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An approach to identify damage of bridge utilizing modal 
exibility and neural network optimized by particle swarm optimization
(PSO) is presented. 	e method consists of two stages; modal 
exibility indices are applied to damage localizing and neural
network optimized by PSO is used to identify the damage severity. Numerical simulation of simply supported bridge is presented to
demonstrate feasibility of the proposed method, while comparative analysis with traditional BP network is for its superiority. 	e
results indicate that curvature of 
exibility changes can identify damages with both single and multiple locations.	e optimization
of bias and weight for neural network by �tness function of PSO algorithm can realize favorable damage severity identi�cation and
possesses more satisfactory accuracy than traditional BP network.

1. Introduction

As important components of transportation infrastructure,
bridges are essential for normal operation of transportation
system. However, their loading capacities are threatened by
external environment (such as vehicles and temperature),
which reduces the level of security service.	erefore, it is nec-
essary to periodically monitor the health status of structure
[1]. Damage identi�cation is one of the major challenges in
bridge health monitoring. It can help to evaluate the safety
condition, prevent catastrophic collapse, and also provide
information for maintenance [2].

	e damages of bridge can be de�ned as any deviation
in structure’s original geometric and material properties [3].
	e reasons include reduction of structural sti�ness, material
cracks, and fatigue failure. A number of methods have been
proposed in the past two decades to detect and assess the
damage condition of bridge. Nondestructive methods such
as ultrasonic waves, X-ray, and stress waves have been widely
applied in practice considering their convenience and sim-
plicity. Most of these methods, however, rely on a presump-
tion of the determination of suspected damage regions and
are restricted for local detection.When applied to large struc-
tures, these methods are time-consuming and costly [4, 5].

Vibration-based damage identi�cation methods are
active in this research area, which, as compared to local non-
destructive methods, does not require the a priori knowledge
of damage locations. Damage can be detected based on
changes in natural frequencies and mode shapes, which can
be regarded as global methods. 	e techniques are based
on the theoretical basis where damages alter the physi-
cal properties of bridge (e.g., mass, sti�ness, and damping).
Furthermore, the dynamic characteristics (e.g., mode shape,
frequency, and damping ratios) will change. 	erefore, dam-
age location and severity can be assessed by analyzing the
structure’s dynamic characteristics [6–8].

Natural frequencies are widely used as damage indicators
in the early stage of dynamic-based damage detection as they
are easy to obtain. However, they are veri�ed to be insensitive
to damage and susceptible to environmental changes [3, 8].
Mode shapes contain more information of damage location
and are more suitable for damage identi�cation than natural
frequencies. However, it is di�cult to realize the damage
localizing that relies only on mode shapes data [6]. Modal

exibility has shown itself to be a promising damage indicator
due to its high sensitivity to damage, because it contains
the information of both natural frequency and mode shape.
Pandey and Biswas [9] proposed a damage identi�cation
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approach using changes in modal 
exibility for the �rst time.
In reality, it is impractical to identify all of the modes. How-
ever, the 
exibility matrix can be accurately estimated based
on the �rst few modes because it is inversely proportional
to the squares of natural frequencies. Li et al. [10] applied
the 
exibility approach to damage identi�cation of cantilever-
type structures. Stutz et al. [11] presented a 
exibility-based
continuum damage detection method. Reynders and de
Roeck [12] proposed a local 
exibility-based approach which
allowed determining the local sti�ness variations directly
from modal properties. It was veri�ed by numerical simu-
lation of damaged isostatic and hyperstatic beam and also
experiments of a reinforced concrete beam. Catbas et al. [13]
adopted modal 
exibility for identifying structural behavior
a�er damage which could be evaluated by inspecting the
de
ected shapes.

Most of dynamic-based damage identi�cation methods
can be used to identify damage presence and locations. But
it is di�cult to assess the damage severity. Furthermore, the
computational time and costs are other challenges in damage
detection.	e applications of di�erent computational intelli-
gence approaches such as arti�cial neural networks (ANNs),
genetic algorithm (GA), and particle swarm optimization
(PSO) have been proved to be e�ective in damage severity
assessment and improving the computational e�ciency [14–
16]. ANNs [17, 18] are information processing systems which
mimic the network structure of actual human brain.Mehrjoo
et al. [19] presented a method for assessing the damage inten-
sities of joints for truss bridges using BP network. Natural
frequencies andmode shapeswere adopted as input variables.
Numerical simulation was used to demonstrate the accuracy
and e�ciency. Min et al. [17] proposed an innovative ANNs-
based pattern analysis tool which can identify damage-
sensitive frequency and realize the identi�cation of damage
type and severity. However, ANNs have some drawbacks,
such as the low convergence speed, over�tting, and locally
optimal solutions [20].

PSO is a population based stochastic optimization tech-
nique developed by Eberhart and Kennedy in 1995, which is a
new swarm intelligence technique inspired by social behavior
of bird 
ocking or �sh schooling [21]. Comparing with other
so� computing tools, PSO ismore e�cient and requires fewer
number of function evaluations, which leads to better or the
same quality of results [22]. In past several years, PSO has
been successfully applied in many research and application
areas. Shara� andElmekkawy [23] proposed a novel approach
for optimal design of hybrid renewable energy systems and
PSO-simulation was used to solve the multiobjective opti-
mization problem. Chen et al. [24] developed a method for
reliability-based design of composite structures which was
based on PSO and �nite element analysis. Examples revealed
that the proposed method had good stability.

In this paper, a two-stage damage identi�cation method
is proposed. Firstly, the damage location can be detected
through modal 
exibility indices. Secondly, ANNs are opti-
mized by PSO for damage severity identi�cation and the
modal 
exibility changes are treated as input variables.
Numerical simulation is used to verify its feasibility of the
proposed method.

2. Theoretical Background

2.1. Modal Flexibility. For a bridge system with � degrees of
freedom, the 
exibility matrix � can be calculated by [25]

� = [��,�] =
�
∑
�=1

�����
	�2

, (1)

where 	� is the 
th natural frequency, �� is the 
th mass
normalized mode shape, and ��,� is the modal 
exibility
component.

As can be seen from (1), the modal contribution to the

exibilitymatrix decreases rapidly as the frequency increases.
	erefore, it can be obtained by the �rst few lower modes in
practice.

	e 
exibility change matrix Δ� due to damage can be
obtained by

Δ� = �� − ��, (2)

where �� and �� are 
exibility matrices for damaged and
intact structure, respectively.

For eachDOF �, themaximum absolute value of elements
in �th column of Δ� can be acquired as

� = max
�
�����Δ��,�

����� . (3)

� can be used to locate damage for bridge structures.
	e curvature of 
exibility changes can be calculated

through second order central di�erence, which can be
expressed as

���� =
�−1 − 2� + �+1

Δ�2 , (4)

where Δ� is the length of structural element.

2.2. Neural Network Optimized by PSO

2.2.1. Arti	cial Neural Networks. ANNs can process complex
logic operations and achieve nonlinear mapping adaptively
through learning.	e process contains the forward propaga-
tion and back propagation. Neural network with three layers
is shown in Figure 1.

A three-layer network typically consists of an input layer,
a hidden layer, and an output layer. Each neuron possesses a
bias, a transfer function, and an output. Neurons in both pre-
vious and subsequent layers are connected with each other.
	emost widely used learning algorithm is back propagation
(BP) algorithm, which is a supervised learning style. In this
algorithm, data are transferred forward, while errors are
backward. In the process of forward, input information can
be calculated through the hidden layers and �nally delivered
to the output layers. If the calculated results are not consistent
with the expected one, then back propagation begins.Weights
and bias are adjusted by prediction errors. 	ereby, output
results continue close to the expected ones.

2.2.2. Particle Swarm Optimization. In PSO algorithm, each
solution is based on concept of the bird 
ock and is referred
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Figure 1: Structural diagram of ANNs.

to as a particle. In this framework the birds, besides having
individual intelligence, also develop some social behavior and
coordinate their movement towards a destination [22, 23, 26,
27].

Overall scale of particle swarm is assumed to be �, and the
vector of coordinate position for each particle in �-dimen-
sion space can be expressed by

�→�� = (��1, ��2, . . . , ���, . . . , ���) . (5)

	e velocity vector can be denoted by

�→�� = (V�1, V�2, . . . , V��, . . . , V��) . (6)

And the best position of individual particle is

�→�� = (��1, ��2, . . . , ���, . . . , ���) . (7)

While the best position for particles swarm can be
expressed by

�→�	 = (�	1, �	2, . . . , �	�, . . . , �	�) . (8)

	e iteration of best position for individual particle can
be realized by

���,
+1 = �
�
�,
+1, � (��,
+1) < � (��,
) ,

���,
+1 = �
�
�,
, � (��,
+1) ≥ � (��,
) .

(9)

	e optimal position for particle swarm is the best one for
individual particle, and the iteration of velocity and position
can be calculated by

V
�
�,
+1 = V

�
�,
+1 + �1 ∗ rand ∗ (���,
 − �

�
�,
+1)

+ �2 ∗ rand ∗ (��	,
 − �
�
�,
) ,

���,
+1 = �
�
�,
 + �

�
�,
+1.

(10)

	e calculation 
owchart for PSO algorithm is shown in
Figure 2.

Update particles velocity

Update particles position

Update local bests and global best

No

Stopping 
criteria met?

Yes

Initialization:

position, velocity, local bests calculation, 
global best is set to the best local best

solution is global best stop

Figure 2: PSO algorithm 
owchart.

2.3. PSO-BP Hybrid Algorithm. ANNs su�er from slow con-
vergence and getting suck in local minima.	erefore, PSO is
used to optimize ANNs in order to achieve the combination
between global optimization of PSO and instructive search
of ANNs. 	e hybrid algorithm can not only avoid the local
convergence phenomenon but also improve the performance
of networks [28].	ebias andweight can be adjusted through
the �tness function of PSO algorithm, and its optimization
process is shown in Figure 3.

3. Numerical Simulation

3.1.Modeling of Bridge. Simply supported bridgewith rectan-
gular cross-section as shown in Figure 4 is adopted as numer-
icalmodel to verify e�ectiveness of the proposedmethod.	e
length ! is 20m, the sectional width " is 0.8m, and height
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Figure 3: Flowchart of ANNs optimized by PSO.
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Figure 4: Simply supported beam bridge.

# is 1.7m. 	e model is divided into 20 elements, the elastic
modulus $ = 3.25%10N/m2, Poisson’s ratio & = 0.167, and
the material density ' = 2600 kg/m3.

In numerical simulation, damage of structure is repre-
sented by reduction in element sti�ness. In this paper, the
identi�cationswith single damage location andmultiple loca-
tions are conducted, respectively. As for damage identi�ca-
tion with single location, sti�ness of element 10 is assumed
to drop 5%, 10%, 15%, and 20%. As for the multiple one,
sti�nesses of elements 5 and 8 drop 5%, 10%, 15%, and 20%
simultaneously. Natural frequencies and mode shapes for
damaged and intact structure can be obtained through Lanc-
zosmodal analysismethod, and the �rst four vertical bending
modes are calculated. Natural frequencies for undamaged
structure are listed in Table 1.

Table 1: Natural frequencies for undamaged structure.

Modal order 1 2 3 4

Natural frequencies (Hz) 6.7982 26.955 59.788 104.26

3.2. Damage Localization Based on Modal Flexibility Indica-
tors. 	e modal 
exibility matrices for structure before and
a�er damage can be calculated by natural frequencies and
mode shapes according to (1). And modal 
exibility changes
can be obtained by (2). 	e maximum absolute values of ele-
ments in each column ofmatrices ofmodal 
exibility changes
are displayed for damage localization. In order to illustrate
the relationship between number ofmodes and identi�cation
e�ects, modal 
exibilities are calculated by the �rst order
mode and �rst four-order modes, respectively.
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Figure 5: Damage localization based on modal 
exibility changes using the �rst order mode.
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Figure 6: Damage localization based on modal 
exibility changes using the �rst four-order modes.

3.2.1. Modal Flexibility Changes. 	e damage localization
results of modal 
exibility changes using the �rst order mode
are shown in Figure 5.

Damage localization results of modal 
exibility changes
using the �rst four-order modes are shown in Figure 6.

As can be seen from Figures 5 and 6, modal 
exibility
changes can identify the damage presence but cannot be able
to identify the accurate damage locations. Curves calculated
by the �rst order mode are consistent with that calculated by
the �rst four-order modes.

3.2.2. Curvature of Modal Flexibility Changes. Damage local-
ization results for curvature ofmodal 
exibility changes using
the �rst order mode are shown in Figure 7.

Damage localization results for curvature of modal 
exi-
bility changes using the �rst four-order modes are shown in
Figure 8.

As can be seen from Figures 7 and 8, curvature of modal

exibility changes calculated by the �rst order mode and the
�rst four-order modes can identify the damage locations and
also qualitatively determine the damage severity. Curvature

curves obtained by the �rst four-order modes are smoother
than that by the �rst order mode, and oscillation at undam-
aged locations is smaller. However, it is su�cient for damage
localization based on the curvature calculated by the �rst
order mode, and it is more feasible in practical applications.

3.3. Damage Severity Identi	cation Based on

Neural Network Optimized by PSO

3.3.1. Determination of Damage Indicator. Considering the
simplicity of modal 
exibility changes, the normalized vec-
tors are used as damage indicators and inputs of neural
networks optimized by PSO. 	e normalized vector can be
calculated by

Input = {1, 2, . . . , �} ,

� =
� − min

max − min

,
(11)

where � is the maximum absolute value of elements in �th
column of Δ�; max and min are maximum and minimum
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Figure 7: Damage localization based on curvature of modal 
exibility changes using the �rst order mode.
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Figure 8: Damage localization based on curvature of modal 
exibility changes using the �rst four-order modes.

values of vector  (� = 1, 2, . . . , �), respectively; � is the
normalized �.

3.3.2. Severity Identi	cation with Single Damage Location.
Taking the damage identi�cation of element 10, for example,
damage severities with 5%, 10%, 15%, and 20% are selected
as training samples, while 7%, 12%, and 18% are testing
ones.	e normalized vectors of modal 
exibility changes are
used as input variables of neural network optimized by PSO.
	e training samples for damage identi�cation are listed in
Table 2.

Testing samples are used to verify the feasibility of opti-
mized neural network, and the identi�cation results are listed
in Table 3.

As can be seen from Table 3, the maximum relative errors
for neural network optimized by PSO are 2.57%. It reveals
that the identi�cation accuracy is favorable and can meet
the practical requirements.	e neural network optimized by
PSO is suitable for damage severity identi�cation with single
damage location of bridge.

3.3.3. Severity Identi	cation with Multiple Damage Loca-
tions. Taking damage identi�cation of elements 5 and 8,

for example, damage severities simultaneously with 5%, 10%,
15%, and 20% are used as training samples, and simulta-
neously 7%, 12%, and 18% are treated as testing ones. 	e
corresponding training samples are listed in Table 4, and the
identi�cation results for testing samples are shown in Table 5.

As can be seen from Table 5, the maximum relative error
is 6.22%. It is larger than that of identi�cation with single
damage location. 	e reasons are that it is more complex for
the severities identi�cation with multiple damage locations
and also associated with the number and rationality of train-
ing samples.

3.3.4. Comparative Analysis with Traditional BP Neural Net-
work. In order to verify the superiority of the proposed
method, comparative analysis between PSO-BP and tradi-
tional network is conducted. 	e identi�cation results for
severity identi�cation with single and multiple damage loca-
tions are listed in Table 6.

As can be seen fromTable 6, themaximum relative errors
of BP neural network for severities identi�cation with single
and multiple locations are 4.00% and 12.00%, respectively.
Comparative results show that the calculation accuracy of
neural network optimized by PSO is better than traditional
BP network.
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Table 2: Training samples for damage severity identi�cation of
element 10.

Node number
Damage severity (%)

5 10 15 20

2 0.01 0.01 0.01 0.01

3 0.14 0.14 0.14 0.14

4 0.27 0.27 0.27 0.27

5 0.40 0.40 0.40 0.40

6 0.52 0.52 0.52 0.52

7 0.64 0.64 0.64 0.64

8 0.77 0.76 0.76 0.76

9 0.88 0.88 0.88 0.88

10 0.99 0.99 0.99 0.99

11 1.00 1.00 1.00 1.00

12 0.90 0.90 0.90 0.90

13 0.80 0.80 0.80 0.80

14 0.69 0.69 0.69 0.69

15 0.58 0.58 0.58 0.58

16 0.47 0.47 0.47 0.47

17 0.35 0.35 0.35 0.35

18 0.24 0.24 0.24 0.24

19 0.12 0.12 0.12 0.12

20 0.00 0.00 0.00 0.00

Table 3: Damage severity identi�cation results for testing samples
of element 10.

Expected outputs Identi�cation results Relative errors

(%) (%) (%)

7 7.18 2.57

12 12.28 2.28

18 18.35 1.94

4. Conclusions

Damage identi�cation is one of themajor challenges in bridge
health monitoring. We have proposed a two-stage strategy
based on modal 
exibility and neural network optimized by
PSO for damage location and severity identi�cation. Simply
supported bridge with rectangular cross-section is selected as
numerical model to verify the e�ectiveness of the proposed
method.

As for damage localization based on modal 
exibility
indicators, modal 
exibility changes can identify the damage
presence but cannot achieve acceptable identi�cation of
damage locations.	e curvature of 
exibility changes ismore
favorable for damage localizing and it is su�cient to be
calculated by the �rst order mode.

With regard to the damage severity identi�cation of neu-
ral network optimized by PSO, normalized vector of modal

exibility changes is adopted as input variable. Training
samples for identi�cation with single and multiple damage
locations are constructed, respectively. 	e identi�cation
results for single damage location reveal that the maximum
relative error is 2.57%, while it is 6.22% for multiple damage

Table 4: Training samples for damage severity identi�cation of
elements 5 and 8.

Node number
Damage severity (%)

5 10 15 20

2 0.10 0.10 0.10 0.10

3 0.30 0.30 0.30 0.30

4 0.50 0.50 0.50 0.50

5 0.69 0.69 0.69 0.69

6 0.83 0.83 0.83 0.83

7 0.92 0.92 0.92 0.92

8 1.00 1.00 1.00 1.00

9 1.00 1.00 1.00 1.00

10 0.93 0.93 0.93 0.93

11 0.85 0.85 0.85 0.85

12 0.78 0.77 0.77 0.77

13 0.69 0.69 0.69 0.69

14 0.60 0.60 0.60 0.60

15 0.50 0.51 0.51 0.51

16 0.41 0.41 0.41 0.41

17 0.31 0.31 0.31 0.31

18 0.21 0.21 0.21 0.21

19 0.10 0.10 0.10 0.10

20 0.00 0.00 0.00 0.00

Table 5: Damage severity identi�cation results for testing samples
of elements 5 and 8.

Expected outputs
(%)

Identi�cation results
(%)

Relative errors
(%)

7, 7 6.57, 7.35 6.14, 5.00

12, 12 11.38, 12.68 5.17, 5.67

18, 18 19.12, 18.95 6.22, 5.28

Table 6: Damage identi�cation using BP network.

Damage category
Single damage

location
Multiple damage

locations

Expected outputs
(%)

7 7, 7

12 12, 12

18 18, 18

Actual results
(%)

7.28 7.84, 7.79

12.38 11.13, 12.89

17.59 16.83, 16.98

Relative errors
(%)

4.00 12.00, 11.29

3.17 7.25, 7.42

2.28 6.50, 5.67

locations. 	e results manifest that it is feasible for damage
severity identi�cation using neural network optimized by
PSO. Comparative analysis with traditional BP network is
conducted to verify its superiority. 	e calculation accuracy
of optimized neural network is more favorable.
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