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Abstract: Damage in a plate in the form of a line crack contained in an element, and oriented at 

an arbitrary angle is detected using an inverse time domain formulation. The time domain 

acceleration responses need to be measured at certain locations. The crack damage is modeled 

using an equivalent orthotropic finite element scheme based on the strain energy equivalence 

principle. The principle is to minimize the difference between the measured and theoretically 

predicted accelerations. Since the computational effort of identification using the global finite 

element model of the plate proved prohibitive, the substructure method was used. The 

substructure was further condensed of the rotary DOF’s for increased computational 

improvement. In order to identify the location and magnitude of the damage variables, 

acceleration responses at the substructure interfaces and also a few selected points inside the 

substructure are required. Using numerically simulated experiments the crack was reliably 

detected using this method. The damage is identified with the addition of noise as well as at 

different forcing frequencies. The Genetic Algorithm (GA) and Particle Swarm Optimization 

(PSO) were used to solve the inverse problem. The PSO algorithm proved superior to GA in 

convergence and accuracy.  
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1. Introduction 

 

Inverse problems often occur in many 

branches of engineering fields where the 

values of certain physical model parameters 

are required to be recovered from observed 

data. System identification (SI) comes under 

the category of inverse problem. It is a 

process of determining the parameters of a 

system based on the observed input and 

output (I/O) of the system. The application of 

SI technique presented here illustrates the 

damage detection of a uniform thin plate 

based on the vibration data. Doebling et al. 

has presented a comprehensive survey of 

vibration based damage detection methods [1]. 

The development of modal analysis 

techniques for damage detections arose from 

the observation that the structural properties 

affect the natural frequencies, mode shapes 

and frequency response function (FRF) etc. 

Many researchers have used one or several of 

these characteristics to detect and locate 

damages in the structures. Young Shin Lee 

and Chung used the first four natural 

frequencies of the cantilever beam to identify 
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a designated crack [2]. Wang et al. presented 

a damage detection scheme in which static 

deformations and natural frequencies of 

planar trusses and beams are applied with an 

interactive optimization algorithm to assess 

the location and severity of specific damages 

[3]. Hwang and Kim used subset of vectors 

from full set of FRFs for a few frequencies 

measurements to detect the location and 

severity of damages [4]. Araujo et al. 

proposed damage identification method based 

on FRF sensitivities [5]. The damage 

identification was performed on a laminated 

rectangular plate, discretized using a finite 

element (FE) model.  Lee et.al  has shown 

that damage in the form of a crack in an 

isotropic small material volume can be 

represented by an equivalent continuum 

model with orthotropic properties, producing 

the same strain at the boundaries [6]. This 

model was used in a study to predict crack 

damage in a plate using frequency response 

data [7]. Surface crack detection in composite 

laminates by modal analysis and strain energy 

method was carried out in [8]. Here the FE 

model of a composite laminate was obtained 

using ANSYS and the results were validated 

using experiments. In order to deal with the 

computational effort in identifying systems 

with many unknowns which result in large 

DOF (Degree-of-Freedom) models  Koh et 

al., proposed a substructure system 

identification scheme [9]. They also present a 

summary of various substructure approaches 

used in parametric system identification in the 

time-domain. An ideal substructure method is 

one which could identify all parameters in a 

given substructure without the need to 

estimate or know any parameters outside that 

substructure. Also, all the measurement 

sensors must be confined inside that specific 

substructure. 

With recent rapid advances in computer 

hardware and improved computational 

methods, application of SI as an inverse 

problem for damage detection has grown 

rapidly. Random search intelligent algorithms 

such as Genetic Algorithms (GA) and Particle 

Swarm Optimization (PSO) have been applied 

in system identification [9, 10, 11] due to their 

robustness and ability to handle many damage 

variables. 

This paper presents a new time-domain 

damage detection scheme based on  

substructure system identification method 

using GA or PSO to filter out the correct 

parameters from a given search domain. The 

algorithm estimates the damage parameters 

through minimization of an error function 

defined by mean squared error between the 

measured and estimated accelerations at all 

time steps and all locations. The measured 

values are obtained from an experiment; this 

is numerically simulated from a known model 

in this case. Estimated values are obtained 

from a known mathematical (i.e., finite 

element) model.   

2. T me domain substructure method 

Computational effort increases with the 

n

i

 

umber of parameters to be identified. It 

therefore makes sense to divide the structure 

into smaller substructures, for which 

numerical convergence can be achieved more 

easily. The time domain substructure method 

followed here is derived from [12]. The 

equation of motion for the complete structural 

system is given by, 

 

( ) ( ) ( ) ( )M x t C x t K x t P t+ + =&& &  (1) 

 

here M, C, K and P(t) are the mass, damping w

stiffness matrices and excitation force vector, 

respectively. The Raleigh damping approach 

where C aM bK= + , where α and β are two 

coefficients decided by the user from modal 

information of two modes. 

The partitioned equations for the structure 

shown in Figure1 are written as, 
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Figure 1. Global structure and substructure (S) of the plate 
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The subscript ‘j’ denotes all interface DOFs 

(i.e. f and g included). In the above form it is 

required to calculate the substructure interface 

displacements, velocities and accelerations. 

These interface accelerations  have to be 

obtained experimentally, and thereafter 

integrated to obtain the displacements and 

velocities. We also require the experimentally 

measured acceleration response u at a few 

interior points M.                                 

ju&&

 

where subscript  ‘r’ denotes internal DOFs 

of the substructure S, subscripts ‘f ‘ and ’g’ 

represents the interface DOFs, ‘u’ and ‘d’ 

represents DOFs of the remaining structure.  

The equations of motion for substructure S 

may be extracted from the above system of 

global equations,  
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The estimated (or predicted) accelerations 

 at those M points are obtained from the 

mathematical model from the left hand side of 

eq. (4).  Here experiments are numerically 

simulated from responses generated from a 

known numerical model and may be 

artificially polluted with Gaussian noise of 

zero mean and 3% standard deviation for 

realism. Using an optimization algorithm such 

as GA or PSO we try to minimize the  

following fitness (objective) function, which 

is the sum of the square of deviations between  

the measured and estimated interior 

 

The above equation can be rearranged to 

bring the ‘interior’ partitions to the left and 

interface effects in the form of a force on the 

right , 
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tions at all locations and all time steps, 
2

1 1
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=
∑∑ && &&

 (5) 

 

here subscript ‘m’ and ‘e’ denote 

rpresentation of a crack using  

 

Based on continuum damage mechanics 

p

 thickness h and the 

w

w

measurement and estimated quantities 

respectively, L is the number of time steps and 

M is the number of measurement sensors used. 

Ideally it must be minimized to zero, but 

usually it approaches a small value close to 

zero. 

  

3. R

orthotropic damage model 

rinciple  it is shown in [6] that a small 

material volume (SMV) with a line crack 

behaves as effectively orthotropic in a small 

zone. A small material volume with a crack 

can be represented as an equivalent 

continuum model with orthotropic properties 

producing the same strain at the boundaries of 

that volume. Thus the material behavior of the 

SMV with a line crack is expressed in terms 

of the effectively orthotropic elastic stiffnesses, 

which are the functions of the isotropic elastic 

stiffnesses, crack orientation and the size of 

the line crack. Thus, a change in the local 

elastic stiffness from initially isotropic to 

effectively orthotropic can be considered as 

the indicator of damage.  

An elastic thin plate with

idth Lx and Ly in x- and y- directions, 

respectively (Figure 2) is considered in 

present study. The intact plate material is 

isotropic and posses Young’s modulus E and 

Poisson’s ratio ν. Assume there is line crack 

of length 2l at (xD , yD) and aligned with the 

crack coordinate ‘1’ which is oriented at θ 
with respect to the global coordinate x. The 

effective elastic stiffness D

ijQ  for the SMV 

containing a line crack d age is can be 

shown to be, 

 

am

) ( , 1, 2,6)D

ij ij ije i j =D  (6) 

 

ij are the reduced stiffness for the 

(1Q= −Q

where Q

intact is opic material in the plane stress 

state and eij are the effective material 

directivity parameters, given by 
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igure 2. (a) Initially isotropic plate with a line 

 

Thus D represents the averaged severity of 

d

F
through-crack and (b) its equivalent 
continuum damage representation in 
terms of effective orthotropic elastic 
stiffness 

amage within an SMV, which is called 

herein the effective damage magnitude. The 
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effective damage magnitude 0 <D < 1 is 

defined by, 
2 0'h lπ ⎧

=D
for intactstate                       

1 for complete material failure4xyh
⎨
⎩

 (8) 

 

here h’= depth of the crack and h= w

thickness of plate;  thus for a through crack 

h’=h. The effective orthotropic elastic 

stiffness D

ijQ given by equation (6) are all 

measured with respect to the crack 

coordinates 1 and 2. Thus, the effective elastic 

stiffness with respect to the global coordinates 

x and y can be obtained by using the 

coordinate transformation as follows: 

 

( ) ( )T DQ TQ T θ θ=  (9) 

 

here T(θ) is the coordinate transfer matrix, 

. Genetic algorithm and particle swarm  

 

Genetic Algorithms are exploration 

a

on (PSO) is a 

p

1 1( 1) ( ) ( ) [ ( ( ))]

( ))]

i i i i i

i i

v k k v k p x k

k

w

in which θ denotes the crack orientation 

(degrees) with respect to the global coordinate 

x. This approach has been implemented in a 

MATLAB based Finite Element model. 

Cracks of properties D and θ are assumed to 

be fully contained in one of the elements.  It 

is also assumed that the crack does not 

propagate and the damping behavior remains 

unchanged. The proposed damage detection 

scheme has to identify location of the 

damaged element as well as the magnitude 

(i.e., Dand θ values) of the crack contained by 

it. The range of possible values are 0<D<1 

and 0<θ<90
0
. 

 

4

optimization 

lgorithms based on the mechanism of natural 

selection and survival of the fittest. GA 

combines the explorative ability of large 

search spaces as well as reasonable guided 

search. GA creates an initial random sample 

within the specified domain of variables, 

called ‘population’. It then ranks them in the 

order of fitness and conducts crossover 

operations from among a pool of ‘parents’ 

through the Roulette wheel selection. Parents 

having higher fitness have a greater 

probability of being selected and their 

offspring contribute to the next generation. 

GA can be programmed in the Binary or 

Continuous versions. Here, GA in the 

continuous (decimal number) version is used. 

It has been indicated in [13] and [14] that 

continuous GA is superior to binary GA in 

computational performance. 

Particle swarm optimizati

opulation based continuous optimization 

technique developed by Eberhart and 

Kennedy, inspired by the social behavior of 

bird flocking or fish schooling[15]. The 

system is initialized with a population of 

random solutions and searches for optima by 

updating generations. However, unlike GA, 

PSO has no evolution operators such as 

crossover and mutation. In PSO, the potential 

solutions, called particles, move through the 

problem space by following the current 

optimum particles. The basic PSO algorithm 

consists of the velocity and position equation: 

 

+ ϕ

2 2[ (G x

α γ
α γ

= + −
 (10) 

 
( 1) ( ) ( 1)i i ix k v k

+ −

x k + = + +  (11)          

 

 - particle index 

dex 

le 

particle/ present 

orically best position/solution found 

ly best position/solution found 

n the interval (0,1) 

An inertia term φ and acceleration constants 

α

 

i 

k  - discrete time in

v -   velocity of i
th

 partic

x -   position of the i
th

 

solution 

pi -  hist

by i
th

 particle 

G - historical

among all the particles.  

γ1,2 – random number i

applied to i
th

 particle 

 

1,2 are also included. The inertia function is 

commonly taken as either as a constant or as a 

linearly decreasing function from 0.9 to 0.4. 
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The acceleration constants are usually set 

equal to 2.  The  values used in this paper 

for PSO parameters are referred from [16].  

There are some indications from previous 

s

. Condensation 

Model condensation, whereby the number of 

D

6. A numerical example 

A simply supported thin aluminum plate 

with the following material properties is used 

as an example: thickness h= 0.004 m, 

dimension Lx= Ly = 0.5 m, Young’s modulus E 

= 72Gpa, Poisson’s ratio ν = 0.33 and mass 

density 2800 kg/m
3
. The length of the line 

crack and its orientation are arbitrarily chosen. 

For example in one case the line crack is 

0.032 m is located at the center of the plate, 

and orientation angle θ is 45
0
. To compute the 

elastic stiffness  D

ijQ  for a damaged zone 

(SMV), the dimension of the finite element is 

chosen as 2 2x y= = 0.04 m so that the 

effective dam gnitude for a crack length 

of 0.032 becomes D = 0.5. Table 1 shows the 

detailed comparison of natural frequencies of 

the intact and damaged plate at different 

damage orientations, while keeping D at 0.5. 

The natural frequencies have reduced in 

magnitude due to presence of crack damage 

and they are also dependent on damage 

orientation. 

One fourth

tudies of the superiority of PSO over GA. 

For example the parameters of a Lorenz 

chaotic system were estimated using PSO [11]. 

It was found that PSO converges to the exact 

value with a high population size and was 

more computationally efficient than GA with 

the same population. Likewise a 10-dof 

structural dynamic model was identified using 

frequency response functions by GA and PSO 

- the latter was found to be superior to the 

former in accuracy and speed [17]. 

 

age ma

 of the plate (top right corner) is 

t

100t) N 

a

5

 

OF’s in a model are reduced, is applied to 

the finite element model for faster 

computational performance. In this paper the 

rotational DOF’s in the interior of the 

substructure are condensed out. There are two 

popular schemes viz., (a) static or Guyan 

reduction scheme-GRS [18] and (b) the 

iterative improved reduction scheme-IRS [19] 

which is based on dynamic condensation 

requiring more computational effort. In GRS 

the rotational slave degrees of freedom are 

condensed out in the assumption that in the 

lower frequency modes their inertia forces are 

much less than those of the master DOFs. The 

errors in calculating the first 30 natural 

frequencies of the undamaged plate (used in 

the following numerical example) were 

calculated using both GRS and IRS and it was 

found that  GRS errors were only about 3% 

for the 30
th

 natural frequency and were 

considered acceptable for the study. The range 

of the forcing frequency used here is also 

within the first few modes. The IRS errors 

were of course much smaller but at the 

expense of significant computational effort. 

 

aken as a substructure as shown in Figure 3. 

The full plate is divided in to 144 (12×12) 

finite elements and the substructure consists 

of 36 finite elements (6×6). Each node of the 

finite element has three DOFs, viz., one 

transverse DOF and two rotational DOFs. The 

damage identification analysis is conducted to 

determine the damage magnitudes and 

orientations of all the finite elements. 

A point harmonic force of 10sin (2π
pplied at the centre of the plate. The 

excitation frequency (100Hz) is above the 

first natural frequency of 77Hz. In the 

example considered here D = 0.5 and θ =45
0
.  

The experiment is numerically simulated 

using a known mathematical model as 

mentioned in section 2. The synthetic 

responses of the numerical model are first 

calculated at all the interface and four interior 

points (see Figure3) in terms of displacement, 

velocity and acceleration using Newmark’s 

method with constant time step of 0.001 sec 

for 2 seconds using the harmonic force. 
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Section 6.1 discusses the case where the effect 

of noise in acceleration measurements is 

ignored, and Section 6.2 takes into account 

signals with Gaussian noise of zero mean and 

3% standard deviation, and another forcing 

frequency of 200Hz. 

 

 

Table 1. Natural Frequencies of Simply Supported plate with different crack orientations θ 
             (Damage  magnitude (D)= 0.5) 
 

Mode No. Intact θ = 00 θ = 150 θ = 300 θ = 450 

1 77.529 75.441 75.302 75.019 74.876 

2 193.24 192.09 191.83 191.24 190.83 

3 193.24 192.94 192.98 193.02 193.01 

5 386.35 370.77 368.62 364.8 362.95 

10 657.49 652.57 653.81 654.98 654.97 

20 1163.5 1162.6 1160.3 1154.1 1149.5 

30 1661.8 1653.5 1654.1 1652.9 1650.6 

 

 

(3, 4)  

 

Figure 3. Aluminium plate with damaged element (3,4) inside the substructure  
            Acceleration measurement points at substructure interface and interior 

 

6.1. Global and substructure approaches 

 

Four situations are studied here viz., 

identification with: 

a) uncondensed substructure matrix  

b) condensed substructure matrix  

c) uncondensed global matrix  

d) condensed global matrix.  

The performance of GA and PSO is also 

compared here. 

Table 2 shows the summary of DOF’s in the 

substructure. The substructure consists of 36 

elements with 147 DOFs. PSO parameters are 

set as 1000 particles (swarm size), maximum 

50 generations (iterations), a linearly 

decreasing inertia function from 0.9 to 0.4, 

and acceleration constant set to 2. GA is also 

set to 1000 particles with crossover rate of 

40% and mutation rate of 1%. These 

algorithms have to identify a total of 72 

unknowns, viz., 36 damage magnitudes and 

36 damage orientations for each finite 

element. 

First we consider the case of the 

uncondensed quarter substructure. The 

damage identification results are shown in 

Figure 4 in a three-dimensional chart form, at 

various stages of iteration (1
st
, 25

th
 and finally 
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the 30
th

 iteration after convergence occurs). 

The data for D are shown on the left hand and 

θ on the right hand side. PSO has identified 

the location of the damage i.e., element (3, 4) 

with damage magnitude, D = 0.53 and 

damage orientation, θ = 44.2
0
 at the 30

th
 

generation.  The accuracy is good 

considering the exact values of D = 0.5 and θ 
= 45

0
. 

To show the fast convergence of PSO 

algorithm compared with GA, the same 

problem has been solved by minimizing the 

fitness function by GA, as shown in  Figure 

5. The identification of damage by GA at the 

30
th

 iteration, is far from converged to the 

final values, compared to the situation with 

PSO of the same population size and number 

of generations. 

 

Table 2. Summary of DOFS of the substructure 
 

  Substructure 

    
Full Structure 

With out condensation With condensation

Total DOFs 507 147 75 

No. of interface DOFs  --- 39 39 

No. of internal DOFs  --- 108 36 

No. of unknowns 144 36*2 36*2 
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Figure 4. (a): Damage identification-PSO 1st Generation 
 

1
2

3
4

5
6

1

2

3

4

5

6

0

0.2

0.4

0.6

Element Number

Element Number

D
a
m

a
g

e
 M

a
g

n
it

u
d

e D = 0.53

   
1

2
3

4
5

6

1

2

3

4

5

6

0

20

40

60

Element Number

Element Number

D
a
m

a
g

e
 O

ri
e
n

ta
ti

o
n θ = 43.3

0

 
 

86    Int. J. Appl. Sci. Eng., 2009. 7, 1  



Damage Identification of a Thin Plate in the Time Domain with Substructuring-an Application of Inverse Problem 

Figure 4. (b): Damage identification - PSO 25th Generation 
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Figure 4. (c): Damage identification-PSO 30th (final) Generation 
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Figure 5. Damage identification-GA at 30th generation 
 

Next, Figure 6 shows a typical example of 

convergence fitness function of PSO 

compared with GA with respect to 

generations. The trend in decrease of the 

fitness value appears to be the same for both 

algorithms until the 5
th

 generation. Thereafter 

GA has been stuck in a local optima where as 

PSO is converging at a fast rate towards the 

global minima. GA continues to converge 

very slowly; it needs more generations to 

reach the global minima of zero. Thus, PSO 

has proved to have a good convergence and 

accuracy compared to GA. Hence in the 

examples hereafter only PSO is used to 

identify damage. 
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Figure 6. Comparison of convergence of PSO and  
GA 

 
Next we compare the convergence and 

accuracy of identification when using the 

condensed substructure matrix. The same 

PSO parameters as in the previous case are 

used here. The saving in computational time 

when using this approach is shown in Table 3. 

The total time taken to identify the condensed 

structure is 1333 seconds, which includes 218 

seconds taken up by the Guyan reduction and 

the remainder by various other operations. 

This may be favourably compared to 2248 

seconds (total) for the uncondensed 

substructure, which results in about 40% 

savings of computational effort. 

Using the condensed matrix, Figure 7 (a) 

and (b) shows that PSO has identified exactly 

the location of the damage i.e., element (3,4) 

with damage magnitude D = 0.48 and damage 

orientation θ = 46
0
, whereas actual damage 

variables are D = 0.5 and θ = 45
0
. However it 

has taken almost 50 generations to obtain the 

same accuracy which was obtained in 35 

generations in the previous case of 

uncondensed substructure. This could be 

attributed to the Guyan approximation in 

condensation. The following Figure 8(a) and 

(b) show the  convergence of  identification 

of damage index D and orientation angle θ  

for the  damaged element (3,4) and a 

neighboring undamaged element (2,3) for 

comparison. The slower convergence of the 

orientation angle θ as compared to damage 

index D is also seen here. Both indices finally 

converge to zero for the undamaged element. 

Next the method of Global structure damage 

identification is attempted. The same PSO 

parameters are used as in above examples. 

The total numbers of unknown damage 

parameters in the uncondensed Global matrix 

is quite large: namely 144 damage magnitudes 

and 144 damage orientations (total of 288) for 

all the 144 elements (Ref Table.4). Thus there 

are 288 optimization variables in the PSO 

algorithm which would definitely appear 

beyond its numerical capabilities. Table 4 also 

gives the time taken for 50 iterations under 

these circumstances, which are 18 hours for 

the uncondensed matrix and 7.32 hours for 

the condensed matrix. 

Figure 9 shows the poor convergence of 

fitness function when using the Global model 

(condensed and uncondensed). The fitness 

function is not minimized to anywhere close 

to zero in the specified 50 iterations. 

Understandably in this case, the estimated 

values for D and θ (shown for element (3, 4) 

in Table 5) is very poor in accuracy. This 

example shows the efficiency of substructure 

methods. 

 

Table 3. Reduction in CPU time with condensing internal DOFs of the substructure 
 

Total time GRS  
Method (sec) (sec) 

Total saving in time  

(%) 

Uncondensed 2248  --  -- 
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Condensed 1333 218 40.7 

 

Table 4. Summary of DOFS of the Full Structure 
 

Full Structure   

  With out condensation With Condensation 

Total DOFs 507 169 

No. of unknowns 144*2 144*2 

Computational time (hrs) 18.16 7.32 
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(b) Identified after 50 generations 

 

Figure 7. Damage identification for condensed substructure using PSO 
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Figure 8. Convergence of (a) damage magnitude (b) orientation of elements 
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This section very briefly looks at two cases 

(a) the acceleration measurements are 

polluted by Gaussian noise of zero mean and 

3% standard deviation and (b) additionally the 

harmonic excitation is changed to a new 

frequency of 200 Hz. The cases are studied 

using the condensed substructure approach. 

The plate properties and damage case are the 

same as in section 6.1 i.e., the crack damage 

variables are D = 0.5 and θ = 45
0
 and occur in 

element (3, 4). Figure 10 shows the 3-D 

damage identification chart using PSO at the 

50
th

 generation for case (a). It is seen that due 

to presence of noise, D and θ are predicted as 

0.46 and 43.5
0
 respectively (i.e., with 8% and 

5.5% error). Also quite a few other 

undamaged elements have not converged to 

zero values of D and θ. Figure 11 shows the 

slow convergence of the fitness function for 

this noisy case compared to the zero-noise 

case studied in section 6.1. 
 

Figure 9. Objective function convergence: Global   
Next Figure 12 shows the same type of 3-D 

damage identification plot for case (b) i.e., at 

200Hz excitation. Due to presence of noise, 

here D and θ are predicted as 0.55 and 48.6
0
 

respectively (i.e., with 10% and 8% error). 

Here also quite a few other undamaged 

elements have not converged to zero values of 

D and θ. Figure 13 shows the convergence of 

the fitness function at 200Hz excitation and it 

follows the same trend as Figure 11. 

uncondensed and condensed cases. 
 

6.2. Effect of noise and different forcing  

frequency 
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Figure 10. Damage identification with 3% noise and 100Hz excitation – PSO at 50th Generation. 
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Figure 11. Convergence of fitness function (100 Hz excitation) with 3% noise 
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Figure 12. Damage identification with 3% noise and 200Hz excitation – PSO at 50th Generation. 
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Figure 13. Convergence of fitness function (200 Hz excitation) with 3% noise 
7. Conclusions 

 

A time domain response based damage 

identification scheme  is applied to a thin 

uniform plate with a crack contained in a 

finite element. The isotropic element 

containing the crack is considered as an 

equivalent element with orthotropic properties 

producing the same strain at the boundary. 

The method was able to correctly predict the 

location as well as damage magnitude and 

angle of a crack using numerically simulated 

experiments on a finite element model. 

Damage identification using a global model 

of the plate was found to be prohibitively 

computationally expensive. A quarter 

substructure was identified and significant 

improvements in computational effort were 

noted. A 40% further saving in time was noted 

when the substructure was further condensed 

of the rotary DOF’s, The crack parameters 

were correctly identified when there was zero 

noise in the acceleration measurements, and 

with about 8-10% error when 3% noise was 

introduced. The method also works well for 

different forcing frequencies.The Particle 

Swarm algorithm was found to be superior in 

convergence and accuracy compared to the 

conventionally used Genetic Algorithm. 
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