0◦

sample, b 45◦ sample and c 

Zoom-in on a sample’s yarns in 
the 0◦ orientation 

Longitudinal yarn 

(a) 

Resin rich area 

Tension loading direction 

Transversal yarn 

500 um 

(b) (c) 

17 um 

+45° -45° Resin rich area 
500 um 

100 um 



Fig. 4 Typical stress/strain responses of the 2/2 twill weave fabric rein- 
forced polyamide composite under tension at 0◦ and 45◦ . The red circles 

show schematicaly where the tensile tests have been interupted for both 

tested configurations 

culated after the unloading according to a common damage 

measurement procedure [17]. A representation of the elastic 

moduli calculation is depicted in Fig. 5a, b for the two tested 

sample configurations. 

The samples are all loaded in tension at room temperature 
and at a constant strain rate of 10−4 s−1 to avoid the influ- 

ence of viscosity. Tensile tests are performed in compliance 

with the standard ISO 5893 on a machine Z 050 designed 

by Zwick Roell. The strains are measured using a “clip-on” 

extensometer manufactured by Epsilon Technology Corp. 

As shown in Fig. 5, a noticeable difference is observed 

between the overall stress-strain responses of the two config- 

uration samples, namely 0◦ and 45◦ . In fact, for the samples 

tested at 0◦ , the behavior in tension is mostly linear and brittle 

since it is governed by the fiber breakage whereas the behav- 

ior of the samples tested at 45◦ exhibits a nonlinear ductile 

response mostly governed by the matrix rheology. 

This is particularly clear for the evolution of the damage 

estimated on the elastic modulus reduction when the applied 

stress increases, as illustrated in Fig. 6. For the samples ori- 

ented at 45◦ from the warp direction, the damage D reaches 

a value of 0.53 close to the final failure. However, for the 
0◦ case, it only goes up to 0.1. The values of damage for 

every tested sample are summarized in Table 1. This dam- 

age estimation is employed as a first reference to validate 

the proposed ultrasonic damage indicators detailed in fur- 

ther sections. Indeed, as discussed, Fig. 6 indicates a higher 

amount of damage induce by the loading for the 45◦ configu- 

ration, which could imply different damage mechanisms with 

different associated typical scales. In fact, to investigate the 

sensitivity of the ultrasonic techniques, it is necessary to con- 

sider different scales of induced damage. Hence, the typical 

scale of those mechanisms for the two sample configuration 

requires further study. 

2.3 Ultrasonic C-Scan in Transmission 

Ultrasonic imaging was performed on all tested samples to 

investigate the overall damage state of the samples cut at 

0◦ and 45◦ . Classical ultrasonic 2D C-scans in transmission 

were performed using  a  5 MHz frequency transducer, the 

maximal amplitude of the ultrasonic signal is measured and 

recorded at each point of the scanned area with a spatial 

resolution of 0.5 mm. It is then plotted on Fig. 7 for both 

considered sample configurations. It is worth noting, that the 

values reported in Fig. 7 are the actual values of the ultra- 

sound amplitude’s signal without any averaging process on 

the scanned area of the tested specimen. As illustrated in Fig. 

Fig. 5   Schematic represenation of the elastic moduli estimation of the of E0 and En for rerspectively a 0◦ and b 45◦ configuration samples 



Defined loading 0%σ ◦ 30.8%σ  ◦ 46.3%σ  ◦ 61.7%σ  ◦ 77.2%σ  ◦ 92.6%σ  ◦ 
UTS

Strain 0 0.005 0.007 0.010 0.013 0.016 

Damage 0 0.038 0.061 0.074 0.086 0.089 

 

UTS45 UTS45 UTS45 UTS45
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Tensile test results 
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45° 

nor accurate for the detection of microscopic damage and the 

related stiffness reduction in the samples. 

Note that other detection techniques based on spectrum 

analysis in the nonlinear ultrasonic domain could be applied 

for the detection of early damage with more sensitivity and 

spatial resolution. Among them, one can mention those using 

vibro-acoustic modulation [18,19] or using higher harmonics 

[20,21]. 

scopic scale are investigated using X-ray micro-computed 

tomography (mCT). The damage characterization at this 

scale provides a quantitative estimation of void volume frac- 

tion evolution, which is related to the Young’s modulus 

reduction. 0 10 20 30 40 50 60 70 80 90 100 
Normalized applied stress (MPa) (%σ 

0deg 
failure)

Fig. 6  Evolution of the the damage for 0◦ and 45◦ sample’s configu- 

rations. The damage is estimated from the Young’s modulus reduction 

for different applied stress levels 

7a related to the samples tested at 0◦ from the warp direction, 

the attenuation of the ultrasound amplitude’s signal remains 

low and a very slight difference, if any, was noticed when 

increasing the applied stress level from 0 to 92.6%σ UTS0◦ . 

For the sample in 45◦ , the Fig. 7b shows the evolu- 

tion of amplitude attenuation (C-scan images) between the 

unloaded state and the ultimate state level prior  failure 

(92.6%σ UTS45◦ ). Two damage zones were actually observed 

macroscopically and the related high attenuations in the 

signals were associated to the fibers buckling and  the 

local delamination. In addition, the low signal attenuations 

observed at the border of the samples were clearly induced 

by a well-known border effect and were not caused by the 

mechanically induced damage. 

As a partial result, one can conclude that the classical 

ultrasonic C-scan imaging, as applied in this study, suitably 

aimed at detecting the macroscopic damage in tested compos- 

ite samples. It appears as a method which is neither reliable 

3 Damage Investigation Using X-ray Micro 
Computed Tomography 

3.1 Experimental Procedure 

The X-ray micro-computed tomography (mCT) investigation 

and acquisitions were carried-out with an EasyTom (Nano) 

from RX solutions. The general principle of mCT is detailed 

in the Fig. 8. The acquisition parameters were chosen in order 

to analyze a representative volume element (RVE) of the 

composite material. A resolution of 5.5-micrometer (μm) 

voxel has been adopted for the acquisitions. With this res- 

olution, material volumes of 16.5 × 16.5 × 1.5 mm were 
reconstructed after the acquisition. The analyzed areas on 

the samples were close to the middle of the sample, where 

the extensometer was clipped-on during the tensile tests. All 

the information about the selected parameters is summarized 

in Table 2. The sample was positioned on a rotating table 

while X-rays pass through to a flat panel detector. Images 

were recorded as grey level maps, for all rotation angles, 

on a computer, before a 3D reconstruction with the X-Act 

software 

Table 1  Samples with their defined tensile loading for 0◦ and 45◦ samples configuration as well as their tensile induced damage 

Sample 1 2 3 4 5 6 

Configuration 0◦ 0◦ 0◦ 0◦ 0◦ 0◦

UTS0 UTS0 UTS0 UTS0 UTS0 0 

Sample 7 8 9 10 

Configuration 5◦ 45◦ 45◦ 45◦

Defined loading 0%σ ◦ 30.5%σ  ◦ 61.1%σ  ◦ 91.6%σ  ◦

Strain 0 0.021 0.082 0.162 

Damage 0 0.11 0.35 0.53 



Fig. 7  Preliminary C-scan results on 2/2 twill weave fabric reinforced polyamide composite previously loaded in tension with different amplitude. 

a Samples in 0◦ configuration; b Samples in 45◦ configuration. For the latter, besides the large damage zones, one can easily distinguish the 45◦

orientation of the yarns 

Fig. 8  Principle of the X-ray micro computed tomography techniques 

[22] 

The matrix and the fibers of the composite are character- 

ized by distinctive values of X-ray absorption. Hence, they 

can be easily separated on a grey level map. Air cannot signifi- 

cantly absorb X-ray. Consequently, the voids cannot be easily 

observed inside the composite samples, however during the 

image 3D-reconstruction, the voids appear as completely 

black volumes. A median filtering was first applied to the 

raw results to reduce the amount of noise in the images. A 

despeckle filter was then applied to remove the main part of 

the remaining interference noise. The different reconstruc- 

tions were then segmented in three classes (void, matrix and 

fibers) using a grayscale thresholding. The Avizo software 

segmentation enables an accurate estimation of the volume 

fraction of each of the three phases. Figure 9 illustrates an 

example of a 3D reconstruction of the considered composite 

material containing an initial porosity. 

Prior to a discussion on the evolution of void volume frac- 

tion, it must be emphasized that the damage mechanisms have 

been observed for both considered orientations of samples. 

A characteristic length of the different damage mechanisms 

was also determined. Those data are critical to understand 

the damage scheme of the studied material and to validate 

the results from the ultrasonic study. 

3.2 Damage Mechanisms 

3.2.1 Sets of Samples Oriented at 0◦ from the Warp 

Direction 

Some examples of damage mechanisms observed for samples 
in the 0◦ configuration are illustrated in Fig. 10. For tensile 

tests along the warp fiber axis, the main damage mechanisms 

observed were the formation of cracks near the end of the 

yarns (Fig. 10b, c, d), and transverse cracks inside the yarns 

(Fig. 10a, c), for example). Some longitudinal cracks that 

follow the transverse yarns very locally in the last step of 

damage were also observed (Fig. 10d). As the loading level 

increased, the number and the size of defects (cracks and 

voids) increased too (Tables 3, 4). 

The crack inside the yarns has a characteristic thickness 

of 20 μm, which of the order of magnitude of the size of the 

fibers. Indeed, it is worth noting that those cracks are caused 

by fiber/matrix debonding, which propagates perpendicu- 

larly to the loading direction from one fiber to another. The 

cracks at the extremities of the yarn have a typical thickness 

Table 2  X-ray mCT acquisition parameters 

Detector resolution Exposure Voltage Voxel size Focus to detector (FDD) Focus to object distance (FOD) 

2320*2336 px 4s 90 kV 5.5 μm 670 mm 110 mm 



Sample 1 2 3 4 5 6 

Defined loading (%σ UTS0◦ ) 0 30.5 46.3 61.7 77.2 92.6 

Void volume fraction (%) 0.59 0.93 1.14 1.44 1.38 1.56 

Fig. 9 a As received 

mesostructure of the 2/2 twill 

weave fabric composite 

obtained by 3D reconstruction 

prior to mechanical loading. b 

Initial voids and 

process-induced defects are 

represented by light color and 

their content is estimated using 

Avizo software segmentation 

(about 0.6% volume) 
(a) (b) 

Fig. 10 Three main damage mechanisms identified for 0◦ sample configuration under tension loading. These main mechanisms consist in cracks 

near the extremities of the yarns, transverse cracks in yarns and longitudinal cracks 

Table 3 Void volume fraction 

of the tested samples oriented at 

0◦ from warp direction 

Table 4 Void volume fraction of the tested samples oriented at 0◦ from 

warp direction 

Sample 7 8 9 10 

Defined loading (%σ UTS45◦ ) 0 30.5 61.1 91.6 

Void volume fraction (%) 0.59 1.69 3.04 5.51 

of 50 μm for the highest damaged samples. These longitudi- 

nal cracks can then propagate along the warp yarns as shown 

in Fig. 10d. 

3.2.2 Sets of Samples Oriented at 45◦ from the Warp 

Direction 

For samples in the 45◦ configuration, all the observed mech- 

anisms are shown in Fig. 11. Firstly, cracks at the extremities 

of yarns (visible in Fig. 11a) as well as cracks along the yarns 

were observed in Fig. 11a, b. On the 91.6% σ UTS45◦ loaded 

sample many local fiber breakages were also observed, some 

of them were already visible in Fig. 11c for the sample tested 

at 61.1% σ UTS45◦ . Those defects were observed around the 

central region of the sample, along the loading direction, 

especially near the edges. In Fig. 11d, some micro buckling 



Fig. 11  The different damage mechanisms that appear when a sample in the 45◦ configuration is submitted to tension. These mechanisms consist 

in transverse cracks, cracks at the extremities of the yarns, fiber breakage, fiber buckling and yarns pseudo-delamination due to the propagation of 

the longitudinal cracks 

of fibers was noted, more notably in the sample loaded at 

the highest stress level. This is due to the reorientation of 

fibers during the loading test. Indeed, as the load increases 

the angle between the fibers tends to decrease but when the 

tension is interrupted, the fibers cannot return to their orig- 

inal position because of the section reduction caused by the 

Poisson effect. This effect of the fibers’ reorientation during 

off-axis loading was also observed by Vieille and Taleb [23] 

among others. Pseudo-delamination also appeared locally 

after roughly 60.1% σ UTS45◦ of loading in some specimen, 

as visible in Fig. 11e. It was propagated inside a yarn and 

followed the fiber orientation until it reached the location 

where the weft and warp yarns were intertwined together. 

When the stress level continued to increase, the crack turned 

and started propagating along the direction of the other yarn. 

It was noticed that the pseudo delamination and fiber buck- 

ling were the most important damage mechanisms during this 

study. These mechanisms are actually the only ones that were 

detected by the ultrasonic C-scan method described in Sect. 

2. They both had a characteristic length of 200 μm.

3.3 Micro Computed Tomography Based Void 
Volume Fraction Estimation 

As previously mentioned, a grey level thresholding, was 

performed on all the X-ray mCT 3D reconstructions. The 

evolution of void volume fraction was therefore evaluated. 

Indeed, the increase of void volume fraction can often be 

used as a good indicator of damage evolution [24,25]. 

The evolution of the void volume fraction is plotted for 
both orientations in Fig. 12. The experimental data 0◦ and 
45◦ configurations are plotted as function of the stress to 
failure of the 0◦ sample (respectively Fig. 12a, b). The Fig. 

12c allows an easy comparison of the two results. 

The void volume fraction clearly increased with the ten- 

sion loading level for both considered orientations. However, 

a higher growth of damage in the set of samples oriented at 

45◦ from warp direction was observed. In fact, for the sam- 

ples oriented at 0◦ and loaded at 92.6%σ UTS0◦ , a void volume 

fraction of 1.56% was measured as it can be seen on the mCT- 

3D reconstruction in Fig. 13. On the other hand, as shown 

in Fig. 14, for the sample tested at 45◦ for a stress level of 

91.6%σ UTS45◦ , the estimated volume void content was about 

5.51%. These results are in agreement with the difference in 

terms of the behavior between the two sample’s orientations 

discussed in Sect. 2. Indeed, the overall response of the 45◦

samples was more ductile compared to the behavior of a 
sample tested at 0◦ , which exhibited a linear elastic brittle 

behavior. 

The evolution of the void volume fraction as a function of 

the applied stress level (Fig. 12c) exhibited a similar increase 

as the evolution of the macroscopic damage estimated from 

the Young’s modulus reduction plotted in Fig. 6. Accord- 

ingly, these two quantitative estimations of the damage state, 

namely void volume content and Young’s modulus reduction 

will be two actual measurements of the damage that validate 

the proposed new damage indicators. 

Qualitatively, Fig. 13b shows a clear preferred orientation 

of the damage accumulation, which is perpendicular to the 



Fig. 12 Evolution of void volume fraction for a 0◦ and b 45◦ configuration of sample with increasing loading. In c data of both configurations are 

plotted for comparison purpose 

Fig. 13   mCT-3D reconstructions of composite samples in the 0◦ configuration respectively a before and b after tensile loading at a stress level of 

92.6%σUTS0◦

Fig. 14  mCT-3D reconstructions of composite samples in the 45◦ configuration respectively a before and b after tensil loading at a stress level of 

91.6%σUTS0◦

tension loading direction for the samples oriented along the 
warp direction (0◦). In the case of the 45◦ samples, the cracks 

grow along the two yarns direction as visible in the Fig. 14b. 

It is worth noting that the estimation of void volume frac- 

tion and the observation of the damage mechanisms were 

performed after unloading to zero force (elastic release). 
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Therefore, some of the opened cracks could be partially 

closed during the unloading and hence cannot be observed. 

Consequently, the actual void volume content may be to some 

extent higher than what was measured in the present study. 

This is especially the case for the 0◦ configuration samples. 

For the 45◦ configuration, there is permanent deformation 

and higher presence of matrix permanent strain at high load- 

ing levels reduced the cracks closure effect. 

4 Stiffness Components Measurements 

Various methods based on ultrasonic wave propagation mea- 

surements can be utilized to detect the damage in composite 

materials. It was shown in Sect. 2 that the widely used ultra- 

sonic C-scan imaging technique may be inefficient to detect 

the early damage stages for the composite samples oriented 

at 0◦ and 45◦ . As a first approach, a measurement of stiffness 

components using wave velocity propagation was considered 

in this section to measure the damage evolution. This stiff- 

ness components measurement method is described in the 

first sub-section. Results on samples oriented at 0◦ and 45◦

from warp direction are then presented in further sub-sections 

and compared. Because of the samples’ low thickness, guided 

waves propagation is considered for some of the measured 

signals, further below called plane 1–2; Whereas bulk waves 

one can find three different theoretical bulk wave modes: 

Quasi-Longitudinal, a fast Quasi-Transversal 1 and a slow 

Quasi-Transversal 2. The QL has a polarization primarily 

parallel to the direction of n, whereas the QT has a polariza- 

tion primarily perpendicular to the direction of n. 

In order to use this Christoffel’s equation to describe the 

relation between the velocities of wave propagation inside the 

material and its stiffness components, these components must 

not depend on the position inside the material i.e. the material 

must be considered as a homogenous medium [26]. There- 

fore, the wavelength of the propagating wave must exceed 

the smallest microstructural features of the undamaged com- 

posite i.e. the fibers. 

From an experimental point of view, the velocity of waves 

traveling through the sample is obtained by calculating the 

time delay δt , whether positive or negative measured using 

an experimental set-up in transmission, visible in Fig. 15b . 

The latter provides the difference between the time of flight 

(ToF) of the wave from the emitter to the receiver with the 

sample and the time of flight of the ultrasonic waves in water 

(without the sample). So, a first wave time travel measure- 

ment, without the sample, needs to be performed and used 

as a reference. Then, the two following equations are used to 

calculate, respectively, the refraction angle θr and the wave 

phase velocity VP: 

measurement in transmission are treated for the remaining 

part of the measured signals, propagating in what we will 

call, further down, the plane 1–3. The procedure is described 
θr  = atan 

1 
sin (θi ) 

\

cos (θi ) − V0 δt
 

(3) 

in the following sub-section. The difference in approach is of 

course linked to whether waves propagate as guided waves 

in the plate or pass through as bulk waves. 

Vp = V0 sin (θr ) 
(4)

 
sin (θi ) 

4.1 Principle of the Method 

The main idea of this method is to measure the velocity 

of wave propagation at different incidence angles on dif- 

ferent principal planes. Indeed, it can be shown that, for 

plane waves, the velocity of wave propagation trough a solid 

homogenous medium is a function of the stiffness and den- 

sity of the sample via the following equation, also known as 

the Christoffel’s equation: 

The values are calculated for all considered incidence angles 

in the plane 1–3 (defined in Fig. 15b). 

Because of the dimensions of the samples, measurements 

of bulk waves in transmission in plane 1–3 were performed 

but not in the plane 2–3. In order to have sufficient measure- 

ments to compute at least 7 stiffness constants, additional 

measurements in the 1–2 plane, (azimuth plane defined in 

Fig. 15a), were performed. Indeed because of the small thick- 

ness of the sample, bulk wave measurement in transmission 

cannot be done since it may cause the sound passing by the 

( 

p δ 
\ 

Ul

= 0 (2) 
sample and not passing through the sample while rotating 

the emitter-receiver couple. As a consequence, the ultrasonic 

waves propagating in this plane are guided waves that are 

Where C is the stiffness tensor, n is the vector normal to 

the plane of the wave (i.e. n is a vector in the direction of 

phase propagation), ρ is the material’s density, V is the phase 

velocity, U is the polarization vector of the mechanical wave 

and δ is the Kronecker delta symbol. 

Depending on the incidence angle, various wave modes 

may appear. Indeed, by solving the Christoffel equation, 

described by other sets of equations. 

Indeed, one must be sure that correct descriptors of the 

acoustic fields inside the plate are considered. For the first 

arriving pulse passing through the plate along the shortest 

(straight) path between two transducers facing each other, 

plane waves are considered responsible of the measured 

through transmitted pulse. However, guided waves or later 
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Fig. 15 Schematic 

representation of the two planes 

of interest: a the plane 1–2 or 

azimuth plane and b the plane 

1–3 

arriving pulses caused by multiple scattering phenomena can- 

not be described as plane waves. 

In the plane 1–3, considered first, such bulk plane wave 

approach is acceptable and typically performed, however 

when guided waves are therefore used in the plane 1–2, we 

are obliged to use more complicated expressions for guided 

waves that will be described further below. In fact, guided 

waves, contrary to the bulk waves described above, are known 

to be dispersive, and accordingly their phase velocities are 

function of the frequency and sample thickness, in addition 

to the material properties. In addition, this dispersive effect 

induces a phase velocity and a group velocity of the guided 

waves modes different from one another which affect the 

interpretation of measured signals. 

Although theoretically they can be linked through the 

same Christoffel’s equation through a plane wave expansion 

of the acoustic field, experimentally one must take caution 

as to not confuse one by the other. 

Specific experimental procedures must be used if mea- 

surements of the first or the second velocity is required. 

Group velocity is usually obtained by ToF measurements on 

a specific peak in the wave signal for two distances between 

emitter and receiver (or time-delay measurement). An exper- 

imental set-up different from the first one presented and 

group velocity. However, when the time of arrival is used in 

the Sect. 5.2, a phase shift is then extract as is and not convert 

to velocity. 

The two experimental set-ups are depicted in Fig. 15. The 

relation between the frequencies and the group/phase veloc- 

ities is usually represented on dispersion curves. They were 

computed for propagation in the considered composite sam- 

ple along the direction of the fibers using the commercially 

available Disperse software and are visible in the Fig. 16. The 

frequency spectrum of every recorded signal is also carefully 

measured to compare the experimental results with numeri- 

cal dispersion curves. 

Because guided waves propagation along off-principles 

planes will be considered, the guided wave equations, in 

explicit format, are needed to be given for a monoclinic stiff- 

ness tensor. The latter is obtained with a rotation along the 

axis 3 at a chosen angle of the orthotropic stiffness matrix. 

In this case, the equations of motion are defined with the 

following systems of equations. Please note that for more 

details about the guided waves characteristic equations the 

reader can refer to the book of Nayfeh [29]. 

∂2u ∂2u ∂2u 
depicted in Fig. 15a is used for acquiring the phase velocities 

C11
 1  

+ C44
 1  

+ C55
 1

in the plane 1–2. This set-up in immersion using two trans- 

ducers in pitch-catch, both at a chosen incidence/reflection 

∂ x 2 
 

 

∂2u1

∂ x 2 
 

∂2u2

∂ x 2 

∂2u2 ∂2u2

angle, can be used to measure the phase velocities [27,28]. 
The phase velocities VLWP, in the plane of the plate, for Lamb 

+ 2C14 ∂ x  ∂ x + C14
∂ x 2

 + C24
∂ x 2

 + C56
∂ x 2

 

waves, are then obtained with the use of the Snell’s law with 

θr  = 90◦ i.e. equation (4) transforms into: 
(C12 + C44) ∂2u2

∂ x1∂ x2

+ (C13 + C55) ∂2u3

∂ x1∂ x3

V 
V0

(5) 

Lwp = 
sin (θ )

∂2u3

+ (C34 + C56) ∂ x ∂ x
 

∂2u1

=  ∂ t 2
(6) 

i 
C14

∂2u1 

∂ x 2 
+ C24 

∂2u1 

∂ x 2 
+ C56 

∂2u1

∂ x 2 

For each azimuthal direction of propagation (ψ) in the 1– 

2 plane, the incidence angle is adjusted in order to find the 

same guided wave mode at every acquisition. If the time of 

+ (C12 + C44) 
∂2u2

∂ x1∂ x2

+ C44 
∂2u2

∂ x 2 

+ C22 
∂2u2

∂ x 2 

arrival would be used, as in the bulk wave approach, then one has to remember that this time is actually 
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Fig. 16  Dispersion curves computed with the Disperse software for guided wave propagation in a 1.53mm thick studied composite along the fibers 

direction. a Phase velocities, b group velocities 

∂2u3

+ (C23 + C66) ∂ x ∂ x
 

∂2u1 

∂2u1

=  ∂ t 2
(7) 

∂2u1

And 

D1q = C13 + C34 Vq + C33αq Wq

(C13 + C55) ∂ x ∂ x
 + (C34 + C56) ∂ x ∂ x

 D2q = C55

(
αq + Wq

) 
+ C56αq Wq 

∂2u2

+ (C34 + C56) ∂ x ∂ x
 

∂2u2

+ (C23 + C66) ∂ x ∂ x
 

D3q = C56 

(
αq + Wq

) 
+ C66αq Wq (12) 

∂2u3

+ C55
∂ x 2

∂2u3

+ C66
∂ x 2

∂2u3

+ C33
∂ x 2

The amplitude ratio Vq and Wq are given by 

1 

∂2u3

2 3 

∂2u3 V 
U2q q = 
U1q 

and  W 
U3q

q =
U1q (13) 

+ 2C56 ∂ x  ∂ x   
= ∂ t 2

(8) 

An overdetermined minimization problem can then be 

Based on those wave equations the following guided waves 

characteristic equations can consequently be obtained: 

A = D11 G1 tan (γ α1) − D13 G3 tan (γ α3) 

defined. This problem is classically solved by considering 

a least squares method approach and using a Levenberg- 

Marquardt  algorithm.  The  stiffness  components  can  be 

obtained by minimizing the functional F 
(
Ci j 

) 
defined as:

+ D15 G5 tan (γ α5) = 0; 

for the antisymmetric modes

(9

) 

F 
(
Ci j 

) 
= [Vex p − Vnum 

(
Ci j 

) 
2
 

] , 

n 

S = D11 G1 cot (γ α1) − D13 G3 cot (γ α3) 

+ D15 G5 cot (γ α5) = 0; 

for the symmetric modes (10) 

wi th n : t he number o f ex per i ment al velocities 

(14) 

αq;q=1,3,5 being the solution of the wave equations when the 
displacement field is of the forms u j  = U j ei ξ (x1+αx3−ct ). 

Here U j  is the wave amplitude, c is the guided wave phase 
velocity, ξ is the wavenumber and γ = ξ d/2 = π fd/c where 

d is the sample’s thickness and f the wave frequency. 

Finally Gi and Diq are given by: 

G1 = D23 D35 − D33 D25

G2 = D21 D35 − D31 D25 

G3 = D21 D33 − D31 D23 (11) 



The numerical velocities are determined by solving 
the 

Christoffel equation and the guided waves 

characteristic equations for a given set of Ci j . In order 

to avoid finding a local minimum solution, it is important 

to initiate the algo- rithm with a first guess of Ci j that is 

relatively close to the real solution. 

In this paper, the initialization values of the 

algorithm are calculated by periodic homogenization 

computation [30], they are indicated in Table 5. The 

values of identified stiff- ness components depend on this 

initial guess but also on the number of experimental 

velocities considered and the num- ber of principal planes 

investigated. Therefore it is necessary 
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Table 5 Comparison between numerical and experimental results of the stiffness constants for undamaged glass fiber reinforced woven composite 

C11 C12 C13 C22 C23 C33 C44 C55 C66

Numerical (periodic homogenization)   20 2.1 1.5 20 1.5 4.5 2.3 1.3 1.3 

Experimental 22.21 (0.2) 2.57 (0.15) 1.41 (0.76) 21.81 (0.08) – 4.1 (0.07) 2.33 (0.09) 1.58 (0.21) – 

The numbers between parentheses are the confidence intervals 

Fig. 17  a Emitted pulse signal and spectrum b for a 2.25 MHz center frequency transducer. The experimentally mesured center frequency is about 

2.1 MHz 

to estimate a confidence interval, ci(i), for each component 

of the identified stiffness matrix. It was proposed by Audoin 

et al. [31] to use the covariance matrix φ to obtain statistical 

information of the deviation from the analytical solutions for 

each stiffness component. This covariance matrix is calcu- 

lated as: 

rt ∗ r t 1 

to satisfy the homogenous media hypothesis. The shape and 

the spectrum of the emitted pulse are represented at Fig. 17. 

4.2 Application to Sets of Samples Oriented at 0◦

from the Warp Direction 

The composite is considered as orthotropic prior to loading 

and remains so even after the damage induced by the tensile 

φ = 
n
 

∗ ([J] 
− 

∗ [J])− (15) 
loading. The elastic linear behavior of the composite can be

described using nine stiffness components. However, con- 

where: [J] = ∂Ci j 
is the Jacobian matrix, r is the vector 

sidering the dimensions of the sample, only measurements 
in two principal planes were performed as illustrated in Fig. 

of the residual values i.e. the functional evaluated with the 

identified solution, n is the number of experimental velocities 

and m is the number of stiffness parameters to be identified. 

The values of confidence interval can then be extracted 

from the diagonal terms of the covariance matrix. 

ci (i ) = 
j
φ i i      (16) 

The acquisitions were carried out using a customer-designed 

five axes immersion scanner fabricated by Inspection Tech- 

nology Europe BV. The pulses were emitted by the dual 

pulser-receiver DPR500 made by JSR ultrasonics. The exper- 

imental data were acquired with Winspect software and were 

post-processed with Matlab. An immersion Panasonic trans- 

ducer with a central frequency of 2.25 MHz was used in order 

15. These measurements only permitted obtaining seven out

of nine stiffness components. It was observed that along the 

plane 1–3, quasi longitudinal and quasi transversal mode 1 

can be measured. For the plane 1–2, on which guided waves 

propagate, the frequency and phase velocity of the trans- 

mitted signal was measured. Consequently, after comparison 

with the dispersion curves in Fig. 16, the mode S2 was prop- 

agating in the composite. 

Before running the optimization procedure for obtaining 

the stiffness constants, a computation of the expected velocity 

as a function of the incidence angle was performed. The quasi 

longitudinal, the quasi transversal 1 and the quasi transversal 

2 modes propagated in the 1-3 principle plane were calculated 

for a refraction angle ranging from 0 to 90◦ . This computa- 

tion was based on the stiffness matrix obtained by periodic 



Fig. 18  Comparison of numerically and experimentally determined propagation wave velocities. The experimental values are represented by points 

whereas numerical values are represented in continuous line. a Plane 1–3; b Plane 1–2 or azimuth plane 

Fig. 19  Evolution of seven of the stiffness constants, function of the tensile stress, with the increase of the loading for the 0◦ configuration of 

sample with their respective confidence interval 

homogenization (Table 5). The computed velocities were 

compared to those obtained experimentally for the undam- 

aged sample. The same calculation was made for Lamb wave 

propagation in the 1-2 planes, more particularly for the S2 

mode. The comparison of experimental and analytical veloc- 

ities of wave propagation is illustrated in Fig. 18. It confirms 

that the mode experimentally measured corresponds to the 

actual wave mode that was assumed to propagate in the com- 

posite material. 

For the undamaged sample oriented along the warp direc- 
tion (0◦), the experimental stiffness constants were close 

to the numerically obtained results as observed in Table 5. 

The evolution of the stiffness constants is plotted in the Fig. 

19 with their respective confidence interval. Furthermore, it 

was noticed that the global evolution of the stiffness compo- 

nents was close to the results discussed by Hufenbach et al. 

[9]. An important decrease of the components C11 and C13 

was noticed, whereas a smaller decrease of C12 and C55 and 



almost no change of C33, C22 and C44 compared to the other 

stiffness components is remarked (Fig. 19). 

One can then conclude that the components depending on 

the loading direction (direction 1), namely C11 and C13 were 

more affected by the damage. The component C12 was also 

impacted by the damage but at a lower extent. 

4.3 Application to Sets of Samples Oriented at 45◦

from the Warp Direction 

In the 45◦ configurations, another propagation plane, named 

X-3 is considered (defined in Fig. 20). The latter is oriented at 

45◦ from the plane 1–3 used in the 0◦ configuration. Indeed, 

when the sample is oriented at 45◦ from the warp direction, 

the axis of the sample will correspond to the axis of the plane 

X-3. The different planes of propagation are illustrated in the 

Fig. 20. The X-3 plane is not a principal plane of the compos- 

ite but remains an axis of symmetry in its undamaged state. 

The same procedure can then be applied. However, when sub- 

mitted to tension at 45◦ from the warp direction, the damage 

induced in the sample can introduce loss in elastic symmetry. 

This can be provoked by the fiber’s reorientations or unex- 

pected micro cracks perpendicular to the loading direction; 

even though the Fig. 14b indicates that the majority of the 

damage is appearing along the two fiber axis (i.e. −/ + 45◦). 
Therefore, to describe the elastic behavior of the samples 
oriented at 45◦ with respect to the warp direction, thirteen 

stiffness components are necessary. The Christoffel equa- 

tion is consequently modified by considering C56, C14, C24 

and C34components for the stiffness tensor. However, ultra- 

sonic measurements in four planes are needed to have a good 

estimation of these thirteen stiffness components. Some non- 

negligible errors may result from this limitation in the number 

of measurements. 

The evolution of the stiffness components is plotted in Fig. 

21 with their respective confidence interval. During the first 

steps of the loading, the components that are a function of the 

loading direction (especially C11 and C13) did not change at 

Fig. 20 Schematic representation of the different propagation planes 
of ultrasonic waves. For samples in the 0◦ configurations, the planes 
1–3 and 1–2 were used. For the samples in the 45◦ configuration, the 

plane X-3 and 1–2 (or azimuth plane) were used 

all, but they dropped drastically after 61.1%σ UTS45◦ . The 

shear components C44 and C12 were of course impacted 

from the beginning of the test. The components C33 and C55 

did not really change during the tensile tests. This led to a 

very different damage behavior compared to the other sam- 

ple configurations. Some minor changes were observed for 

the C56, C14, C24 and C34 components. However, the con- 

fidence interval was very large when compared to the other 

stiffness components. This is explained by the lack of mea- 

surement in two additional planes as mentioned earlier. The 

major impact from the loading on the shearing components 

was clearly detected with the present method. Furthermore, 

this was in agreement with the damage mechanisms observed 

in the previous section. Indeed, it is worth recalling that the 

fiber buckling was caused by the reorientation of the fibers 

which was induced by important local shearing in the meso- 

structure. 

This method can be used to obtain non-destructively the 

evolution of the stiffness components on a structure sub- 

mitted to various complex solicitations schemes without 

performing post-loading tensile tests. This is a significance 

help for non-destructive damage evaluation. 

In the present ultrasonic study, a complete 3D characteri- 

zation of the stiffness tensor for different damage states was 

obtained via the velocity of wave propagation through the 

composite material. An anisotropic evolution of damage dif- 

ferent from one another was observed for each of the both 

samples configurations. In addition, the sensitivity of the cho- 

sen method to detect and quantify different damage scheme 

was verified. However, it is necessary to note the influence of 

cracks closed effect that may reduce the amount of damage 

that can be efficiently quantify. Even if X-ray tomography 

results indicated the presence of an increasing amount of 

defects, the stiffness reduction measurements in the present 

study were only representative of the cracks that remain open 

after unloading to zero force. As mentioned earlier, the 0◦

configuration might be concerned by this effect at a higher 
extent than the 45◦ configurations. 

It is clear that this leads to an excessive amount of infor- 

mation that may be difficult to analyze quickly in terms of 

global damage state. For this reason, two damage indicators 

are considered in the next section to provide information that 

could be more easily interpreted in terms of global damage 

state of a sample. 

5 Proposition of New Ultrasound Based 
Damage Indicators 

In the previous section it was shown that damage growth can 

be detected and quantified via measurement of wave veloc- 

ities. This allowed obtaining an almost complete stiffness 

tensor for each sample. However, it still remains difficult to 
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Fig. 21  Evolution of seven of the stiffness constants with the increase of the applied stress level for different 45◦ configuration of sample with their 

respective confidence interval 

compare the damage state between the different samples. The 

post processing time to obtain the stiffness constants can be 

long, so it is interesting to identify a method that can quickly 

estimate the damage state of the studied material by using the 

ultrasonic signal directly. In this study, a scalar variable as 

damage indicator is proposed that is applicable in the indus- 

try as a practical tool. Usually in the field of ultrasonic, the 

damage estimation is based on the amplitude attenuation, 

which is extracted from the raw ultrasonic results (transmit- 

ted time signals) presented in the previous section. However, 

it is not really efficient in the present case because it exhibits 

important oscillations when increasing the loading. There- 

fore, another damage indicator is necessarily required. 

Two damage indicators are presented in this section. The 

first is the Frobenius norm of the computed stiffness and the 

second is based on the phase angle shift between wave signals 

propagated through a damaged and an undamaged sample. 

5.1 Frobenius Norm of the Stiffness Tensor Based 
Damage Indicator 

The Frobenius norm of a tensor is defined as follows: 

N f (C) =   tr ace 
(
C ∗ C

) 
(17) 

With C: the stiffness tensor and C : its conjugate transpose. 

Taking into account that a proper damage indicator should 

have a cumulative evolution with the increase of the damage 

state, the following damage indicator is adopted: 

D I1 = abs 
(

N f (C)− N f 0 (C0)
) 

(18) 

where N f 0 is the Frobenius norm of an undamaged sample’s 

stiffness matrix and C0 is the undamaged sample’s stiffness 

matrix. It is recalled that the Frobenius norm actually com- 

putes the norm of the eigenvector of the matrix C. This is 
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Fig. 22  Evolution of the Frobenius norm of the stiffness matrix for the two configurations of samples a 0◦ and b 4 5◦ function. In c data of both 

configurations are plotted for comparison purpose 

more convenient for this study compared to the quadratic 

norm or the largest singular value that does not take into 

account all the components of the eigenvector. 

The resulting evolution of the Frobenius norm is plotted, 
for the configuration 0◦ and 45◦ , in the Fig. 22a, b respec- 

tively. The Fig. 22c with the two configurations is plotted for 

an easy comparison. A global increase of the indicator for 

both cases was clearly observed as expected. Furthermore, it 

was noticed that the indicator increases moderately faster for 

the 45◦ than for the 0◦ configuration. This aspect is consistent 

with the different response of the samples when submitted 
to tension, since the behavior is ductile for 45◦ and brittle 
for 0◦ . The propagation of more cracks in the 45◦ samples 

was observed by mCT as presented in Sect. 3. The indicator’s 
value of the 45◦ sample loaded at 91.6%σ UTS45◦ is actually 
even higher than the corresponding one for the 0◦ sample 

loaded at 92.6%σ UTS0◦ . 

5.2 Phase Shift Based Damage Indicator 

The global shape of the transmitted signal remains mostly 

unchanged whatever the damage severity at this frequency 

range as it can be observed in Fig. 23. The phase shift of the 

signal is therefore considered as a pertinent choice to quan- 

tify damage state evolution. The non-evolution of the global 

shape of the signal is induced by the choice of a frequency 

with which the composite sample is considered as homoge- 

nous. It is worth mentioning that the time shift corresponds 

Fig. 23 Response of ultrasonic signals that propagates through the 1–3 
plane, at 0◦ of incidence, of a 0◦ undamaged sample and loaded at a 

stress level of 150MPa 

is possible. This was demonstrated in Sect. 5, and is an impor- 

tant advantage of the proposed damage indicator. Therefore, 

as for the previous indicator, the average of all incidence 

angles of the phase shift was calculated. An increase of the 

phase shift of the signals induces an increase of the damage 

indicator. The phase shift indicator is calculated as follow: 

nmax

to change in phase or group velocity depending on the case 

when they are different from each other, as visible in Fig. 16. 

1 

DI2 = 
n 
∗ 

   1 

 
abs

( 
ph (n) − ph   (n)

) 
, (19) 

0 

However, the damage indicator that is determined is not an 

extraction of that velocity but is used as is. 
This shift is of course function of the wave propagation 

ph (n) = 
  

sp 
∗

t 

⎛ 

ph (t , n) (20) 

I m 
(
H(t , n)

\ ⎞

velocity change that was seen to be effective for quantifying 

damage, as shown in Sect. 4. In addition, by considering mul- 

tiple incidence angles, an anisotropic investigation of damage 

ph (t , n) = atan ⎝ ⎠ = I m 
(
Log 

(
H(t , n)

\\ 
,

Real  H(t , n) 

(21) 



Fig. 24  Absolute phase angles evolution with increasing tensile stress to the sample for a 0◦ and b 45◦ configuration of sample. In c data of both 

configurations are plotted for comparison purpose 

Fig. 25  Proposed ultrasonic damage indicators. a Evolution of Frobenius Norm and b Phase shift indicator. Those indicators a plotted for the sets 
of samples oriented at 0◦ and 45◦ from the warp direction and function of the normalized applied stress level 

with n the considered incidence angle; sp the sampling points 

of the evaluated signal; H (n) the Hilbert transform of the 

signal responsefor a given n. 

The evolution of this proposed damage indicator for the 
two samples configurations 0◦ and 45◦ is respectively plotted 

in Fig. 24a and in Fig. 24b. In the Fig. 24c, the evolu- 

tion of the damage indicator is plotted for the two samples 

configurations for comparison purpose. The Fig. 24 points 

out that the damage measured, using the phase shift indi- 

cator, for the sample in the 45◦ configuration loaded at 

stress level of 91.6%σ UTS45◦  reach a level of 0.9. This is 

clearly higher than the damage level of 0.3 measured on 

the sample in the 0◦ configuration and loaded at a stress 

level of 92.6%σ UTS0◦ . This was also observed with the first 

damage indicator based on the Frobenius norm depicted 

in Fig. 22. It must be emphasized that the proposed dam- 

age indicator is a relative estimation of the damage with 

respect to a reference state, which is generally the undamaged 

state. The experimental procedure and arrangements must be 

rigorously identical when performing the ultrasonic wave 

measurements both on the undamaged composite sample 

and on the damaged one. Indeed, issues with the align- 

ment of the transducers or the measurement triggering could 

induce errors in the signals comparison and lead to inaccurate 

diagnosis. 

The two proposed ultrasound based damage indicators 

(DI1 and DI2) are respectively plotted in Fig. 25a, b. As illus- 

trated in this figure, the evolution of the Frobenius norm for 



Fig. 26  Damage indicators used as validation tools. a Damage estimated on the elastic modulus reduction and b Void volume fraction. Those 
indicators a plotted for the sets of samples oriented at 0◦ and 45◦ from the warp direction and function of the normalized applied stress level 

the two sets of samples is very close, until an applied stress 

ratio of 30%σ UTS0◦ . Beyond this ratio, the Frobenius norm 

for the 45◦ samples has a faster evolution than that of the 0◦

samples. For the phase shift based indicator, the difference 

between the two samples orientations is more pronounced. 

For an applied stress ratio of 12%σ UTS0◦  on the 45◦ sam- 

ples the value of DI2 reach 0.32 which is close to the highest 
value reach for the 0◦ samples. Globally, the two new ultra- 

 

sound based damage indicators reveal a higher increase of 
the damage state for the samples oriented at 45◦ from the 

warp direction. 

The estimation of damage based on the elastic modulus 

reduction determined in Sect. 2 as well as the void volume 

evolution from the X-ray mCT measurements presented in 

Sect. 3 are respectively plotted in Fig. 26a, b. This figure 

presents the experimental results used as validation for the 

new indicators. They indeed exhibit a similar damage evo- 

lution as function of the applied stress ratio with a higher 

increase for samples in the 45◦ configurations. It must be 

noted that the kinetic growth of damage is better predicted 

by the proposed phase angle shift indicator when compared 

to those two validation criteria. 

6 Concluding Remarks 

The anisotropic evolution of damage in polymer based woven 

composite material is strongly affected by fiber orientation 

and loading direction. This leads to the appearance of various 

damage mechanisms that influence the structural integrity 

differently. The development of nondestructive evaluation 

techniques is therefore necessary to determine the possible 

degradation of composite components on-site in a very appli- 

cable fashion, in service. These techniques should, however 

simple, still be sensitive to different damage state evolution 

schemes. 

The present study and results aimed at detecting and quan- 

tifying the anisotropic evolution of damage with ultrasonic 

techniques. More specifically polyamide 6.6/6 reinforced 

with 2/2 twill weave glass fabric samples, preliminary dam- 

aged by stepwise increase interrupted tensile loading, were 

used. Two sample configurations were considered: (i) sam- 

ples oriented at 0◦ and (ii) at 45◦ from the mold flow direction 

(corresponding to the warp direction). This choice was based 

on the knowledge of the different behavior between the two 

orientations, which is from brittle to ductile. The decrease of 

the elastic modulus was also measured for every considered 

stress level and used as a first validation result for the pro- 

posed damage indicators. A higher evolution of damage was 

observed for the samples oriented at 45◦ from the warp fiber 

direction. 

After highlighting the limitations of classical ultrasonic 

C-scan imaging to detect early damage state, X-ray mCT has 

been used to observe the different damage mechanisms such 

as matrix cracking, micro-buckling and fiber breakage. The 

void volume fraction was also measured on all considered 

samples. From the first experimental results, it was observed 

and confirmed that the largest damage mechanisms appear 



on samples in the 45◦ configuration. Those samples exhib- 

ited also a higher increase of void volume fraction than the 
samples oriented at 0◦ from the warp direction. 

Measurements of the stiffness components on several 

samples previously damaged at different levels were also 

performed based on ultrasonic methods. A clear evolution of 

the stiffness components’ values was observed even for the 

lowest damage state considered. Both studied samples con- 

figurations actually exhibit a response that differs from one 

another. However, it may be difficult to have evident informa- 

tion on the global damage state from the full stiffness matrix. 

It was proposed to consider scalar variables, obtained using 

results from the same ultrasonic method, as damage indi- 

cators. . It may be true that scalar variables in general lack 

extensiveness compared with higher dimensional vector or 

tensor variables, but if what they represent as information 

is functional as damage indicator then they can be used in 

the industry. The Frobenius norm of those stiffness matrixes 

was firstly used as a damage indicator. A damage indicator 

based on phase angle shift was also proposed to estimate 

the damage. The information delivered by those two damage 

indicators showed similarities with the results given by void 

volume fraction evolution and elastic modulus reduction. In 

other words, the samples oriented at 45◦ from the warp direc- 

tion exhibited a higher damage increase with increasing the 
loading level than the samples in the 0◦ configuration. How- 

ever, the kinematic increase of damage of the two studied 

configurations of samples was more successfully evaluated 

by the phase angle shift damage indicator, if referring to the 

tensile tests and X-ray mCT results. 

The presented ultrasonic method provides an appropriate 

approach to evaluate the global damage state of a compos- 

ite material reinforced with a complex fabric. Now that the 

method is effective under laboratory condition on standard 

samples, the next step is to validate the method on more 

complex automotive parts. The proposed method requires 

adaptations for practical applications. It must be robust in 

order to provide good repeatability of the measurement to 

avoid measurement errors that could alter the quality of the 

damage evaluation, such as wrong ultrasonic transducers’ 

alignment and measurement triggering. An investigation of 

the method’s sensitivity with air-coupled transducer could 

also be considered. Indeed, for more practical applications of 

the damage evaluation procedure on assembly lines, immer- 

sion of samples in water should be avoided to improve the 

method’s applicability. 
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