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Abstract 

This paper presents a response-only structural health monitoring (SHM) technique that 

utilises cepstrum analysis and artificial neural networks (ANNs) for the identification of 

damage in civil engineering structures. 

The method begins by applying cepstrum-based operational modal analysis (OMA), which 

separates source and transmission path effects to determine the structure’s frequency 

response functions (FRFs) from response measurements only. Principal component analysis 

(PCA) is applied to the obtained FRFs to reduce the data size, and structural damage is then 

detected using a two-stage ensemble of ANNs. 

The proposed method is verified both experimentally and numerically using a laboratory two-

storey framed structure and a finite element (FE) representation, both subjected to a single 



excitation. The laboratory structure is tested on a large-scale shake table generating ambient 

loading of Gaussian distribution. In the numerical investigation, the same input is applied to 

the FE model, but the obtained responses are polluted with different levels of white Gaussian 

noise to better replicate real-life conditions. The damage is simulated in the experimental and 

numerical investigations by changing the condition of individual joint elements from fixed to 

pinned. In total, four single joint changes are investigated. 

The results of the investigation show that the proposed method is effective in identifying joint 

damage in a multi-storey structure based on response-only measurements in the presence of 

a single input. Because the technique does not require a precise knowledge of the excitation, 

it has the potential for use in online structural health monitoring. Recommendations are given 

as to how the method could be applied to the more general multiple-input case. 
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Introduction 

The concept of structural health monitoring (SHM) was developed in the 1960s and is applied 

today by infrastructure owners and authorities to assess the health condition of a structure and 

to prolong its lifespan. All civil structures have finite lives, and they begin to deteriorate as 

soon as they are put into service, due to processes such as corrosion, fatigue, erosion, wear and 

overloading. Thus, early and reliable damage detection and health assessment is critically 

important to ensure the safety and reliability of ageing structures and to prevent catastrophic 

failures of essential civil infrastructure. 



SHM most commonly employs local and offline assessment techniques, with visual 

inspection being the most widespread method, followed by local non-destructive testing (NDT) 

techniques such as stress wave, ultrasonic wave, X-ray, magnetic field, radiography or thermal 

field methods (1). Most of these practised techniques, however, are very labour intensive and 

time consuming (2), and often disassembly of secondary parts is required to gain access to vital 

load-bearing structural elements. Global techniques, on the other hand, monitor the behaviour 

of the entire structure, which is influenced by local changes, and hence, by solving an inverse 

problem, they detect, locate and evaluate damage with minimal labour and cost, and without 

requiring access to the damaged sites. Due to these benefits, during the last two decades, a 

major focus of SHM research has been to develop global NDT techniques, particularly ones 

that can be applied remotely and without supervision, thus making them suitable for online 

SHM applications. As such, vibration-based techniques have received much attention for their 

effectiveness and practicality (3). Typical vibration-based parameters used for SHM include 

both indirectly measured data – such as resonant frequencies, mode shapes, modal flexibilities, 

modal stiffness and modal strain energy – and directly measured data – such as time domain 

data, power spectral densities and frequency response functions (FRFs) (1). Most developed 

vibration-based techniques are based on forced impact testing with known excitation forces 

and indirectly measured response data derived from experimental modal analysis (EMA). The 

disadvantage of such methods is that they cannot be used for most online SHM as they require 

precise knowledge of the excitation forces, which typically involves the interruption of 

operational activities either to measure the applied forces or to apply a known force, and they 

involve the application of EMA, which is labour intensive and sensitive to human-induced 

errors. Ambient-vibration-based methods, on the other hand, can operate solely on output-only 

response signals of a structure, thus making them very attractive for automated online SHM. 

In these methods, a structure is typically excited naturally by ambient loading from sources 



such as traffic, wind, or micro-earthquakes (4). The advantage of using ambient sources is that 

once a monitoring system is installed, it continuously measures the structural response and 

records data, without the need for interrupting operations such as traffic flow. A shortcoming 

of using ambient vibration excitation for SHM and damage detection is, however, that the 

excitation forces can usually not be measured, and therefore, traditional EMA methods cannot 

be applied for the identification of modal parameters. Due to this limitation, a large amount of 

research has been conducted on developing operational modal analysis (OMA) techniques that 

can extract dynamic characteristics from response-only measurements, and on the application 

of such techniques to vibration-based damage detection (5-7). Unfortunately, most ambient-

vibration-based methods developed to date fail to determine reliable dynamic characteristics 

and to satisfactorily detect damage in real-life structures. A major challenge in OMA and 

response-only damage detection is to separate excitation and transmission path effects in 

response measurements to allow for the determination of relevant structural properties. One 

way to achieve this source-path separation is with the cepstrum, which is able to deal with 

‘frequentially smooth’ (not just frequentially white) inputs. 

Since its original conception in the 1960s for the detection of echoes in seismic time signals 

(8), the cepstrum has been used in a wide variety of fields, such as audio processing, radar and 

medical imaging (9). The first use of the cepstrum as a source-path separation tool seems to 

have been in speech analysis (10), and applications of OMA to simple structures have been 

researched for many years, with Randall and Gao developing the field throughout the 1990s 

(11-13). Cepstrum-based OMA works by first isolating the part of the response signal 

dominated by transmission path effects and then, via a curve-fitting approach, obtaining the 

poles and zeros of the transfer function, from which the system’s FRFs can be generated. 

Randall and Gao used this approach on a simple steel beam, and they showed that very accurate 

FRFs could be determined from response-only measurements (11-13). Since the derived FRFs 



are sensitive to structural changes, they contain damage-relevant information and can thus be 

used to detect damage. While cepstral source-path separation techniques have been used on 

some mechanical structures (14, 15) and on a simple steel beam, their use for online SHM of 

civil structures remains unexplored. 

The use of FRFs derived from forced impact testing with known excitation forces, on the 

other hand, has been investigated for the damage detection and SHM of civil structures for the 

past two decades by several researchers. Choudhury and He (16) presented a method to locate 

damage based on directly measured FRF data from impact testing. The researchers introduced 

a Damage Location Vector (DLV) that is calculated using FRF measurements from the 

damaged system and an undamaged model. The damage is located by applying dynamic 

expansion methods. The method was successfully verified by a numerical and an experimental 

study on a frame structure. The researchers Sampaio, Maia and Silva (17) proposed to use FRF 

curvature data for damage detection. Their presented method was an extension of the Mode 

Shape Curvature Method by Pandey et al. (18) and uses absolute differences in FRF curvatures 

between the undamaged and damaged states of a structure obtained from forced impact testing. 

The researchers validated the method with a numerical study of a lumped-mass system and an 

experimental study using data from a real bridge (the I-40 bridge over the Rio Grande in New 

Mexico). They showed that their FRF-based method performs well in detecting and locating 

damage, even in the presence of noise. It was however reiterated that the method required 

further development for better damage quantification. Ni, Zhou and Ko (19) presented an 

experimental investigation of seismic damage identification of a 38-storey building model 

using FRFs, Principal Component Analysis (PCA) and neural networks. A 1:20 scale 

reinforced concrete structure was tested on a shake table by exerting successively enhanced 

ground earthquake excitations to generate different levels of damage. PCA was performed on 

the measured FRFs to reduce their dimension and to eliminate noise, and the compressed FRF 



data were subsequently used as inputs to neural networks. The results demonstrated that, 

provided a sufficient sensor distribution is employed, a quite satisfactory evaluation and 

localisation of damage is obtained. The authors further found that compared to the direct FRF 

method, the PCA-compressed FRF method provided much higher identification accuracy in 

assessing the damage. 

This paper aims to address the gap between using FRFs obtained from forced impact testing 

with known excitation forces, and FRF data obtained from ambient vibration excitation with 

response-only measurements. The paper proposes the use of cepstrum-based OMA to 

determine FRFs for use as damage indices for the identification of damage in structures based 

on response-only measurements. The proposed technique is applied to a two-storey framed 

structure with various cases of joint damage. PCA and neural network ensemble techniques are 

used to extract damage features in the cepstrum-based FRFs and to identify the damage. To 

enhance embedded damage features in the derived FRFs, residual FRFs, which are differences 

in FRFs between the undamaged and the damaged structure, are determined. PCA techniques 

are employed to compress residual FRFs to a few principal components (PCs) to generate 

suitable input data for neural network training and damage detection. In order to analyse 

measurements obtained from different locations, an innovative two-stage hierarchical system 

of artificial neural network (ANN) ensembles is trained to evaluate damage patterns in the PC 

data. The proposed method is verified on both experimental and numerical models of the two-

storey framed structure. Joint damage is simulated by changing the condition of individual joint 

elements of the structure from fixed to pinned. To consider real life applications and to 

investigate the robustness of the method to noise, the ambient vibration responses obtained 

from the numerical model are polluted with different levels of white Gaussian noise up to 10% 

noise-to-signal ratio. 



In a previous study conducted by the lead author, a similar damage detection algorithm 

based on FRFs, PCA and network ensembles was successfully applied to a numerical and 

experimental two-storey framed structure under forced impact excitation. From this 

investigation, it was found that the proposed damage detection algorithm was capable of 

accurately and reliably detecting damage from forced impact loading (20, 21). The method is 

now extended in this study to damage detection with ambient vibration excitation, increasing 

its potential for application in continuous online SHM. A recent paper by the authors presents 

more details on the numerical investigation using response-only measurements (22). 

Background on cepstrum-based operational modal analysis 

Operational modal analysis 

This paper makes use of operational modal analysis, which differs from the more widely-

known experimental modal analysis in two important respects. Both techniques involve the 

experimental determination of a structure’s dynamic characteristics (e.g. resonances, damping 

and mode shapes), but unlike EMA, OMA is: 

 based on response-only measurements, without precise knowledge of the excitation 

forces acting on the structure; 

 generally employed in operation, where the structure is subjected to real-life operating 

forces and conditions, rather than a laboratory environment. 

While OMA possesses a number of advantages over EMA, its reliance on response-only 

measurements requires different techniques in order to extract modal properties (23). Response 

measurements, of course, typically comprise both excitation and transmission path effects, and 

these need to be separated before the structural properties can be determined. Most established 

OMA techniques achieve this source-path separation by assuming the excitation to be 



frequentially white (24), but the cepstrum-based method employed in this paper relaxes that 

requirement, as discussed further in the following sections. 

The cepstrum 

Various definitions for the cepstrum exist (25); here we shall use the so-called ‘real cepstrum’, 

defined for a time signal x( t)  as: 

  1ˆ( ) logx F X f       (1)
 

and the ‘complex cepstrum’ as: 

  1ˆ ( ) logcx F X f       
(2) 

where X( f)=F[x( t)] is the (complex-valued) Fourier transform of x( t) . Table 1 includes a 

number of terms often employed when using the cepstrum. 

Table 1  Cepstrum terminology 

Frequency domain Cepstrum domain 

Frequency  Quefrency  

Spectrum  Cepstrum  

Filtering  Liftering  

High-pass filter Long-pass lifter 

Note that, being real-valued, the real cepstrum includes no phase information, so the original 

time signal is not recoverable after liftering in the cepstrum domain. However, the process from 

the amplitude spectrum to the real cepstrum is reversible, and so the amplitude spectrum can 

be obtained after cepstral editing (26), as exploited in this paper. The ‘complex’ cepstrum here 

is also real-valued, includes phase information, and is thus fully invertible, i.e., 𝑥(𝑡) can be 

recovered after liftering the cepstrum. 



Source-path separation 

For a linear time-invariant (LTI) system subjected to a single input x( t) , the system response 

y( t)  is the convolution of the input and the impulse response function h( t), i.e.: 

( ) ( ) ( ) ( ) ( )y t h t x t h t x t d 



       (3)

 

In the frequency domain, expressing the relationship in terms of the complex spectra (or Fourier 

transforms of the time records), the convolution becomes multiplicative: 

( ) ( ) ( )Y f H f X f   (4)
 

in which H( f)  is the FRF. For the real cepstrum the respective moduli can be used. Taking the 

log and the inverse Fourier transform, we obtain the cepstra, in which source and path effects 

are additive: 

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )     and     ( ) ( ) ( )c c cy h x y h x          (5)
 

Thus in circumstances in which the input occupies defined regions of the cepstrum, the source 

effects can easily be separated (via appropriate liftering) from those of the transmission path, 

which usually occupy a broader quefrency range. Examples of such inputs include frequentially 

smooth and flat forces, which are concentrated in the low quefrency region, such as a hammer 

blow, which does not have to be white (13). The working assumption of this study is that the 

ambient excitation of many structures would also satisfy this criterion. These types of inputs 

can be removed from the response cepstrum via long-pass liftering, leaving only the path 

cepstrum, from which the system’s FRF can be recovered. It should be noted that this is a much 

less restrictive requirement than the common white noise input assumption made by most other 

blind source-path separation techniques. 

The FRF obtained directly from the path cepstrum would generally contain considerable 

noise, but there exists an analytical relationship between the path complex cepstrum ĥc and the 



transfer function’s poles and zeros, and this relationship can be used to curve-fit the path 

cepstrum to obtain the poles and zeros, from which the FRF can be regenerated to within a 

scaling factor. 

For a sampled sequence, the transfer function of (4) can be expressed in the z-plane as: 

   

   

1
1 1

1
1 1

1 1
( )

1 1

N Nr zi zo
k kk k

N Npi po
k kk k

Bz a z b z
H z

c z d z


 


 

 


 

 
 

 (6)
 

where ak and ck represent the zeros and poles inside the unit circle, and 𝑏𝑘 and 𝑑𝑘 the zeros and 

poles outside the unit circle, respectively (where |a k | , |b k | , |c k | , |d k |<1). A stable minimum 

phase system (applies to many simple structures), however, contains only poles and zeros 

inside the unit circle, and, based on a more general expression by Oppenheim and Schafer (27), 

Gao and Randall (12) showed that for such systems the complex cepstrum corresponding to 

H(z )  can be expressed in terms of these poles and zeros: 

   
2 2

1 1

log 0

ˆ ( ) 2 cos 2 cos 0

0 0

N Npi n nzi
ck ak

c ck ak
k k

B n

A A
h n n n n

n n

n

 
 

 



  

 

   (7)
 

in which n is the quefrency index and where, for example, a pair of poles, ck, is represented by 

(2/n) n
ckA  cos(ωck n) in which Ack = |ck| and ωck = ck represent, for each pole, the damping and 

the damped natural frequency, respectively, and likewise for the zeros ak. Oppenheim and 

Schafer (27) showed that for a minimum phase system, the complex cepstrum ĥc (n) in (7) can 

be obtained from the two-sided real cepstrum, derived from the log amplitude spectrum only, 

by doubling its positive quefrency components and setting its negative quefrency components 

to zero. This has the advantage that, since only the spectrum amplitude is required, the response 

spectrum can be averaged (with Welch’s method, for example) to remove noise, and the phase 



does not have to be unwrapped. (Implicit in the above is that the Fourier transforms of (1) and 

(2) have been replaced by z-transforms in the calculation of the cepstrum.) 

Thus, according to the above, by curve-fitting a liftered form of the response cepstrum (to 

remove source effects), one can obtain the transfer function’s poles and zeros, from which the 

FRF can be regenerated to within a scaling factor (since B in (6) is not recovered from the 

curve-fitting process). However, the obtained FRF will be subject to magnitude distortion 

associated with truncation. This results from the use of an incomplete pole-zero model to 

represent the transfer function. Such models produce FRFs with the correct locations of poles 

and zeros in the considered frequency band, but are subject to the effects of out-of-band poles 

and zeros, which manifest as a distortion of the general slope of the regenerated FRFs. A 

number of techniques have been developed to overcome this distortion (28); in this study, 

however, the FRF scaling (both absolute and relative) is not critical as the proposed method is 

applied to a structure excited by a force with specified frequency characteristics that remain 

unchanged from test to test (discussed in the following sections). As such, unprocessed 

regenerated FRFs are used as damage indices, without the need for scaling or magnitude 

correction. 

It should be noted that the above arguments apply to single-input-multiple-output (SIMO) 

systems only, and a real-life structure would generally not strictly satisfy that requirement. The 

response of a multiple-input-multiple-output (MIMO) system is given by a sum of 

convolutions, which cannot easily be separated. In the frequency domain, the sum of 

convolutions becomes a sum of ratios of polynomials, of which the denominators are all the 

same. The summed numerator is another polynomial whose roots represent the zeros of the 

MIMO response. In other words, the contributions of the various inputs to the response of a 

particular point in a MIMO system are such that the poles will reinforce while the zeros, in 

general, will not. This means that the zeros of a MIMO response are dependent on the force 



distribution, so while they may contain information about structural condition, they could not 

be used for comparison unless the force distribution remained unchanged – a requirement that 

would be difficult to satisfy in many practical applications. This could perhaps be negated in 

practice by curve-fitting only the poles and not the zeros, the idea being that the system’s poles 

are where a great deal of structure-state information is likely to reside. This idea, however, is 

not explored further in this paper since the focus is a simplified SIMO structure, as explained 

in the following section. 

 

Test structure 

The proposed cepstrum-based damage identification method was validated on an experimental 

and a corresponding finite element (FE) model of a two-storey framed structure. The 

experimental structure was manufactured and tested in the Structures Laboratory of the 

University of Technology Sydney (UTS). To simulate ambient vibration, the structure was 

dynamically tested using a 3 × 3 m shake table with random white noise excitation. The 

matching numerical structure was modelled with the software ANSYS using transient analysis 

to simulate ambient excitation. Various cases of joint damage were simulated in the 

experimental and FE structures by changing the condition of connection joints from fixed to 

pinned. The structures used in the laboratory and numerical investigations are depicted in 

Figure 1 and Figure 3, respectively.  

Experimental investigation 

The experimental model of the two-storey framed structure consisted of two columns, two 

crossbeams and four joint elements. The structure had an overall dimension of 1,600 × 800 mm. 

The two columns were made of flat steel and had a cross-section of 65 × 5.5 mm and a height 

of 1,600 mm. They were mounted 800 mm apart to a base platform with two steel angles each 



creating a fixed connection. The two crossbeams were specially designed to allow an exchange 

of the joint elements (either fully pinned or fully fixed). The crossbeams consisted of a box 

section of 150 × 50 mm and were located at heights of 700 mm and 1,400 mm above the base 

connection. The steel had a modulus of elasticity of 200×109 N/m2, a Poisson’s ratio of 0.3 and 

a density of 7,850 kg/m3. The entire structure had a mass of approximately 87 kg. A photo of 

the structure displaying relevant dimensions and structural elements is shown in Figure 1 (a). 

To generate different data for appropriate generalised neural network training and testing, 

the experimental investigation was conducted with the structure in two different states. In the 

first state, the two columns were undamaged and in the second state, one of the columns was 

exchange with a damaged column, which had a cut with a width of 4 mm and a depth of 

32.5 mm (see insert in Figure 1 (b)). Thereby, data from two structures, which are structurally 

similar but not the same, are generated. Both structures were tested on a shake table with 

different joint damage scenarios and acceleration response data was recorded from ambient 

vibration excitation. In the data post-processing, the data from the structure with the 

undamaged column was used to train the neural networks, while the data from the structure 

with the damaged column was used to validate and test the networks with hitherto unseen data. 

Such an approach does not only test the recall ability of networks but provides a generalised 

validation of the proposed method with two unrelated data sets being used for network training 

and testing. 

 



 
 

 

(c) 

 

(a) (b) (d) 

Figure 1. Experimental two-storey framed structure. (a) Structural elements and relevant 

dimensions, (b)  accelerometer locations (1 to 4) and interchangeable joints (J1 to J4), (c) fixed 

joint and (d) pinned joint.  

 

To simulate joint damage, the four joint elements (J1 to J4, see Figure 1 (b)) that connect 

the crossbeams with the columns were interchangeable from fully pinned to fully fixed. In 

practice, joint changes are generally caused by environmental or ageing decay, such as 

corrosion or loosening of connections, and are a common and serious issue in aged civil 

engineering structures. For the fixed joint element, the shaft (shown in Figure 1 (c)) was welded 

to the body of the joint, providing a rigid connection. For the pinned joint element, a roller 

bearing was installed on the shaft, allowing the pin to rotate freely (see Figure 1 (c)). As the 

undamaged state of the structure, the four connections were all fixed joint elements (termed 

FFFF). Four scenarios of single joint changes were studied by replacing, one at a time, the four 

fixed joints with a pinned joint. For both structural states (with and without column damage), 

five different joint scenarios were investigated, as listed in Table 2.  
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Table 2. Investigated joint scenarios 

Joint scenario Damage state 
Joint condition 

J1 J2 J3 J4 

FFFF undamaged F F F F 

PFFF damaged P F F F 

FPFF damaged F P F F 

FFPF damaged F F P F 

FFFP damaged F F F P 

Note: F indicates a fixed joint and P a pinned joint 

 

To simulate ambient excitation, the structure was dynamically tested using a 3 × 3 m shake 

table. The unidirectional shake table facility at UTS can move in the horizontal direction via a 

hydraulic actuator with a maximum acceleration of 25 m/s2 (bare table), and a maximum stroke 

and piston velocity of ±100 mm and 550 mm/s, respectively. The structure was firmly mounted 

to the shake table and subjected to a random acceleration of Gaussian distribution, with a mean 

of 0 and a standard deviation of 0.07 m/s2. The acceleration time history of the excitation force 

is displayed in Figure 2 (a) along with its frequency spectrum in Figure 2 (b). For each 

investigated joint scenario, the structure was excited with the random loading for a duration of 

600 s.  



 

(a) (b) 

Figure 2. Ambient white Gaussian noise excitation, (a) acceleration time history and (b) 

frequency spectrum. 

 

For the duration of the excitation, the horizontal responses of the structure were measured 

with accelerometers along one of the columns at measurement locations ‘1’ to ‘4’, as indicated 

in Figure 1 (b). The sensors used were piezoelectric accelerometers of PCB model 352C34, 

having a sensitivity of 100 mV/g with a frequency range of 0.5 Hz to 10,000 Hz. The acquired 

time history signals were amplified and conditioned by a multi-channel signal conditioner 

(PCB model 483B03). For each test, the sampling rate was set to 400 Hz with a testing duration 

of 600 s, thus capturing 240,000 data points per test. Since it was desirable for ANN training 

to capture as many data sets as possible, the acceleration measurements were equally divided 

into five different sets to simulate five individual tests. Accordingly, the data of the divided 

acceleration time histories comprised a time record of 120 s and 48,000 data points. In total, 

for each structural state (with and without column damage), 25 data sets were recorded (5 joint 

scenarios × 5 data sets). The natural frequencies of the first seven modes of the undamaged 

state (without column damage and with four fixed joints) were determined for the experimental 

structure as 2.26 Hz, 6.89 Hz, 67.03 Hz, 67.03 Hz, 82.10 Hz, 98.90 Hz and 115.39 Hz. 

 



Numerical investigation 

The numerical model of the two-storey framed structure was created according to the 

dimensions and material properties of the experimental structure using the FE software 

ANSYS. First, the main bodies of the structure (i.e. column, crossbeam, joint element and base 

connection) were generated and then the individual bodies were connected by defining the 

contact regions. SOLID187 was used as the element type, which is a tetrahedral structural solid 

defined by ten nodes having three degrees of freedom at each node (i.e. translations in the nodal 

x, y and z directions). For the modelling of a fixed joint element (undamaged condition), the 

contact region between crossbeam and joint element was made rigid, as depicted in Figure 3 

(c)). For the pinned connection (damaged condition), the rigid contact region was replaced by 

a revolute joint connection (Figure 3 (d)). The revolute joint was constrained in five local 

degrees of freedom (UX, UY, UZ, ROTX, ROTY) and free in ROTZ, which allows free 

rotation around the z-axis. As with the experimental investigation, the structure was modelled 

in the undamaged state (with four fixed joints) and with four different joint damage scenarios 

where, in turn, each of the four fixed joints was replaced with a pinned revolute joint. 

  



 

 

 

 

 

 

   

(c) (d) 

 

(a) (b) (e) 

Figure 3. Numerical two-storey framed structure (a) front view, (b) side view, (c) fixed joint 

element, (d) revolute joint connection and (e) crossbeam. 

For the ambient excitation, the undamaged and damaged models were subjected to white 

Gaussian noise loading using transient analysis in ANSYS Classic. As with the experimental 

testing, a random acceleration of Gaussian distribution, with a mean of 0 and a standard 

deviation of 0.07 m/s2, was applied in the horizontal direction to the base of the structure. The 

ambient loading was applied for 600 s with integration time steps of 0.0025 s for a sampling 

frequency of 400 Hz. The horizontal displacement responses of the structure were recorded at 

the same locations (‘1’ to ‘4’, as indicated with crosses in Figure 3 (a)). From the displacement 

responses, acceleration data was obtained by double differentiation. To simulate real testing 

conditions and to generate different data sets for network training, the acceleration time 

histories were polluted with white Gaussian noise to simulate measurement noise interference 

experienced during experimental testing. In total, noise of four intensities (1%, 2%, 5% and 

10% noise-to-signal ratio) was added to the acceleration response time histories. As with the 

experimental data, the response time histories were divided into five sets of 120 s recording 

time each, giving a total of 100 data sets (5 joint scenarios × 5 data sets × 4 levels of noise 
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pollution). Since noise pollution of up to 10% noise-to-signal ratio already generates large data 

variations, it was not necessary for appropriate generalised neural network testing to introduce 

an additional structural state where a column was inflicted with damage. The natural 

frequencies of the first seven modes of the undamaged state (without column damage and with 

four fixed joints) were determined for the numerical model as 2.23 Hz, 6.50 Hz, 66.07 Hz, 

72.56 Hz, 90.20 Hz, 101.53 Hz and 130.30 Hz. 

 

 

Methodology 

Cepstrum analysis 

The previously-described cepstrum-based OMA theory was applied to the acquired data from 

the experimental and the finite element structure using MATLAB. First, the PSDs of the system 

response measurements were determined, from which estimates of the resonances and anti-

resonances were specified and used as initial values in the complex cepstrum curve-fitting 

process. Before curve-fitting, a rectangular long-pass lifter was applied to the response 

cepstrum, leaving that portion of the cepstrum dominated by transmission path effects. The 

FRFs were then regenerated by adding (in log amplitude) the individual contributions from the 

obtained poles and zeros. Note that because the input was white, the liftering process was not 

strictly required here, as the input would be (theoretically) represented by only the zero-

quefrency component, which defines only the absolute scaling. In practical applications, of 

course, liftering would generally be required because the colour of the input would not be 

constant. 

An example of a PSD and the corresponding cepstrum-based FRF from the undamaged 

laboratory structure are shown in Figure 4. Some amplitude distortion of the cepstrum-based 



FRF can be seen in the plot, a result of the truncation of out-of-band poles and zeros. 

Nevertheless, it is clear that the cepstrum FRF represents the measurements very well. 

 

  

(a) (b) 

Figure 4. (a) PSD and (b) cepstrum-derived FRF of the undamaged laboratory structure (FFFF) 

from averaged measurement points ‘1’ to ‘4’. 

Residual FRFs 

For illustration, the cepstrum-derived FRFs of the finite element structure in the undamaged 

case and four joint-damaged cases are shown in Figure 5 (a). From the displayed figure, it can 

be seen that the FRFs are quite distinct from one another. Resonant peaks not only shift or 

change amplitude, the different FRFs show completely new patterns with some new resonant 

peaks emerging and others disappearing. These changes of the resonant peaks in the FRFs 

reflect changes in the vibrational modes of the structure and can be used to detect damage.  

 



  

(a) (b) 

Figure 5. (a) Cepstrum-derived FRFs of undamaged and damaged cases, and (b) residual FRFs 

of damaged cases. Displayed are data from measurement point ‘2’ of 1% noise pollution. 

 

To extract and enhance the damage patterns embedded in the cepstrum-derived FRF data, 

the proposed method uses residual FRFs, which are differences in FRF data (in log amplitude) 

between the undamaged and the damaged structure. Residual FRFs are defined in Equation (8), 

with Hd (ω) being the FRF data from the damaged structure and Hund (ω) being the FRF data 

from the undamaged structure. 

( ) log ( ) log ( )d undResH H H           (8)
 

The corresponding residual FRFs of the cepstrum-derived FRFs displayed in Figure 5 (a) 

are shown in Figure 5 (b). From the figure, it is noted that residual FRF values closest to the 

frequency peaks are most affected by the damage. These unique patterns in residual FRFs were 

subsequently used to identify the damage. 

 

Principal component transformation 

To produce input parameters that are suitable for ANN training and to further extract relevant 

damage features in the residual FRFs, the application of Principal Component Analysis (PCA) 



is proposed in this study. The full-size residual FRF contained 1,025 spectral lines and covered 

a frequency range of 0 to 200 Hz. This corresponds to 1,025 input nodes in the neural network, 

which would cause severe problems in training convergence in addition to computational 

inefficiency. Therefore, the use of PCA is proposed to reduce the size of the residual FRFs as 

well as to extract damage patterns.  

PCA was developed by Pearson (29) and is one of the most powerful statistical multivariate 

data analysis techniques for achieving dimensionality reduction. It is a statistical technique that 

linearly transforms an original set of k variables into a smaller set of n (n ≤ k )  uncorrelated 

variables, the so-called principal components (PCs). Eigenvalue decomposition of the 

covariance matrix forms the basis of PCA. The direction of the resulting eigenvectors 

represents the direction of the PCs, which are weighted according to value of the corresponding 

eigenvalues. Each PC is a linear combination of the original variables. All the PCs are 

orthogonal to each other and form an orthogonal basis for the space of the data. The full set of 

PCs is equal to the original set of variables. By removing PCs of low power, a dimensional 

reduction is achieved without significantly affecting the original data (30). Besides the benefit 

of data reduction, PCA is also a powerful tool for disregarding unwanted measurement noise. 

As noise is a random feature not correlated with a global characteristic of the data set, it is 

represented by less significant PCs. Therefore, by disregarding PCs of low power, 

measurement noise is filtered out. 

In this study, for the PC transformation, individual matrices were formed from the data of 

each measurement point as well as averaged data (calculated by averaging the FRFs of 

measurement locations ‘1’ to ‘4’). The individual matrices contained all residual FRFs of all 

joint damage scenarios and all noise pollution levels. While the columns of the individual 

matrices were formed from the 1,025 spectral lines of the residual FRFs, the rows were 

assembled from the available data sets; i.e. 200 data sets for the laboratory investigation (4 



joint damage scenarios × 5 damaged joint data sets × 5 undamaged joint data sets × 2 column 

damage states), and 400 data sets for the finite element investigation (4 joint damage scenarios 

× 5 damaged joint data sets × 5 undamaged joint data sets × 4 levels of noise pollution). After 

PCA transformation, the 1,025 spectral lines of the residual FRFs were projected onto their 

1,025 PCs. To reduce the size of the PCA-transformed reduced residual FRFs, the most 

dominant PCs containing sufficient information to allow the identification of damage had to be 

determined, so the PCs of higher power were plotted for visual evaluation. As examples, Figure 

6 (a) and (b) display the first 15 PCs of the four joint damage scenarios from the experimental 

investigation (from measurement point ‘3’ and the undamaged column state) and the numerical 

investigation (from measurement point ‘2’ with 1% noise pollution), respectively. For each 

depicted scenario, three different data sets are displayed, each generated from a different time 

window in the response history. From the figures, it can be seen that for both the laboratory 

and the numerical investigation, the first four PCs show the most distinguishable patterns for 

the different joint damage scenarios. Also, for each joint damage scenario, the three data sets 

are grouped together, and thus they are represented by the same/similar PCs. Such clustering 

behaviour and the distinct PC patterns of the different joint configurations are ideal conditions 

for neural network based pattern recognition. From these findings, it was concluded that it was 

sufficient to use the first four PCs as input parameters for the ANN training. 

 



  

(a) (b) 

Figure 6. Principal components of residual FRFs of the four investigated joint damage cases 

for (a) the laboratory investigation (from measurement point ‘3’ and the undamaged 

column state) and (b) the numerical investigation (from measurement point ‘2’ with 1% 

noise pollution). 

Artificial neural network design 

For the laboratory and numerical investigations, a hierarchy of multi-layer back propagation 

neural networks was created to extract damage patterns from the derived PCA-transformed 

residual FRFs. For each type of data set (experimental and numerical), five individual networks 

and one network ensemble (fusing the outcomes of the individual networks) were designed. 

The five individual networks were trained with the first four PCs of residual FRFs. Four of the 

five individual networks were fed with data obtained from the four measurement locations (‘1’ 

to ‘4’) and one was fed with the data of averaged FRFs from locations ‘1’ to ‘4’. The network 

ensemble was trained with the outcomes of the four individual measurement location networks. 

The results of the individual averaged network were then compared against the results of the 

neural network ensemble to demonstrate the advantage of the network ensemble. The transfer 

functions used for all networks were hyperbolic tangent sigmoid functions. As a convergence 



algorithm, the conjugate gradient descent function was employed for all networks. The 

individual neural networks were designed with an input layer of four nodes, representing the 

number of selected PCs, and two hidden layers of six and five nodes. The network ensemble 

comprised 16 input nodes, which were the outputs of the four individual measurement location 

networks, and three hidden layers consisting of 12, 9 and 6 nodes. For the network outcomes, 

all networks were designed to categorise the conditions of the four joint elements as either fixed 

or pinned in a winner-takes-all fashion. As such, the network outputs comprised four output 

nodes. For example, the desired network output for joint condition PFFF was (1,0,0,0). The 

design of the two-stage neural network ensemble system is displayed in Figure 7. 

Figure 7. Design of two-stage neural network ensemble system. 

To avoid over fitting and to achieve generalisation, the input data was separated into training, 

validation and testing sets. While the network was trained with the training samples, its 

performance was supervised utilising the validation set to avoid over fitting. For the laboratory 

data, the full set of 100 samples of the structure with no column damage was used to train the 
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networks, while the set of 100 samples of the structure with column damage was divided into 

40 samples for validation and 60 for testing. For the numerical data, the 400 available samples 

were divided into a set of 240 samples for training and two sets of 80 samples for validation 

and testing. The data of the different noise pollution levels was equally divided among the 

training, validation and testing sets. The design and operation of all neural networks was 

performed with the software Alyuda NeuroIntelligence version 2.2 from Alyuda Research Inc 

(31). 

Process summary and implementation 

The proposed methodology is summarised in the flow chart in Figure 8. It should be noted that 

the process has the potential for automated implementation. However, this would require, in 

general, dealing with multiple-input cases (discussed previously), and also resolving practical 

issues such as determining the optimal number of principle components to use and developing 

an automated pole/zero search algorithm. Yet these practical issues hardly seem 

insurmountable. 



 

Figure 8. Process summary for proposed methodology. 

Results and discussions 

This section discusses the results of the proposed method applied to data from both the 

experimental and finite element investigations. The neural network outcomes for damage 

identification are presented in two tables and figures. The tables list the network performance 

of all trained networks; i.e. four individual neural networks trained with FRF data from 



measurement locations ‘1’ to ‘4’; one averaged neural network (‘Avg’) and one network 

ensemble (‘Ens’). The performance is given for the training, validation and testing sets in mean 

correct classification rate error (MCCRE), which is defined as the number of incorrectly 

predicted cases normalised by the total number of cases per set. The presented figures illustrate 

the network performance of the testing set outcomes subdivided by either joint damage 

scenarios (for experimental investigation), or by the four noise pollution levels (for numerical 

investigation). 

Note that both the tables and the figures from the experimental and numerical investigations 

are not exactly equivalent and so should not be compared directly. In the case of the tables, the 

MCCRE values for the numerical investigation are based on all noise levels, some of which 

clearly overestimate the level of noise in the laboratory data. These noise levels are included 

to test the method rather than to replicate exactly the laboratory findings. The figures, on the 

other hand, display different features; one shows the MCCRE of the experimental investigation 

as a function of the damage type, while the other shows the MCCRE of the numerical 

investigation as a function of the noise level. 

 

Results of the experimental investigation 

For the experimental investigation, the outcome performance of all trained neural networks is 

listed in Table 3. From the table, it can be seen that for the training set, the networks precisely 

predicted all studied damage cases. For the validation and testing sets, errors of under 8% were 

achieved, with the network of location ‘2’ even giving 0% error. While the averaged network 

produced results that were worse than the best individual network (i.e. network ‘2’), the 

ensemble network, which fuses the outcomes of all individual measurement location networks, 

achieved outstanding results with correct predictions for all investigated joint damage cases. 

 



Table 3. Network performance of training, validation and testing sets (in MCCRE [%]) of 

networks trained with data from the experimental investigation. 

Network ‘1’ ‘2’ ‘3’ ‘4’ Avg Ens 

Training performance 0.00 0.00 0.00 0.00 0.00 0.00 

Validation performance 2.50 0.00 7.50 5.00 2.50 0.00 

Testing performance 1.67 0.00 5.00 3.33 1.67 0.00 

 

For closer inspection of the testing set outcomes, Figure 9 displays the results of the testing 

samples subdivided by joint damage scenarios. From the figure it can be observed that the false 

predictions are across all four investigated joint damage scenarios, which indicates that there 

is no bias in the investigated joint damage cases. Network ‘3‘ obtained the poorest outcomes, 

with two wrong estimations for case ‘FPFF’ and one wrong estimation for case ‘PFFF’ (out of 

15 testing samples for each joint damage scenario).  

 

 

Figure 9. Network performance of laboratory investigation with column damage subdivided 

by joint damage scenario (testing data set). 

 



Results of the numerical investigation 

For the numerical investigation, the network results are listed in Table 4. The results are 

generally poorer than the outcomes of the experimental study, due to noise contamination of 

up to 10%, which is significantly larger than the noise level experienced in laboratory testing. 

The obtained neural network errors are under or equal to 10%. It can again be observed that 

the network ensemble achieves the best results, with 0% error for the training and validation 

sets and 1.25% error for the testing set samples. 

 

Table 4. Network performance of training, validation and testing sets (in MCCRE [%]) of 

networks trained with data from the numerical investigation. 

Network ‘1’ ‘2’ ‘3’ ‘4’ Avg Ens 

Training performance 0.00 2.92 0.00 7.08 0.42 0.00 

Validation performance 5.00 3.75 2.08 7.50 2.10 0.00 

Testing performance 7.50 8.75 2.50 10.00 2.50 1.25 

 

To study the influence of noise on the numerical damage identification, Figure 10 illustrates 

the testing performance of the networks of each of the four noise pollution levels. From the 

figure it can be seen that for data of 1% noise pollution, all networks correctly identify all joint 

conditions. While some individual networks produce some errors for 2% and 5% noise polluted 

data, the network ensemble again gives correct damage predictions. It is noted that the network 

trained with data from measurement location ‘3’ also achieves accurate identifications for 2% 

and 5% noise pollution. Overall, however, the network ensemble gives the best results - better 

than the individual location networks and the averaged network. These outcomes highlight the 

superiority of the network ensemble technique against the approach of simply averaging FRF 

data from different measurement locations. Further, it demonstrates the efficiency of the 



ensemble approach, which filters poor results from underperforming networks and gives 

outcomes that are at least as accurate as the best performing individual network.  

 

 

 

 

 

 

 

 

 

 

Figure 10. Network performance of testing data set of the numerical investigation 

subdivided by noise pollution levels. 

Summary and conclusions 

This paper presented a response-only damage identification method that uses cepstrum analysis 

for the regeneration of frequency response functions (FRFs) and artificial neural networks 

(ANNs) for the subsequent identification of joint damage in a multi-storey framed structure 

with a single input (base excitation).  

The proposed method was demonstrated on an experimental and a finite element (FE) model 

of a two-storey framed structure. Cepstrum analysis was applied to ambient vibration 

measurements to achieve source-path separation and to generate response-only FRFs. From 

these, residual FRFs were determined, which represent the difference in FRF data between the 

undamaged and the damaged structure. Principal component analysis (PCA) techniques were 



employed to extract damage features from residual FRFs and to compress large-size FRF data 

to make them suitable for neural network training. Embedded damage patterns in the FRFs 

were extracted using a hierarchical system of network ensembles to identify different joint 

damage cases in the structure. In the network ensemble, first, a number of individual networks 

were trained with data separated by measurement location, and then the outcomes of the 

individual networks were fused in the network ensemble to give final damage predictions.  

For the experimental investigation, two structural states were tested - in one state, the 

structure was inflicted with joint damage only, while in the other state, in addition to the joint 

damage, the structure was also subjected to column damage. This was done to generate data 

from two testing objects that are structurally similar but not the same. The two unrelated data 

sets were subsequently used for separate network training and testing in order to provide 

generalised validation of the proposed method. For the FE study, white Gaussian noise of up 

to 10% noise-to-signal ratio was added to the numerically generated ambient vibration 

measurements to simulate field-testing conditions.  

The results showed that the proposed method is capable of reliably and accurately 

identifying joint damage in a multi-storey building/structure based on measured responses to a 

single input. Recommendations are given as to how this could be applied to the more general 

multiple-input case. The method has great potential for practical applications as it enables the 

online monitoring of structures based on response-only measurements in situations where the 

applied forces are not precisely known. 
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